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ABSTRACT

We present an estimation procedure and analyze spectral properties of chaotic stochas-
tic processes as

Zt = Xt + ξt = φ(T t(ψ)) + ξt, for t ∈ Z,

where T is a deterministic map, φ is a given function and ξt is the noise process.
The examples considered in this paper generalize the classical harmonic model

Zt = A cos(ω0 t + ψ) + ξt, for t ∈ Z.

We also consider large deviation properties of the estimated parameters.

1. INTRODUCTION

Consider the stationary process

Zt = A cos(ω0 t + ψ) + ξt, for t ∈ Z, (1.1)

where A > 0 and ω0 ∈ (−π, π] are constants, {ξt}t∈Z is a Gaussian white noise with
mean zero and variance σ2

ξ and ψ is a uniformly distributed random variable in (−π, π]
independent of the noise process.

The process in (1.1) is the classical harmonic model (see Bloomfield (1976)) for time
series analysis. Several different procedures to estimate the frequency ω0 are known. The
spectral distribution function of the model (1.1) is

1



dFZ(λ) =
1
2
(δω0 + δ−ω0) +

1
2π

, for λ ∈ [−π, π].

Consider the map T : (−π, π) → (−π, π) given by T (x) = ω0 + x (mod 2π) and its
iterates

T t = T ◦ T ◦ · · · ◦ T︸ ︷︷ ︸
t times

which satisfy T t(x) = ω0 t+x (mod 2π). We remind the reader that for any given number
c, the value c (mod 2π) is the value d where c = 2πn + d, 0 ≤ d < 2π and n ∈ Z.

The process (1.1) can be rewritten as

Zt = A cos(T t(ψ)) + ξt, for t ∈ Z, (1.2)

where ψ is a uniformly distributed random variable in (−π, π].
Our purpose is to analyze stochastic processes of the type (1.2) where the transfor-

mation T is a general bijective map from a set K ⊂ R (or, more generally, K ⊂ Rn) to
itself.

In a more general setting, given any function φ : K → R, consider the stochastic
process

Zt = φ(T t(x)) + ξt, for t ∈ Z, (1.3)

where x has a distribution P absolutely continuous with respect to the Lebesgue measure.
Formal definitions will be given in the next section.

The map T will define a dynamical system with chaotic behavior in the examples
considered here. We will use techniques from Ergodic Theory (see Cornfeld et al. (1982)
and Walters (1981)) and Large Deviations (see Dembo and Zeitouni (1993)) and Ellis
(1989)) in order to analyze the process (1.3). We call the models such as (1.3) of chaotic
stochastic processes. After the general definitions and properties of such processes in
Sections 2 and 3, we present Example 1 and Example 2, respectively, in Sections 4 and 5.

The stochastic process (1.1) is a particular case of Example 1 that will be analyzed
in Section 4.

We are able to present an estimation procedure to find the parameters (they play the
role of the frequency ω0 in model (1.1)) and also to exhibit explicitly the spectral density
function of Example 2 and all the Fourier coefficients of the spectral distribution function
of Example 1. A remarkable fact in Example 1 is the appearance of a strong peak of the
spectral distribution function in the value corresponding to the rotation number of the
map T . The rotation number of a bijective map T is an important invariant previously
analyzed in Dynamical System (see Devaney (1989)) and it seems to play also an important
role in the spectral analysis properties of certain chaotic time series.

It is well known in the theory of time series analysis that different models require
different estimation procedures. We do not know a general procedure that works for all
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models of the type (1.3). We propose to use here the sample autocovariance functions at
low order to estimate the parameters, but each particular model will require a different
approach to estimate the involved parameters.

We also carry out a complete analysis of the deviations of the mean estimated values
in the case with no noise. In fact, Example 1 and Example 2 (in the case where σ2

ξ = 0)
satisfy a Large Deviation principle as will be shown in the sequel.

The large deviation principle for the case σ2
ξ �= 0 will be presented in a forthcoming

paper.
The large deviations properties of the model (see Sections 4 and 5) will assure that

the estimation procedure is, in some sense, robust.
We believe that the general techniques presented in Sections 2 and 3 can also be ap-

plied to a wide range of different examples of the type (1.3).

Remark: In the literature, different definitions of chaotic systems may be found. Accord-
ing to Devaney (1989), for instance, the transformation T (x) = ω0 + x is not chaotic since
it does not satisfy the sensitive dependency on the initial condition property . However, the
temporal evolution T t(x) of such map, for any x ∈ (−π, π], is very erratic and, for abuse
of the notation, we also call such systems by chaotic.

As usual, we call {φ(T t(x))}t∈Z the signal process and {ξt}t∈Z the noise process. The
value σξ determines the strength of the noise. For a given fixed signal φ(T t(x)), as larger
the value σξ is, stronger is the noise with respect to the signal. The signal to noise ratio
is defined by

SNR = 20 log10

(
std. signal
std. noise

)
. (1.4)

Negative values of the signal to noise ratio mean a stronger noise component than the
signal. In the same way as it happens for other kind of time series models, in the present
situation, if the noise is much stronger than the signal, that is, if the signal to noise ratio
is strongly negative, the estimation procedure works badly.

We present in the end of Sections 4 and 5, a table showing simulations that confirm
the good performance of the method for estimation purposes when the signal to noise ratio
has reasonable values.

We would like to point out a basic difference between model (1.3) considered here and
the previous work of Tong (1990) and others. In Tong (1990), the model is

Xt+1 = φ(Xt, ξt), for t ∈ Z, (1.5)

where φ and Xt are deterministic and ξt is the noise. In this case, for φ(x) = x, for
instance, the influence of the noise propagates when time goes on in the following way

T (T (x) + ξ1) + ξ2. (1.6)

In the present situation, the noise propagation is like
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T (T (x)) + ξ2. (1.7)

The situations in (1.6) and (1.7) are quite different and we are not sure that the results
presented here can be applied to processes as in (1.5). When there is no noise, that is,
when σ2

ξ = 0, then the expressions (1.6) and (1.7) define, of course, the same process. In
this case, the model analyzed here can also be considered a model satisfying the hypothesis
of Tong (1990).

We refer the reader to Takens (1994), Kostelich and Yorke (1990), Ding et al. (1993)
and Tong (1990) for general properties of time series with chaotic behavior.

2. STATIONARY STOCHASTIC PROCESSES

The general setting of chaotic time series we want to analyze is the following. Consider
K a compact subset of Rn with a given Borel σ-algebra F , an invertible continuous
transformation T : K → K, an invariant probability P on K (that is, P(T−1(A)) = P(A),
for any set A ∈ F) and φ : K → R a continuous function. We will analyze the stationary
stochastic process {Zt}t∈Z given by

Zt = Xt + ξt = (φ ◦ T )(Xt−1) + ξt, for t ∈ Z. (2.1)

The natural measure on KZ is the product measure on KZ and it is invariant for the
stationary process {Xt}t∈Z or {Zt}t∈Z. The process {ξt}t∈Z is considered to be a Gaussian
white noise process (see Brockwell and Davis (1987)) independent of {(φ◦T )(Xt)}t∈Z, with
zero mean and variance σ2

ξ . One observes that in the model (2.1) the random variables Zt

and Zt+1 are generally not independent.
We shall denote the above system by (K, T,P, φ,F , σ2

ξ ). Following the terminology
in Tong (1990) we may call the system (2.1), when σ2

ξ = 0, the skeleton of the system.
For the following definitions we shall not consider the noise process {ξt}t∈Z in the

model (2.1) and we shall denote the system by (K, T,P). We say that two systems
(K1, T1,P1) and (K2, T2,P2) (where, for the moment, we do not consider any continuous
function φ) are equivalent in the Ergodic Theory sense if there exists a map v : K1 → K2

invertible (that is, there exists u : K2 → K1 such that v ◦ u = id, P1-almost everywhere
and u ◦ v = id, P2-almost everywhere) such that

(i) v∗(P2) = P1, where v∗(P2)(A) = P2(v−1(A)), for any set A ∈ F .

