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Preface

Many students encounter difficulty going from high school math to college-level
mathematics. Even if they do well at math in school, most students are knocked off
course for a while by the shift in emphasis from the K-12 focus on mastering
procedures to the “mathematical thinking” characteristic of much university
mathematics. Though the majority survive the transition, many do not, and leave
mathematics for some other major (possibly outside the sciences or other
mathematically-dependent subjects). To help incoming students make the shift,
colleges and universities often have a “transition course.”

This short book is written to accompany such a course, but it is not a traditional
“transition textbook.” Rather than give beginning college students (and advanced high
school seniors) a crash course in mathematical logic, formal proofs, some set theory,
and a bit of elementary number theory and elementary real analysis, as is commonly
done, I attempt to help students develop that crucial but elusive ability: mathematical
thinking. This is not the same as “doing math,” which usually involves the application
of procedures and some heavy-duty symbolic manipulations. Mathematical thinking,
by contrast, is a specific way of thinking about things in the world. It does not have to
be about mathematics at all, though I would argue that certain parts of mathematics
provide the ideal contexts for learning how to think that way, and in this book I will
concentrate my attention on those areas.

Mathematicians, scientists, and engineers need to “do math.” But for life in the
twenty-first century, everyone benefits from being able to think mathematically to
some extent. (Mathematical thinking includes logical and analytic thinking as well as
quantitative reasoning, all crucial abilities.) This is why I have tried to make this book
accessible to anyone who wants or needs to extend and improve their analytic
thinking skills. For the student who goes beyond a basic grasp of logical and analytic
thinking, and truly masters mathematical thinking, there is a payoff at least equal to
those advantages incidental to twenty-first century citizenship: mathematics goes from
being confusing, frustrating, and at times seemingly impossible, to making sense and
being hard but doable.

I developed one of the first college transition courses in the late 1970s, when I was
teaching at the University of Lancaster in England, and I wrote one of the first
transition textbooks, Sets, Functions and Logic, which was published in 1981.1
Today, when I give such a course, I structure it differently, giving it the broader focus
of “mathematical thinking,” and likewise this book is different from my earlier one.2
While I understand the rationale behind the more familiar transition courses and



textbooks, the course I give today, and along with it this book, seek to serve a much
wider audience. (In particular, I no longer devote time to formal, mathematical logic.
While logic provides a useful model of mathematical reasoning—which is the reason
it was developed in the first place—I no longer think it is the best way to develop
practical, logical reasoning skills.) In adopting this broader, societal perspective, I
believe my course—and this book—will not only still help beginning college and
university mathematics students successfully negotiate the transition from high school,
it will also help anyone develop better reasoning skills.

For some reason, transition course textbooks are generally hugely expensive, in
some cases over $100, which is a lot for a book that likely will be used for at most one
semester. This book is designed to accompany transition courses that last only five to
seven weeks. For that reason, I decided to self-publish it as a low-cost, print-on-
demand book. I did however engage an experienced, professional mathematics
textbook editor, Joshua D. Fisher, to go over my entire manuscript prior to
publication. The final form of the book owes a lot to his expertise, and for that I am
very appreciative.

Keith Devlin
Stanford University

July 2012



What this book is about

Dear reader,
I wrote this book with two kinds of reader in mind: (1) the high school graduate

entering college or university who wants to (or could) major in mathematics or some
math-dependent subject and (2) anyone who, for whatever reason, wants or needs to
develop or improve their analytic thinking skills. Regardless, the focus is on learning
to think a certain (very powerful) way.

You won’t learn any mathematical procedures from this book, nor will you have to
apply any! Though the final chapter focuses on numbers (elementary number theory
and the basics of real analysis), the amount of “traditional” mathematical material I
cover on those topics is tiny. The last chapter simply provides excellent examples that
have helped mathematicians themselves develop, over time, the analytic thinking skills
I shall describe throughout this book.

During the nineteenth century, the need for those analytic thinking skills among the
wider, general population grew with increasing democratization and “flattening” of
society, which gave—and continue to give—every citizen more and more freedom
and opportunities to play a significant, self-directed role in business or society. Today,
more than ever, good analytic thinking skills are essential for anyone who wants to
take full advantage of the opportunities for self-growth and advancement that
contemporary democratic societies offer.

I have been teaching and writing books about the patterns of thinking required to
succeed in college-level3 (pure) mathematics for several decades. Yet, it was only in
the last fifteen years, as I found myself doing a fair amount of consulting work with
industry and government, that I heard first hand that the “mathematical thinking
skills” that were the focus of those courses and books were exactly what business and
government leaders said they valued most in many of their employees. Rarely would a
CEO or the head of a government lab say that they wanted people with specific skills;
rather, their need was for people who had good analytic thinking skills and were able
to acquire new specific skills when needed.

As a consequence of the ideas borne out of these divergent, though obviously
interconnected experiences—in academia and business—in writing this new book I
have, for the first time, tried to structure the development in a way that makes it
accessible to a wide audience.

With that said, the remainder of this introduction is directed primarily at the
entering (or about-to-enter) college student faced with having to take some (pure)
mathematics courses. For the more general reader, the value of what I will say is that



the mathematical thinking skills required to master modern pure mathematics are
precisely the crucial mental abilities required to succeed in many professions and
walks of life, as I just discussed.

* * *

Dear student,

As you are about to discover, the transition from high school mathematics to
college-level (pure) abstract mathematics is a difficult one. Not because the
mathematics gets harder. Those students who have successfully made the transition
will likely agree that college math feels in many ways easier. What causes the problem
for many—as I mentioned above—is only the change in emphasis. In high school, the
focus is primarily on mastering procedures to solve various kinds of problems. This
gives the process of learning very much a flavor of reading and absorbing the recipes
of a kind of mathematical cookbook. At college, the focus is on learning to think in a
different, specific way—to think like a mathematician.

(Actually, this is not true of all college math courses. Those courses designed for
science and engineering students are often very much in the same vein as the calculus
courses that typically form the pinnacle of high school mathematics. It’s the courses
that compose the bulk of the mathematics major that are different. Since some of
those courses are usually required for more advanced work in science and
engineering, students in those disciplines also may find themselves faced with this
“different kind” of math.)

Thinking mathematically isn’t a different kind of math, but rather a broader and
more up-to-date—though not more dilute—perspective on mathematics. The high
school curriculum typically focuses on mathematical procedures and largely ignores
the rest of the subject. Still, to the student—you—college math does initially feel like a
completely different discipline. It certainly did when I started my undergraduate
studies in math. If you go to college to study math (or a math-heavy subject like
physics), you must have done pretty well in math at school. That means, you got to be
good at mastering and following procedures (and to some extent doing so under time
constraints). And that is what the school system rewarded you for. Then you head off
to college and all the rules change. In fact, at first it feels as if there are no rules, or if
they are the professors are keeping them secret.

Why the change in emphasis when you get to college? Simple. Education is about
learning new skills and increasing your capacity for doing things. Once you have
shown you can learn new mathematical procedures, which you have by the time you
graduate from high school, there is little to be gained from being taught more of the



same. You will be able to pick up new techniques whenever you need them.
For instance, once a piano student has mastered one Tchaikovsky concerto, with at

most a bit of practice—but essentially no new teaching—they’ll be able to play
another. From then on, the student’s focus should be on expanding their repertoire to
include other composers, or to understand music sufficiently well to compose their
own.

Analogously, in the case of math, your goal at college is to develop the thinking
skills that will allow you to solve novel problems (either practical, real-world
problems or ones that arise in math or science) for which you don’t know a standard
procedure. In some cases, there may not be a standard procedure. (This was the case
when the Stanford graduate students Larry Page and Serjey Brin developed a new
mathematical procedure to search for information, leading to their creation of
Google.)

To put it another way (one that makes it clear why mathematical thinking is so
valuable in the modern world), before college you succeed in math by learning to
“think inside the box”; at college, success in math comes from learning to “think
outside the box,” an ability that practically every major employer today says they value
highly in their workers.

The primary focus of this book, like all “transition books” and “transition courses,”
is on helping you learn how to approach a new problem, one that does not quite fit
any template you are familiar with. It comes down to learning how to think (about a
given problem).

The first key step (there are two) you have to make in order to successfully
negotiate this school-to-college transition, is to learn to stop looking for a formula to
apply or a procedure to follow. Approaching a new problem by looking for a template
—say a worked example in a textbook or presented on a YouTube video—and then
just changing the numbers, usually won’t work. (Working that way is still useful in
many parts of college math, and for real-world applications, so all that work you did
at high school won’t go to waste. But it isn’t enough for the new kind of
“mathematical thinking” you’ll be required to do in many of your college math
courses.)

So, if you can’t solve a problem by looking for a template to follow, a formula to
plug some numbers into, or a procedure to apply, what do you do? The answer—and
this is the second key step—is you think about the problem. Not the form it has
(which is probably what you were taught to do at school, and which served you well
there), but what it actually says. That sounds as though it ought to be easy, but most of
us initially find it extremely hard and very frustrating. Given that this will likely be
your experience as well, it might help you to know that there is a good reason for the



change. It has to do with (real-world) applications of mathematics: I’ll elaborate in
Chapter 1, but for now, I’ll just give you an analogy.

If we compare mathematics with the automotive world, school math corresponds to
learning to drive. In the automotive equivalent to college math, in contrast, you learn
how a car works, how to maintain and repair it, and, if you pursue the subject far
enough, how to design and build your own car.

I’ll finish this brief introduction with some pointers to keep in mind as you work
through this book.

The only prerequisite for this book is completion (or pending completion) of a
typical high school mathematics curriculum. In one or two places (particularly in
the final chapter) I assume some knowledge of elementary set theory (primarily
the notions and properties of set-inclusion, unions, and intersections). I include
the requisite material as an appendix for anyone not already familiar with the
subject.

Bear in mind that one reason you are likely to find the going tough is that
everything will seem unmotivated. The goal is to provide you with the foundation
on which to build the mathematical thinking that comes later—mathematics that
you do not yet know about! There is no avoiding an element of bootstrapping the
new way of thinking.

Make your focus understanding the new concepts and ideas.

Don’t rush. There are very few new facts to learn—note how thin this book is—
but a lot to comprehend!

Try the exercises—as many of them as possible. They are included to aid your
understanding.

Discuss any difficulties which arise with your colleagues and with your instructor.
Few of us master a crucial shift in thinking on our own.

I should stress that this is not a textbook designed for self-study. It is written as a
course companion, something to supplement human instruction and to be
consulted whenever you feel you need supplementary information from a source
other than your instructor.

There are many exercises throughout the book. I strongly urge you to do them.
They are an integral part of the book. Unlike textbooks, however, I have not
provided answers to the exercises. That is not an oversight, but a deliberate choice
on my part. Learning to think mathematically is not about getting answers.



(Though once you have learned how to think mathematically, getting the right
answer becomes a lot easier than when you were just following procedural
recipes.) If you want to know if you have got something right—and we all do—
you should seek out someone who knows. Deciding whether a piece of
mathematical reasoning is correct is a value judgment that requires expertise.
Students not infrequently get what on the surface looks like the right answer but
on closer examination turns out to be wrong. Sure, there are some exercises
where I could have safely given the answer, but I also wanted to reinforce the
crucial message that negotiating the school-to-university math transition is all
about the process—about trying and reflecting—not “getting answers.”

If at all possible, work with others. Working alone is common at high school,
with its focus on doing, but mastering transition material is all about thinking, and
discussing your work with others is a much better approach than solitary study.
Analyzing and critiquing attempts at proofs by fellow students will greatly assist
your own learning and comprehension.

Do not try to rush through any section, even if at first glance it looks easy.4 This
entire book consists of basic material required elsewhere (indeed practically
everywhere) in college-level mathematics. Everything you will find in this book is
included because it generally causes problems for the beginner. (Trust me on
this.)

Don’t give up. Students all around the world managed it last year, and the year
before that. So did I, many years ago. So will you!

Oh yes, one more thing: Don’t rush.

Remember, the goal is understanding and developing a new way of thinking—
one that you will find valuable in many walks of life.

School math was about doing; college math is largely about thinking.

Three final words of advice. Take. Your. Time.

Good luck. :-)

Keith Devlin
Stanford University

July 2012



1

What is mathematics?

For all the time schools devote to the teaching of mathematics, very little (if any) is
spent trying to convey just what the subject is about. Instead, the focus is on learning
and applying various procedures to solve math problems. That’s a bit like explaining
soccer by saying it is executing a series of maneuvers to get the ball into the goal. Both
accurately describe various key features, but they miss the what and the why of the
big picture.

Given the demands of the curriculum, I can understand how this happens, but I
think it is a mistake. Particularly in today’s world, a general understanding of the
nature, extent, power, and limitations of mathematics is valuable to any citizen.1 Over
the years, I’ve met many people who graduated with degrees in such mathematically
rich subjects as engineering, physics, computer science, and even mathematics itself,
who have told me that they went through their entire school and college-level
education without ever gaining a good overview of what constitutes modern
mathematics. Only later in life do they sometimes catch a glimpse of the true nature of
the subject and come to appreciate its pervasive role in modern life.2

1.1    More than arithmetic

Most of the mathematics used in present-day science and engineering is no more than
three- or four-hundred years old, much of it less than a century old. Yet the typical
high school curriculum comprises mathematics at least that old—some of it over two-
thousand years old!

Now, there is nothing wrong with teaching something so old. As the saying goes, if
it ain’t broke, don’t fix it. The algebra that the Arabic-speaking traders developed in
the eighth and ninth centuries (the word algebra comes from the Arabic term al-jabr,
meaning “restoration” or “reunion of broken parts”) to increase efficiency in their
business transactions remains as useful and important today as it was then, even
though today we may now implement it in a spreadsheet macro rather than by
medieval finger calculation. But time moves on and society advances. In the process,
the need for new mathematics arises and, in due course, is met. Education needs to
keep pace.

Mathematics can be said to have begun with the invention of numbers and
arithmetic, which is believed to have occurred around ten thousand years ago, with



the introduction of money. (Yes, apparently it began with money!)
Over the ensuing centuries, the ancient Egyptians and Babylonians expanded the

subject to include geometry and trigonometry.3 In those civilizations, mathematics was
largely utilitarian, and very much of a “cookbook” variety. (“Do such and such to a
number or a geometric figure, and you will get the answer.”)

The period from around 500 BCE to 300 CE was the era of Greek mathematics. The
mathematicians of ancient Greece had a particularly high regard for geometry. Indeed,
they treated numbers geometrically, as measurements of length, and when they
discovered that there were lengths to which their numbers did not correspond
(essentially the discovery of irrational numbers), their study of number largely came
to a halt.4

In fact, it was the Greeks who made mathematics into an area of study, not merely
a collection of techniques for measuring, counting, and accounting. Around 500 BCE,
Thales of Miletus (Miletus is now part of Turkey) introduced the idea that the
precisely stated assertions of mathematics could be logically proved by formal
arguments. This innovation marked the birth of the theorem, now the bedrock of
mathematics. This formal approach by the Greeks culminated in the publication of
Euclid’s Elements, reputedly the most widely circulated book of all time after the
Bible.5

By and large, school mathematics is based on all the developments I listed above,
together with just two further advances, both from the seventeenth century: calculus
and probability theory. Virtually nothing from the last three hundred years has found
its way into the classroom. Yet most of the mathematics used in today’s world was
developed in the last two hundred years, let alone the last three hundred!

As a result, anyone whose view of mathematics is confined to what is typically
taught in schools is unlikely to appreciate that research in mathematics is a thriving,
worldwide activity, or to accept that mathematics permeates, often to a considerable
extent, most walks of present-day life and society. For example, they are unlikely to
know which organization in the United States employs the greatest number of Ph.D.s
in mathematics. (The answer is almost certainly the National Security Agency, though
the exact number is an official secret. Most of those mathematicians work on code
breaking, to enable the agency to read encrypted messages that are intercepted by
monitoring systems—at least, that is what is generally assumed, though again the
Agency won’t say. Though most Americans probably know that the NSA engages in
code breaking, many do not realize it requires mathematics, and hence do not think of
the NSA as an organization that employs a large number of advanced
mathematicians.)

The explosion of mathematical activity that has taken place over the past hundred



years or so in particular has been dramatic. At the start of the twentieth century,
mathematics could reasonably be regarded as consisting of about twelve distinct
subjects: arithmetic, geometry, calculus, and several more. Today, the number of
distinct categories is somewhere between sixty and seventy, depending how you count
them. Some subjects, like algebra or topology, have split into various subfields;
others, such as complexity theory or dynamical systems theory, are completely new
areas of study.

The dramatic growth in mathematics led in the 1980s to the emergence of a new
definition of mathematics as the science of patterns. According to this description, the
mathematician identifies and analyzes abstract patterns—numerical patterns, patterns
of shape, patterns of motion, patterns of behavior, voting patterns in a population,
patterns of repeating chance events, and so on. Those patterns can be either real or
imagined, visual or mental, static or dynamic, qualitative or quantitative, utilitarian or
recreational. They can arise from the world around us, from the pursuit of science, or
from the inner workings of the human mind. Different kinds of patterns give rise to
different branches of mathematics. For example:

Arithmetic and number theory study the patterns of number and counting.

Geometry studies the patterns of shape.

Calculus allows us to handle patterns of motion.

Logic studies patterns of reasoning.

Probability theory deals with patterns of chance.

Topology studies patterns of closeness and position.

Fractal geometry studies the self-similarity found in the natural world.

1.2    Mathematical notation

One aspect of modern mathematics that is obvious to even the casual observer is the
use of abstract notations: algebraic expressions, complicated-looking formulas, and
geometric diagrams. The mathematicians’ reliance on abstract notation is a reflection
of the abstract nature of the patterns they study.

Different aspects of reality require different forms of description. For example, the
most appropriate way to study the lay of the land or to describe to someone how to
find their way around a strange town is to draw a map. Text is far less appropriate.
Analogously, annotated line drawings (blueprints) are most appropriate for



representing the construction of a building. And musical notation is most appropriate
for representing music on paper. In the case of various kinds of abstract, formal
patterns and abstract structures, the most appropriate means of description and
analysis is mathematics, using mathematical notations, concepts, and procedures.

For example, the commutative law for addition could be written in English as:

When two numbers are added, their order is not important.

However, it is usually written in the symbolic form:

m + n = n + m

While the symbolic form has no significant advantage for a simple example such as
this, such is the complexity and the degree of abstraction of the majority of
mathematical patterns, that to use anything other than symbolic notation would be
prohibitively cumbersome. And so the development of mathematics has involved a
steady increase in the use of abstract notations.

Though the introduction of symbolic mathematics in its modern form is generally
credited to the French mathematician Françoise Viète in the sixteenth century, the
earliest appearance of algebraic notation seems to have been in the work of
Diophantus, who lived in Alexandria some time around 250 CE. His thirteen volume
treatise Arithmetica (only six volumes have survived) is generally regarded as the first
algebra textbook. In particular, Diophantus used special symbols to denote the
unknown in an equation and to denote powers of the unknown, and he had symbols
for subtraction and for equality.

These days, mathematics books tend to be awash with symbols, but mathematical
notation no more is mathematics than musical notation is music. A page of sheet
music represents a piece of music; the music itself is what you get when the notes on
the page are sung or performed on a musical instrument. It is in its performance that
the music comes alive and becomes part of our experience. The music exists not on
the printed page but in our minds. The same is true for mathematics. The symbols on
a page are just a representation of the mathematics. When read by a competent
performer (in this case, someone trained in mathematics), the symbols on the printed
page come alive—the mathematics lives and breathes in the mind of the reader like
some abstract symphony.

To repeat, the reason for the abstract notation is the abstract nature of the patterns
that mathematics helps us identify and study. For example, mathematics is essential to
our understanding the invisible patterns of the universe. In 1623, Galileo wrote,



The great book of nature can be read only by those who know the
language in which it was written. And this language is mathematics.6

In fact, physics can be accurately described as the universe seen through the lens of
mathematics.

To take just one example, as a result of applying mathematics to formulate and
understand the laws of physics, we now have air travel. When a jet aircraft flies
overhead, you can’t see anything holding it up. Only with mathematics can we “see”
the invisible forces that keep it aloft. In this case, those forces were identified by Isaac
Newton in the seventeenth century, who also developed the mathematics required to
study them, though several centuries were to pass before technology had developed to
a point where we could actually use Newton’s mathematics (enhanced by a lot of
additional mathematics developed in the interim) to build airplanes. This is just one of
many illustrations of one of my favorite memes for describing what mathematics
does: mathematics makes the invisible visible.

1.3    Modern college-level mathematics

With that brief overview of the historical development of mathematics under our
belts, I can start to explain how modern college math came to differ fundamentally
from the math taught in school.

Up to about 150 years ago, although mathematicians had long ago expanded the
realm of objects they studied beyond numbers (and algebraic symbols for numbers),
they still regarded mathematics as primarily about calculation. That is, proficiency at
mathematics essentially meant being able to carry out calculations or manipulate
symbolic expressions to solve problems. By and large, high school mathematics is still
very much based on that earlier tradition.

