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ABSTRACT

We analyze metrical properties of the unique stationary law for the one-step predictor of
a finite state Markov Chain from noisy observations. In Piccioni (1990), the topological
aspect of this problem was analyzed. Our work is a natural follow-up of this paper. We will
be concerned with the case where the stationary law has support in a totally disconnected
and perfect set. In this case the predictor keeps an infinite memory of the past observations.
The closure of the support of this stationary law is called the attractor S (Elton and Piccioni
(1992)). We present a lower bound for the dimension of S. This lower bound will be also an
upper bound for the exponent scale of the law. As a consequence of our results, we partially
answer a question raised by Piccioni (1990), in a case (b=c, see notation in Section 4) where
the closure of the invariant measure’s support is an interval, showing that the stationary
law is singular with respect to the Lebesgue measure.

1. INTRODUCTION

First, we will recall the main definitions and results of the paper Elton and Piccioni (1992),
where they analyze a class of Markov processes which arises in some problems of recursive
estimation of Markov Chains.

Let {Xn}n≥0 be an irreducible, aperiodic d-state Markov chain and {Yn}n≥0 be an
observation of the process coming from a noisy memoryless channel with d possible outputs.
The predictor

Sn(i) = P{Xn = i| Yj , j = 1, 2, · · · , n − 1}, i = 1, 2, · · · , d

is a Markov process on the unit d-dimensional simplex
∑

d. This is so, because it is repre-
sentable as Sn+1 = FYn

(Sn), with Yn conditionally independent of Sn−1, Sn−2, · · · , given
Sn, where Fj(·), j ∈ {1, 2, · · · , d}, are maps defined by Elton and Piccioni (1992).

The simplex
∑

d is by definition the subset of Rd, given by

s1 + s2 + · · · + sd = 1, s1, s2, · · · , sd ≥ 0.

Under quite general conditions, Elton and Piccioni (1992) show that



diameter(Fi1 ◦ Fi2 ◦ · · · ◦ Fin
)(

∑
d

) → 0,

exponentially fast, uniformly in {in}, as n goes to infinity. ¿From this result follows the
uniqueness of the stationary law µ for {Sn}n≥0.

The closure of the support of this stationary law will be denoted by S.
They also characterize when S is totally disconnected or not. In order to do that, they

consider the Iterated Function System associated to the process {Sn}n≥0.
We refer the reader to Elton and Piccioni (1992) for the relevant considerations about

filtering problems and signal to noise ratio properties. The process {Yn}n≥0 is called mem-
oryless channel in the language of communication theory.

We will consider here only the binary case d = 2 and therefore, we will use the notation
of Piccioni (1990).

The paper of Elton and Piccioni (1992) extends results presented for the case d = 2 in
Piccioni (1990). We will be concerned in analyzing the case considered by Piccioni (1990).

Given a probability θ, the exponent scale of θ, denoted by α, is the value such that

θ(B(x, r)) ≈ rα

for θ-almost every point x ∈ X and for small r. As usual, B(x, r) denotes the ball of center
x and radius r. The precise mathematical meaning of the notation ≈ appears in Mañé
(1990). Such value α always exists for an invariant probability (see Mañé (1990)).

We will present an upper bound for the exponent scale of µ and a lower bound for the
Hausdorff dimension of S.

The main result of the present paper, Theorem 3.1, will be proved on Section 4.
In Section 2 we will recover the main results of Piccioni (1990) and Elton and Piccioni

(1992) and in Section 3 we will state the main properties of thermodynamic formalism that
will be needed in the sequel.

We refer the reader to Billingsley (1965) and Falconer (1990) for the definition of
Hausdorff dimension of a set.

We would like to thank S. Carmona and I. Tanaka for helpful discussions about the
prediction in Markov Chains.

2. THE PREDICTIVE PROCESS

Now we will introduce the precise definitions presented in Elton and Piccioni (1992).
Let {Xn}n≥0 be a Markov chain on the state space Id = {1, 2, · · · , d} with transition

probability matrix P = (pi,j)i,j∈Id
. The matrix P is supposed to be primitive, that is, there

exists some integer N such that PN has all positive entries.
The process {Xn}n≥0 represents the signal and the process {Yn}n≥0 the observations

subject to some kind of noise. The probability of an observation i ∈ Id given that at the
same time the signal is j ∈ Id, is εij , independent of all other signal values at different times.
We assume that εij is bounded away from zero and one, for all i, j ∈ Id.

The next proposition is proved in Elton and Piccioni (1992).

Proposition 2.1: The process {Sn}n≥0 is a homogeneous Markov Process on
∑

d with
transition kernel

P (s, dt) =
d∑

i=1

πs(i)δFi(s)(dt),



where s = (s1, s2, · · · , sd) ∈
∑

d ⊂ Rd and Fi :
∑

d → ∑
d, i ∈ Id, is defined by

Fi(s)(h) =

∑d
j=1 pjhεjisj∑d

j=1 εjisj

, h ∈ Id,

and

(2.1) πi(s) =
d∑

j=1

εjisj .