(ii) T2 ◦ v = v ◦ T1, P1 − almost everywhere .
(2.2)

One observes that v plays the role of a change of variables. When v satisfies property
(2.2) we say that v is a conjugacy between the systems (K1, T1,P1) and (K2, T2,P2).
We refer the reader to Walters (1981) for precise definitions and general results about
equivalence in Ergodic Theory. It is a simple consequence of (ii) in (2.2) that

T t
2 ◦ v = v ◦ T t

1 , for any t ∈ Z.
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Given a certain measurable function φ : K → R the autocovariance function at lag h
(see Brockwell and Davis (1987)) of the process {Xt}t∈Z as in (2.1) is given by

RXX(h) = E(XtXt+h) − [E(Xt)]2 =
∫

φ(x)φ(Th(x))dP(x) − [
∫

φ(x)dP(x)]2. (2.3)

The autocovariance function RXX(h) in (2.3) measures the covariance between two values
of the process {Xt}t∈Z separated by lag h. The autocorrelation function at lag h of the
process {Xt}t∈Z (see Brockwell and Davis (1987)) is given by

ρX(h) =
RXX(h)
RXX(0)

, for h ∈ N, (2.4)

where RXX(0) = E[(Xt − E(Xt))2] = Var(Xt) is the variance of the process.

Proposition 2.1: If (K1, T1,P1) and (K2, T2,P2) are equivalent as in (2.2) then, for any
φ, the autocovariance functions at lag h of the processes Xt = φ ◦ v ◦ T t

1 and Yt = φ ◦ T t
2

are the same, that is,

RXX(h) = RY Y (h), for any h ∈ Z.

Proof: In fact, given a continuous function φ : K2 → R and for any h ∈ Z then

RY Y (h) =
∫

φ(x)φ(Th
2 (x))dP2(x) − [

∫
φ(x)dP2(x)]2 =

=
∫

φ(v(y))φ(Th
2 (v(y)))dP1(y) − [

∫
(φ ◦ v)(y)dP1(y)]2 =

=
∫

φ(v(y))φ(v(Th
1 (y)))dP1(y) − [

∫
(φ ◦ v)(y)dP1(y)]2 =

=
∫

(φ ◦ v)(y)(φ ◦ v)(Th
1 (y))dP1(y) − [

∫
(φ ◦ v)(y)dP1(y)]2 =

= RXX(h).

The second above equality follows from the fact that v∗(P2) = P1 is equivalent to∫
ϕ(x)dP2(x) =

∫
(ϕ ◦ v)(y)dP1(y),

for any continuous function ϕ.
¿From the Herglotz’s theorem (see Brockwell and Davis (1987)) a function ρX(h) is

non-negative definite if and only if

ρX(h) =
∫ π

−π

eiλhdFX(λ), for any h ∈ Z, (2.5)
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where FX(·) is a right-continuous, non-decreasing, bounded function on [−π, π] with
FX(−π) = 0. The function FX(·) is called the spectral distribution function of {Xt}t∈Z

and if

FX(λ) =
∫ λ

−π

fX(ω) dω, for − π ≤ λ ≤ π, (2.6)

then fX(·) is called the spectral density function of the process {Xt}t∈Z. When

∞∑
h=−∞

|ρX(h)| < ∞,

then ρX(h) =
∫ π

−π
eihλfX(λ) dλ, for h ∈ Z, where fX(·) is given by

fX(λ) =
1
2π

∞∑
h=−∞

e−ihλρX(h). (2.7)

Remark: From Proposition 2.1 we conclude that the spectral distribution functions
(see (2.5)) of both stochastic processes, Xt = (φ ◦ v)(T t

1) and Yt = φ(T t
2), are the

same. In conclusion, if we are able to analyze the spectrum properties of the system
(K1, T1,P1, φ) then we are also able to analyze the spectrum properties of any equivalent
system (K2, T2,P2, φ ◦ v).

Example: When the compact subset K is equal to [−π, π], the transformation T is given
by T (x) = ω0 + x (mod 2π), with ω0 ∈ (0, π), and φ(x) = cos(x) (this is the model (1.1)),
the spectral distribution function of the process {Xt}t∈Z = {(φ ◦ T )(Xt−1)}t∈Z as in (2.1)
is not a function but a generalized spectral distribution function exists and it is given by

dFX(λ) =
1
2
(δω0 + δ−ω0), (2.8)

where δω0 is the Dirac delta function concentrated at ω0.

Remark: Expanding maps (see Lopes (1994) for the definition) always have an exponen-
tial decay of autocorrelations, for any φ Holder continuous function (see Parry and Pollicott
(1990)). Therefore, in this case, the spectral density function always exists and the spec-
trum is of continuous type. The function T of Example 2 in Section 5 is an expanding
map.
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3. THE ESTIMATION OF THE PARAMETERS

We shall consider φ as a fixed known continuous function, P is also fixed and T is
a unknown transformation indexed by the parameters (α1, α2, · · · , αk). One of our main
purposes in this paper is to estimate the map T , or equivalently, to estimate the parameters
(α1, α2, · · · , αk) from a time series {Zt}N

t=1 of size N derived from the stationary stochastic
process {Zt}t∈Z given by (2.1). We also would like to estimate the noise parameter σ2

ξ .
In the example given before where T (x) = ω0 + x (mod 2π) and φ(x) = cos(x), one

wants to estimate the frequency ω0.

3.1. Birkhoff’s Ergodic Theorem

In the sequel we assume that the system (K, T,P) is ergodic (that is, if T−1(A) = A
then P(A) = 0 or P(A) = 1, for any A ∈ F). The Birkhoff’s ergodic theorem claims that
if P is ergodic and if φ : K → R is P- integrable then for any y P-almost everywhere

lim
N→∞

1
N

N∑
j=1

φ(T j(y)) =
∫

φ(x)dP(x). (3.1)

In simple words, the Birkhoff’s ergodic theorem says that spatial mean is equal to temporal
mean.

Our main tool to estimate the parameters (α1, α2, · · · , αk) is the ergodic theorem.
Each particular system (K, T,P, φ,F , σ2

ξ ) will require a particular method for esti-
mating the parameters (α1, α2, · · · , αk). It is natural to try to estimate these parameters
from the sample autocovariance function at lag h based on the time series {Zt}N

t=1, for
small values of h. There exist two reasons for possibly small deviations of the estimates
(α̂1, α̂2, · · · , α̂k) from the parameters (α1, α2, · · · , αk).

(1) There exists a noise process {ξt}t∈Z in our system. This generates a small uncertainty
in the estimation.

(2) The estimation is based on a finite amount of observations. The value

1
N

N∑
j=1

φ(T j(y)) is not equal to
∫

φ(x)dP(x)

but it is very close for sufficiently large N . This also generates a small perturbation on
the estimated values (α̂1, α̂2, · · · , α̂k) (see Section 3.2).

In Lopes (1993) and Lopes and Kedem (1994) the estimation of a certain well known
example of system (K, T,P, φ,F , σ2

ξ ) is presented. In these works, the compact subset is
given by K = [0, 1], the transformation T is such that T (x) = Tω0(x) = ω0 + x, φ(x) =
cos(2πx), where ω0 ∈ (0, 1) is the parameter to be estimated. The spectral distribution
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function of such system is very well known. It is a Dirac delta function on ω0 (see (2.8)).
Furthermore, in these works the case with p (p ≥ 1) frequencies is analyzed.