But during the nineteenth century, as mathematicians tackled problems of ever
greater complexity, they began to discover that these earlier intuitions about
mathematics were sometimes inadequate to guide their work. Counterintuitive (and
occasionally paradoxical) results made them realize that some of the methods they had
developed to solve important, real-world problems had consequences they could not
explain. The Banach–Tarski Paradox, for example, says you can, in principle, take a
sphere and cut it up in such a way that you can reassemble it to form two identical
spheres each the same size as the original one. Because the mathematics is correct, the
Banach–Tarski result had to be accepted as a fact, even though it defies our
imagination.

It became clear, then, that mathematics can lead to realms where the only



understanding is through the mathematics itself. In order to be confident that we can
rely on discoveries made by way of mathematics—but not verifiable by other means
—mathematicians turned the methods of mathematics inwards, and used them to
examine the subject itself.

This introspection led, in the middle of the nineteenth century, to the adoption of a
new and different conception of mathematics, where the primary focus was no longer
on performing calculations or computing answers, but formulating and understanding
abstract concepts and relationships. This was a shift in emphasis from doing to
understanding. Mathematical objects were no longer thought of as given primarily by
formulas, but rather as carriers of conceptual properties. Proving something was no
longer a matter of transforming terms in accordance with rules, but a process of
logical deduction from concepts.

This revolution—for that is what it amounted to—completely changed the way
mathematicians thought of their subject. Yet, for the rest of the world, the shift may as
well have not occurred. The first anyone other than professional mathematicians knew
that something had changed was when the new emphasis found its way into the
undergraduate curriculum. If you, as a college math student, find yourself reeling after
your first encounter with this “new math,” you can lay the blame at the feet of the
mathematicians Lejeune Dirichlet, Richard Dedekind, Bernhard Riemann, and all the
others who ushered in the new approach.

As a foretaste of what is to come, I’ll give one example of the shift. Prior to the
nineteenth century, mathematicians were used to the fact that a formula such as y = x2

+ 3x − 5 specifies a function that produces a new number y from any given number x.
Then the revolutionary Dirichlet came along and said to forget the formula and
concentrate on what the function does in terms of input–output behavior. A function,
according to Dirichlet, is any rule that produces new numbers from old. The rule does
not have to be specified by an algebraic formula. In fact, there’s no reason to restrict
your attention to numbers. A function can be any rule that takes objects of one kind
and produces new objects from them.

This definition legitimizes functions such as the one defined on real numbers by the
rule:

If x is rational, set f(x) = 0; if x is irrational, set f(x) = 1.

Try graphing that monster!
Mathematicians began to study the properties of such abstract functions, specified

not by some formula but by their behavior. For example, does the function have the
property that when you present it with different starting values it always produces



different answers? (This property is called injectivity.)
This abstract, conceptual approach was particularly fruitful in the development of

the new subject called real analysis, where mathematicians studied the properties of
continuity and differentiability of functions as abstract concepts in their own right.
French and German mathematicians developed the “epsilon-delta definitions” of
continuity and differentiability that to this day cost each new generation of post-
calculus mathematics students so much effort to master.

Again, in the 1850s, Riemann defined a complex function by its property of
differentiability, rather than a formula, which he regarded as secondary.

The residue classes defined by the famous German mathematician Karl Friedrich
Gauss (1777–1855), which you are likely to meet in an algebra course, were a
forerunner of the approach—now standard—whereby a mathematical structure is
defined as a set endowed with certain operations, whose behaviors are specified by
axioms.

Taking his lead from Gauss, Dedekind examined the new concepts of ring, field,
and ideal—each of which was defined as a collection of objects endowed with certain
operations. (Again, these are concepts you are likely to encounter soon in your post-
calculus mathematics education.)

And there were many more changes.
Like most revolutions, the nineteenth century change had its origins in times long

before the main protagonists came on the scene. The Greeks had certainly shown an
interest in mathematics as a conceptual endeavor, not just calculation; and in the
seventeenth century, calculus co-inventor Gottfried Leibniz thought deeply about both
approaches. But for the most part, until the nineteenth century, mathematics was
viewed primarily as a collection of procedures for solving problems. To today’s
mathematicians, however, brought up entirely with the post-revolutionary conception
of mathematics, what in the nineteenth century was a revolution is simply taken to be
what mathematics is. The revolution may have been quiet, and to a large extent
forgotten, but it was complete and far reaching. And it sets the scene for this book, the
main aim of which is to provide you with the basic mental tools you will need to enter
this new world of modern mathematics (or at least to learn to think mathematically).

Although the post-nineteenth-century conception of mathematics now dominates
the field at the post-calculus, college level, it has not had much influence on high
school mathematics—which is why you need a book like this to help you make the
transition. There was one attempt to introduce the new approach into school
classrooms, but it went terribly wrong and soon had to be abandoned. This was the
so-called “New Math” movement of the 1960s. What went wrong was that by the time
the revolutionaries’ message had made its way from the mathematics departments of



the leading universities into the schools, it was badly garbled.
To mathematicians before and after the mid-1800s, both calculation and

understanding had always been important. The nineteenth century revolution merely
shifted the emphasis regarding which of the two the subject was really about and
which played the derivative or supporting role. Unfortunately, the message that
reached the nation’s school teachers in the 1960s was often, “Forget calculation skill,
just concentrate on concepts.” This ludicrous and ultimately disastrous strategy led the
satirist (and mathematician) Tom Lehrer to quip, in his song New Math, “It’s the
method that’s important, never mind if you don’t get the right answer.” After a few
sorry years, “New Math” (which was already over a hundred years old, note) was
largely dropped from the school syllabus.

Such is the nature of educational policy-making in free societies that it is unlikely
such a change could ever be made in the foreseeable future, even if it were done
properly the second time around. It’s also not clear (at least to me) that such a change
would be altogether desirable. There are educational arguments (which in the absence
of hard evidence either way are hotly debated) that say the human mind has to achieve
a certain level of mastery of computation with abstract mathematical entities before it
is able to reason about their properties.

1.4    Why do you have to learn this stuff?

It should be clear by now that the nineteenth century shift from a computational view
of mathematics to a conceptual one was a change within the professional mathematical
community. Their interest, as professionals, was in the very nature of mathematics.
For most scientists, engineers, and others who make use of mathematical methods in
their daily work, things continued much as before, and that remains the same today.
Computation (and getting the right answer) remains just as important as ever, and
even more widely used than at any time in history.

As a result, to anyone outside the mathematical community, the shift looks more
like an expansion of mathematical activity than a change of focus. Instead of just
learning procedures to solve problems, college-level math students today also (i.e., in
addition) are expected to master the underlying concepts and be able to justify the
methods they use.

Is it reasonable to require this? Although professional mathematicians—whose job
it is to develop new mathematics and certify its correctness—need such conceptual
understanding, why make it a requirement for those whose goal is to pursue a career
in which mathematics is merely a tool? (Engineering for example.)

There are two answers, both of which have a high degree of validity. (SPOILER: It



only appears that there are two answers. On deeper analysis, they turn out to be the
same.)

First, education is not solely about the acquisition of specific tools to use in a
subsequent career. As one of the greatest creations of human civilization, mathematics
should be taught alongside science, literature, history, and art in order to pass along
the jewels of our culture from one generation to the next. We humans are far more
than the jobs we do and the careers we pursue. Education is a preparation for life, and
only part of that is the mastery of specific work skills.

That first answer should surely require no further justification. The second answer
addresses the tools-for-work issue.

There is no question that many jobs require mathematical skills. Indeed, in most
industries, at almost any level, the mathematical requirements turn out to be higher
than is popularly supposed, as many people discover when they look for a job and
find their math background lacking.

Over many years, we have grown accustomed to the fact that advancement in an
industrial society requires a workforce that has mathematical skills. But if you look
more closely, those skills fall into two categories. The first category comprises people
who, given a mathematical problem (i.e., a problem already formulated in
mathematical terms), can find its mathematical solution. The second category
comprises people who can take a new problem, say in manufacturing, identify and
describe key features of the problem mathematically, and use that mathematical
description to analyze the problem in a precise fashion.

In the past, there was a huge demand for employees with Type 1 skills, and a small
need for Type 2 talent. Our mathematics education process largely met both needs. It
has always focused primarily on producing people of the first variety, but some of
them inevitably turned out to be good at the second kind of activities as well. So all
was well. But in today’s world, where companies must constantly innovate to stay in
business, the demand is shifting toward Type 2 mathematical thinkers—to people who
can think outside the mathematical box, not inside it. Now, suddenly, all is not well.

There will always be a need for people with mastery of a range of mathematical
techniques, who are able to work alone for long periods, deeply focused on a specific
mathematical problem, and our education system should support their development.
But in the twenty-first century, the greater demand will be for Type 2 ability. Since we
don’t have a name for such individuals (“mathematically able” or even
“mathematician” popularly imply Type 1 mastery), I propose to give them one:
innovative mathematical thinkers.

This new breed of individuals (well, it’s not new, I just don’t think anyone has
shone a spotlight on them before) will need to have, above all else, a good conceptual



understanding of mathematics, its power, its scope, when and how it can be applied,
and its limitations. They will also have to have a solid mastery of some basic
mathematical skills. But their skills mastery does not have to be stellar. A far more
important requirement is that they can work well in teams, often cross-disciplinary
teams, they can see things in new ways, they can quickly learn and come up to speed
on a new technique that seems to be required, and they are very good at adapting old
methods to new situations.

How do we educate such individuals? We concentrate on the conceptual thinking
that lies behind all the specific techniques of mathematics. Remember that old adage,
“Give a man a fish, he’ll eat for a day. Teach a man to fish, he’ll eat for a lifetime.”?
It’s the same for mathematics education for twenty-first century life. There are so
many different mathematical techniques, with new ones being developed all the time,
that it is impossible to cover them all in K-16 education. By the time a college frosh
graduates and enters the workforce, many of the specific techniques learned in those
college-years are likely to be no longer as important, while new ones are all the rage.
The educational focus has to be on learning how to learn.

The increasing complexity in mathematics led mathematicians in the nineteenth
century to shift (broaden, if you prefer) the focus from computational skills to the
underlying, foundational, conceptual thinking ability. Now, 150 years later, the
changes in society that were facilitated in part by that more complex mathematics,
have made that focal shift important not just for professional mathematicians but for
everyone who learns math with a view to using it in the world.

So now you know not only why mathematicians in the nineteenth century shifted
the focus of mathematical research, but also why, from the 1950s onwards, college
mathematics students were expected to master conceptual mathematical thinking as
well. In other words, you now know why your college or university wants you to take
that transition course, and perhaps work your way through this book. Hopefully, you
also now realize why it can be important to YOU in living your life, beyond the
immediate need of surviving your college math courses.



2

Getting precise about language

The American Melanoma Foundation, in its 2009 Fact Sheet, states that:

One American dies of melanoma almost every hour.

To a mathematician, such a claim inevitably raises a chuckle, and occasionally a sigh.
Not because mathematicians lack sympathy for a tragic loss of life. Rather, if you take
the sentence literally, it does not at all mean what the AMF intended. What the
sentence actually claims is that there is one American, Person X, who has the
misfortune—to say nothing of the remarkable ability of almost instant resurrection—
to die of melanoma every hour. The sentence the AMF writer should have written is

Almost every hour, an American dies of melanoma.

Such misuse of language is fairly common, so much so that arguably it is not really
misuse. Everyone reads the first sentence as having the meaning captured accurately
by the second. Such sentences have become figures of speech. Apart from
mathematicians and others whose profession requires precision of statements, hardly
anyone ever notices that the first sentence, when read literally, actually makes an
absurd claim.

When writers and speakers use language in everyday contexts to talk about
everyday circumstances, they and their readers and listeners almost always share a
common knowledge of the world (and in particular what is being written or spoken
about), and that common knowledge can be drawn upon to determine the intended
meaning. But when mathematicians (and scientists) use language in their work, there
often is limited or no shared, common understanding—everyone is engaged in a
process of discovery. Moreover, in mathematics, the need for precision is paramount.
As a result, when mathematicians use language in doing mathematics, they rely on the
literal meaning. Which means, of course, they have to be aware of the literal meaning
of what they write or say.

This is why beginning students of mathematics in college are generally offered a
crash course in the precise use of language. This may sound like a huge undertaking,
given the enormous richness and breadth of everyday language. But the language used
in mathematics is so constrained that the task actually turns out to be relatively small.
The only thing that makes it difficult is that the student has to learn to eliminate the
sloppiness of expression that we are familiar with in everyday life, and instead master



a highly constrained, precise (and somewhat stylized) way of writing and speaking.

2.1    Mathematical statements

Modern, pure mathematics is primarily concerned with statements about
mathematical objects.

Mathematical objects are things such as: integers, real numbers, sets, functions, etc.
Examples of mathematical statements are:

(1) There are infinitely many prime numbers.

(2) For every real number a, the equation x2 + a = 0 has a real root.

(3)  is irrational.

(4) If p(n) denotes the number of primes less than or equal to the natural number n,
then as n becomes very large, p(n) approaches n/logen.

Not only are mathematicians interested in statements of the above kind, they are,
above all, interested in knowing which statements are true and which are false. For
instance, in the above examples, (1), (3), and (4) are true whereas (2) is false. The
truth or falsity in each case is demonstrated not by observation, measurement, or
experiment, as in the sciences, but by a proof, about which I will write more in due
course.

The truth of (1) can be proved by an ingenious argument known to Euclid.1 The
idea is to show that if we list the primes in increasing order as

p1, p2, p3, …, pn, …

then the list must continue for ever. (The first few members of the sequence are: p1 =
2, p2 = 3, p3 = 5, p4 = 7, p5 = 11, …)

Consider the list up to some stage n:

p1, p2, p3, …, pn

The goal is to show that there is another prime that can be added to the list. Provided
we do this without assigning n a specific value, this will imply at once that the list is
infinite.

Let N be the number we get when we multiply together all the primes we have
listed so far and then add 1, i.e.,



N = (p1 · p2 · p3 · … · pn) + 1

Obviously, N is bigger than all the primes in our list, so if N is prime, we know there
is a prime bigger than pn, and hence the list can be continued. (We are not saying that
N is that next prime. In fact, N will be much bigger than pn, so it is unlikely to be the
next prime.)

Now let’s see what happens if N is not prime. Then there must be a prime q < N
such that q divides N. But none of p1, …, pn divides N, since the division of N by any
one of these leaves a remainder of 1. So, q must be bigger than pn. Thus, once again
we see that there is a prime bigger than pn, so the list can be continued.

Since the above argument does not depend in any way upon the value of n, it
follows that there are infinitely many primes.

Example (2) can easily be proved to be false. Since the square of no real number is
negative, the equation x2 + 1 = 0 does not have a real root. Because there is at least
one value of a for which the equation x2 + a = 0 does not have a real root (namely a =
1), we can conclude that statement (2) is false.

I’ll give a proof of (3) later. The only known proofs of (4) are extremely
complicated—far too complicated to be included in an introductory text such as this.

Clearly, before we can prove whether a certain statement is true or false, we must
be able to understand precisely what the statement says. Above all, mathematics is a
very precise subject, where exactness of expression is required. This already creates a
difficulty, for words tend to be ambiguous, and in real life our use of language is
rarely precise.

In particular, when we use language in an everyday setting, we often rely on
context to determine what our words convey. An American can truthfully say “July is
a summer month,” but that would be false if spoken by an Australian. The word
“summer” means the same in both statements (namely the hottest three months of the
year), but it refers to one part of the year in America and another in Australia.

To take another example, in the phrase “small rodent” the word “small” means
something different (in terms of size) than it does in the phrase “small elephant.” Most
people would agree that a small rodent is a small animal, but a small elephant is
definitely not a small animal. The size range referred to by the word “small” can vary
depending on the entity to which it is applied.

In everyday life, we use context and our general knowledge of the world and of
our lives to fill in missing information in what is written or said, and to eliminate the
false interpretations that can result from ambiguities.

For example, we would need to know something about the context in order to



correctly understand the statement

The man saw the woman with a telescope.

Who had the telescope, the man or the woman?
Ambiguities in newspaper headlines—which are generally written in great haste—

can sometimes result in unintended but amusing second readings. Among my
favorites that have appeared over the years are:

Sisters reunited after ten years in checkout line at Safeway.

Prostitutes appeal to the Pope.

Large hole appears in High Street. City authorities are looking into it.

Mayor says bus passengers should be belted.

To systematically make the English language precise (by defining exactly what each
word is to mean) would be an impossible task. It would also be unnecessary, since
people generally do just fine by relying on context and background knowledge.

But in mathematics, things are different. Precision is crucial, and it cannot be
assumed that all parties have the same contextual and background knowledge in order
to remove ambiguities. Moreover, since mathematical results are regularly used in
science and engineering, the cost of miscommunication through an ambiguity can be
high, possibly fatal.

At first, it might seem like a herculean task to make the use of language in
mathematics sufficiently precise. Fortunately, it is possible because of the special,
highly restricted nature of mathematical statements. Every key statement of
mathematics (the axioms, conjectures, hypotheses, and theorems) is a positive or
negative version of one of four linguistic forms:

(1) Object a has property P

(2) Every object of type T has property P

(3) There is an object of type T having property P

(4) If STATEMENT A, then STATEMENT B

or else is a simple combination of sub-statements of these forms using the connecting
words (combinators) and, or, and not.

For example,



(1) 3 is a prime number. / 10 is not a prime number.

(2) Every polynomial equation has a complex root. / It is not the case that every
polynomial equation has a real root.

(3) There is a prime number between 20 and 25. / There is no even number beyond
2 that is prime.

(4) If p is a prime of the form 4n + 1, then p is a sum of two squares.

The final statement, about the primes of the form 4n + 1, is a celebrated theorem of
Gauss.

In their everyday work, mathematicians often use more fluent variants of these
forms, such as “Not every polynomial equation has a real root” or “No even number is
prime except for 2.” But those are just that: variants.

The ancient Greek mathematicians seem to have been the first to notice that all
mathematical statements can be expressed using one of these simple forms, and they
made a systematic study of the language involved, namely the terms and, or, not,
implies, for all, and there exists. They provided universally accepted meanings of
these key terms and analyzed their behavior. Today this formal mathematical study is
known as formal logic or mathematical logic.

Mathematical logic is a well established branch of mathematics, studied and used in
university departments of mathematics, computer science, philosophy, and linguistics.
(It gets a lot more complicated than the original work carried out in ancient Greece by
Aristotle and his followers and by the Stoic logicians.)

Some mathematics transition courses and course textbooks include a brief tour
through the more basic parts of mathematical logic (as did I in my book Sets,
Functions, and Logic). But that is not necessary in order to become adept at
mathematical thinking. (Many professional mathematicians have virtually no
knowledge of mathematical logic.) Consequently, in this book I shall follow a less
formal—but still rigorous—path.

Exercises 2.1.1

1. How would you show that not every number of the form N = (p1 · p2 · p3 · … ·
pn) + 1 is prime, where p1, p2, p3, …, pn, … is the list of all prime numbers?

2. Find two unambiguous (but natural sounding) sentences equivalent to the
sentence The man saw the woman with a telescope, the first where the man has
the telescope, the second where the woman has the telescope.



3. For each of the four ambiguous newspaper headlines I stated earlier, rewrite it in
a way that avoids the amusing second meaning, while retaining the brevity of a
typical headline:

(a) Sisters reunited after ten years in checkout line at Safeway.
(b) Prostitutes appeal to the Pope.
(c) Large hole appears in High Street. City authorities are looking into it.
(d) Mayor says bus passengers should be belted.

4. The following notice was posted on the wall of a hospital emergency room:

NO HEAD INJURY IS TOO TRIVIAL TO IGNORE.

Reformulate to avoid the unintended second reading. (The context for this
sentence is so strong that many people have difficulty seeing there is an
alternative meaning.)

5. You often see the following notice posted in elevators:

IN CASE OF FIRE, DO NOT USE ELEVATOR.

This one always amuses me. Comment on the two meanings and reformulate to
avoid the unintended second reading. (Again, given the context for this notice, the
ambiguity is not problematic.)

6. Official documents often contain one or more pages that are empty apart from
one sentence at the bottom:

This page intentionally left blank.

Does the sentence make a true statement? What is the purpose of making such a
statement? What reformulation of the sentence would avoid any logical problems
about truth? (Once again, the context means that in practice everyone understands
the intended meaning and there is no problem. But the formulation of a similar
sentence in mathematics at the start of the twentieth century destroyed one
prominent mathematician’s seminal work and led to a major revolution in an
entire branch of mathematics.)

7. Find (and provide citations for) three examples of published sentences whose
literal meaning is (clearly) not what the writer intended. [This is much easier than
you might think. Ambiguity is very common.]



8. Comment on the sentence “The temperature is hot today.” You hear people say
things like this all the time, and everyone understands what is meant. But using
language in this sloppy way in mathematics would be disastrous.

9. Provide a context and a sentence within that context, where the word and occurs
five times in succession, with no other word between those five occurrences.
(You are allowed to use punctuation.)