Our purpose in this paper is to develop methods to analyze other kind of time series
(see Examples 1 and 2) in terms of estimation and spectral analysis.

3.2. Large Deviations

The deviations from (α̂1, α̂2, · · · , α̂k) to (α1, α2, · · · , αk) in the case where σ2
ξ = 0,

that is, when the model (2.1) has only the signal process, is the content of the Theory of
Large Deviations as presented in the book by Ellis (1989). The most important property
for the large deviation estimates to be robust is the exponential convergence property
(see Definition 3.1 below). This property means that the deviation rate is exponentially
decreasing. This is true for Example 2 treated in Section 5 since, in that case, the map T
is expanding (see Lopes (1994) for the definition and general properties). The Example 1,
presented in Section 4, does not fit in the context of Lopes (1994) since the map T is not
an expanding one. It is also true that Example 1 has exponentially decreasing deviation
rate and this will be proved in Section 4.2. The case σ2

ξ �= 0 requires a different analysis
and it will be the subject of a forthcoming paper. In this section we consider σ2

ξ = 0.
We shall consider now a general dynamical system (K, T,P) and a continuous function

f : K → R. We assume that P is an ergodic probability measure.
In general, it may exist points y such that the equality (3.1) does not hold. Given

ε > 0, consider the set

Qn(ε) = {y ∈ K; |n−1
n∑

j=1

f(T j(y)) −
∫

f(x)dP(x)| > ε}.

¿From the expression (3.1) it follows that, for any ε > 0,

lim
n→∞P(Qn(ε)) = 0. (3.2)

If the convergence in (3.2) is very slow, even for large n, we have a certain reasonable large
chance of choosing a bad y such that the mean

1
n

n∑
j=1

f(T j(y))

is distant from
∫

f(x)dP(x) by more than ε. This would be a very bad situation for the
estimation purposes presented in Section 4.1.

Definition 3.1: The system (K, T,P, f) has the exponential convergence property if for
any ε > 0, exists M > 0 such that, for any n > 0,

P(Qn(ε)) < e−nM .
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This property provides a fast decreasing of the probability of choosing a bad y.
For the estimation procedure in Section 4.1 to work properly one should prove that,

for any f , the system (K, T,P, f) satisfies Definition 3.1, where T = Tα,β (see definition in
expression (4.7)). First, we shall prove that this property is true when the transformation
T is given by T (x) = ω0+x and then we shall derive, by contraction principle (see Theorem
3.2), the exponential convergence property for (K, Tα,β ,P, f). This will be the subject of
Section 4.2.

Remark: When one needs to estimate

E(ZtZt+1) =
∫

φ(x)φ(T (x))dP(x) = lim
N→∞

1
N

N−1∑
t=1

ZtZt+1

one should consider large deviations properties for the function f(x) = φ(x)φ(T (x)) (in
the notation of this section).

Definition 3.2: For each n ∈ N and t ∈ R, consider the function

cn(t) =
∫

e
t
∑n

j=1
f(T j(x))

dP(x)

and the limit

c(t) = lim
n→∞

1
n

log cn(t).

When such limit exists, for all t, we call c(t) the free energy of f .
Note that, in Definition 3.2, c(0) = 0.

Definition 3.3: Given the free energy c(t), t ∈ R, of f we define I(z), the Legendre
transform of c(t), by

I(z) = sup
t∈R

{t z − c(t)}.

We call I(z) the deviation function of f .

Remark: When c(t) is differentiable and convex, the deviation function of f is

I(z) = t0 z − c(t0), where c′(t0) = z.

Example: If c(t) is linear with inclination α, then I(z) = ∞, for z �= α and I(α) = 0.

Theorem 3.1: If c(t), the free energy of f , is differentiable on t, then
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lim
n→∞

1
n

logP(Qn(ε)) = − inf
|z−
∫

f(x)dP(x)|>ε

I(z).

According to Theorem 3.1, one concludes that if I(z) is such that I(z) = 0 ⇐⇒ z =∫
f(x)dP(x), otherwise is greater than zero, then the system (K, T,P, f) has the exponen-

tial convergence property . In particular, any system with a linear free energy (as presented
in the above example) has the exponential convergence property . Systems which have a
linear free energy present the best possible convergence rate.

We shall prove in Section 4.2 that for the transformation T given by T (x) = ω0 + x
and for any continuous function f , the free energy is linear.

Given a continuous function f , the deviation function If of f can be obtained in the
following way (see Ellis (1989))

If (z) = − lim
ε→0

lim
n→∞

1
n

logP{x ∈ K;
1
n

n∑
j=1

(f ◦ T j)(x) ∈ [z − ε, z + ε]}. (3.4)

Now we shall explain the contraction principle for two equivalent systems. Given
(K1, T1,P1) and (K2, T2,P2), suppose that v is a change of coordinates between two sys-
tems in the sense of (2.2). Given a function f : K2 → R one considers its deviation
function If associated to T2. Consider the random variable f ◦ v defined on K1. We shall
obtain similar properties for the deviation function If◦v(r) associated to T1.

Theorem 3.2 (Contraction Principle for Equivalent Systems): Let f : K2 → R
be a function and let v be a conjugacy between the systems (K1, T1,P1) and (K2, T2,P2).
Then If◦v = If .

Proof: Given z ∈ R, n ∈ N and ε > 0, then

P1{x ∈ K1;
1
n

n∑
j=1

(f ◦ v)(T j
1 (x)) ∈ [z − ε, z + ε]} =

= P1{x ∈ K1;
1
n

n∑
j=1

(f ◦ T j
2 )(v(x)) ∈ [z − ε, z + ε]} =

=
∫

IA(x)dP1(x),

where A = {x ∈ K1; n−1
∑n

j=1(f ◦ T j
2 )(v(x)) ∈ [z − ε, z + ε]}. Since

∫
IA(x)dP1(x) =

∫
(IA ◦ v−1)(x)dP2(x) =

∫
Iv(A)(x)dP2(x) = P2(v(A))

then, one has

10



P1{x ∈ K1;
1
n

n∑
j=1

(f ◦ v)T j
1 (x) ∈ [z − ε, z + ε]} =

= P2(v(A)) = P2{x ∈ K2;
1
n

n∑
j=1

(f ◦ T j
2 )(x) ∈ [z − ε, z + ε]}.

The result follows from expression (3.4) after taking n−1 log and limits on n and ε in the
above equalities.

Now we shall state the contraction principle (see Orey (1986) and Varadhan (1988))
in a more general form.

Suppose g is a deterministic function g : R → R. Suppose also that c is the solution
of the equation g(c) = b, where b is obtained as

b =
∫

f(y)dP(y) = lim
n→∞

1
n

n∑
j=1

(f ◦ T j)(x),

for P-almost every point x ∈ K. Small deviations of the mean n−1
∑n

j=1(f ◦ T j)(x) = b̂n

will produce small deviations in the implicit value ĉn obtained by solving the equation
g(ĉn) − b̂n = 0.

Denote by I the deviation function for f , that is, the deviation function associated to
b. We may ask for properties of the deviation function Ĩ associated to c, that is,

− lim
ε→0

lim
n→∞

1
n

logP{ĉn ∈ [z − ε, z + ε]} = Ĩ(z).

Assuming that the function g is bijective, the contraction principle (see Orey (1986) and
Varadhan (1988)) claims that

Ĩ(z) = I(r).

where g(z) = r.
Let us consider now the generalization of the above considerations to a system of

equations. When one considers a system g1(α, β) = k1 =
∫

f1(x)dP(x) and g2(α, β) =
k2 =

∫
f2(x)dP(x), where g1, g2 : R2 → R, the analogous property is true (see Orey

(1986)). Therefore, the exponential convergence property of If1 and If2 implies that α̂

and β̂ have corresponding deviation functions Ĩα and Ĩβ with the exponential convergence
property, that is, given ε > 0, there exists M > 0 such that, for all n > 0,

P{x ∈ K; |α̂ − α| > ε, |β̂ − β| > ε, where g1(α̂, β̂) =
1
n

n∑
j=1

f1(T j(x)) = k̂1

and g2(α̂, β̂) =
1
n

n∑
j=1

f2(T j(x)) = k̂2} ≤ e−Mn.
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In conclusion, if If1 and If2 have the exponential convergence property and α̂ and β̂ can
be obtained by solving the equations g1(α̂, β̂) = k̂1 and g2(α̂, β̂) = k̂2, then one can use
the contraction principle to conclude that α̂ and β̂ satisfy the exponential convergence
property.

4. EXAMPLE 1

Consider the two parameters mapping family {Ta,b : [0, 1] → [0, 1]; a, b ∈ R} where
Ta,b is given by

Ta,b(x) =




a +
1 − a

b
x, if 0 ≤ x < b

a

1 − b
(x − b), if b ≤ x ≤ 1,

(4.1)

with a and b constants. Let α be the derivative of T on [0, b) and β its derivative on [b, 1].
Then,

α = T ′(x) =
1 − a

b
, if 0 ≤ x < b and β = T ′(x) =

a

1 − b
, if b ≤ x ≤ 1. (4.2)

The ergodic properties of the family {Ta,b : [0, 1] → [0, 1]; a, b ∈ R} are analyzed in
Coelho et al. (1994).

In Example 1 we want to analyze the estimation of the parameters a and b and the
spectral analysis of the process {Xt}t∈Z defined in (4.3) below.

Notice that when b = 1−a, the transformation Ta,b of Example 1 is T (x) = a+x (mod
1), which corresponds to the model (1.1) analyzed by Lopes and Kedem (1994). Therefore,
the presented analysis of Example 1 is a generalization of that work when p = 1, that is,
the case with only one frequency.

First we examine the system with no noise. The case with noise can be analyzed in a
simple way afterwards.

4.1. Estimation

By using the notation introduced in Section 2, for a given transformation Ta,b and
φ(x) = x one considers the signal process {Xt}t∈Z given by

Xt = Ta,b(Xt−1), for t ∈ Z. (4.3)

To estimate the unknown constants a and b is the same as to estimate α and β, since
one has the following identities

α =
1 − a

b
and β =

a

1 − b
⇐⇒ a =

β(α − 1)
α − β

and b =
1 − β

α − β
. (4.4)

12



Therefore, for the sake of simplicity in our analysis we shall estimate the parameters α
and β.

The invariant measure Pα,β = P (see Coelho et al. (1994)) for the process {Xt}t∈Z,
in terms of α and β, is given by the density

ϕα,β(x) = ϕ(x) =
1
c

1
x + β

α (1 − x)
=

1
c

1
(α − β)x + β

, (4.5)

where

c =
1

β − α
log
(

β

α

)
=

1
β
α − 1

log
(

β

α

)
. (4.6)

For a set A ⊂ [0, 1] × [0, 1], with Lebesgue measure equal to 1, for all (α, β) ∈ A, the map
Tα,β is ergodic for Pα,β = P. We will assume (α, β) ∈ A in the sequel.

In other words, in this case P given by

P(A) =
∫

A

ϕ(x)dx, for all A ∈ F ,

where now F is the Borel σ-algebra in [0, 1], defines an invariant ergodic probability mea-
sure for T .

¿From the expressions (4.1) and (4.4) the transformation Tα,β is given by

Tα,β(x) =




β(α − 1)
α − β

+ αx, if 0 ≤ x <
1 − β

α − β

β

(
x − 1 − β

α − β

)
, if

1 − β

α − β
≤ x ≤ 1.

(4.7)

The list of integrals below are useful to understand the estimation and the spectral analysis
that we shall present in the sequel.

1.

∫ y

0

ϕ(x)dx =
log( (α−β)y+β

β )

log(α
β )

.

2. E(Zt) = E(Xt) =
∫ 1

0

xϕ(x)dx =
1

log(α
β )

− β

α − β
.

3. E(Z2
t ) = E(X2

t ) + σ2
ξ =

∫ 1

0

x2ϕ(x)dx + σ2
ξ =

(
β

α − β

)2

+
α − 3β

2(α − β) log(α
β )

+ σ2
ξ .

4. E(ZtZt+1) = E(XtXt+1) =
∫ 1

0

xT (x)ϕ(x)dx =
(

β

α − β

)2

+
1 + αβ − 4β

2(α − β) log(α
β )

.

(4.8)
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Some of these integrals are obtain after long calculations.
For estimation purposes, in the case where φ(x) = x, one needs the integrals 2. and

4. in the expression (4.8). Suppose we are able to estimate from a time series (that is, by
the ergodic theorem), respectively, the integrals 2. and 4. by k̂1 and k̂2. That is,

1
N

N∑
t=1

Zt = k̂1 ≈ E(Zt).

1
N

N−1∑
t=1

ZtZt+1 = k̂2 ≈ E(ZtZt+1).

Then, the estimates of α and β are obtained as the solutions of the following equations∫ 1

0

xϕ(x)dx = k1 ⇐⇒ g1(α, β) =
1

log(α
β )

− 1
α
β − 1

= k1

∫ 1

0

xT (x)ϕ(x)dx = k2 ⇐⇒ g2(α, β) =
(

β

α − β

)2

+
1 + αβ − 4β

2(α − β) log(α
β )

= k2.
(4.9)

¿From the second equivalence in (4.9) above one can see that

(
β

α − β

)2

+
1
β + α − 4

2
(

α−β
β

)
log(α

β )
= k2 ⇐⇒

(
β

α − β

)2

− 2(
α
β − 1

)
log(α

β )
+

+
1
β + α

2
(

α
β − 1

)
log(α

β )
= k2. (4.10)

If we consider α = ∆β, then the first two terms and also the denominator of the third
term in the last equality in (4.10) depend only on ∆. Hence, from (4.10) one has

1
β

+ α = 2
(

α

β
− 1
)

log
(

α

β

)k2 −
(

α

β
− 1
)−2

+
2(

α
β − 1

)
log(α

β )


 = k3 = k3(∆).

The estimates of the parameters α and β, given by (4.9), are alternatively given as
the solutions of the two equations below.

1
log(α

β )
− 1

α
β − 1

= k1

1
β

+ α = k3. (4.11)
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For numerical analysis reasons, given k̂1, we shall find first the value ∆ = α
β in the equation

g1(α, β) = k̂1 of (4.9). For this purpose, one can use Newton’s method in g1(∆) ∈ R, for
∆ ∈ R. After that, we find the value of k3 = k3(∆), that depends only on ∆ = α

β (and
also on k2). Hence, we solve the equations

α

β
= ∆

1
β

+ α = k

3

. (4.12)

in α and β (this will require to find the roots of a polynomial of degree 2). Therefore, one
can have the estimates (α̂, β̂), or equivalently, the estimates (â, b̂), by getting the solutions
of equations in (4.11), where

k̂1 =
1
N

N∑
t=1

Zt ≈ E(Zt) and k̂2 =
1
N

N−1∑
t=1

ZtZt+1 ≈ E(ZtZt+1)

with {Zt}N
t=1 a time series derived from the process {Zt}t∈Z. After we find α̂ and β̂,

the value σ2
ξ can be easily estimated from the integral 3. in (4.8) and from the value

N−1
∑N

t=1 Z2
t ≈ E(Z2

t ) obtained from a time series derived from the process {Zt}t∈Z.