10. Provide a context and a sentence within that context, where the words and, or,
and, or, and  occur in that order, with no other word between them. (Again, you
can use punctuation.)

2.2    The logical combinators and, or, and not

As a first step in becoming more precise about our use of language (in mathematical
contexts), we shall develop precise, unambiguous definitions of the key connecting
words and, or, and not. (The other terms, implies, equivalent, for all, and there exist,
are more tricky and we’ll handle them later.)

The combinator and

We need to be able to combine two claims into one that asserts both. For instance,
we may wish to say that π is greater than 3 and less than 3.2. So the word and is
indispensable.

Sometimes, in order to achieve a completely symbolic expression, we introduce an
abbreviation for and. The most common ones are

∧ , &

In this book I’ll use the former. Thus, the expression

(π > 3) ∧ (π < 3.2)

says:

π is greater than 3 and π is less than 3.2.

In other words, π lies between 3 and 3.2.
There is no possible source of confusion when we use the word and. If ϕ and ψ are

any two mathematical statements,



ϕ ∧ ψ

is the joint assertion (which may or may not be a valid assertion) of both ϕ and ψ. The
symbol ∧ is called wedge, but the expression ϕ ∧ ψ is usually read as “ϕ and ψ.”

The joint statement ϕ ∧ ψ (or ϕ&ψ) is called the conjunction of ϕ and ψ, and ϕ, ψ
are called the conjuncts of the combined statement.2

Notice that if ϕ and ψ are both true, then ϕ ∧ ψ will be true. But if one or both of
ϕ, ψ is false, then so is ϕ ∧ ψ. In other words, both conjuncts have to be true in order
for the conjunction to be true. It only takes one conjunct to be false in order to render
the conjunction false.

One thing to notice is that and is independent of order in mathematics: ϕ ∧ ψ
means the same thing as ψ ∧ ϕ. This is not always true when we use and in everyday
life. For example,

John took the free kick and the ball went into the net

does not mean the same thing as

The ball went into the net and John took the free kick.

Mathematicians sometimes use special notation to represent a conjunction of two
statements. For example, in dealing with real numbers, we usually write, say,

a < x ≤ b

instead of

(a < x) ∧ (x ≤ b).

Exercises 2.2.1

1. The mathematical concept of conjunction captures the meaning of “and” in
everyday language. True or false? Explain your answer.

2. Simplify the following symbolic statements as much as you can, leaving your
answer in the standard symbolic form. (In case you are not familiar with the
notation, I’ll answer the first one for you.)

(a) (π > 0) ∧ (π < 10) [Answer: 0 < π < 10.]
(b) (p ≥ 7) ∧ (p < 12)
(c) (x > 5) ∧ (x < 7)



(d) (x < 4) ∧ (x < 6)
(e) (y < 4) ∧ (y2 < 9)
(f) (x ≥ 0) ∧ (x ≤ 0)

3. Express each of your simplified statements from Question 1 in natural English.

4. What strategy would you adopt to show that the conjunction ϕ1∧ϕ2∧…∧ϕn is
true?

5. What strategy would you adopt to show that the conjunction ϕ1∧ϕ2∧…∧ϕn is
false?

6. Is it possible for one of (ϕ∧ψ)∧θ and ϕ∧(ψ∧θ) to be true and the other false,
or does the associative property hold for conjunction? Prove your answer.

7. Which of the following is more likely?
(a) Alice is a rock star and works in a bank.
(b) Alice is quiet and works in a bank.
(c) Alice is quiet and reserved and works in a bank.
(d) Alice is honest and works in a bank.
(e) Alice works in a bank.

If you believe there is no definite answer, say so.

8. In the following table, T denotes ‘true’ and F denotes ‘false’. The first two
columns list all the possible combinations of values of T and F that the two
statements ϕ and ψ can have. The third column should give the truth value (T or
F) ϕ ∧ ψ achieves according to each assignment of T or F to ϕ and ψ.

Fill in the final column. The resulting table is an example of a “propositional truth
table.”

The combinator or

We wish to be able to assert that statement A is true or statement B is true. For
instance, we might want to say

a > 0 or the equation x2 + a = 0 has a real root



or perhaps we want to say

ab = 0 if a = 0 or b = 0

These two simple examples show we face a potential ambiguity. The meaning of or
is different in these two cases. In the first assertion there is no possibility of both
eventualities occurring at once. Moreover, the meaning is unchanged if we put the
word either at the beginning of the sentence. In the second case, it is quite possible for
both a and b to be zero.3

But mathematics has no place for potential ambiguity in the meaning of such a
commonly used word as or, so we must choose one or the other meaning. It turns out
to be more convenient to opt for the inclusive use. Accordingly, whenever we use the
word or in mathematics we always mean the inclusive or. If ϕ and ψ are mathematical
statements, ϕ or ψ asserts that at least one of ϕ, ψ is valid. We use the symbol

∨

to denote (inclusive) or. Thus

ϕ ∧ ψ

means that at least one of ϕ, ψ is valid. The symbol ∨ is called vee, but
mathematicians usually read ϕ ∨ ψ as “ϕ or ψ.”

We call ϕ ∨ ψ the disjunction of ϕ and ψ, and refer to each of ϕ, ψ as the disjuncts
of the combined statement.

It requires only one of ϕ, ψ to be true in order for the disjunction ϕ ∨ ψ to be true.
For instance, the following (rather silly) statement is true:

(3 < 5) ∨ (1 = 0)

Although this is a silly example, you should pause for a moment and make sure you
understand why this statement is not only mathematically meaningful but actually true.
Silly examples are often useful to help understand tricky concepts—and disjunction
can be tricky.

Exercises 2.2.2

1. Simplify the following symbolic statements as much as you can, leaving your
answer in a standard symbolic form (assuming you are familiar with the
notation):



(a) (π > 3) ∨ (π > 10)
(b) (x < 0) ∨ (x > 0)
(c) (x = 0) ∨ (x > 0)
(d) (x > 0) ∨ (x ≥ 0)
(e) (x > 3) ∨ (x2 > 9)

2. Express each of your simplified statements from Question 1 in natural English.

3. What strategy would you adopt to show that the disjunction ϕ1 ∨ ϕ2 ∨ … ∨ ϕn
is true?

4. What strategy would you adopt to show that the disjunction ϕ1 ∨ ϕ2 ∨ … ∨ ϕn
is false?

5. Is it possible for one of (ϕ∧ψ)∨θ or ϕ∨(ψ∨θ) to be true and the other false, or
does the associative property hold for disjunction? Prove your answer.

6. Which of the following is more likely?
(a) Alice is a rock star or she works in a bank.
(b) Alice is quiet and works in a bank.
(c) Alice is a rock star.
(d) Alice is honest and works in a bank.
(e) Alice works in a bank.

If you believe there is no definite answer, say so.

7. Fill in the entries in the final column of the following truth table:

The combinator not

Many mathematical statements involve a negation, i.e., a claim that a particular
statement is false.

If ψ is any statement,

not−ϕ

is the statement that ψ is false. It is called the negation of ψ.



Thus, if ψ is a true statement, not−ψ is a false statement, and if ψ is a false
statement, not−ψ is a true statement. Nowadays, the most commonly used symbolic
abbreviation for not−ψ is

¬ψ

but older texts sometimes use ~ψ.
In certain circumstances we use special notations for negation. For instance, we

generally use the more familiar

x ≠ y

instead of

¬(x = y)

On the other hand, we would probably write

¬(a < x ≤ b)

instead of

as the latter is ambiguous. (We could make it precise, but it seems rather inelegant,
and mathematicians don’t do it.)

Although the mathematical usage of the word not accords with most common
usage, negation is sometimes used very loosely in everyday speech, so you have to be
careful. For instance, there is no confusion about the meaning of the statement

¬(π < 3).

This clearly means

π ≥ 3

which, incidentally, is the same as

(π = 3) ∨ (ϕ > 3).

But consider the statement



All foreign cars are badly made.

What is the negation of this statement? For instance, is it any one of the following?

(a) All foreign cars are well made.

(b) All foreign cars are not badly made.

(c) At least one foreign car is well made.

(d) At least one foreign car is not badly made.

A common mistake is for the beginner to choose (a). But this is easily seen to be
wrong. The original statement is surely false. Hence the negation of that statement will
be true. But (a) is certainly not true! Neither is (b) true. So realistic considerations lead
us to conclude that if the correct answer is to be found in the above list, then it has to
be either (c) or (d). (We shall later see how we can eliminate (a) and (b) by a formal
mathematical argument.)

In point of fact, both (c) and (d) can be said to represent the negation of our
original statement. (Any well made foreign car testifies the truth of both (c) and (d).)
Which do you think most closely corresponds to the negation of the original
statement?

We shall return to this example later, but before we leave it for now, let us note that
the original statement is only concerned with foreign cars. Hence its negation will only
deal with foreign cars. So, the negation will not involve any reference to domestic
cars. For instance, the statement

All domestic cars are well made

cannot be the negation of our original statement. Indeed, knowing whether our
original statement is true or false in no way helps us to decide the truth or falsity of
the above statement. To be sure, domestic is the negation of foreign in this context,
but we are negating the assertion as a whole, not some adjective occurring in it.

Now you might appreciate why it is important to analyze the use of language before
we use it in mathematics. In the case of examples about cars, we can use our
knowledge of the world to sort out what is true and what is false. But when it comes
to mathematics, we often do not have enough background knowledge. The statements
we write down may constitute all we know.

Exercises 2.2.3



1. Simplify the following symbolic statements as much as you can, leaving your
answer in a standard symbolic form (assuming you are familiar with the notation)
:

(a) ¬(π > 3.2)
(b) ¬(x < 0)
(c) ¬(x2 > 0)
(d) ¬(x = 1)
(e) ¬¬ψ

2. Express each of your simplified statements from Question 1 in natural English.

3. Is showing that the negation ¬ϕ is true the same as showing that ϕ is false?
Explain your answer.

4. Fill in the entries in the final column of the following truth table:

5. Let D be the statement “The dollar is strong”, Y the statement “The Yuan is
strong,” and T the statement “New US–China trade agreement signed”. Express
the main content of each of the following (fictitious) newspaper headlines in
logical notation. (Note that logical notation captures truth, but not the many
nuances and inferences of natural language.) Be prepared to justify and defend
your answers.

(a) Dollar and Yuan both strong
(b) Trade agreement fails on news of weak Dollar
(c) Dollar weak but Yuan strong, following new trade agreement
(d) Strong Dollar means a weak Yuan
(e) Yuan weak despite new trade agreement, but Dollar remains strong
(f) Dollar and Yuan can’t both be strong at same time.
(g) If new trade agreement is signed, Dollar and Yuan can’t both remain strong
(h) New trade agreement does not prevent fall in Dollar and Yuan
(i) US–China trade agreement fails but both currencies remain strong
(j) New trade agreement will be good for one side, but no one knows which.

6. In US law, a trial verdict of “Not guilty” is given when the prosecution fails to
prove guilt. This, of course, does not mean the defendant is, as a matter of actual
fact, innocent. Is this state of affairs captured accurately when we use “not” in the



mathematical sense? (i.e., Do “Not guilty” and “¬ guilty” mean the same thing?)
What if we change the question to ask if “Not proven” and “¬ proven” mean the
same thing?

7. The truth table for ¬¬ϕ is clearly the same as that for ϕ itself, so the two
expressions make identical truth assertions. This is not necessarily true for
negation in everyday life. For example, you might find yourself saying “I was not
displeased with the movie.” In terms of formal negation, this has the form ¬(¬
PLEASED), but your statement clearly does not mean that you were pleased with the
movie. Indeed, it means something considerably less positive. How would you
capture this kind of use of language in the formal framework we have been
looking at?

2.3    Implication

Now things get really tricky. Brace yourself for several days of confusion until the
ideas sort themselves out in your mind.

In mathematics we frequently encounter expressions of the form

(*) ϕ implies ψ

Indeed implication provides the means by which we prove statements, starting from
initial observations or axioms. The question is, what is the meaning of an assertion of
the form (*)?

It would not be unreasonable to assume it means the following:

If ϕ is true, then ψ has to be true as well.

But the carefully crafted, lawyer-like wording I used to introduce that possible
meaning should indicate that things are slippery.

Suppose that for ϕ we take the true assertion  is irrational’ (we’ll prove that later
on) and for ψ we take the true assertion ‘0 < 1’. Then is the expression (*) true? In
other words, does the irrationality of  imply that 0 is less than 1? Of course it does
not. There is no meaningful connection between the two statements ϕ and ψ in this
case.

The point is, implies entails causality. This was not a consideration in the case of
and and or. There is nothing to stop us conjoining or disjoining two totally unrelated
statements. For example, there is no difficulty in determining the truth of the
statements



(Julius Caesar is dead) ∧ (1 + 1 = 2)

(Julius Caesar is dead) ∨ (1 + 1 = 2)

(Once again, I am using a frivolous example to illustrate a tricky point. Since
mathematics is frequently applied to real-world situations, we may well encounter a
statement that combines the two domains, mathematics and the real world.)

Thus, in adopting precise meanings for the words and, or, and not, we were able to
ignore the meanings of the component statements and focus entirely on their truth
values (i.e., are the statements true or false?).

In the process, we did of course have to make choices which gave some of the
terms meanings that were different from their everyday language counterparts. We
had to stipulate that or means inclusive-or and adopt a minimalistic interpretation of
not reminiscent of the “not proven” verdict in a court of law.

We will have to adopt a similar approach to implies in order to come up with an
unambiguous meaning that depends only on truth and falsity. But in this case we have
to be far more aggressive—so much so, that to avoid any possible confusion, we will
have to use a different term than “implies”.

As I noted once already, the problem is that when we say “ϕ implies ψ”, we mean
that ϕ somehow causes or brings about ψ. This entails that the truth of ψ follows from
the truth of ϕ, but truth alone does not fully capture what is meant by the word
“implies”. Not even close. So we had better agree to not use the word implies unless
we mean it.

The approach we shall adopt is to separate the notion of implication into two parts,
the truth part and the causation part. The truth part is generally known as the
conditional, or sometimes the material conditional. Thus we have the relationship:

implication = conditional + causation

We will use the symbol ⇒ to denote the conditional operator. Thus,

ϕ ⇒ ψ

denotes the truth part of ϕ implies ψ.
(Modern mathematical logic texts generally use a single arrow, →, instead of ⇒,

but to avoid confusion with the notation for functions you are likely to meet later in
your mathematical education, I’ll use the more old-fashioned, double-arrow notation
for the conditional.)

Any expression of the form



ϕ ⇒ ψ

is referred to as a conditional expression, or simply a conditional. We refer to ϕ as
the antecedent of the conditional and ψ as the consequent.

The truth or falsity of a conditional will be defined entirely in terms of the truth or
falsity of the antecedent and the consequent. That is to say, whether or not the
conditional expression ϕ ⇒ ψ is true will depend entirely upon the truth or falsity of ϕ
an d ψ, taking no account of whether or not there is any meaningful connection
between ϕ and ψ.

The reason this approach turns out to be a useful one, is that in all cases where
there is a meaningful and genuine implication ϕ implies ψ, the conditional ϕ ⇒ ψ does
accord with that implication.

In other words, it will turn out that our defined notion ϕ ⇒ ψ fully captures ϕ
implies ψ, whenever there is a genuine implication. But our notion extends beyond
that to cover all cases where we know the truth and falsity of ϕ and ψ but there is no
meaningful connection between the two.

Since we are ignoring causation, which is a highly significant aspect of the notion
of implication, our definition may (and in fact will) turn out to have consequences
that are at the very least counterintuitive, and possibly even absurd. But those will be
restricted to situations where there is no genuine implication.

The task we face, then, is to stipulate rules that will enable us to complete the truth
table

The first rule is easy. If there is a valid, genuine implication ϕ implies ψ, then the
truth of ϕ implies the truth of ψ. So the first row of the table has to have T
everywhere:

Exercises 2.3.1

1. Fill in the second row of the truth table.

2. Provide a justification of your entry.



Before I complete the second row of the truth table (and thereby tell you the answers
to the above exercises—so you should do them before reading on), let’s take a look at
the consequences of the choice we made in completing the first row the way we did.

If we know that the statement N > 7 is true, then we can conclude that N2 > 40 is
true. According to the first row of our table,

(N > 7) ⇒ (N2 > 40)

is true. This is entirely consistent with the validity of the genuine (causal) implication:
N > 7 implies N2 > 40.

But what happens if ϕ is the true statement “Julius Caesar is dead” and ψ is the true
statement “π > 3”? According to the first row of our table, the conditional

(Julius Caesar is dead) ⇒ (π > 3)

has the value T.
In real-world terms, there is of course no relationship between the true fact that

Julius Caesar is dead and the true fact that π is greater than 3. But so what? The
conditional does not claim to capture causality relationships, or indeed meaningful
relationships of any kind. The truth of [(Julius Caesar is dead) ⇒ (π > 3)] only
becomes problematic if you interpret the conditional (⇒) as implication. The cost of
defining [ϕ ⇒ ψ] so it always has a well-defined truth value (which is a
mathematically valuable property) is that we have to get used to not reading more into
the conditional than is given by the definition.

Now let’s continue with the task of filling in the truth table for the conditional. If ϕ
is true and ψ is false, then there is no way that ϕ can genuinely imply ψ. (Why? Well,
if there were a genuine implication, then the truth of ψ would follow automatically
from the truth of ϕ.) So if ϕ is true and ψ is false, the genuine implication must be
false. Hence the conditional [ϕ ⇒ ψ] should be false as well, and the table now looks
like this:

Exercises 2.3.2

1. Fill in the third and fourth rows of the truth table.

2. Provide justifications for your entries.



(I’ll get to the third and fourth rows in a moment, so you should do the above
exercise before you read on.)

At this point, you should probably go back to the start of the discussion of implies
and re-read everything we have done so far. Though it might seem we are making
much ado about nothing, this entire discussion is typical of work to provide precise
definitions of the fundamental concepts of mathematics.

Though the use of simple (and often silly) examples can give the impression of it
all being an irrelevant game, the consequences are far from irrelevant. The next time
you step into an airplane, be aware that the flight control software on which your life
depends makes use of the formal notions of ∧, ∨, ¬, and ⇒ we are discussing here.
And part of what it takes to make that software reliable is that the system never
encounters a mathematical statement whose truth is not defined. You, as a human
being, only care about statements of the form [ϕ ⇒ ψ] when everything makes sense.
But computer systems do not have a notion of “making sense.” They deal in the
binary logic of truth and falsity. What matters to a computer system is that everything
is always precisely defined, with a specific truth value.

Once we get used to ignoring all questions of causality, the truth-values of the
conditional seem straightforward enough when the antecedent is true. (If they don’t,
you should go back and read that discussion yet again. There was a reason I suggested
you do that!) But what about the last two rows in the truth table, where the antecedent
is false?

To deal with this case, we consider not the notion of implication, but its negation.
We extract the causation-free, truth-value part of the statement “ϕ does not imply ψ”,
which I shall write as

Leaving aside all question of whether there is a meaningful causal relation between
ϕ and ψ and concentrating solely on truth values, how can we be sure that “ϕ does not
imply ψ” is a valid statement? More precisely, how should the truth or falsity of the
statement  depend upon the truth or falsity of ϕ and ψ?

Well, in terms of truth values, ϕ will not imply ψ if it is the case that although ϕ is
true, ψ is nevertheless false.

Please read that last sentence again. Now once more. Okay, now we are ready to
continue.4

We therefore define  to be true precisely in case ϕ is true and ψ is false.

Having defined the truth or falsity of , we obtain that of ϕ ⇒ ψ by just taking



the negation. The conditional ϕ ⇒ ψ will be true exactly when  false.
Examination of this definition leads to the conclusion: ϕ ⇒ ψ will be true whenever

one of the following holds:

(1) ϕ and ψ are both true.

(2) ϕ is false and ψ is true.

(3) ϕ and ψ are both false.

The complete truth table thus looks like this:

The points to note about this are:

(a) We are defining a notion (the conditional) that captures only part of what
‘implies’ means.

(b) To avoid difficulties, we base our definition solely on the notion of truth and
falsity.

(c) Our definition agrees with our intuition concerning implication in all meaningful
cases.

(d) The definition for a true antecedent is based on an analysis of the truth-values of
genuine implication.

(e) The definition for a false antecedent is based on a truth-value analysis of the
notion that ϕ does not imply ψ.

Summing up, in defining the conditional the way we do, we do not end up with a
notion that contradicts the notion of (genuine) implication. Rather, we obtain a notion
that extends (genuine) implication to cover those cases where a claim of implication is
irrelevant (the antecedent is false) or meaningless (there is no real connection between
the antecedent and the consequent). In the meaningful case where there is a
relationship between ϕ and ψ and in addition ϕ is true, namely the cases covered by
the first two rows of the table, the truth value of the conditional will be the same as
the truth value of the actual implication.

Remember, it is the fact that the conditional always has a well-defined truth value
that makes this notion important in mathematics, since in mathematics (as well as in
aircraft control systems!) we cannot afford to have statements with undefined truth



values floating around.