Remark: Notice that from the expression (4.12) one obtain two pairs of solutions. One
pair is the value (α, β). The other pair is (α̃, β̃) such that

T−1
α,β = Tα̃,β̃ .

The stationary processes as in (1.3) generated, respectively, by Tα,β and Tα̃,β̃ have the same
spectral distribution. This indeterminacy is analogous to the one observed in the harmonic
model (1.1) where ω0 and −ω0 determine the same spectral measure 1

2 (δω0 + δ−ω0).
One can ask about the deviations of the time series estimates k̂1 and k̂2 to the values

k1 and k2. The large deviations of k1 and k2 are determined, respectively, by deviation
functions I1 and I2 (see Definition 3.3) of the kind

Ii(z) = 0 for z = ki and Ii(z) = ∞ for z �= ki, i ∈ {1, 2}.

This will be shown in Section 4.2. The parameters α and β are obtained from g1(α, β) = k1

and g2(α, β) = k3 by solving the two equations in (4.11). The deviation functions of α and
β can be obtained by means of a contraction principle (see the end of Section 3.2). Thus,
the considered system has the exponential convergence property for the large deviation
rate. The above results are presented in Section 4.2.

The conclusion is that, for any φ, with very high probability the mean value of the
time series, N−1

∑N
j=1 φ(T j(y)), will be very close to

∫
φ(x)dP(x).
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In the simulations, where the sample size is N = 5, 000 whenever σ2
ξ is equal to zero

and N = 2, 000 otherwise, we obtained the following table.

Table 1: Parameters of Example 1 and their respective estimates.

α β σξ snr α̂ β̂ σ̂ξ

0.63049 3.31683 0.000 ∞ 0.63383 3.26947 0.00031
0.99566 1.03169 0.100 9.208 1.00230 0.98326 0.10487
1.21035 0.44972 0.100 9.138 1.21481 0.44430 0.08482
1.21035 0.44972 0.295 -0.258 1.21481 0.44298 0.08601
1.19998 0.80002 0.000 ∞ 1.19983 0.79988 0.00000
2.32675 0.19141 0.100 8.796 2.40095 0.19690 0.09674
2.32675 0.19141 0.430 -3.874 6.47962 0.03473 0.30758

In the simulation procedure we found the solution ∆ of g1(∆) = k̂1 very easily by
using the software Mathematica (see Wolfram (1991)). Notice that the function

g1(∆) =
1

log(∆)
− 1

∆ − 1

is bijective and, therefore, the solution of g1(∆) = k̂1 is unique. In Table 1 above, the
values of α̂ and β̂ were obtained up to the indeterminacy mentioned in the last remark.

4.2. Large Deviations

In this section we shall analyze the large deviations associated to the mean

lim
N→∞

1
N

N∑
j=1

(f ◦ T j)(x)

where f is a continuous function on [0, 1] and T = Tα,β is the map defined by (4.7).
In Coelho et al. (1994) is shown that the function

v(y) =
∫ y

0

ϕ(x)dx =
log
(

(α−β)y+β
β

)
log(α

β )

is a change of coordinates in the sense of (2.2) between the systems ([0, 1], Tα,β , dx) and
([0, 1], Tω0 , dx), where Tω0(x) = ω0 + x with ω0 = log α

log( α
β ) . The value ω0 is called the

rotation number of Tα,β (see Devaney (1989) for definitions). We shall analyze first the
large deviation properties of Tω0(x) = ω0 + x and then, after that, we shall derive by a
contraction principle argument (see Theorem 3.2) the exponential decreasing property for
the system ([0, 1], Tα,β , dx) by using the change of coordinates v.
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Consider a rotation T (x) = ω0 +x, where ω0 is an irrational number. It is well known
that, in this case, the Lebesgue measure dx is ergodic for T (see Devaney (1989)) where
P(A) is the length of A, for any interval A. We shall analyze first the deviation properties
for the transformation T (x) = ω0 + x and a continuous function f : [0, 1] → R.

We shall present now several results for a continuous function f : [−1, 1] → R such
that f(−1) = f(1). These results can be applied to the case when f(x) = A cos(x)
considered by Lopes and Kedem (1994).

The result is also true for any continuous function f , by using an approximation
argument in L1(dx).

Proposition 4.1: For any y ∈ S1 = [0, 1],

lim
N→∞

1
N

N∑
j=1

f(T j(y)) =
∫

f(z)dz.

Proof: From the ergodic theorem, for almost every x ∈ S1, the above limit is true since
ω0 is irrational and the Lebesgue measure dx is ergodic for T .

As f(−1) = f(1) and f is continuous, it is also uniformly continuous. Thus, given
ε > 0 there exists δ > 0 such that if |x − y| < δ then |f(x) − f(y)| < ε, for all x, y ∈ [0, 1].

Fix a certain y ∈ S1. By the ergodic theorem, there exists x ∈ (y − δ, y + δ) such that

lim
N→∞

1
N

N∑
j=1

f(T j(x)) =
∫

f(z)dz.

It is easy to see that

|T j(x) − T j(y)| = |x − y| < δ, for all j ∈ N.

Therefore,

|N−1
N∑

j=1

f(T j(x)) − N−1
N∑

j=1

f(T j(y))| < ε, for all N ∈ N.

As limN→∞ N−1
∑N

j=1 f(T j(x)) =
∫

f(z)dz and by using a limit sup and limit inf argu-
ment and by taking ε → 0, then

lim
N→∞

1
N

N∑
j=1

f(T j(y)) =
∫

f(z)dz.

So, the proposition holds.

Corollary 4.2: For any open interval [a, b] and any x ∈ S1
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lim
N→∞

1
N

N∑
j=1

I[a,b](T j(x)) = b − a,

where I[a,b] is the indicator function of the interval [a, b].

The corollary is an easy consequence of a step function approximation by continuous
functions in L1 norm.

Proposition 4.3: Given ε > 0, there exists M > 0 such that, for all x ∈ S1 and all
N > M ,

1
N

N∑
j=1

f(T j(x)) ∈
[∫

f(z)dz − ε,

∫
f(z)dz + ε

]
.

Proof: Fix y ∈ (0, 1). Given ε
4 > 0, let δ > 0 be such that

|x − y| < δ ⇒ |f(x) − f(y)| <
ε

4
.

¿From corollary 4.2, for any x ∈ S1 there exists m(x) ∈ N such that Tm(x)(x) ∈ (y−δ, y+δ).

Claim: There exists M1 > 0 such that m(x) < M1, for all x ∈ S1.

We will prove the claim later. Suppose the claim is true. Then,

|N−1
N∑

j=1

f(T j(x)) −
∫

f(z)dz| ≤ |N−1

m(x)∑
j=1

f(T j(x)) + N−1
N∑

j=m(x)+1

f(T j(x))−

−
∫

f(z)dz| ≤ N−1M1K + |N−1
N∑

j=m(x)+1

f(T j(x)) −
∫

f(z)dz|, (4.13)

where K = sup{|f(x)|; x ∈ S1}. As |Tm(x)(x) − y| < δ then,

|N−1
N∑

j=m(x)+1

f(T j(x)) − N−1
N∑

j=1

f(T j(y))| ≤ |N−1

N+m(x)∑
j=m(x)+1

f(T j(x))−

−N−1

N+m(x)∑
j=N

f(T j(x)) − N−1
N∑

j=1

f(T j(y))| ≤ |N−1

N+m(x)∑
j=m(x)+1

f(T j(x))−
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−N−1
N∑

j=1

f(T j(y))| + N−1M1K = |N−1
N∑

j=1

f(T j(Tm(x)(x)))−

−N−1
N∑

j=1

f(T j(y))| + N−1M1K ≤ ε

4
+ N−1M1K. (4.14)

¿From expressions (4.13) and (4.14) one has

|N−1
N∑

j=1

f(T j(x)) −
∫

f(z)dz| ≤ N−1M1K + |(N−1
N∑

j=m(x)+1

f(T j(x))−

− N−1
N∑

j=1

f(T j(y))) +


N−1

N∑
j=1

f(T j(y)) −
∫

f(z)dz


 | ≤ 2N−1M1K+

+
ε

4
+ |N−1

N∑
j=1

f(T j(y)) −
∫

f(z)dz|. (4.15)

Since

lim
N→∞

1
N

N∑
j=1

f(T j(y)) =
∫

f(z)dz,

given ε
4 > 0, there exists M2 > 0 such that, for all N > M2, one has

|N−1
N∑

j=1

f(T j(y)) −
∫

f(z)dz| <
ε

4
.