Exercises 2.3.3

1. Which of the following are true and which are false?
(a) (ϕ2 > 2) ⇒ (ϕ > 1.4
(b) (ϕ2 < 0) ⇒ (ϕ = 3)
(c) (ϕ2 > 0) ⇒ (1 + 2 = 4)
(d) (ϕ > ϕ2) ⇒ (ϕ = 5)
(e) (e2 ≥ 0) ⇒ (e < 0)
(f) ¬(5 is an integer) ⇒ (52 ≥ 1)
(g) (The area of a circle of radius 1 is ϕ) ⇒ (3 is prime)
(h) (Squares have three sides) ⇒ (Triangles have four sides)
(i) (Elephants can climb trees) ⇒ (3 is irrational)
(j) (Euclid’s birthday was July 4) ⇒ (Rectangles have four sides)

2. As in Exercise 2.2.3(5), let D be the statement “The dollar is strong,” Y the
statement “The Yuan is strong,” and T the statement “New US–China trade
agreement signed.” Express the main content of each of the following (fictitious)
newspaper headlines in logical notation. (Remember, logical notation captures
truth, but not the many nuances and inferences of natural language.) As before,
be prepared to justify and defend your answers.

(a) New trade agreement will lead to strong currencies in both countries.
(b) If the trade agreement is signed, a rise in the Yuan will result in a fall in the

Dollar.
(c) Dollar weak but Yuan strong, following new trade agreement
(d) Strong Dollar means a weak Yuan
(e) New trade agreement means Dollar and Yuan will be tightly linked.

3. Complete the following truth table

Note: ¬ has the same binding rules as − (minus) in arithmetic and algebra, so ¬ϕ
∨ ψ is the same as (¬ϕ) ∨ ψ.



4. What conclusions can you draw from the above table?

5. Complete the following truth table. (Recall that  is another way of writing ¬[ϕ
⇒ ψ].)

6. What conclusions can you draw from the above table?

Closely related to implication is the notion of equivalence. Two statements ϕ and ψ
are said to be (logically) equivalent if each implies the other. The analogous, formal
notion defined in terms of the conditional is known as the biconditional. We shall
write the biconditional as

ϕ ⇔ ψ

(Modern logic texts use the notation ϕ ↔ ψ.) The biconditional is formally defined to
be an abbreviation for the conjunction

(ϕ ⇒ ψ) ∧ (ψ ⇒ ϕ)

Looking back at the definition of the conditional, this means that the biconditional ϕ
⇔ ψ will be true if ϕ and ψ are both true or both false, and ϕ ⇔ ψ will be false if
exactly one of ϕ, ψ is true and the other false.

One way to show that two logical expressions are biconditionally-equivalent is to
show that their truth tables are the same. Consider, for example, the expression (ϕ ∧
ψ) ∨ (¬ϕ). We can build its table column by column as follows:

The final column is the same as that for ϕ ⇒ ψ. Hence, (ϕ ∧ ψ) ∨ (¬ϕ) is
biconditionally equivalent to ϕ ⇒ ψ.

We can also draw up tables for expressions involving more than two basic
statements, such as (ϕ ∧ ψ) ∨ θ, which has three, but if there are n constituent
statements involved there will be 2n rows in the table, so already (ϕ ∧ ψ) ∨ θ needs 8
rows!



Exercises 2.3.4

1. Build a truth table to prove the claim I made earlier that ϕ ⇔ ψ is true if ϕ and ψ
are both true or both false and ϕ ⇔ ψ is false if exactly one of ϕ, ψ is true and the
other false. (To constitute a proof, your table should have columns that show
how the entries for ϕ ⇔ ψ are derived, one operator at a time, as in the previous
exercises.)

2. Build a truth table to show that

(ϕ ⇒ ψ) ⇔ (¬ϕ ∨ ψ)

is true for all truth values of ϕ and ψ. A statement whose truth values are all T is
called a logical validity, or sometimes a tautology.

3. Build a truth table to show that

is a tautology.

4. The ancient Greeks formulated a basic rule of reasoning for proving mathematical
statements. Called modus ponens, it says that if you know ϕ and you know ϕ ⇒
ψ, then you can conclude ψ.

(a) Construct a truth table for the logical statement

[ϕ ∧ (ϕ ⇒ ψ)] ⇒ ψ

(b) Explain how the truth table you obtain demonstrates that modus ponens is a
valid rule of inference.

5. Mod-2 arithmetic has just the two numbers 0 and 1 and follows the usual rules of
arithmetic together with the additional rule 1 + 1 = 0. (It is the arithmetic that takes
place in a single bit location in a digital computer.) Complete the following table:

6. In the table you obtained in the above exercise, interpret 1 as T and 0 as F and
view M, N as statements.

(a) Which of the logical combinators ∧, ∨ corresponds to × ?
(b) Which logical combinator corresponds to + ?



(c) Does ¬ correspond to − (minus)?

7. Repeat the above exercise, but interpret 0 as T and 1 as F. What conclusions can
you draw?

8. The following puzzle was introduced by the psychologist Peter Wason in 1966,
and is one of the most famous subject tests in the psychology of reasoning. Most
people get it wrong. (So you have been warned!)
Four cards are placed on the table in front of you. You are told (truthfully) that
each has a letter printed on one side and a digit on the other, but of course you
can only see one face of each. What you see is:

B      E      4      7

You are now told that the cards you are looking at were chosen to follow the rule
“If there is a vowel on one side, then there is an odd number on the other side.”
What is the least number of cards you have to turn over to verify this rule, and
which cards do you in fact have to turn over?

There is some terminology associated with implication (i.e., real implication, not
just the conditional) that should be mastered straight away, as it pervades all
mathematical discussion.

In an implication

ϕ implies ψ

we call ϕ the antecedent and ψ the consequent.

The following all mean the same:

(1) ϕ implies ψ

(2) if ϕ then ψ

(3) ϕ is sufficient for ψ

(4) ϕ only if ψ

(5) ψ if ϕ

(6) ψ whenever ϕ

(7) ψ is necessary for ϕ



The first four all mention ϕ before ψ, and of these the first three seem obvious
enough. But caution is required in the case of (4). Notice the contrast between (4) and
(5) as far as the order of ϕ and ψ is concerned. Beginners often encounter
considerable difficulty in appreciating the distinction between if and only if.

Likewise, the use of the word necessary in (7) often causes confusion. Notice that
to say that ψ is a necessary condition for ϕ does not mean that ψ on its own is enough
to guarantee ϕ. Rather what it says is that ψ will have to hold before there can even be
any question of ϕ holding. For that to be the case, ϕ must imply ψ. (This is another of
those occasions where my strong advice would be to re-read this paragraph several
times until you are sure you get the point—then read it at least one more time!)

The following diagram might help you remember the distinction between
‘necessary’ and ‘sufficient’:

(Think of the word ‘sun’. This will remind you of the order.)

Because equivalence reduces to implication both ways, it follows from the above
discussion that the following are also equivalent:

(1) ϕ is equivalent to ψ

(2) ϕ is necessary and sufficient for ψ

(3) ϕ if and only if ψ

A common abbreviation for the phrase if and only if is iff (or occasionally iffi).
Thus we often write

ϕ iff ψ

to mean ϕ and ψ are equivalent.

Note that if we were to be strict about the matter, the above discussion of
equivalent terminologies refers to implication and equivalence, not their formal
counterparts the conditional and the biconditional. However, mathematicians
frequently use the symbol ⇒ as an abbreviation for implies and ⇔ as an abbreviation
for is equivalent to, so the different terminologies often are used together with these
formally defined symbols.

Although this is invariably confusing to beginners, it’s simply the way
mathematical practice has evolved, so there is no getting around it. You would be



entirely justified in throwing your hands up at what seems on the face of it to be
sloppy practice. After all, if there are genuine problems with the meanings of certain
words that necessitate a lengthy discussion and the formulation of formal definitions
of concepts that are not identical with their everyday counterparts (such as the
difference between the conditional and implication), why do mathematicians then
promptly revert to the everyday notions that they began by observing to be
problematic?

Here is why the professionals do this: The conditional and biconditional only differ
from implication and equivalence in situations that do not arise in the course of
normal mathematical practice. In any real mathematical context, the conditional “is”
implication and the biconditional “is” equivalence. Thus, having made note of where
the formal notions differ from the everyday ones, mathematicians simply move on
and turn their attention to other things. (Computer programmers and people who
develop aircraft control systems do not have such freedom.)

Exercises 2.3.5

1. One way to prove that

¬(ϕ ∧ ψ) and (¬ϕ) ∨ (¬ψ)

are equivalent is to show they have the same truth table:

Since the two columns marked * are identical, we know that the two expressions
are equivalent.

Thus, negation has the effect that it changes ∨ into ∧ and changes ∧ into ∨.
An alternative way to prove this is to argue directly with the meaning of the first
statement:

1. ϕ ∧ ψ means both ϕ and ψ are true.

2. Thus ¬(ϕ ∧ ψ) means it is not the case that both ϕ and ψ are true.

3. If they are not both true, then at least one of ϕ, ψ must be false.

4. This is clearly the same as saying that at least one of ¬ϕ and ¬ψ is true. (By
the definition of negation).



5. By the meaning of or, this can be expressed as (¬ϕ) ∨ (¬ψ).

Provide an analogous logical argument to show that ¬(ϕ∨ψ) and (¬ϕ)∧(¬ψ) are
equivalent.

2. By a denial of a statement ϕ we mean any statement equivalent to ¬ϕ. Give a
useful denial of each of the following statements.

(a) 34,159 is a prime number.
(b) Roses are red and violets are blue.
(c) If there are no hamburgers, I’ll have a hot-dog.
(d) Fred will go but he will not play.
(e) The number x is either negative or greater than 10.
(f) We will win the first game or the second.

3. Which of the following conditions is necessary for the natural number n to be
divisible by 6?

(a) n is divisible by 3.
(b) n is divisible by 9.
(c) n is divisible by 12.
(d) n = 24.
(e) n2 is divisible by 3.
(f) n is even and divisible by 3.

4. In Exercise 3, which conditions are sufficient for n to be divisible by 6?

5. In Exercise 3, which conditions are necessary and sufficient for n to be divisible
by 6?

6. Let m, n denote any two natural numbers. Prove that mn is odd iff m and n are
odd.

7. With reference to the previous question, is it true that mn is even iff m and n are
even?

8. Show that ϕ ⇔ ψ is equivalent to (¬ϕ) ⇔ (¬ψ). How does this relate to your
answers to Questions 6 and 7 above?

9. Construct truth tables to illustrate the following:
(a) ϕ ⇔ ψ
(b) ϕ ⇒ (ψ ∨ θ)



10. Use truth tables to prove that the following are equivalent:
(a) ¬(ϕ ⇒ ψ) and ϕ ∧ (¬ψ)
(b) ϕ ⇒ (ψ ∧ θ) and (ϕ ⇒ ψ) ∧ (ϕ ⇒ θ)
(c) (ϕ ∨ ψ) ⇒ θ and (ψ ⇒ θ) ∧ (ψ ⇒ θ)

11. Verify the equivalences in (b) and (c) in the previous question by means of a
logical argument. (So, in the case of (b), for example, you must show that
assuming ϕ and deducing ψ ∧ θ is the same as both deducing ψ from ϕ and θ
from ϕ.)

12. Use truth tables to prove the equivalence of ϕ ⇒ ψ and (¬ψ) ⇒ (¬ϕ).
(¬ψ) ⇒ (¬ϕ) is called the contrapositive of ϕ ⇒ ψ. The logical equivalence of a
conditional and its contrapositive means that one way to prove an implication is
to verify the contrapositive. This is a common form of proof in mathematics that
we’ll encounter later.

13. Write down the contrapositives of the following statements:
(a) If two rectangles are congruent, they have the same area.
(b) If a triangle with sides a, b, c (c largest) is right-angled, then a2 + b2 = c2.
(c) If 2n − 1 is prime, then n is prime.
(d) If the Yuan rises, the Dollar will fall.

14. It is important not to confuse the contrapositive of a conditional ϕ ⇒ ψ with its
converse ψ ⇒ ϕ. Use truth tables to show that the contrapositive and the converse
of ϕ ⇒ ψ are not equivalent.

15. Write down the converses of the four statements in Question 13.

16. Show that for any two statements ϕ and ψ either ϕ ⇒ ψ or its converse is true (or
both). This is another reminder that the conditional is not the same as implication.

17. Express the combinator

ϕ unless ψ

in terms of the standard logical combinators.

18. Identify the antecedent and the consequent in each of the following conditionals:
(a) If the apples are red, they are ready to eat.
(b) The differentiability of a function f is sufficient for f to be continuous.
(c) A function f is bounded if f is integrable.



(d) A sequence s is bounded whenever s is convergent.
(e) It is necessary that n is prime in order for 2n − 1 to be prime.
(f) The team wins only when Karl is playing.
(g) When Karl plays the team wins.
(h) The team wins when Karl plays.

19. Write the converse and contrapositive of each conditional in the previous
question.

20. Let  denote the ‘exclusive or’ that corresponds to the English expression “either
one or the other but not both”. Construct a truth table for this connective.

21. Express  in terms of the basic combinators ∧, ∨, ¬.

22. Which of the following pairs of propositions are equivalent?
(a) ¬(P ∨ Q), ¬P ∧ ¬Q
(b) ¬P ∨ ¬Q, ¬(P ∨ ¬Q)
(c) ¬(P ∧ Q), ¬P ∨ ¬Q
(d) ¬(P ⇒ (Q ∧ R)), ¬(P ⇒ Q) ∨ ¬(P ⇒ R)
(e) P ⇒ (Q ⇒ R), (P ∧ Q) ⇒ R

23. Give, if possible, an example of a true conditional sentence for which
(a) the converse is true.
(b) the converse is false.
(c) the contrapositive is true.
(d) the contrapositive is false.

24. You are in charge of a party where there are young people. Some are drinking
alcohol, others soft drinks. Some are old enough to drink alcohol legally, others
are under age. You are responsible for ensuring that the drinking laws are not
broken, so you have asked each person to put his or her photo ID on the table. At
one table are four young people. One person has a beer, another has a Coke, but
their IDs happen to be face down so you cannot see their ages. You can,
however, see the IDs of the other two people. One is under the drinking age, the
other is above it. Unfortunately, you are not sure if they are drinking Seven-up or
vodka and tonic. Which IDs and/or drinks do you need to check to make sure that
no one is breaking the law?

25. Compare the logical structure of the previous question with Wason’s problem
(Exercise 2.3.4(8)). Comment on your answers to those two questions. In



particular, identify any logical rules you used in solving each problem, say which
one was easier, and why you felt it was easier.

2.4    Quantifiers

There are two more (mutually related) language constructions that are fundamental to
expressing and proving mathematical facts, and which mathematicians therefore have
to be precise about: the two quantifiers:

there exists    , for all

The word quantifier is used in a very idiosyncratic fashion here. In normal use it
means specifying the number or amount of something. In mathematics it is used to
refer to the two extremes: there is at least one and for all. The reason for this
restricted use is the special nature of mathematical truths. The majority of
mathematical theorems—the core of mathematics when viewed as a subject in its own
right (as opposed to a set of tools used in other disciplines and walks of life)—are of
one of the two forms

There is an object x having property P

For all objects x, property P holds.

I’ll take these one at a time. A simple example of an existence statement is:

The equation x2 + 2x + 1 = 0 has a real root.

The existential nature of this assertion can be made more explicit by re-writing it in the
form:

There exists a real number x such that x2 + 2x + 1 = 0.

Mathematicians use the symbol

∃x

to mean

there exists an x such that …

Using this notation, the above example would be written symbolically as:



∃x [x2 + 2x + 1 = 0]

The symbol ∃ is called the existential quantifier. As you may have suspected, the
back-to-front E comes from the word “Exists”.

One obvious way to prove an existence statement is to find an object that satisfies
the expressed condition. In this case, the number x = − 1 does the trick. (It’s the only
number that does, but one is enough to satisfy an existence claim.)

Not all true existence claims are proved by finding a requisite object.
Mathematicians have other methods for proving statements of the form ∃xP(x). For
example, one way to prove that the equation x3 + 3x + 1 = 0 has a real root is to note
that the curve y = x3 + 3x + 1 is continuous (intuitively, the graph is an unbroken line),
that the curve is below the x-axis when x = −1 and above the x-axis when x = 1, and
hence must (by continuity) cross the x-axis somewhere between those two values of x.
The value of x when it crosses the x-axis will be a solution to the given equation. So
we have proved that there is a solution without actually finding one. (It takes no small
amount of fairly deep mathematics to turn this intuitively simple argument into a
totally rigorous proof, but the general idea as I just explained it does work.)

Exercise 2.4.1

The same kind of argument I just outlined to show that the cubic equation y = x3 +
3x + 1 has a real root, can be used to prove the “Wobbly Table Theorem.” Suppose
you are sitting in a restaurant at a perfectly square table, with four identical legs, one at
each corner. Because the floor is uneven, the table wobbles. One solution is to fold a
small piece of paper and insert it under one leg until the table is stable. But there is
another solution. Simply by rotating the table you will be able to position it so it does
not wobble. Prove this. [WARNING: This is a thinking-outside-the-box question. The
solution is simple, but it can take a lot of effort before you find it. This would be an
unfair question on a timed exam but is a great puzzle to keep thinking about until you
hit upon the right idea.]

Sometimes it is not immediately obvious that a statement is an existence assertion. In
fact, many mathematical statements that do not look like existence statements on the
surface turn out to be precisely that when you work out what they mean. For example,
the statement

expresses an existence claim. You see that when you unpack its meaning and write it
in the form



There exist natural numbers p and q such that .

Using the existential quantifier symbol, we might write this as

This would be fine provided we specified in advance that the variables p and q refer
to whole numbers. Sometimes the context in which we work guarantees that everyone
knows what kinds of entities the various symbols refer to. But that is (very) often not
the case. So we extend the quantifier notation by specifying the kind of entity under
consideration. In this example, we would write

This uses set-theoretic notation that you are probably familiar with,  denotes the set
of natural numbers (i.e., positive whole numbers) and  means “p is an element (or
member) of the set .” See the appendix for a brief summary of the set theory
required for this book.

Note that I did not write the above formula as . You often see
experienced mathematicians writing expressions like this, but it is definitely not
recommended for beginners. Most mathematical statements involve a whole string of
quantifiers, and as we’ll see, it can get very tricky manipulating the expression in the
course of a mathematical argument, so it is safer to stick to the “one variable per
quantifier” rule. I shall definitely do that throughout this book.

The above statement, , turns out to be false. The number  is
not rational. I’ll give the proof later, but before I do, you might want to see if you can
prove it yourself. The argument is only a few lines long, but it involves a clever idea.
Chances are, you won’t discover it, but if you do, it will definitely make your day!
Give it an hour or so.

Incidentally, one feature you need to get used to in mastering college mathematics,
or more generally what I am calling mathematical thinking, is the length of time you
may need to spend on one particular detail. High school mathematics courses
(particularly in the US) are generally put together so that most problems can be done
in a few minutes, with the goal of covering an extensive curriculum. At college, there
is less material to cover, but the aim is to cover it in more depth. That means you have
to adjust to the slower pace, with a lot more thinking and less doing. At first, this
comes hard, since thinking without seeming to be making progress is initially
frustrating. But it’s very much like learning to ride a bike. For a long time, you keep
falling (or relying on training wheels), and it seems you’ll never “get it.” Then
suddenly, one day, you find you can do it, and you cannot understand why it took so
long to get there. But that long period of repeated falling was essential to your body



learning how to do it. Training your mind to think mathematically about various kinds
of problems is very much like that.

The remaining piece of language we need to examine and make sure we fully
comprehend is the universal quantifier, which asserts that something holds for all x.
We use the symbol

∀x

to mean

for all x it is the case that…

The symbol ∀ is just an upside-down A, coming from the word “All”.
For example, to say that the square of any real number is greater than or equal to 0,

we might write

∀x (x2 ≥ 0)

As before, this would be fine, provided we specified in advance that the variable x
refers to real numbers. It usually does, of course. But to be sure, we can modify the
notation to make it crystal clear and unambiguous:

We would read this as “For all real numbers x, the square of x is greater than or equal
to 0.”

Most statements in mathematics involve combinations of both kinds of quantifier.
For instance, the assertion that there is no largest natural number requires two
quantifiers, thus:

This reads: for all natural numbers m it is the case that there exists a natural number n
such that n is greater than m.

Notice that the order in which quantifiers appear can be of paramount importance.
For example, if we switch the order in the above we get

This asserts that there is a natural number which exceeds all natural numbers—an
assertion that is clearly false!

Now it should be clear why we need to avoid using language the way the American



Melanoma Foundation writer did when crafting that statement One American dies of
melanoma almost every hour. That sentence has the logical form

∃A∀H[A dies in hour H]

when what is meant is

∀H ∃A[A dies in hour H].

Exercises 2.4.2

1. Express the following as existence assertions. (Feel free to use a mix of symbols
and words.)

(a) The equation x3 = 27 has a natural number solution.
(b) 1,000,000 is not the largest natural number.
(c) The natural number n is not a prime.