Consider now M ∈ N such that

M > sup{M2,
8M1K

ε
}.

Then, for any N > M , 2M1K
N < ε

4 . Therefore, from (4.15) and for any x ∈ S1, we have

|N−1
N∑

j=1

f(T j(x)) −
∫

f(z)dz| < ε.

And the proposition holds.
Now we shall prove the Claim. For each x ∈ S1, let m(x) be such that fm(x) ∈

(y − δ, y + δ). There exists a small neighborhood A(x) of x such that for any z ∈ A(x),

19



fm(x)(z) ∈ (y − δ, y + δ). It is easy to see that ∪x∈S1A(x) = S1. As S1 is a compact
set, there exist x1, · · · , xk such that A(x1) ∪ A(x2) ∪ · · · ∪ A(xk) ⊃ S1. Denote by M1 the
supremum

M1 = sup
1≤j≤k

{m(xj)}.

Then, for all x ∈ S1, there exists M1 > m(x) such that

fm(x)(x) ∈ (y − δ, y + δ).

And the Claim is proved.

Remark: We shall consider the function f(x) = xT (x) to estimate large deviations of the
autocovariance at lag 1 of the process {Xt}t∈Z = {T (Xt−1)}t∈Z.

Now we show that the free energy c(t) is linear.

Theorem 4.4: The free energy c(t) is linear and, therefore, the deviation function I
satisfies I(z) = ∞ for z �= ∫ f(x)dP(x), otherwise it is zero.

Proof: One needs to show that

c(t) = t

∫
f(x)dP(x).

One observes that

|n−1 log
∫

e
t
∑n

j=1
f(T j(x))

dP(x) − t

∫
f(x)dP(x)| = |n−1 log(

∫
(et
∑n

j=1
f(T j(x))−

− ent
∫

f(x)dP(x))dP(x))| = |n−1 log
[∫

e
nt
(
n−1
∑n

j=1
f(T j(x))−

∫
f(x)dP(x)

)
dP(x)

]
|.

¿From Proposition 4.3, given ε > 0, there exists M > 0 such that, for any x ∈ S1 and all
n > M ,

|n−1
n∑

j=1

f(T j(x)) −
∫

f(x)dP(x)| < ε.

Therefore, for all n > M ,
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|n−1 log
∫

e
t
∑n

j=1
f(T j(x))

dP(x) − t

∫
f(x)dP(x)| ≤ |n−1 log[∫

e
nt
(
n−1
∑n

j=1
f(T j(x))−

∫
f(x)dP(x)

)
dP(x)

]
| ≤ |n−1 log

∫
ent(± ε)dP(x)| =

= n−1 log e± εnt = ± εt.

As t is fixed, by taking ε → 0 one concludes that c(t) = t
∫

f(x)dP(x).

Since for T (x) = ω0 + x and for any continuous function f the deviation function If

has the exponential convergence property and since v(y) =
∫ y

0
ϕα,β(x)dx defines an equiv-

alence between the systems (K, T, dx) and (K, Tα,β , ϕα,β) then, from Theorem 3.2, one
concludes that, for a given continuous function g, the deviation function Ig (associated to
the system (K, Tα,β , ϕα,β , g) has also the exponential convergence property. This follows
from the fact that v is a continuous function and by considering, in Theorem 3.2, g = f ◦v,
with f = g ◦ v−1.

4.3. Spectral Analysis

For a given T = Tα,β and the corresponding invariant density ϕ = ϕα,β we consider
the signal process {Xt}t∈Z = {(φ ◦ Tα,β)(Xt−1)}t∈Z.

¿From the expressions (4.5) and (4.6) one observes that the density function ϕα,β(x)
depends only on the quotient ∆ = α

β . Consider now the transformation Th, for any h ∈ Z,
where T = Tα,β is given by the expression (4.7). ¿From Coelho et al. (1994) it is known
that

Th(x) = Tαh,βh
(x) where αh =

bh

1 − ah
and βh =

ah

1 − bh

with ah = Th(0) and bh = T−h(0). ¿From Coelho et al. (1994) it is also known that

αh

βh
=

α

β
, for any h ∈ N,

and hence

ϕαh,βh
= ϕα,β , for any h ∈ N.

The conclusion is that, for any continuous function φ and h ∈ N,

E(XtXt+h) =
∫

φ(x)φ(Th(x))ϕ(x)dx =
∫

φ(x)φ(Tαh,βh
(x))ϕα,β(x)dx =

=
∫

φ(x)φ(Tαh,βh
(x))ϕαh,βh

(x)dx. (4.16)
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As we know
∫

φ(x)φ(Tα,β(x))ϕα,β(x)dx (see integral 4. in (4.8)), for any α and β, one can
calculate

∫
φ(x)φ(Tαh,βh

(x))ϕαh,βh
(x)dx, for any h ∈ N.

Notice that E(XtXt+h) = E(XtXt−h), for all h ∈ N.
Therefore, we are able to obtain the exact values of RXX(h), for all h ∈ Z, from the

positive and negative orbit of zero by T (since αh and βh depend only on ah and bh).
We now consider φ(x) = x. It is known that, for fixed α and β, there exists ∆ such

that αh = ∆βh, for all h ∈ Z. ¿From integral 4. in (4.8), a simple calculation shows that
there exist c1(∆) and c2(∆) such that

∫ 1

0

xTh(x)ϕ(x)dx = c1(∆) + c2(∆)
(

1
βh

+ αh

)
.

As αh and 1
βh

wander around the interval [0, 1], then the above integral does not
converge to zero as h → ∞. Therefore, the spectral density function is not a function,
but there exists a spectral distribution function also called a generalized spectral density
function.

First one observes that the process {Xt}t∈Z = {Tα,β(Xt−1)}t∈Z has mathematical
expectation given by the integral 2. in expression (4.8), that is,

E(Xt) =
1

log
(

α
β

) − β

α − β
, for all t ∈ Z.

We want to derive the spectral distribution function of the process {Zt}t∈Z. We first con-
sider the autocorrelation ρX(h) at lag h of the process {Xt}t∈Z = {Tα,β(Xt−1)}t∈Z and
then use the Herglotz’s theorem (see (2.5)) for the process {Xt}t∈Z.

Remark: The Fourier coefficients of the spectral distribution function in the case where
T (x) = ω0 + x are given by ρX(h) = cos(hω0) = cos(Th(0)), for h ∈ Z, that is, they are
determined by the iterates Th of zero. The next theorem claims a similar property for the
transformation Tα,β and φ(x) = x.

Theorem 4.5: The spectral distribution function of the process

Zt = T t
α,β(·) + ξt = Tα,β(Xt−1) + ξt, for t ∈ Z,

is given by

dFZ(λ) =
1
2π

∞∑
h=−∞

e−iλhρX(h) +
1
2π

, for λ ∈ [−π, π] (4.17)

where ρX(h) is given by RXX(h)
RXX(0) (see the expression (2.4)) with
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RXX(h) =
1 + αhβh

2(αh − βh) log(αh

βh
)
− 1[

log(αh

βh
)
]2 (4.18)

and

RXX(0) =
α + β

2(α − β) log(α
β )

− 1[
log(α

β )
]2 (4.19)

where α and β are given by the expression (4.2) and

αh =
1 − ah

bh
, βh =

ah

1 − bh
, ah = Th(0) and bh = T−h(0).

Proof: From the expression (4.16) and integrals 4. and 3. in (4.8) we have

RXX(h) =
1 + αhβh

2(αh − βh) log(αh

βh
)
− 1[

log(αh

βh
)
]2

and

RXX(0) =
α + β

2(α − β) log(α
β )

− 1[
log(α

β )
]2 ,

where Xt = Tα,β(Xt−1), which give the expressions (4.18) and (4.19). By adding the noise
process {ξt}t∈Z, independent of {Xt}t∈Z, we obtain the expression (4.17).

Now we consider φ(x) = cos(2πx). One wants to calculate the spectral distribution of
the process

Zt = Xt + ξt = cos(2πTα,β(Xt−1)) + ξt, for t ∈ Z.

For this purpose we need the following integral:

E(XtXt+1) =
∫ 1

0

cos(2πx) cos(2πT (x))ϕ(x)dx =
1

2 log
(

α
β

) × k (4.20)

where

k = cos(2dβ)[ci(d(α + 1)) + ci(dα(β + 1)) − ci(dβ(α + 1)) − ci(d(β + 1))]+
+ sin(2dβ)[si(d(α + 1)) + si(dα(β + 1)) − si(dβ(α + 1)) − si(d(β + 1))]+
+ ci(d(α − 1)) + ci(dα(β − 1)) − ci(d(β − 1)) − ci(dβ(α − 1)),
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with d = 2π
α−β , ci(x) is the cosine integral and si(x) is the sine integral (see Gradshteyn

and Ryzhik (1965), page 928). The integral (4.20) comes after a long calculation.
In order to calculate the spectral distribution function, one should obtain the Fourier

coefficients of such distribution by substituting in (4.20) the values of α and β by αh and
βh (see expression (4.16)).

Theorem 4.6: The spectral distribution function of the process

Zt = T t
α,β(·) + ξt = cos(2π Tα,β(Xt−1)) + ξt, for t ∈ Z,

is given by

dFZ(λ) =
1
2π

∞∑
h=−∞

e−iλhρX(h) +
1
2π

, for λ ∈ [−π, π], (4.21)

where ρX(h) is given by RXX(h)
RXX(0) (see the expression (2.4)) with

RXX(h) =
1

2 log(αh

βh
)
× kh − 1

[log(αh

βh
)]2

× lh

where

kh = cos(2dhβh)[ci(dh(αh + 1)) + ci(dhαh(βh + 1)) − ci(dhβh(αh + 1)) − ci(dh(βh + 1))]
+ sin(2dhβh)[si(dh(αh + 1)) + si(dhαh(βh + 1)) − si(dhβh(αh + 1)) − si(dh(βh + 1))]
+ ci(dh(αh − 1)) + ci(dhαh(βh − 1)) − ci(dh(βh − 1)) − ci(dhβh(αh − 1)),

and

lh = {cos(dhβh)[ci(dhαh) − ci(dhβh)] + sin(dhβh)[si(dhαh) − si(dhβh)]}2

with

dh =
2π

αh − βh
, αh =

1 − ah

bh
, βh =

ah

1 − bh
,

ah = Th(0) and bh = T−h(0). The variance V ar(Xt) is given by

RXX(0) =
1

2 log(α
β )

{cos(2dβ)[ci(2dα) − ci(2dβ)] + sin(2dβ)[si(2dα) − si(2dβ)]} +
1
2
−

− 1
[log(α

β )]2
× l,
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where

l = {cos(dβ)[ci(dα) − ci(dβ)] + sin(dβ)[si(dα) − si(dβ)]}2

with

d =
2π

α − β
, α =

1 − a

b
and β =

a

1 − b
.

In Figure 1 we plot the graph of the Fourier series 1
2π

∑100
h=−100 e−iλhρX(h) when

α = 2.41809 and β = 0.22052. Therefore, we are considering here an approximation of the
generalized spectral density function fX(λ) up to an order of 100.

Figure 1: The generalized spectral density function fX(λ) for Example 1 as in
(4.21) when σ2

ξ = 0, α = 2.41809 and β = 0.22052.

Remark: The rotation number of Tα,β is

θ1 =
log(α)
log(α

β )

and the rotation number of Tα̃,β̃ = T−1
α,β is

θ2 =
log(β)
log(β

α )
.
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One observes that θ1 + θ2 = 1. We denote by ζ the smallest value between θ1 and θ2.
Therefore, ζ ≤ 0.5. We call ζ the rotation number of the stochastic process.

It is extremely interesting the fact that, for any α and β, the spectral measure is
not a Dirac delta function concentrated on the rotation number of Tα,β (we checked the
coefficients ρX(h)) but it has a very strong peak on the value 2πζ where ζ is the rotation
number of the process. In other words, the spectral distribution is very close to

1
2
(δ2π ζ + δ−2π ζ) =

1
2
(δ2π θ1 + δ−2π θ1),

where θ1 ≤ 0.5 ≤ θ2 were defined above.
In conclusion if one applies the Fourier transform to the data it will appear a strong

peak in the rotation number.
This property requires, in the future, a deeper analysis in order to understand the

spectral distribution function given by (4.21). Notice in Figure 1 the strong peak in the
value 2π ζ = 2.31671, where ζ is the rotation number of the process when α = 2.41809 and
β = 0.22052 (corresponding to the values a = 0.1423 and b = 0.3547).

We remind the reader that if a = 1 − b then the rotation number of Tα,β is equal
to a and, in fact, in this case, the spectral distribution function is a Dirac delta function
1
2 (δπa + δ−πa), when φ(x) = cos(2π x).

Notice that for Tα,β(x) = a + x (mod 1), the inverse map T−1
α,β = Tα̃,β̃ is such that

Tα̃,β̃(x) = x − a (mod 1). In this case, ζ = π|a|.

5. EXAMPLE 2

Sakai and Tokumaru (1980) introduce the following model of chaotic time series. For
a given constant a ∈ (0, 1) consider the transformation Ta : [0, 1] → [0, 1] given by

Ta(x) =




x

a
, if 0 ≤ x < a

1 − x

1 − a
, if a ≤ x ≤ 1.

(5.1)

The Lebesgue measure dx is invariant and ergodic for the transformation Ta (see Li and
Yorke (1975)). In the notation of Section 2, P(A) is the length of A, for any interval A.

We now consider the stochastic process

Zt = Xt + ξt = Ta(Xt−1) + ξt, for t ∈ Z, (5.2)

where φ(x) = x.
The autocovariance function at lag h of the process {Xt}t∈Z in (5.2) (see Sakai and

Tokumaru (1980)) is given by

RXX(h) =
∫ 1

0

xTh(x)dx − [E(Xt)]2 =
1
12

(2a − 1)h, for h > 0, (5.3)
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where E(Xt) = 1
2 and RXX(0) = Var(Xt) = 1

12 .
One can use the above integral to estimate a from the system (K, T,P, φ,F , σ2

ξ ) where
φ(x) = x. This will be done in Section 5.1. After that, we shall analyze the spectral prop-
erties of the process in (5.2).