2. Express the following as ‘for all’ assertions (using symbols and words):
(a) The equation x3 = 28 does not have a natural number solution.
(b) 0 is less than every natural number.
(c) the natural number n is a prime.

3. Express the following in symbolic form, using quantifiers for people:
(a) Everybody loves somebody.
(b) Everyone is tall or short.
(c) Everyone is tall or everyone is short.
(d) Nobody is at home.
(e) If John comes, all the women will leave.
(f) If a man comes, all the women will leave.

4. Express the following using quantifiers that refer (only) to the sets  and :
(a) The equation x2 + a = 0 has a real root for any real number a.
(b) The equation x2 + a = 0 has a real root for any negative real number a.
(c) Every real number is rational.
(d) There is an irrational number.
(e) There is no largest irrational number. (This one looks quite complicated.)

5. Let C be the set of all cars, let D(x) mean that x is domestic, and let M(x) mean



that x is badly made. Express the following in symbolic form using these symbols:
(a) All domestic cars are badly made.
(b) All foreign cars are badly made.
(c) All badly made cars are domestic.
(d) There is a domestic car that is not badly made.
(e) There is a foreign car that is badly made.

6. Express the following sentence symbolically, using only quantifiers for real
numbers, logical connectives, the order relation <, and the symbol Q(x) having
the meaning ‘x is rational’:

There is a rational number between any two unequal real numbers.

7. Express the following famous statement (by Abraham Lincoln) using quantifiers
for people and times: “You may fool all the people some of the time, you can
even fool some of the people all of the time, but you cannot fool all of the people
all the time.”

8. A US newspaper headline read, “A driver is involved in an accident every six
seconds.” Let x be a variable to denote a driver, t a variable for a six-second
interval, and A(x, t) the property that x is in an accident during interval t. Express
the headline in logical notation.

In mathematics (and in everyday life), you often find yourself having to negate a
statement involving quantifiers. Of course, you can do it simply by putting a negation
symbol in front. But often that’s not enough; you need to produce a positive assertion,
not a negative one. The examples I’ll give should make it clear what I mean by
“positive” here, but roughly speaking, a positive statement is one that says what is,
rather than what is not. In practice, a positive statement is one that contains no
negation symbol, or else one in which any negation symbols are as far inside the
statement as is possible without the resulting expression being unduly cumbersome.

Let A(x) denote some property of x. (For example, A(x) could say that x is a real
root of the equation x2 + 2x + 1 = 0.) I’ll show that

¬[∀xA(x)] is equivalent to ∃x[¬A(x)]

For example,

It is not the case that all motorists run red lights



is equivalent to

There is a motorist who does not run red lights.

With a familiar example like this, the equivalence is obvious. The general proof
requires nothing more than formulating this general understanding in a generic,
abstract form. If the following seems at all mysterious, the explanation is undoubtedly
that you are simply not used to reasoning in a decontextualized, abstract manner. If
you are working through this book in preparation for taking college math courses,
then you will need to master abstract reasoning as soon as possible. On the other
hand, if your goal is simply to improve your analytic reasoning skills for everyday
use, then it is probably enough to replace the abstract symbols by specific, simple
examples (as I just did) and work through them, though mastery of abstraction
definitely helps everyday reasoning, by highlighting the underlying logic on which all
reasoning depends.

Now for the abstract verification. We begin by assuming that ¬[∀xA(x)]. That is,
we assume it is not the case that ∀xA(x) is true. Well, if it is not the case that all x
satisfy A(x), what must happen is that at least one of the x must fail to satisfy A(x). In
other words, for at least one x, ¬A(x) must be true. In symbols, this can be written
∃x[¬A(x)]. Hence ¬[∀xA(x)] implies ∃x[¬A(x)].

Now suppose ∃x[¬A(x)] Thus there will be an x for which A(x) fails. Hence A(x)
does not hold for every x. (It fails for the x where it fails!) In other words, it is false
that A(x) holds for all x. In symbols, ¬[∀xA(x)]. Thus ∃x[¬A(x)] implies ¬[∀xA(x)].

Taken together, the two implications just established produce the claimed
equivalence.

Exercises 2.4.3

1. Show that ¬[∃xA(x)] is equivalent to ∀x[¬A(x)].

2. Give an everyday example to illustrate this equivalence, and verify it by an
argument specific to your example.

Now we are in a position to carry out a proper analysis of our earlier problem about
domestic cars, where we want to negate the statement

All domestic cars are badly made.

Let us formulate this symbolically using the notation of Exercise 2.4.2(5). If you got
part (a) of that question correct, you should have the formulation



(∀x ∈ C)[D(x) ⇒ M(x)]

Negating this gives

(∃x ∈ C)¬[D(x) ⇒ M(x)]

(One common cause of confusion. Why do we not say (∃x ∉ C)? The answer is that
the ‘∈ C” part simply tells us which kind of x we are to consider. Since our original
statement concerns domestic cars, so will its negation.)

Consider now the part

¬[D(x) ⇒ M(x)]

We have seen already that this is equivalent to

D(x) ∧ (¬M(x))

Hence for our negated statement (in positive form now) we get

(∃x ∈ C)[D(x)∧(¬M(x))]

In words, there is a car that is domestic and is not badly made; i.e., there is a domestic
car that is not badly made.

We can also obtain this result directly as follows, without going through the above
symbolic manipulations.

If it is not the case that all domestic cars are badly made, then it must be the case
that at least one of them fails to be badly made. Hence, as this argument reverses, the
required negation is that at least one domestic car is not badly made.

The issue discussed above causes problems for enough beginners to warrant some
further examples.

The first is about natural numbers. Hence all variables will refer to members of the
set . Let P(x) denotes the property “x is a prime” and O(x) the property “x is odd”.
Consider the sentence

∀x[P(x) ⇒ O(x)]

This says that all primes are odd, which is false. (Why? How would you prove that?)
The negation of this sentence will have the (positive) form

¬∃x[P(x) ⇒ O(x)]



To get to this form, you start with

¬∀x[P(x) ⇒ O(x)]

which is equivalent to

∃x¬[P(x) ⇒ O(x)]

and that in turn is equivalent to

which we can reformulate as

∃x[P(x) ∧ ¬O(x)]

Thus the ∀ becomes a ∃ and the ⇒ becomes a ∧. In words, the negation reads
“There is a prime that is not odd,” or more colloquially, “There is an even prime.”
This is, of course, true. (Why? How would you prove this?)

Viewed as a symbolic procedure, what I did above was move the negation symbol
successively inside the expression, adjusting the logical connectives appropriately as I
did. As you will have suspected, it is possible to write down a list of symbol-
manipulation rules for doing this kind of thing. That would be useful if you wanted to
write a computer program to carry out logical reasoning. But our goal here is to
develop mathematical thinking skills. The symbolic examples are merely a way of
achieving that, in a manner that is particularly useful for college mathematics students.
Thus, I would strongly recommend that you approach every problem in terms of what
it means, using its own language.

If we modify the original sentence to read

(∀x > 2)[P(x) ⇒ O(x)]

(i.e., all primes greater than 2 are odd, which is true) then the negation of this sentence
can be written as

(∃x > 2)[P(x) ∧ ¬O(x)]

(i.e., there is an even prime bigger than 2), which is false.
One thing to notice about this example is that the quantifier (∀x > 2) changes to

(∃x > 2), not to (∃x ≤ 2). Likewise, negation of the quantifier (∃x > 2) leads to (∀x
> 2), not to (∀x ≤ 2). You should make sure you understand the reason for this



behavior.

Exercise 2.4.4
Prove that the statement

There is an even prime bigger than 2

is false.

For another example, suppose we are talking about people, so x denotes an arbitrary
person. Let P(x) be the property of being a player for a certain sports team and H(x)
the property of being healthy. Then the sentence

∃x[P(x) ∧ ¬H(x)]

expresses the claim that there is an unhealthy player. Negating this gives

∀x[¬P(x) ∨ H(x)]

This is a bit unnatural to read in English, but by virtue of the way we defined ⇒, it
can be rewritten as

∀x[P(x) ⇒ H(x)]

and this has the natural reading that “all players are healthy”.

Here is another mathematical example, where the variables denote members of the
set Q of all rationals. Consider the sentence

∀x[x > 0 ⇒ ∃y(xy = 1)]

This says that every positive rational has a multiplicative inverse (which is true). The
negation of this sentence (which will be false) works out as follows.

In words, there is a positive rational x with the property that no y exists such that xy =
1, i.e., there is a positive rational with no multiplicative inverse.

The above examples illustrate a feature of quantification that is sufficiently
common to warrant systematic development. Associated with any use of quantifiers
there is what is known as a domain of quantification: the collection of all objects that



the quantifiers refer to. This may be the collection of all real numbers, the collection
of all natural numbers, the collection of all complex numbers, or some other
collection.

In many cases, the overall context determines the domain. For instance, if we are
studying real analysis, then unless otherwise mentioned it may safely be assumed that
any quantifier refers to the real numbers. But on occasions there is no alternative but
to be quite explicit as to what is the domain under discussion.

To illustrate how it can sometimes be important to specify the domain, consider the
mathematical statement

∀x∃y (y2 = x)

This is true for the domain  of complex numbers but not true when the domain is .

At the risk of confusing you, I should mention that, in practice, mathematicians
often omit not only explicit mention of the domain of quantification (leaving it to the
context to indicate what the variable denotes), but in the case of universal
quantification, all mention of the quantifier at all, writing expressions such as

when what is meant is

The former is known as implicit quantification. Although I do not use this convention
in this book, implicit quantification is fairly common, so you should be aware of it.

Care has to be exercised when quantifiers are combined with the logical
combinators ∧, ∨, etc.

As an illustration of the various pitfalls that can arise, suppose the domain under
discussion is the set of natural numbers. Let E(x) be the statement ‘x is even’, and let
O(x) be the statement ‘x is odd’.

The statement

∀x[E(x) ∨ O(x)]

says that for every natural number x, x is either even or odd (or both). This is clearly
true.

On the other hand, the statement

∀xE(x) ∨ ∀xO(x)



is false, since it asserts that either all natural numbers are even or else all natural
numbers are odd (or both), whereas in fact neither of these alternatives is the case.

Thus, in general you cannot “move a ∀x inside brackets.” More precisely, if you
do, you can end up with a very different statement, not equivalent to the original one.

Again, the statement

∃x[E(x) ∧ O(x)]

is false, since it claims that there is a natural number that is both even and odd,
whereas the statement

∃xE(x) ∧ ∃xO(x)

claims that there is a natural number that is even and there is a natural number that is
odd, which is true.

Thus “moving a ∃x inside brackets” can also lead to a statement that is not
equivalent to the original one.

Notice that although the last statement above uses the same variable x in both parts
of the conjunction, the two conjuncts operate separately.

You should make sure you fully appreciate the distinction between all the above
example statements involving quantifiers.

Very often, in the course of an argument, we use quantifiers that are restricted to a
smaller collection than the original domain. For example, in real analysis (where the
unspecified domain is usually the set  of all real numbers) we often need to talk
about “all positive numbers” or “all negative numbers”, and in number theory (where
the unspecified domain is the set  of all natural numbers) we have quantifiers such
as “for all prime numbers”, etc.

One way to handle this has been done already. We can modify the quantifier
notation, allowing quantifiers of the form

(∀x ∈ A)   ,   (∃x ∈ A)

where A is some subcollection of the domain.
Another way is to specify the objects being quantified within the non-quantifier

part of the formula. For example, suppose the domain under discussion is the set of
all animals. Thus, any variable x is assumed to denote an animal. Let L(x) mean that “x
is a leopard” and let S(x) mean that “x has spots”. Then the sentence “All leopards
have spots” can be written like this:



∀x[L(x) ⇒ S(x)]

In English, this reads literally as: “For all animals x, if x is a leopard then x has spots”.
This is rather cumbersome English, but the mathematical version turns out to be
preferable to using a modified quantifier of the form (∀x ∈ ) where  denotes the
set of all leopards, since a mathematical argument where quantifiers refer to different
domains could easily lead to confusion and error.

Beginners often make the mistake of rendering the original sentence “All leopards
have spots” as

∀x[L(x) ∧ S(x)]

In English, what this says is: “For all animals x, x is both a leopard and has spots”. Or,
smoothing out the English a bit, “All animals are leopards and have spots”. This is
obviously false; not all animals are leopards, for one thing.

Part of the reason for the confusion is probably the fact that the mathematics goes
differently in the case of existential sentences. For example, consider the sentence
“There is a horse that has spots”. If we let H(x) mean that “x is a horse”, then this
sentence translates into the mathematical sentence

∃x[H(x) ∧ S(x)]

Literally: “There is an animal that is both a horse and has spots”.
Contrast this with the sentence

∃x[H(x) ⇒ S(x)]

This says that “There is an animal such that if it is a horse, then it has spots”. This
does not seem to say anything much, and is certainly not at all the same as saying that
there is a spotty horse.

In symbolic terms, the modified quantifier notation

(where the notation φ(x) indicates that φ is a statement that involves the variable x)
may be regarded as an abbreviation for the expression

∀x[A(x) ⇒ φ(x)]

where A(x) is the property of x being in the collection .
Likewise, the notation



may be regarded as an abbreviation for

∃x[A(x) ∧ φ(x)]

In order to negate statements with more than one quantifier, you could start at the
outside and work inwards, handling each quantifier in turn. The overall effect is that
the negation symbol moves inwards, changing each ∀ to an ∃ and each ∃ to a ∀ as
it passes. Thus, for example

As I said before, however, the purpose of this book is to develop thinking skills, not
to learn another collection of cookie-cutter rules you can apply to avoid thinking!
Industrial strength mathematics problems often involve fairly complex statements.
Mathematicians do sometimes use symbolic manipulations like the above to check
their reasoning after the fact, but they invariably do the initial reasoning in terms of
what the problem means, not by first translating it to a symbolic form and then
cranking a symbolic manipulation procedure. The primary goal of college-level pure
mathematics, remember, is understanding. Doing and solving (generally the only
goals emphasized at high school) are secondary goals. Applying a set of procedures
does not lead to understanding. Thinking about, working with, and eventually (you
hope) solving the problem in terms of what it means does.

One further quantifier that is often useful is

there exists a unique x such that …

The usual notation for this quantifier is

∃!

This quantifier can be defined in terms of the other quantifiers, by taking

∃!xφ(x)

to be an abbreviation for

∃x[φ(x) ∧ ∀y[φ(y) ⇒ x = y]]



(Make sure you understand why this last formula expresses unique existence.)

Exercises 2.4.5

1. Translate the following sentences into symbolic form using quantifiers. In each
case the assumed domain is given in parentheses.

(a) All students like pizza. (All people)
(b) One of my friends does not have a car. (All people)
(c) Some elephants do not like muffins. (All animals)
(d) Every triangle is isosceles. (All geometric figures)
(e) Some of the students in the class are not here today. (All people)
(f) Everyone loves somebody. (All people)
(g) Nobody loves everybody. (all people)
(h) If a man comes, all the women will leave. (All people)
(i) All people are tall or short. (All people)
(j) All people are tall or all people are short. (All people)
(k) Not all precious stones are beautiful. (All stones)
(l) Nobody loves me. (All people)
(m) At least one American snake is poisonous. (All snakes)
(n) At least one American snake is poisonous. (All animals)

2. Which of the following are true? The domain for each is given in parentheses.
(a) ∀x(x + 1 ≥ x) (Real numbers)
(b) ∃x(2x + 3 = 5x + 1) (Natural numbers)
(c) ∃x(x2 + 1 = 2x) (Real numbers)
(d) ∃x(x2 = 2) (Rational numbers)
(e) ∃x(x2 = 2) (Real numbers)
(f) ∀x(x3 + 17x2 + 6x+ 100 ≥ 0) (Real numbers)
(g) ∃x(x3 + x2 + x + 1 ≥ 0) (Real numbers)
(h) ∀x∃y(x + y = 0) (Real numbers)
(i) ∃x∀y(x + y = 0) (Real numbers)
(j) ∀x∃!y(y = x2) (Real numbers)
(k) ∀x∃!y(y = x2) (Natural numbers)
(l) ∀x∃y∀z(xy = xz) (Real numbers)



(m) ∀x∃y∀z(xy = xz) (Prime numbers)
(n) ∀x∃y(x ≥ 0 ⇒ y2 = x) (Real numbers)
(o) ∀x[x < 0 ⇒ ∃y(y2 = x)] (Real numbers)
(p) ∀x[x < 0 ⇒ ∃y(y2 = x)] (Positive real numbers)

3. Negate each of the symbolic statements you wrote in Question 1, putting your
answers in positive form. Express each negation in natural, idiomatic English.

4. Negate each of the statements in Question 2, putting your answers in positive
form.

5. Negate the following statements and put each answer into positive form:
(a) 
(b) (∀x > 0)(∃y < 0)(x + y = 0) (where x, y are real number variables)
(c) ∃x(∀∊ > 0)(−∊ < x < ∊) (where x, y are real number variables)
(d) 

6. Give a negation (in positive form) of the quotation which you met in Exercise
2.4.2(7): “You may fool all the people some of the time, you can even fool some
of the people all of the time, but you cannot fool all of the people all the time.”

7. The standard definition of a real function f being continuous at a point x = a is

(∀∊ > 0)(∃δ > 0)(∀x)[|x − a| < δ ⇒ |f(x) − f(a)| < ∊]

Write down a formal definition for f being discontinuous at a. Your definition
should be in positive form.



3

Proofs

In the natural sciences, truth is established by empirical means, involving observation,
measurement, and (the gold standard) experiment. In mathematics, truth is determined
by constructing a proof—a logically sound argument that establishes the truth of the
statement.

The use of the word “argument” here is, of course, not the more common everyday
use to mean a disagreement between two people, but there is a connection in that a
good proof will preemptively counter (implicitly or explicitly) all the objections
(counterarguments) a reader might put forward. When professional mathematicians
read a proof, they generally do so in a manner reminiscent of a lawyer cross-
examining a witness, constantly probing and looking for flaws.

Learning how to prove things forms a major part of college mathematics. It is not
something that can be mastered in a few weeks; it takes years. What can be achieved
in a short period, and what I am going to try to help you do here, is gain some
understanding of what it means to prove a mathematical statement, and why
mathematicians make such a big deal about proofs.

3.1 What is a proof?

Proofs are constructed for two main purposes: to establish truth and to communicate
to others.

Constructing or reading a proof is how we convince ourselves that some statement
is true. I might have an intuition that some mathematical statement is true, but until I
have proved it—or read a proof that convinces me—I cannot be sure.

But I may also have need to convince someone else. For both purposes, a proof of
a statement must explain why that statement is true. In the first case, convincing
myself, it is generally enough that my argument is logically sound and I can follow it
later. In the second case, where I have to convince someone else, more is required:
the proof must also provide that explanation in a manner the recipient can understand.
Proofs written to convince others have to succeed communicatively as well as be
logically sound. (For complicated proofs, the requirement that a mathematician can
follow his or her proof a few days, weeks, months, or even years later can also be
significant, so even proofs written purely for personal use need to succeed
communicatively.)

The requirement that proofs must communicate explanations to intended readers



can set a high bar. Some proofs are so deep and complex that only a few experts in
the field can understand them. For example, for many centuries, most mathematicians
believed—or at least held a strong suspicion—that for exponents n ≥ 3, the equation
xn + yn = zn has no whole number solutions for x, y, z. This was conjectured by the
great French mathematician Pierre de Fermat in the seventeenth century, but it was not
finally proved until 1994 when the British mathematician Andrew Wiles constructed a
long and extremely deep proof. Though most mathematicians (myself included) lack
the detailed domain knowledge to follow Wiles’ proof themselves, it did convince the
experts in the field (analytic number theory), and as a result, Fermat’s ancient
conjecture is now regarded as a theorem. (It was popularly known as Fermat’s Last
Theorem, since it was the last of several mathematical statements Fermat announced
that remained to be proved.)

Fermat’s Last Theorem is an unusual example, however. Most proofs in
mathematics can be read and understood by any professional mathematician, though it
can take days, weeks, or even months to understand some proofs sufficiently to be
convinced by them. (The examples in this book are chosen to be understood by a
typical reader in a few minutes, or possibly an hour or so. Examples given to college
mathematics majors can usually be understood with at most a few hours’ effort.)

Proving a mathematical statement is much more than gathering evidence in its
favor. To give one famous example, in the mid-eighteenth century, the great Swiss
mathematician Leonard Euler stated his belief that every even number beyond 2 can
be expressed as a sum of two primes. This property of even numbers had been
suggested to him by Christian Goldbach, and became known as the Goldbach
Conjecture. It is possible to run computer programs to check the statement for many
specific even numbers, and to date (July 2012) it has been verified for all numbers up
to and beyond 1.6 × 1018 (1.6 quintillion). Most mathematicians believe it to be true.
But it has not yet been proved.

All it would take to disprove the conjecture would be to find a single even number
n for which it could be shown that no two primes sum to n.