5.1. Estimation

Let us consider now the case with noise. We want to estimate the parameters a ∈ (0, 1)
and σ2

ξ . From the ergodic theorem, one observes that

lim
N→∞

N−1
N−1∑
t=1

ZtZt+1 = lim
N→∞

N−1
N−1∑
t=1

XtXt+1 + lim
N→∞

N−1
N−1∑
t=1

Xtξt+1+

+ lim
N→∞

N−1
N−1∑
t=1

Xt+1ξt + lim
N→∞

N−1
N−1∑
t=1

ξtξt+1 =

=
∫ 1

0

xTa(x)dx =
a + 1

6
(5.4)

since {Xt}t∈Z and {ξt}t∈Z are independent processes and since

E(ξt) = 0 and E(ξtξt+h) =
{

σ2
ξ , if h = 0
0, if h �= 0.

for all t ∈ Z. The last equality in expression (5.4) comes from (5.3) when h = 1 and from
the fact that E(Xt) = 1

2 . ¿From the ergodic theorem and the independence, one has

lim
N→∞

N−1
N∑

t=1

Z2
t = lim

N→∞
N−1

N∑
t=1

X2
t + lim

N→∞
N−1

N∑
t=1

ξ2
t =

∫ 1

0

x2 dx+σ2
ξ =

1
3

+σ2
ξ . (5.5)

Therefore, by using a time series {Zt}N
t=1 of size N derived from the stochastic process

{Zt}t∈Z given by (5.2), the estimators â and σ̂2
ξ of a and σ2

ξ can be obtained implicitly
from expressions (5.4) and (5.5) and, thus, are given by

â = 6

(
N−1

N−1∑
t=1

ZtZt+1

)
− 1 ≈ 6

∫ 1

0

xTa(x)dx − 1

σ̂2
ξ = N−1

N∑
t=1

Z2
t − 1

3
≈
∫ 1

0

x2 dx − 1
3
.

In the simulations, where the sample size is N = 5, 000 whenever σ2
ξ is equal to zero

and N = 2, 000 otherwise, we obtained the following table.
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Table 2: Parameters of Example 2 and their respective estimates.

a σξ snr â σ̂ξ

0.273001011 0.100 9.208 0.27249 0.11406
0.273001011 0.295 -0.188 0.25564 0.29990
0.273001011 3.000 -20.334 2.33035 3.08462
0.273001011 0.000 ∞ 0.27551 0.01262
0.400010101 0.100 9.208 0.38870 0.08430
0.400010101 0.000 ∞ 0.39978 0.00852
0.400010101 0.000 ∞ 0.40707 0.02615
0.500010111 0.000 ∞ 0.49147 0.01856
0.783000101 0.000 ∞ 0.77875 0.06136

5.2. Large Deviations

The map T is an expanding one and the function φ(x) = x is Holder continuous,
therefore, from the differentiability of the free energy (see Lopes (1994)), the exponential
convergence property is true. The conclusion is that, with very high probability the samples

autocovariances at lags 1 and 0, N−1
∑N−1

t=1 ZtZt+1−
(
N−1

∑N
t=1 Zt

)2

and N−1
∑N

t=1 Z2
t −(

N−1
∑N

t=1 Zt

)2

, estimate with high accuracy, respectively, the autocovariance of lag 1
and the variance of the process.

Finally, by the contraction principle (see the end of Section 3.2) the estimates â and
σ̂2

ξ also satisfy the exponential convergence property.

5.3. Spectral Analysis

The main obstacle to proceed in the spectral analysis of Example 2 is that the map Ta

is not invertible. Therefore, the autocovariance function RXX(h) of the process {Xt}t∈Z,
given by expression (5.2), for negative lag h does not have a precise meaning. For the
estimation of the parameters there is no problem, since we just need the positive lag h. In
fact, h = 0 and h = 1 were enough.

We propose to analyze the natural extension F of Ta, instead of Ta itself.
The natural extension is a canonical way of embedding a non-invertible dynamical

system in an invertible one. We refer the reader to Pollicott (1986) and Adler (1991) for
general considerations about the natural extension map.

In Example 2, the natural extension of Ta is the map F : [0, 1] × [0, 1] → [0, 1] × [0, 1]
such that

F (x, y) = (T (x), G(x, y)), for any (x, y) ∈ [0, 1] × [0, 1],
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where

G(x, y) =
{

ya, if 0 ≤ x < a

(a − 1)y + 1, if a ≤ x ≤ 1.

The map F is invertible and it is easy to see that the Lebesgue measure dxdy is invariant
and ergodic for F .

As a particular example, we mention that the Baker map is the natural extension of
the tent map (with inclination 2).

Therefore, we shall consider the dynamical system (K, F,P) where K = [0, 1] × [0, 1]
and P is the Lebesgue measure dxdy on [0, 1]× [0, 1]. Instead of φ(x) = x, one can consider
φ(x, y) = Π(x, y) = x for any (x, y) ∈ [0, 1] × [0, 1] as a random variable. In the setting
of Section 2, we shall analyze in this section the system (K, F,P, Π,F , σ2

ξ ). Now, if h ≥ 0
then

∫ 1

0

xTh(x)dx =
∫ 1

0

∫ 1

0

xΠ(Fh(x, y))dxdy =
∫ 1

0

∫ 1

0

Π(x, y)Π(Fh(x, y))dxdy

and we obtain, from the expression (5.3), RXX(h) for positive h when Xt = Π ◦ F t. As
the map F is invertible, it makes sense to estimate, for h > 0, the integral∫ 1

0

∫ 1

0

Π(x, y)Π(F−h(x, y))dxdy.

Denote by Inv the function such that Inv(x, y) = (y, x). ¿From an easy calculation
one can derive that F−1 = Inv ◦ F ◦ Inv. Then, F−h = Inv ◦ Fh ◦ Inv. Now, from a
change of variables, one obtain the following

∫ 1

0

∫ 1

0

Π(x, y)Π(F−h(x, y))dxdy =
∫ 1

0

∫ 1

0

Π(x, y)Π(Fh(x, y))dxdy =
∫ 1

0

xTh(x)dx.

After these results one can obtain the spectral density function associated to the
stochastic process {Xt}t∈Z. The last term in the above equalities has already been calcu-
lated (see (5.3)).

Theorem 5.1: The spectral density function of the stochastic process

Zt = Xt + ξt = (Π ◦ F )(Xt−1) + ξt, for t ∈ Z,

is given by

fZ(λ) =
2a(1 − a)

π[1 − 2(2a − 1) cos(λ) + (2a − 1)2]
+

1
2π

, for λ ∈ [−π, π]. (5.6)
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Proof: Since RXX(h) is given by the expression (5.3) and goes to zero exponentially when
h → +∞, the spectral density function (see (2.7)) does exist and it is given by

fX(λ) =
1
2π

∞∑
h=−∞

e−iλhρX(h) =
1
2π

∞∑
h=−∞

e−iλh(2a − 1)|h| =

=
1
2π


∑

h≥0

((2a − 1)e−iλ)h +
−1∑

h=−∞
((2a − 1)eiλ)−h


 =

=
1
2π

[
1

1 − (2a − 1)e−iλ
+

(2a − 1)eiλ

1 − (2a − 1)eiλ

]
=

=
2a(1 − a)

π[1 − 2(2a − 1) cos(λ) + (2a − 1)2]
,

for all λ ∈ [−π, π], since |(2a − 1)e± iλ| < 1 when a ∈ (0, 1). The spectral density function
of the process {Zt}t∈Z follows from this.

The spectrum of the signal process {Xt}t∈Z is continuous and its graph is shown in
Figure 2 (a), (b) and (c). Notice that if a is small then there exists a peak on π and if a
is large the peak is on zero.

30



Figure 2: The spectral density function fX(λ) for Example 2 as in (5.6) when
σ2

ξ = 0 and

(a) a = 0.15240; (b) a = 0.36570; (c) a = 0.93459.

(a)

(b)

(c)
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