Incidentally, mathematicians do not regard the Goldbach Conjecture as important.
It has no known applications or even any significant consequences within
mathematics. It has become famous solely because it is easy to understand, was
endorsed by Euler, and has resisted all attempts at solution for over 250 years.

Whatever you may have been told at school, there is no particular format that an
argument has to have in order to count as a proof. The one absolute requirement is
that it is a logically sound piece of reasoning that establishes the truth of some
statement. An important secondary requirement is that it is expressed sufficiently well
that an intended reader can, perhaps with some effort, follow the reasoning. In the



case of professional mathematicians, the intended reader is usually another
professional with expertise in the same area of mathematics; proofs written for
students or laypersons generally have to supply more explanations.

This means that in order to construct a proof, you have to be able to determine
what constitutes a logically sound argument that convinces not just yourself, but also
an intended reader. Doing that is not something you can reduce to a list of rules.
Constructing mathematical proofs is one of the most creative acts of the human mind,
and relatively few are capable of truly original proofs. But with some effort, any
reasonably intelligent person can master the basics. That’s my goal here.

Euclid’s proof that there are infinitely many primes, which I gave in Chapter 2, is a
good example of a proof that requires an unusual insight. There were two creative
ideas in that argument. One was to adopt the strategy of showing that an enumeration
of the primes up to any point, p1, p2, p3, …, pn, can always be continued (which
proves infinitude in a roundabout way). The other idea was to look at that number (p1
· p2 · p3 · … · pn) + 1. I suspect that most of us would eventually come up with the
first idea; I’d like to think I would have. (As a teenager, I simply read it in a book. I
wished the author had hidden the proof and challenged readers to find it for
themselves, so I could have given it a shot.) But the second creative idea is a stroke of
pure genius. I’d like to think I would have eventually come up with that idea too, but
I am not sure I would have. This is precisely why I find Euclid’s proof so pleasing,
and revel in its brilliant core idea.

3.2 Proof by contradiction

Here is another great example of a clever proof, which illustrates a powerful strategy
called “proof by contradiction.” I’ll lay it out in the traditional mathematical fashion of
the statement of the result, labeled a “theorem,” followed by its “proof.”1 But this is
just an issue of style. What makes the result a theorem and the argument to verify it a
proof is that the argument is logically sound and does establish the result claimed.
After I have presented the argument, I’ll take a look at what makes it work as a proof.

Theorem. The number  is irrational.
Proof: Assume, on the contrary, that  were rational. Then we could find natural
numbers p and q such that

where p and q have no common factors. Squaring gives



2 = p2/q2

which rearranges to give

p2 = 2q2

Thus p2 is even. Hence p must be even, since odd2 = odd. Thus, there is a natural
number r such that p = 2r. Substituting for p in the last equation gives

(2r)2 = 2q2

i.e.,

4r2 = 2q2

and dividing both sides by 2 gives

2r2 = q2.

Thus q2 is even. Hence q must be even. But p is even and p and q have no common
factors, so we have a contradiction. Hence our original assumption that  was rational
must be false. In other words,  must be irrational, which is what we set out to prove.
□

(Marking the end of a proof with a box, or some other symbol, is a convention to
facilitate rapid reading of mathematical texts, allowing the reader easily to skip over
the proofs on first reading.)

Many instructors give this theorem as an introductory illustration of mathematical
proof. They do so because it is great on several levels.

First, the result itself has enormous historical significance. When the ancient Greeks
made this discovery, showing that there were geometric lengths that could not be
measured by their numbers, it caused a crisis in their mathematics, and it was not until
two thousand years later, toward the latter part of the nineteenth century, that
mathematicians finally developed a concept of number (the real number system)
adequate for measuring all geometric lengths.

Second the proof is very short. Third, it uses only elementary ideas about positive
whole numbers. Fourth, it uses a very common approach. Finally, it uses a very clever
idea.

Let’s start with the approach. It is an example of a general method called “proof by



contradiction.” You want to prove some statement φ. To that end, you begin by
assuming ¬φ. You then reason until you establish something that is obviously false.
Often, this takes the form of deducing both a statement ψ and its negation ¬ψ.
Provided the reasoning is correct, there is no way that you could deduce a false
consequence starting from a true assumption. Hence, your original assumption of ¬φ
must be false. In other words, φ must be true.

Another way to look at this is as a special case of proof by way of the
contrapositive. As we saw in Exercise 2.3.5(12), ¬φ ⇒ θ is equivalent to ¬θ ⇒ φ. To
prove φ by contradiction, you start with ¬φ and you deduce F (some false statement).
That is, you establish ¬φ ⇒ F. But this is the contrapositive of T ⇒ φ. Hence you
have proved T ⇒ φ. Thus, by modus ponens (Exercise 2.3.4(4)), φ must be true.

Once you have become comfortable with the idea of proof by contradiction, and
can see why deducing a contradiction from ¬φ does indeed constitute a proof of φ,
then it is impossible not to be convinced by the above argument. All you need to do is
work through it line by line and ask yourself, “Is there anything in this one line that is
not valid?” If you reach the last line of the proof without encountering a flaw in the
reasoning, then you can be sure that φ is true.

For the proof that  is irrational, the entire argument hinges on the issue of even
versus odd numbers. The assumption about the two numbers p, q having no common
factors is not a problem, since any fraction can always be written in simplest form,
where the numerator and denominator do not have a common factor (other than 1).

That was a fairly lengthy discussion of such a short argument. But I know from
many years of experience that beginners find this proof hard to really understand. You
may think you understand it, but do you really? Let’s see if you can produce a similar
one. And if you can do that, let’s see if you can produce a generalization? You should
definitely try to do this exercise. But be prepared to spend some time at it. Remember,
this is not a book about solving problems. The goal is to learn to think
mathematically. And just like learning to ride a bike, to ski, or to drive a car, the only
way to do that is to keep trying for yourself. Looking up the answer or being shown it
by someone else does not help. It really doesn’t. Look it up now and you will pay
heavily later. The value comes from spending time trying to solve it for yourself.

Exercises 3.2.1

1. Prove that  is irrational.

2. Is it true that  is irrational for every natural number N?

3. If not, then for what N is  irrational? Formulate and prove a result of the form “



 irrational if and only if N …”

Proofs by contradiction are a common approach because they have a clear starting
point. To obtain a direct proof of some statement φ, you have to generate an argument
that culminates in φ. But where do you start? The only way to proceed is to try to
argue successively backwards to see what chain of steps ends with φ. There are many
possible starting points, but just one goal, and you have to end up at that goal. That
can be difficult. But with proof by contradiction, there is a clear starting point, and the
proof is complete once you have deduced a contradiction—any contradiction. With
such a wide target area, that is often a much easier task.

The proof by contradiction approach is particularly suited to establishing that a
certain object does not exist; for example, that a particular kind of equation does not
have a solution. You begin by assuming that such an object does exist, then you use
that (assumed) object to deduce a false consequence or a pair of contradictory
statements. The irrationality of  is a good example, since that states the non-existence
of two natural numbers p, q whose ratio is equal to .

3.3 Proving conditionals

Even though there is no cookie-cutter, template approach to constructing proofs, there
are some guidelines, and we have just encountered two. Proof by contradiction is
often a good approach when there is no obvious place to start, and in particular that
makes it a useful method to prove non-existence statements. Of course, you still have
to construct a proof. You’ve simply replaced a narrow goalpost with an unclear
starting point by a much wider one with a known starting point! But like Robert
Frost’s fork in the trail, that choice can make all the difference.

There are a number of other guidelines. I’ll tell you some, but do bear in mind that
these are not templates. As long as you continue to look for templates to construct
proofs, you are going to encounter significant difficulties. You have to start each new
problem by analyzing the statement that you want to prove. What exactly does it say?
What kind of argument might establish that claim?

For example, suppose we wish to establish the truth of a conditional

φ ⇒ ψ

By the definition of the conditional, this will certainly be true whenever φ is false, so
we need only consider the case when φ is true. That is, we can assume φ. Then, for
the conditional to be valid, ψ must also be true.

Thus, using our assumption that φ is true, we must present an argument that



demonstrates the truth of ψ. This, of course, accords with our everyday understanding
of implication. Thus, when it comes to proving conditionals, the problems concerning
the distinction between the conditional and real implication that we discussed do not
arise.

To take a specific example, suppose we want to prove that for any given pair x, y
of real numbers:

(x and y are rational numbers) ⇒ (x + y is a rational number)

We start by assuming x and y are rational numbers. Then we can find integers p, q, m,
n such that x = p/m, y = q/n. Then

Hence, as pn + qm and mn are integers, we conclude that x + y is rational. The
statement is proved.

Exercise 3.3.1
Let r, s be irrationals. For each of the following, say whether the given number is
necessarily irrational, and prove your answer. (The last one is particularly nice. I’ll
give the solution in a moment, but you should definitely try it first.)

1. r + 3

2. 5r

3. r + s

4. rs

5. 

6. rs

Conditionals involving quantifiers are sometimes best handled by proving the
contrapositive, using the equivalence of φ ⇒ ψ with the contrapositive (¬ψ) ⇒ (¬φ).

For example, suppose that for some given unknown angle θ we wish to prove the
conditional

This statement is equivalent to



which reduces to the positive form

This is an implication we know to be correct. This proves the original implication by
virtue of what equivalence means. (To prove a statement, it is enough to prove any
equivalent statement.)

To prove a biconditional (an equivalence) φ ⇔ ψ, you generally prove the two
conditionals φ ⇒ ψ and ψ ⇒ φ. (Why is this enough?)

Occasionally, however, you might find it more natural to prove the two
conditionals φ ⇒ ψ and (¬φ) ⇒ (¬ψ). (Why will this work?)

Exercises 3.3.2

1. Explain why proving φ ⇒ ∀ and ψ ⇒ φ estabishes the truth of φ ⇔ ψ.

2. Explain why proving φ ⇒ ψ and (¬φ) ⇒ (¬ψ) estabishes the truth of φ ⇔ ψ.

3. Prove that if five investors split a payout of $2 million, at least one investor
receives at least $400,000.

4. Write down the converses of the following conditional statements:
(a) If the Dollar falls, the Yuan will rise.
(b) If x < y then −y < −x. (For x, y real numbers.)
(c) If two triangles are congruent they have the same area.
(d) The quadratic equation ax2 + bx+c = 0 has a solution whenever b2 ≥ 4a.

(Where a, b, c, x denote real numbers and a ≠ 0.)
(e) Let ABCD be a quadrilateral. If the opposite sides of ABCD are pairwise

equal, then the opposite angles are pairwise equal.
(f) Let ABCD be a quadrilateral. If all four sides of ABCD are equal, then all

four angles are equal.
(g) If n is not divisible by 3 then n2 + 5 is divisible by 3. (For n a natural

number.)

5. Discounting the first example, which of the statements in the previous exercise are
true, for which is the converse true, and which are equivalent? Prove your
answers.

6. Let m and n be integers. Prove that:



(a) If m and n are even, then m + n is even.
(b) If m and n are even, then mn is divisible by 4.
(c) If m and n are odd, then m + n is even.
(d) If one of m, n is even and the other is odd, then m + n is odd.
(e) If one of m, n is even and the other is odd, then mn is even.

7. Prove or disprove the statement “An integer n is divisible by 12 if and only if n3 is
divisible by 12.”

8. If you have not yet solved Exercise 3.3.1(6), have another attempt, using the hint
to try s = .

3.4 Proving quantified statements

The most obvious way to prove an existence statement ∃xA(x) is to find a particular
object a for which A(a). For example, to prove that an irrational number exists it is
enough to show that  is irrational. But sometimes you have to adopt a more indirect
route. For example, such is the case with the last part of Exercises 3.3.1, which I
promised I’d come back to. Here it is. (If you did not get it yet, you might want to give
it one more try before you read on.)

Theorem. There are irrationals r, s such that rs is rational.
Proof: We consider two cases.
Case 1. If  is rational, we can take  and the theorem is proved.
Case 2. If  is irrational, we can take  and then

and again the theorem is proved. □

Note that in the above proof, we do not know which of the two possibilities holds.
We did not produce two specific irrationals r, s such that rs is rational. We simply
showed that such a pair exists. Our proof is an example of proof by cases, which is
another technique that can be useful.

Next, let’s take a look at how to prove a universal statement ∀xA(x). One
possibility is to take an arbitrary x and show that it must satisfy A(x). For instance,
suppose we wish to prove the assertion



We can do this as follows.
Let n be an arbitrary natural number. Then n2 is a natural number. Hence m = n2 +

1 is a natural number. Since m > n2, this shows that

This is a proof because our original n was quite arbitrary. We said nothing at all
about n: it could be any natural number. Hence the argument is valid for all n in .
This is not the same as picking a particular n. If we had randomly chosen, say, n =
37, the proof would not have been valid—even though we had chosen this n quite at
random. For instance, suppose we wanted to prove

By picking at random a particular n we might happen to pick n = 9. But this does not
prove the statement of course, because our choice was an arbitrary choice (albeit an
unlucky one as far as our goal is concerned) of a particular n, and not a choice of an
arbitrary n.

In practice what this amounts to is that whenever we start a proof by saying, “Let n
be arbitrary”, we use the symbol n throughout the proof, and assume also that the
value of n remains constant throughout, but we make absolutely no restriction on
what the value of n is.

Statements of the form ∀xA(x) are sometimes proved by the method of
contradiction. By assuming ¬∀xA(x) we obtain an x such that ¬A(x) (because
¬∀xA(x) is equivalent to ∃x¬A(x)). Now we have a place to start. The difficulty is
finding the finish (i.e., the contradiction).

Exercises 3.4.1

1. Prove or disprove the statement “All birds can fly.”

2. Prove or disprove the claim .

3. Prove that between any two unequal rationals there is a third rational.

4. Say whether each of the following is true or false, and support your decision by a
proof:

(a) There exist real numbers x and y such that x + y = y.
(b) ∀x∃y(x + y = 0) (where x, y are real number variables).
(c) .
(d) For all integers a, b, c, if a divides bc (without remainder), then either a



divides b or a divides c.
(e) The sum of any five consecutive integers is divisible by 5 (without

remainder).
(f) For any integer n, the number n2 + n + 1 is odd.
(g) Between any two distinct rational numbers there is a third rational number.
(h) For any real numbers x, y, if x is rational and y is irrational, then x + y is

irrational.
(i) For any real numbers x, y, if x + y is irrational, then at least one of x, y is

irrational.
(j) For any real numbers x, y, if x + y is rational, then at least one of x, y is

rational.

5. Prove or disprove the claim that there are integers m, n such that m2 + mn + n2 is
a perfect square.

6. Prove that for any positive m there is a positive integer n such that mn + 1 is a
perfect square.

7. Show that there is a quadratic f(n) = n2 + bn + c, with positive integer coefficients
b, c, such that f(n) is composite (i.., not prime) for all positive integers n.

8. Prove that for any finite collection of points in the plane, not all collinear, there is
a triangle having three of the points as its vertices, which contains none of the
other points in its interior.

9. Prove that if every even natural number greater than 2 is a sum of two primes (the
Goldbach Conjecture), then every odd natural number greater than 5 is a sum of
three primes.

There are other possibilities for proving universally quantified statements. In
particular, statements of the form

where the quantification is over all natural numbers, are often proved by a method
known as induction.

3.5 Induction proofs

Number theory is one of the most important branches of mathematics. It studies the
properties of the natural numbers, 1, 2, 3, …. We’ll look at some elementary topics



from number theory in the next chapter, but for now it provides good examples of
induction proofs. For example, suppose we wanted to prove that for any natural
number n:

As a first step, we might check the first few cases to see if the result holds for them:
. Both sides equal 1. Correct.

. Both sides equal 3. Correct.
. Both sides equal 6. Correct.

. Both sides equal 10. Correct.
. Both sides equal 15. Correct.

After doing one or two more cases and finding they all check out, you might
suspect that the formula is indeed valid for all n. But a long run of confirmatory
instances on its own does not constitute a proof.

For example, try working out values of the polynomial P(n) = n2 + n + 41, for n =
1, 2, 3, …. You will find that every value you calculate is a prime number. Unless, that
is, you go as far as n = 41. P(n) is indeed prime for all n from 1 through 40, but P(41)
= 1681 = 412. This particular prime-generating polynomial was discovered by Euler in
1772.

On the other hand, the series of computations we did to check the formula for the
sums of the natural numbers provides more than just numbers that agree. As we work
out one case after another, we start to sense a pattern. The method of mathematical
induction is a valid method of proof that works by identifying a repeating pattern.
Intuitively, what we need to show is that, however far we have established the desired
result, we can always prove it for one more step. Let’s make that precise.
METHOD OF PROOF BY MATHEMATICAL INDUCTION. To prove a statement of the form

by induction, you verify the following two statements:

(1) A(1) (Initial step)

(2)  (Induction step)

That this implies  may be reasoned as follows. By (1), A(1). By (2) (as a
special case) we have A(1) ⇒ A(2). Hence A(2). Again, a special case of (2) is A(2) ⇒
A(3). Hence A(3). And so on right through the natural numbers.

The thing to notice about this is that neither of the two statements we actually prove



is the statement we are trying to establish. What we prove are the initial case (1) and
the conditional (2). The step from these two to the conclusion  (which I just
explained) is known as the principle of mathematical induction.

As an example, let us use the method of induction to prove that result about the
sums of the natural numbers.

Theorem. For any n,

Proof: We first verify the result for n = 1. In this case, the identity reduces to 
, which is correct, since both sides equal 1.

We now assume the identity holds for an arbitrary

Add (n + 1) to both sides of this (assumed) identity:

which is the formula for n + 1 in place of n.
Hence, by the principle of mathematical induction, we can conclude that the

identity does indeed hold for all n. □

Exercises 3.5.1
In the above proof:

1. Write down the statement A(n) which is being proved by induction.

2. Write down A(1), the initial step.

3. Write down the statement , the induction step.

Although proof by induction seems intuitively obvious—that you are showing that
a step-by-step process through all the natural numbers will never break down—the
principle itself is actually fairly deep. (The depth comes because the conclusion is
about the infinite set of all natural numbers, and issues involving infinity are rarely
simple.)



Here is another example. In this case, I’ll make explicit the connection to the
principle of induction as I stated it, though in practice that is not necessary
Theorem. If x > 0 then for any ,

(1 + x)n+1 > 1 + (n + 1)x

Proof: Let A(n) be the statement

(1 + x)n+1 > 1 + (n + 1)x

Then A(1) is the statement

(1 + x)2 > 1 + 2x

which is true by virtue of the binomial expansion

(1 + x)2 = 1 + 2x + x2

together with the fact that x > 0.

The next step is to prove the statement

To do this we take an arbitrary (!) n in  and prove the conditional

A(n) ⇒ A(n + 1)

To do this we assume A(n) and try to deduce A(n + 1). We have

This proves A(n + 1).

Hence by induction (that is to say, by the principle of mathematical induction) the
theorem is proved. □

In summary, for the method of proof by induction, you wish to prove that some
statement A(n) is valid for all natural numbers n. First, you establish A(1). This is



usually just a matter of trivial observation. You then present an algebraic argument
which establishes the conditional

A(n) ⇒ A(n + 1)

for any n. In general, you do this as follows. Assume A(n). Look at the statement of
A(n +1), and somehow try to reduce it to A(n), which has been assumed true, and
thereby deduce the truth of A(n + 1). This accomplished, the induction proof is
complete, by virtue of the principle of mathematical induction.

In setting out an induction proof formally, three points should be remembered:

(1) State clearly that the method of induction is being used.

(2) Prove the case n = 1 (or at the very least make the explicit observation that this
case is obviously true, if this is the case).

(3) (The hard part.) Prove the conditional

A(n) ⇒ A(n + 1)

One variant of induction that sometimes arises concerns the proof of statements
such as

(∀n ≥ n0)A(n)

where n0 is some given natural number. In such a case, the first step of the induction
proof consists not of a verification of A(1) (which may not be true) but of A(n0) (the
first case). The second step of the proof consists of the proof of the statement

(∀n ≥ n0)[A(n) ⇒ A(n + 1)]

This is what happens in the following theorem, part of the Fundamental Theorem of
Arithmetic.
Theorem. Every natural number greater than 1 is either a prime or a product of
primes.
Proof: At first you might think that the statement to be proved by induction is

where



A(n) : n is either a prime or a product of primes

However, as will shortly become clear, it is more convenient to replace A(n) by the
(stronger) statement

B(n) : every natural number m such that 1 < m ≤ n is either a prime or a product
of primes

So, here goes. We prove, by induction, that B(n) is true for all natural numbers n >
1. This clearly proves the theorem.

For n = 2, the result is trivial: B(2) holds because 2 is prime. (Notice that in this
case we must start at n = 2 rather than the more common n = 1.)

Now assume B(n). We deduce B(n + 1). Let m be a natural number such that 1 < m
≤ n + 1. If m ≤ n, then by B(n), m is either a prime or a product of primes. So in order
to prove B(n + 1), we need only show that n + 1 itself is either a prime or a product of
primes. If n + 1 is a prime there is nothing further to say. Otherwise, n is composite,
which means there are natural numbers p, q, such that

1 < p,q < n + 1

and

n + 1 = pq

Now p, q < n so by B(n), each of p and q is either a prime or a product of primes. But
then n + 1 = pq is a product of primes. This completes the proof of B(n + 1).

The theorem now follows by induction. More precisely, the principle of
mathematical induction yields the validity of the statement

which trivially implies the theorem. □

Of course, in the above example, the conditional

B(n) ⇒ B(n + 1)

was rather easy to establish. (Indeed, we used B(n) rather than the more obvious A(n)
mentioned earlier, precisely in order to carry through this simple argument.) In many
cases, real ingenuity is required. But do not be misled into confusing the proof by
induction of the main result



with the technical subproof of the induction step

Without an announcement of the fact that induction is being used, and an observation
or proof that A(1) is valid, no amount of technical cleverness at proving the
conditional [A(n) ⇒ A(n + 1)] will amount to a proof of the statement

Exercises 3.5.2

1. Use the method of induction to prove that the sum of the first n odd numbers is
equal to n2.

2. Prove the following by induction:
(a) 4n − 1 is divisible by 3.
(b) (n + 1)! > 2n+3 for all n ≥ 5.

3. The notation

is a common abbreviation for the sum

a1 + a2 + a3 + … + an

For instance,

denotes the sum

12 + 22 + 32 + … + n2

Prove the following by induction:

(a) 

(b) 

(c) 



4. In this section, we used induction to prove the general theorem

There is an alternative proof that does not use induction, famous because Gauss
used the key idea to solve a “busywork” arithmetic problem his teacher gave to
the class when he was a small child at school. The teacher asked the class to
calculate the sum of the first hundred natural numbers. Gauss noted that if

1 + 2 + … + 100 = N

then you can reverse the order of the addition and the answer will be the same:

100 + 99 + … + 1 = N.

So by adding those two equations, you get

101 + 101 + … + 101 = 2N

and since there are 100 terms in the sum, this can be written as

100 · 101 = 2N

and hence

Generalize Gauss’s idea to prove the theorem without recourse to the method of
induction.



4

Proving results about numbers

Though the focus of this book is a particular kind of thinking (rather than any specific
mathematics), the integers and the real numbers provide convenient mathematical
domains (number theory and elementary real analysis, respectively) to illustrate
mathematical proofs—the principal advantage from an educational perspective being
that everyone has some familiarity with both number systems, yet very likely won’t
have been exposed to their mathematical theories.

4.1 The integers

Most people’s experience with the whole numbers is by way of elementary arithmetic.
Yet the mathematical study of the integers, looking beyond mere calculation to the
abstract properties those numbers exhibit, goes back to the very beginnings of
recognizable mathematics around 700 BCE. That study has grown into one of the most
important branches of pure mathematics: number theory. Most college mathematics
majors find that number theory is one of the most fascinating courses they take. Not
only is the subject full of tantalizing problems that are easy to state but require great
ingenuity to solve—if indeed they have been solved—but some of the results turn out
to have applications crucial for modern life, internet security being arguably the most
important. Unfortunately we’ll barely scratch the surface of number theory in this
book, since my goal is different. But if anything you see in this section arouses your
curiosity, I would recommend that you look further. You are unlikely to be
disappointed.

The mathematical interest in the integers lies not in their use in counting, but in
their arithmetical system: Given any two integers you can add them, subtract one from
the other, or multiply them together, and the result will always be another integer.
Division is not so straightforward, and that is where things get particularly interesting.
For some pairs of integers, say 5 and 15, division is possible: 15 divides by 5 to give
the integer result 3. For other pairs, say 7 and 15, division is not possible unless you
are prepared to allow fractional results (which takes you outside the integers).

If you restrict arithmetic to the integers, division actually leads to two numbers, a
quotient and a remainder. For example, if you divide 9 by 4 you get a quotient of 2
and a remainder of 1:



9 = 4 · 2 + 1

This is a special case of our first formal theorem concerning integers: the Division
Theorem. For the proof, it is convenient to revisit the idea of absolute value.

Given any integer a, let |a| denote the number that results from dropping any minus
sign. The formal definition specifies two cases:

For example, |5| = 5 and |−9| = 9.
The number |a| is called the absolute value of a.

Theorem 4.1.1 (The Division Theorem) Let a, b be integers, b > 0. Then there are
unique integers q, r such that a = q · b + r and 0 ≤ r < b.

Proof: There are two things to be proved: that q, r exist with the stated properties and
that such q, r are unique. We prove existence first.

The idea is to look at all non-negative integers of the form a − kb, where k is an
integer, and show that one of them is less than b. (Any value of k for which this
occurs will be a suitable q, the value r then being given by r = a − kb.)

Are there any such integers a − kb ≥ 0 ? Yes, there are. Take k = −|a|. Then, since b
≥ 1,

a − kb = a + |a| · b ≥ a + |a| ≥ 0

Since such integers a − kb ≥ 0 do exist, there will be a smallest one, of course. Call it
r, and let q be the value of k for which it occurs, so that r = a − qb. To complete the
(existence) proof, we show that r < b.

Suppose, on the contrary, that r ≥ b. Then

a − (q + 1)b = a − qb − b = r − b ≥ 0

Thus, a − (q + 1)b is a non-negative integer of the form a − kb. But r was chosen as
the smallest one, and yet a−(q + 1)b < a − qb = r, so this situation is contradictory.
Thus, it must be the case that r < b, as we wished to prove.

That leaves us with the proof of uniqueness of q, r. The idea is to show that if there
are representations

a = qb + r = q′b + r′



of a with 0 ≤ r, r′ < b, then in fact r = r′ and q = q′.
We start by rearranging the above equation as

(1) r′ − r = b · (q − q′)

Taking absolute values:

(2) |r′ − r| = b − |q − q′|

But

−b < −r ≤ 0 and 0 ≤ r′ < b

which together imply that

−b < r′ − r < b

or in other words

|r − r| < b

Hence by (2),

b · |q − q′| < b

This implies that

|q − q′| < 1

There is only one possibility now, namely that q − q′ = 0, i.e., q = q′. It follows at
once using (1) that r = r′. The proof is complete. □

If this is the first full-blown, rigorous proof of a theorem like this that you have
encountered, you will probably need to spend some time going over it. The result
itself is not deep; it is something we are all familiar with. Our focus here is on the
method we use to prove, conclusively, that the Division Theorem is true for all pairs
of integers. Time spent now making sure you understand how the above proof works
—why every step is critical—will pay dividends later on when you encounter more
difficult proofs.

By gaining experience with mathematical proofs of simple results like this one,
which is obvious, mathematicians become confident in the method of proof and can



accept results that are not at all obvious.
For example, in the late nineteenth century the famous German mathematician

David Hilbert described a hypothetical hotel that has a strange property. Hilbert’s
Hotel, as it has become known, is the ultimate hotel in that is has infinitely many
rooms. As in most hotels, the rooms are numbered using the natural numbers, 1, 2, 3,
etc.

One night, all rooms are occupied, when an additional guest turns up.
“I’m sorry,” says the desk clerk, “all our rooms are occupied. You will have to go

somewhere else.”
The guest, a mathematician, thinks for a while before saying, “There is a way you

can give me a room, without having to eject any of your existing guests.”
[Before I proceed with this story, you might like to see if you can see the solution

the mathematician guest has seen.]
The clerk is skeptical, but he asks the mathematician to explain how he can free up

a room without ejecting anyone already in the hotel.
“It’s simple,” the mathematician begins. “You move everyone into the next room.

So the occupant of Room 1 moves into Room 2, the occupant of Room 2 moves into
Room 3, and so on throughout the hotel. In general, the occupant of Room n moves
into Room n + 1. When you have done that, Room 1 is empty. You put me in that
room!”

The clerk thinks about it for a moment, and then has to agree that the method will
work. It is indeed possible to accommodate an additional guest in a completely full
hotel without having to eject anyone. The mathematician’s reasoning is totally sound.
And so the mathematician gets a room for the night.

The key to the Hilbert Hotel argument is that the hotel has infinitely many rooms.
Indeed, Hilbert formulated the story to illustrate one of several surprising properties of
infinity. You should think about the above argument for a while. You won’t learn
anything new about real-world hotels, but you will come to understand infinity a bit
better.

The significance of understanding infinity is that it is the key to calculus, the
bedrock of modern science and engineering. And one way to handle infinity is to
specify procedures that describe how infinitely many steps can be carried out.

When you are satisfied you understand Hilbert’s solution (or if you don’t think
there is anything deep going on), try the following variants.

Exercises 4.1.1

1. The Hilbert Hotel scenario is as before, but this time, two guests arrive at the
already full hotel. How can they be accommodated (in separate rooms) without



anyone having to be ejected?

2. This time, the desk clerk faces an even worse headache. The hotel is full, but an
infinite tour group arrives, each group member wearing a badge that says “HELLO,
I’MN”, for N = 1, 2, 3,… Can the clerk find a way to give all the new guests a
room to themselves, without having to eject any of the existing guests? How?

Examples like the Hilbert Hotel demonstrate the importance of rigorous proofs in
mathematics. When used to verify “obvious” results like the Division Theorem, they
may seem frivolous, but when the same method is applied to issues we are not
familiar with (such as questions that involve infinity), rigorous proofs are the only
thing we can rely on.

The Division Theorem as stated above applies only to the division of an integer a
by a positive integer b. More general is:

Theorem 4.1.2 (Generalized Division Theorem) Let a, b be integers, b ≠ 0. Then
there are unique integers q, r such that

a = q · b + r and 0 ≤ r < |b|

Proof: The case where b > 0 has been dealt with in Theorem 4.1.1, so assume now
that b < 0. Since |b| > 0, applying Theorem 4.1.1 provides unique integers q′,r′ such
that

a = q′ · |b| + r′ and 0 ≤ r′ < |b|

Set q = −q′, r = r′. Then, since |b| = −b, we get

a = q · b + r and 0 ≤ r < |b|

as required. □

Theorem 4.1.2 is also sometimes referred to simply as the Division Theorem. In
each case, the number q is referred to as the quotient of a by b and r is called the
remainder.

Simple though it is, the Division Theorem yields many results that can be of
assistance in computational work. For instance (and this is a very simple example), if
you were faced with a search for numbers which are squares of primes, it might be
helpful to know that the square of any odd number is one more than a multiple of 8.
(For example, 32 = 9 = 8 + 1, 52 = 25 = 3 · 8 + 1.) To verify this fact, note that by the



Division Theorem, any number can be expressed in one of the forms 4q, 4q + 1, 4q +
2, 4q + 3, so any odd number has one of the forms 4q + 1, 4q + 3. Squaring each of
these gives

(4q + 1)2 = 16q2 + 8q + 1 = 8(2q2 + 1) + 1

(4q + 3)2 = 16q2 + 24q + 9 = 8(2q2 + 3q + 1) + 1

In both cases the result is one more than a multiple of 8.

In case division of a by b produces a remainder r = 0, we say that a is divisible by
b. That is to say, an integer a is said to be divisible by a nonzero integer b if and only
if there is an integer q such that a = b · q. For example, 45 is divisible by 9 whereas 44
is not divisible by 9. The standard notation to denote that a is divisible by b is b|a.
Note that, by definition, b|a implies b ≠ 0.

You should pay particular attention to the fact that the notation b|a refers to a
relationship between the two numbers a and b. It is either true or false. It is not a
notation for a number. Be careful not to confuse b|a with a/b. (The latter is a notation
for a number.)

The following exercises use the standard notation  for the set of all integers. (The
Z comes from the German word for numbers: Zahlen.)

Exercises 4.1.2

1. Express as concisely and accurately as you can the relationship between b|a and
a/b.

2. Determine whether each of the following is true or false. Prove your answers.
(a) 0|7
(b) 9|0
(c) 0|0
(d) 1|1
(e) 7|44
(f) 7|(−42)
(g) (−7)|49
(h) (−7)|(−56)
(i) 2708|569401
(j) 



(k) 
(l) 
(m) 
(n) 
(o) 
(p) 

The following theorem lists the basic properties of divisibility.

Theorem 4.1.3 Let a, b, c, d be integers, a ≠ 0. Then:

   (i) a|0, a|a ;

  (ii) a|1 if and only if a = ±1 ;

 (iii) if a|b and c|d, then ac|bd (for c ≠ 0) ;

 (iv) if a|b and b|c, then a|c (for b ≠ 0) ;

  (v) [a|b and b|a] if and only if a = ±b ;

 (vi) if a|b and b ≠ 0, then |a| ≤ |b| ;

(vii) if a|b and a|c, then a|(bx + cy) for any integers x, y.

Proof: In each case the proof is simply a matter of going back to the definition of a|b.
For instance, to prove (iv), the assumptions mean that there are integers d and e such
that b = da and c = eb, and it follows at once that c = (de)a, so a|c. To take another
case, consider (vi). Since a|b, there is an integer d such that b = da. Thus |b| = |d| · |a|.
Since b ≠ 0, we must have d ≠ 0 here, so |d| ≥ 1. Thus |a| ≤ |b|, as required. The
remaining cases are left as an exercise. □

Exercises 4.1.3

1. Prove all the parts of Theorem 4.1.3.

2. Prove that every odd number is of one of the forms 4n + 1 or 4n + 3.

3. Prove that for any integer n, at least one of the integers n, n + 2, n + 4 is divisible
by 3.

4. Prove that if a is an odd integer, then 24|a(a2 − 1). [Hint: Look at the example that
followed Theorem 4.1.2.]



5. Prove the following version of the Division Theorem. Given integers a, b with b
≠ 0, there are unique integers q and r such that

[Hint: Write a = q′b + r′ where 0 ≤ r′ < |b|. If , let r = r′, q = q′. If 
, let r = r′ − |b|, and set q = q′ + 1 if b > 0 and q = q′ − 1 if b < 0.]

We have already met Euclid’s proof that there are infinitely many primes. The formal
definition of a prime number is an integer p > 1 which is only divisible by 1 and p.

A natural number n > 1 that is not prime is said to be composite.

Exercises 4.1.4

1. Does the following statement accurately define prime numbers? Explain your
answer. If the statement does not define the primes, modify it so it does.

2. A classic unsolved problem in number theory asks if there are infinitely many
pairs of ‘twin primes’, pairs of primes separated by 2, such as 3 and 5, 11 and 13,
or 71 and 73. Prove that the only prime triple (i.e. three primes, each 2 from the
next) is 3, 5, 7.

3. It is a standard result about primes (known as Euclid’s Lemma) that if p is prime,
then whenever p divides a product ab, p divides at least one of a, b. Prove the
converse, that any natural number having this property (for any pair a, b) must be
prime.

Most of the (considerable) interest in the prime numbers stems from their
fundamental nature within the natural numbers, as expressed by the Fundamental
Theorem of Arithmetic: Every natural numbers greater than 1 is either a prime or can
be expressed as a product of prime numbers in a way that is unique except for the
order in which they are written.

For example, 2, 3, 5, 7, 11, 13 are prime, and



The expression of a composite number as a product of primes is called its prime
decomposition. Knowing the prime decomposition of a number tells you a lot about
its mathematical properties. In this respect, the prime numbers are like the chemist’s
elements or the physicist’s atoms.

Assuming Euclid’s Lemma (the result mentioned in Exercise 4.1.3(3), that if a
prime p divides a product ab, then p divides at least one of a, b), we can prove the
Fundamental Theorem of Arithmetic. (Euclid’s Lemma is not particularly difficult, but
it takes me beyond my goal of developing mathematical thinking.)

Theorem 4.1.4 (Fundamental Theorem of Arithmetic) Any natural number greater
than 1 is either a prime or can be expressed as a product of prime numbers in a way
that is unique except for the order in which they are written.
Proof: We prove the existence of a prime decomposition first. (This part does not
require Euclid’s Lemma.) I gave one proof in Chapter 3 as an illustration of induction.
Here, I’ll give a shorter proof by contradiction.

Assume there were a composite number that could not be written as a product of
primes. Then there must be a smallest such number. Call it n. Since n is not prime,
there are numbers a, b, with 1 < a, b < n, such that n = a · b.

If a and b are primes, then n = a · b is a prime decomposition of n and we have a
contradiction.

If either of a, b is composite, then because it is less than n, it must be a product of
primes, so by replacing one or both of a, b by their prime decompositions in n = a ·
b, we obtain a prime decomposition of n, and again we have a contradiction.

We now turn to proving uniqueness. Again, we use the method of proof by
contradiction. Assume there is a composite number that can be expressed in two
genuinely different ways as products of primes. Let n be the smallest such number,
and let

(*) n = p1 · p2 · … · pr = q1 · q2 · … · qs

be two different prime decompositions of n.
Since p1 divides (q1)(q2 · … · qs) by Euclid’s Lemma, either p1|q1 or p1|(q2 · … ·

qs). Hence, either p1 = q1 or p1 = qi for some i between 2 and s, which can be
expressed more concisely by saying that p1 = qi for some i between 1 and s. But then
by removing p1 and qi from the decompositions in (*), we obtain a number smaller
than n having two different prime decompositions, which contradicts the choice of n
as the smallest such.

That completes the proof. □



Exercises 4.1.5

1. Try to prove Euclid’s Lemma. If you do not succeed, move on to the following
exercise.

2. You can find proofs of Euclid’s Lemma in most textbooks on elementary number
theory, and on the Web. Find a proof and make sure you understand it. If you
find a proof on the Web, you will need to check that it is correct. There are false
mathematical proofs all over the Internet. Though false proofs on Wikipedia
usually get corrected fairly quickly, they also occasionally become corrupted
when a well-intentioned contributor makes an attempted simplification that
renders the proof incorrect. Learning how to make good use of Web resources is
an important part of being a good mathematical thinker.

3. A fascinating and, it turns out, useful (both within mathematics and for real-world
applications) result about prime numbers is Fermat’s Little Theorem:  If p is
prime and a is a natural number that is not a multiple of p, then p|(ap − 1). Find
(in a textbook or on the Web) and understand a proof of this result. (Again, be
wary of mathematics you find on websites of unknown or non-accredited
authorship.)

4.2 The real numbers

If you are not familiar with elementary set theory, you should read the appendix
before you proceed further in this chapter.

Numbers arose from the formalization of two different human-cognitive
conceptions: counting and measurement. Based on fossil records, anthropologists
believe that both concepts existed and were used many thousands of years before
numbers were introduced. As early as 35,000 years ago, humans put notches into
bones (and probably wooden sticks as well, but none have survived and been found)
to record things—possibly the cycles of the moon or the seasons—and it seems
probable they used sticks or lengths of vine to measure lengths. Numbers themselves,
however—abstractions that stand for the number of notches on a bone or the length
of a measuring device—appear to have first appeared much later, around 10,000 years
ago in the case of counting collections.

These activities resulted in two different kinds of number: the discrete counting
numbers and the continuous real numbers. The connection between these two kinds
of numbers was not finally put onto a firm footing until the nineteenth century, with
the construction of the modern real number system. The reason it took so long is that



the issues that had to be overcome were pretty subtle. Though the construction of the
real numbers is beyond the scope of this book, I can explain what the problems were.

The connection between the two conceptions of numbers was made by showing
how, starting with the integers  (Z for Zahlen), it is possible to define first the
rationals  (Q for quotient) and then use the rationals to define the real numbers .

Starting with the integers, it is fairly straightforward to define the rational numbers.
A rational number is, after all, simply a ratio of two integers. (It’s actually not entirely
trivial to construct the rational number system from the integers. Try your hand at the
following exercise.)

Exercise 4.2.1

1. Take the integers, , as a given system of numbers. You want to define a larger
system, , that extends  by having a quotient a/b for every pair a, b of integers,
b ≠ 0. How would you go about defining such a system? In particular, how would
you respond to the question, “What is the quotient a/b?” (You cannot answer in
terms of actual quotients, since until  has been defined, you don’t have
quotients.)

2. Find an account of the construction of the rationals from the integers and
understand it, once again being cautious about mathematics found on the Internet.

With the rationals, you have a system of numbers adequate for any real-world
measurement. This is captured by the following property of rational numbers.

Theorem 4.2.1 If r, s are rationals, r < s, then there is a rational t such that r < t < s.
Proof: Let

Clearly, r < t < s. But is ? Well, letting r = m/n, s = p/q, where m, n, p, q ∈ 

so as , we conclude that . □

The above property of there being a third rational between any two unequal
rationals is known as density.

Because of density, for practical measurement in the world, the rational numbers
are all you need. Between any two rational numbers there is a third. Hence, between



any two rational numbers there are infinitely many other rational numbers. So you can
measure anything in the world to whatever precision you need using the rational
numbers.

But you need real numbers to do mathematics. The ancient Greeks learned that the
rational numbers are not sufficient to provide (theoretical) mathematical
measurement when they discovered that the length of the hypotenuse of a right-angled
triangle with height and width equal to 1 unit is not a rational number. (The famous
result that  is irrational, which we proved earlier.) This is not a problem for the
construction engineer or the carpenter who has to work with right-angled triangles,
but it is a major obstacle in mathematics itself.

The trouble is, although the rationals are dense (as defined above), there are
nevertheless “holes” in the rational line. For example, if we let

then every element of A is less than every element of B, and

But A has no greatest member and B has no smallest member (as you can easily
check), so there is a sort of hole between A and B. This is the hole where  ought to
be, of course. The fact that  contains holes of this nature makes it unsuitable for
some mathematical purposes, even though it suffices for all our measurements.
Indeed, a number system in which the equation

x2 − 2 = 0

has no solution is not going to support much advanced mathematics.
If the idea of there being holes in a densely packed line like the rational number

line seems strange, things got even stranger when mathematicians finally did figure
out how to fill those holes. The numbers that fill in the holes are known as irrational
numbers. Taken together, the rational numbers and the irrational numbers constitute
what are called the real numbers. It turns out that when you fill in the holes in the
rational line, you get a lot more numbers than you bargained for. Not only are there
infinitely many irrational numbers between any two rational numbers, but in a very
precise sense there are “infinitely more” irrational numbers between them then there
are rational numbers between them. The irrational numbers so dominate the real line
that if you were to select a real number at random, the mathematical probability that it
would be irrational is 1.

There are several different ways to construct the real numbers from the rational



numbers in a rigorous fashion, all of which would take us beyond our present scope.
But at an intuitive level, the idea is to allow decimal expansions to be infinite. In the
case of infinite recurring decimals, the expression denotes a rational number, such as
0.333 …, which is 1/3, or 0.142857 142857 142857 …, which is 1/7. But if there is no
recurring pattern, the result is an irrational number, for example  starts off
1.41421356237309504880168872420969807 …and continues forever without settling
into a recurring pattern.

4.3 Completeness

One of the most valuable results to come out of the construction of the real number
system was the formulation of a simple property of the reals that captures those
infinitesimal holes in the rational line and specifies exactly how they are filled. It is
called the Completeness Property. Before I can explain it, we need some familiarity
with the real line as an ordered set.

Certain types of subset of the reals  occur so frequently that it is convenient to
introduce a special notation for them.

By an interval we mean an uninterrupted stretch of the real line. There are a
number of different kinds of interval, for which there is a fairly widespread standard
notation.

Let a, , a < b. The open interval (a, b) is the set

The closed interval [a, b] is the set

The point to notice here is that neither a nor b is an element of (a, b), but both a
and b are elements of [a, b]. (This seemingly trivial distinction turns out to be highly
significant in elementary real analysis.) Thus, (a, b) is the stretch of the real line
beginning ‘just past’ a and ending ‘just before’ b, while [a, b] is the stretch beginning
with a and ending with b.

The above notation extends in an obvious manner. We call

a left-closed, right-open interval, and

a left-open, right-closed interval.
Both [a, b) and (a, b] are sometimes referred to as half-open (or half-closed)



intervals.
Finally, we set

Notice that the symbol ∞ is never coupled with a square bracket. This would be
misleading, since ∞ is not a number, just a useful symbol. In the above definitions it
simply helps us to extend a convenient notation to cover another case.

Exercises 4.3.1

1. Prove that the intersection of two intervals is again an interval. Is the same true
for unions?

2. Taking  as the universal set, express the following as simply as possible in terms
of intervals and unions of intervals. (Note that A′ denotes the complement of the
set A relative to the given universal set, which in this case is . See the appendix.)

(a) [1, 3]′
(b) (1, 7]′
(c) (5, 8]′
(d) (3, 7) ∪ [6, 8]
(e) (−∞, 3)′ ∪ (6, ∞)
(f) {π}′
(g) (1, 4] ∩ [4, 10]
(h) (1, 2) ∩ [2, 3)
(i) A′, where A = (6, 8) ∩ (7, 9]
(j) A′, where A = (−∞, 5] ∪ (7, ∞)

Now we are in a position to take a look at the way the modern real number system
handles the notion of “filling in the holes”of the rational line.

Given a set A of reals, a number b such that (∀a ∈ A) [a ≤ b] is said to be an
upper bound of A.

We say b is a least upper bound of A if, in addition, for any upper bound c of A,
we have b ≤ c.

The same definitions can be made for sets of integers or sets of rationals, of course.
The least upper bound of a set A is often written lub(A).



The Completeness Property of the real number system says that any nonempty set of
reals that has an upper bound has a least upper bound (in ).

Exercises 4.3.2

1. Prove that if a set A of integers/rationals/reals has an upper bound, then it has
infinitely many different upper bounds.

2. Prove that if a set A of integers/rationals/reals has a least upper bound, then it is
unique.

3. Let A be a set of integers, rationals, or reals. Prove that b is the least upper bound
of A iff:

(a) (∀a ∈ A)(a ≤ b); and
(b) whenever c < b there is an a ∈ A such that a > c.

4. The following variant of the above characterization is often found. Show that b is
the lub of A iff:

(a) (∀a ∈ A) (a ≤ b) ; and
(b) (∀∊ > 0)(∃a ∈ A)(a > b − ∊).

5. Give an example of a set of integers that has no upper bound.

6. Show that any finite set of integers/rationals/reals has a least upper bound.

7. Intervals: What is lub (a, b)? What is lub [a, b]? What is max (a, b)? What is max
[a, b]?

8. Let A = {|x − y| | x, y ∈ (a, b)}. Prove that A has an upper bound. What is lub A?

9. Define the notion of a lower bound of a set of integers/rationals/reals.

10. Define the notion of a greatest lower bound (glb) of a set of
integers/rationals/reals by analogy with our original definition of lub.

11. State and prove the analog of Question 3 for greatest lower bounds.

12. State and prove the analog of Question 4 for greatest lower bounds.

13. Show that the Completeness Property for the real number system could equally
well have been defined by the statement, “Any nonempty set of reals that has a
lower bound has a greatest lower bound.”

14. The integers satisfy the Completeness Property, but for a trivial reason. What is
that reason?



Theorem 4.3.1 The rational line, , does not have the completeness property.

Proof: Let

A is bounded above in  by 2. But it has no least upper bound in . Intuitively, this is
because the only possible least upper bound would be , which we know is not in ,
but we shall prove this rigorously.

Let  be any upper bound of A. We show that there is a smaller one (in ).
Let x = p/q, where .
Suppose first that x2 < 2. Thus 2q2 > p2. Now, as n gets large, the expression n2/(2n

+ 1) increases without bound, so we can pick  so large that

Rearranging, this gives

2n2q2 > (n + 1)2p2

Hence

Let

Thus y2 < 2. Now, since (n + 1)/n > 1, we have x < y. But y is rational and we have
just seen that y2 < 2, so y ∈ A. This contradicts the fact that x is an upper bound for A.

It follows that we must have x2 ≥ 2. Since there is no rational whose square is equal
to 2, this means that x2 > 2. Thus p2 > 2q2, and we can pick  so large now that

which becomes, upon rearranging,

p2n2 > 2q2(n + 1)2

i.e.



Let

Then y2 > 2. Since n/(n + 1) < 1, y < x. But for any a ∈ A, a2 < 2 < y2, so a < y. Thus
y is an upper bound of A less than x, as we set out to prove. □

Exercises 4.3.3

1. Let A = {r ∈  | r > 0 ∧ r2 > 3}. Show that A has a lower bound in  but no
greatest lower bound in . Give all details of the proof along the lines of Theorem
4.3.1.

2. In addition to the completeness property, the Archimedean property  is an
important fundamental property of . It says is that if x, y ∈  and x, y > 0, there
is an n ∈  such that nx > y.
Use the Archimedean property to show that if r, s ∈  and r < s, there is a q ∈ 
such that r < q < s. (Hint: pick n ∈ , n > 1/(s − r), and find an m ∈  such that
r < (m/n) < s.)

4.4 Sequences

Suppose we associate with each natural number n a real number an. The set of all
these numbers an, arranged according to the index n, is called a sequence. We denote
this sequence by

Thus, the symbol  represents the sequence

a1,a2,a3, …, an, …

For example, the members of  themselves constitute a sequence when assigned
their usual order

1,2,3, … , n, …

This sequence would be denoted by  (because an = n for each n).
Or we could order the elements of  in a different manner to obtain the sequence

2,1,4,3,6,5,8,7,…



This is quite a different sequence from the sequence ,since the ordering in which
the members of the sequence appear is important. Or, if we allow repetitions we get a
completely new sequence

1,1,2,2,3,3,4,4,4,5,6,7,8,8, …

There does not need to be a nice rule involved. It may be impossible to find a formula
to describe an in terms of n, though the specific examples you find in textbooks do, of
course, have rules.

Again, we can have a constant sequence

or an alternating (in sign) sequence

In short, there is no restriction on what the members of a sequence  may be,
except that they be real numbers.

Some sequences have a rather special property. As you go along the sequence, the
numbers in the sequence get arbitrarily closer and closer to some fixed number. For
instance, the members of the sequence

get arbitrarily closer and closer to 0 as n gets larger, and the members of the sequence

get arbitrarily closer and closer to 1. Again, the members of the sequence

3, 3.1, 3.14, 3.141, 3.1415, 3.14159, 3.141592, 3.1415926, …

get arbitrarily closer and closer to π, although this example is not as good as some of
the others, since we have not given a general rule for the nth term in the sequence.

If the members of the sequence  get arbitrarily closer and closer to some fixed
number a in this manner, we say that the sequence tends to the limit a, and write

an → a as n → ∞

Another common notation is



So far, this is all at an intuitive level. Let us see if we can obtain a precise definition
of what it means to write “an → a as n → ∞”.

Well, to say that an gets arbitrarily closer and closer to a is to say that the difference
|an − a| gets arbitrarily closer and closer to 0. This is the same as saying that whenever
∊ is a positive real number, the difference |an − a| is eventually less than ∊. This leads
to the following formal definition:

This looks quite complicated. Let us try to analyze it. Consider the part

This says that there is an n such that for all m greater than or equal to n, the distance
from am to a is less than ∊. In other words, there is an n such that all terms in the
sequence  beyond an lie within the distance ∊ of a. We can express this concisely
by saying that the terms in the sequence  are eventually all within the distance ∊
from a.

Thus, the statement

says that for every ∊ > 0, the members of the sequence  are eventually all within
the distance ∊ from a. This is the formal definition of the intuitive notion of “an gets
arbitrarily closer and closer to a”.

Let us consider a numerical example. Consider the sequence . On an intuitive
level, we know that 1/n → 0 as n → ∞. We shall see how the formal definition works
for this sequence. We must prove that

This simplifies at once to

To prove that this is a true assertion, let ∊ > 0 be arbitrary. We must find an n such
that

Pick n large enough so that n > 1/∊. (This uses the Archimedean property of 
discussed in Exercises 4.3.) If now m ≥ n then



In other words,

as required.
One point to notice here is that our choice of n depended upon the value of ∊. The

smaller ∊ is, the greater our n needs to be.

Another example is the sequence , i.e.

We prove that n/(n + 1) → 1 as n → ∞. Let ∊ > 0 be given. We must find an n ∈ 
such that for all m ≥ n

Pick n so large that n > 1/∊. Then, for m ≥ n,

as required.

Exercises 4.4.1

(1) Formulate both in symbols and in words what it means to say that  as n →
∞.

(2) Prove that (n/(n + 1))2 → 1 as n → ∞.

(3) Prove that 1/n2 → 0 as n → ∞.

(4) Prove that 1/2n → 0 as n → ∞.

(5) We say a sequence  tends to infinity if, as n increases, an increases without
bound. For instance, the sequence  tends to infinity, as does the sequence 

. Formulate a precise definition of this notion, and prove that both of these
examples fulfil the definition.

(6) Let  be an increasing sequence (i.e. an < an+1 for each n). Suppose that an
→ a as n → ∞. Prove that .

(7) Prove that if  is increasing and bounded above, then it tends to a limit.



APPENDIX: Set theory

Most readers of this book will have learned enough basic set theory. This brief
appendix summarizes what is required.

The concept of a set is extremely basic and pervades the whole of present-day
mathematical thought. Any well-defined collection of objects is a set. For instance we
have:

the set of all students in your class

the set of all prime numbers

the set whose only member is you.

All it takes to determine a set is some way of specifying the collection. (Actually, that
is not correct. In the mathematical discipline called abstract set theory, arbitrary
collections are allowed, where there is no defining property.)

If A is a set, then the objects in the collection A are called either the members of A
or the elements of A. We write

x ∈ A

to denote that x is an element of A.
Some sets occur frequently in mathematics, and it is convenient to adopt a standard

notation for them:

: the set of all natural numbers (i.e., the numbers 1, 2, 3, etc.)
: the set of all integers (0 and all positive and negative whole numbers)
: the set of all rational numbers (fractions)
: the set of all real numbers

Thus, for example,

x ∈ 

means that x is a real number. And

(x ∈ ) ∧ (x > 0)

means that x is a positive rational number.



There are several ways of specifying a set. If it has a small number of elements, we
can list them. In this case, we denote the set by enclosing the list of the elements in
curly brackets; thus, for example,

{1,2,3,4,5}

denotes the set consisting of the natural numbers 1, 2, 3, 4 and 5.
By use of ‘dots’ we can extend this notation to any finite set; e.g.,

{1,2,3,…,n}

denotes the set of the first n natural numbers. Again

{2,3,5,7,11,13,17, … , 53}

could (given the right context) be used to denote the set of all primes up to 53.
Certain infinite sets can also be described by the use of dots (only now the dots

have no end), e.g.,

{2,4,6,8,…,2n,…}

denotes the set of all even natural numbers. Again,

{…,−8,−6,−4,−2,0,2,4,6,8,…}

denotes the set of all even integers.
In general, however, except for finite sets with only a small number of elements,

sets are best described by giving the property which defines the set. If A(x) is some
property, the set of all those x which satisfy A(x) is denoted by

{x | A(x)}

Or, if we wish to restrict the x to those which are members of a certain set X, we
would write

{x ∈ X | A(x)}

This is read “the set of all x in X such that A(X)”. For example:



Two sets, A, B are equal, written A = B, if they have exactly the same elements. As
the above example shows, equality of sets does not mean they have identical
definitions; there are often many different ways of describing the same set. The
definition of equality reflects rather the fact that a set is just a collection of objects.

If we have to prove that the sets A and B are equal, we usually split the proof into
two parts:

(a) Show that every member of A is a member of B.

(b) Show that every member of B is a member of A.

Taken together, (a) and (b) clearly imply A = B. (The proof of both (a) and (b) is
usually of the ‘take an arbitrary element’ variety. To prove (a), for instance, we must
prove (∀x ∈ A)(x ∈ B); so we take an arbitrary element x of A and show that x must
be an element of B.)

The set notations introduced have obvious extensions. For instance, we can write

and so on.
It is convenient in mathematics to introduce a set which has no elements: the empty

set (or null set). There will only be one such set, of course, since any two such will
have exactly the same elements and thus be (by definition) equal. The empty set is
denoted by the Scandinavian letter  (Note that this is not the Greek letter ϕ.) The
empty set can be specified in many ways; e.g.,

Notice that  and { } are quite different sets.  is the empty set: it has NO members. { }
is a set which has ONE member. Hence

 ≠ { }

What is the case here is that

 ∈ { }



(The fact that the single element of { } is the empty set is irrelevant in this connection:
{ } does have an element,  does not.)

A set A is called a subset of a set B if every element of A is a member of B. For
example, {1, 2} is a subset of {1, 2, 3}. We write

A ⊆ B

to mean that A is a subset of B. If we wish to emphasize that A and B are unequal here,
we write

A ⊂ B

and say that A is a proper subset of B (This usage compares with the ordering
relations ≤ and < on )

Clearly, for any sets A, B, we have

A = B iff (A ⊆ B) ∧ (B ⊆ A)

Exercises A1

1. What well-known set is this:

2. Let

What is the relationship between P and Q?

3. Let

A = {x ∈  | (x > 0) ∧ (x2 = 3)}

Give a simpler definition of the set A.

4. Prove that for any set A:

5. Prove that if A ⊆ B and B ⊆ C, then A ⊆ C

6. List all subsets of the set {1, 2, 3, 4}.

7. List all subsets of the set {1, 2, 3, {1, 2}}.



8. Let A = {x | P(x)}, B = {x | Q(x)}, where P, Q  are formulas such that ∀x[P(x) ⇒
Q(x)]. Prove that A ⊆ B.

9. Prove (by induction) that a set with exactly n elements has 2n subsets.

10. Let

A = {o, t, f, s, e, n}

Give an alternative definition of the set A. (Hint: this is connected with  but is
not entirely mathematical.)

There are various natural operations we can perform on sets. (They correspond
roughly to addition, multiplication, and negation for integers.)

Given two sets A, B we can form the set of all objects which are members of either
one of A and B. This set is called the union of A and B and is denoted by

A ∪ B

Formally, this set has the definition

A ∪ B = {x | (x ∈ A) ∨ (x ∈ B)}

(Note how this is consistent with our decision to use the word ‘or’ to mean inclusive-
or.)

The intersection of the sets A, B is the set of all members which A and B have in
common. It is denoted by

A ∩ B

and has the formal definition

A ∩ B = {x | (x ∈ A) ∧ (x ∈ B)}

Two sets A, B are said to be disjoint if they have no elements in common: that is, if
A ∩ B = .

The set-theoretic analog of negation requires the concept of a universal set. Often,
when we are dealing with sets, they all consist of objects of the same kind. For
example, in number theory we may focus on sets of natural numbers or sets of
rationals; in real analysis we usually focus on sets of reals. A universal set for a
particular discussion is simply the set of all objects of the kind being considered. It is



frequently the domain over which the quantifiers range.
Once we have fixed a universal set we can introduce the notion of the complement

of the set A. Relative to the universal set U, the complement of a set A is the set of all
elements of U that are not in A. This set is denoted by A′, and has the formal definition

A′ = {x ∈ U | x ∉ A}

[Notice that we write x ∉ A instead of ¬(x ∈ A), for brevity.]
For instance, if the universal set is the set  of natural numbers, and E is the set of

even (natural) numbers, then E′ is the set of odd (natural) numbers.
The following theorem sums up the basic facts about the three set operations just

discussed.

Theorem Let A, B, C be subsets of a universal set U.

    (1) A ∪ (B ∪ C) = (A ∪ B) ∪ C

    (2) A ∩ (B ∩ C) = (A ∩ B) ∩ C
((1) and (2) are the associative laws)

    (3) A ∪ B = B ∪ A

    (4) A ∩ B = B ∩ A
((3) and (4) are the commutative laws)

    (5) A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C)

    (6) A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)
((5) and (6) are the distributive laws)

    (7) (A ∪ B)′ = A′ ∩ B′

    (8) (A ∩ B)′ = A′ ∪ B′
((7) and (8) are called the De Morgan laws)

    (9) A ∪ A′ = U

(10) A ∩ A′ = 
((9) and (10) are the complementation laws)

(11) (A′)′ = A
(self-inverse law)

Proof: Left as an exercise. □



Exercises A2

1. Prove all parts of the above theorem.

2. Find a resource that explains Venn diagrams  and use them to illustrate and help
you understand the above theorem.
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1Now in its third edition: Sets, Functions, and Logic: An Introduction to Abstract

Mathematics, Chapman & Hall, CRC Mathematics Series.
2Because my earlier book and this new one both arise from transition courses I

have developed, there is still considerable overlap between the two books, as indeed
there is between my two books and transition books by other authors, but this book
has a different focus and is targeted at a different, and broader, audience than all the
rest.

3I shall use the word “college” to mean “college or university” throughout.
4Yes, I know I said this a mere six short paragraphs ago. The repetition is

deliberate. It’s an important point.
1If you have not yet done so, please go back and read the Introduction to this book.

It is very relevant here, and throughout the book.
2See the previous footnote.
3Other civilizations also developed mathematics; for example, the Chinese and the

Japanese. But the mathematics of those cultures does not appear to have had a direct
influence on the development of modern western mathematics, so in this book I will
ignore them.

4There is an oft repeated story that the young Greek mathematician who made this
discovery was taken out to sea and drowned, lest the awful news of what he had
stumbled upon should leak out. As far as I know, there is no evidence whatsoever to
support this fanciful tale. Pity, since it’s a great story.

5Given today’s mass market paperbacks, the definition of “widely circulated”
presumably has to incorporate the number of years the book has been in circulation.

6The Assayer. This is an oft repeated paraphrase of his actual words.
1This proof uses basic facts about prime numbers that will be introduced in

Chapter 4, but most readers are likely to be familiar with what is required.
2Introducing formally defined terms to discuss words and concepts we introduce in

mathematics, as here, is a common practice. It is impossible to introduce precision
without being able to use agreed upon terminology. Likewise, legal contracts
frequently have a whole section where the meanings of various terms are stipulated.

3Even if we were to alter our second assertion by inserting the word either, we
would still read it as allowing for both possibilities to occur at once, since the use of
the word either only serves to strengthen the exclusivity in an assertion where it is



already clear that there is no possibility of both, as in the first assertion.
4On second thought, maybe you should read it a fourth time just to be sure.
1Theorems are a Greek invention, which is why they have a Greek name. The

Romans’ interest in mathematics was far more practical, so there is no Latin word
“theorum” in the mathematical lexicon.
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