In Elton and Piccioni (1992) it is shown that, under these hypotheses, there exists
a unique stationary law µ, which is attractive, that is, {Sn}n≥0 converges weakly to µ
irrespectively of its entrancy law.

In Elton and Piccioni (1992) it is solved the topological question of characterizing when
the set S, the closure of the support of µ, is a totally disconnected and perfect set.

3. THERMODYNAMIC FORMALISM

Recently, the interplay between probability and thermodynamic formalism has been explored
(see Lalley (1991) and Lopes (1990)).

We will present a method based in thermodynamic formalism techniques (see Parry and
Pollicott (1990) and Ruelle (1989)), that allows one to obtain estimates for the Hausdorff
dimension of S and for the exponent scale of the measure µ. We will be concerned here
only with the case when the set is totally disconnected and perfect. The reason for this
assumption is that, in this case, there exists a map T such that, the functions Fi, defined
in (2.1) for i ∈ Id, are the inverse branches of T defined on

∑
d. In fact, the map T will

be defined in a piece of
∑

d where the non-wandering set of the Iterated Function System
is contained. To be more rigorous, we should extend the map T , in any manner, to all

∑
d

and proceed as we will do in Section 4.
We shall state now the main properties of the thermodynamic formalism that will be

considered in the sequel.
Given a map T defined on a compact metric space X, the set of invariant probabilities

is denoted by M(T ).
For a continuous function φ defined for x ∈ X and taking real values,

(3.1) P (φ) = sup
θ∈M(T )

{h(θ) +
∫

φ(x)dθ(x)}

is called the topological pressure of φ. As usual, h(θ) denotes the entropy of θ (see Mañé
(1987)).

If T is expansive and φ is Holder, there exists just one measure νφ that attains the
supremum value defined in (3.1). This measure is called the equilibrium measure for φ.

Given two functions φ and ψ, we say that they have the homology property if there exist
a function η and w ∈ R such that φ = ψ + η ◦ T − η + w. In this case, it is easy to see that
a measure ν is of equilibrium for φ, if and only if, ν is of equilibrium for ψ. This property
will be crucial for our reasoning in Section 4.

Suppose now X is a subset of Rm and the expansive map T is differentiable. Then the
function

(3.2) s(t) = P (−t log |det DT |)



is differentiable, convex and for a unique value t0, we obtain s(t0) = 0, where DT denotes
the derivative matrix of T . In the case m = 1, the value t0 = HD(S) is the Hausdorff
dimension of the non-wandering set S of T . Furthermore, for any t, the tangent line defined
by the line with slope s′(t) through s(t), intersects the t-axis in a unique value αt.

¿From thermodynamic formalism theory (see, for instance, Ruelle (1989) and Lopes
(1989)), it follows that αt defined above is the exponent scale of the equilibrium state
ν−t log | det DT | (see Figure 2).

Now we can state more precisely the results presented here. Assuming the totally
disconnected and perfect case one can obtain a map T such that the inverse branches are
the functions Fi, i ∈ Id, defined in (2.1). From previous estimates of Piccioni (1990) and
Elton and Piccioni (1992), it follows that the map T is expansive. We will show that the
stationary probability µ of the process {Sn}n≥0 is an equilibrium state (for the topological
pressure) for φ = log V , where V is defined in Section 4 by expression (4.2), (in fact µ is a
g - measure; see Parry and Pollicott (1991)).

The main point in the present paper is the special relationship between log V and
log |T ′|. Without this property, any estimate of the Hausdorff dimension of S or of the
exponent scale of µ would be impossible to obtain.

The parameters a and b in Theorem 3.1 below are defined in Piccioni (1990), and they
describe the probability of occurrence of noise in the model. We refer the reader to Piccioni
(1990) for the precise meaning of a and b.

Theorem 3.1: In the binary case (d = 2), an upper bound for the exponent scale α of the
invariant measure µ and a lower bound for the Hausdorff dimension of the attractor S are
given by

α < − log 2
log a(1 − b2)

< HD(S).

4. THE BINARY CASE

Given the constants a and b, 0 < a, b < 1, let c be the solution of

c = a
c + b

1 + b
.

We will analyze here just the case where b ≥ c.
Consider the mapping T : [−c, c] → [−c, c] defined by

T (y) = g1(y) =
y − ab

a − by
, if y ≥ 0 and T (y) = g2(y) =

y + ab

a + by
, if y < 0.

One observes that the inverse branches of T are given by

f+(x) = a
x + b

1 + bx
and f−(x) = −a

b − x

1 − bx
.

In part (a) of Figure 1 we show the graph of f+ and f− in the case b > c. Part (b) of
Figure 1 shows the case b = c and finally part (c) of the same figure shows the case b < c.
In the last case it is not possible to find T such that f+ and f− are inverse branches of T .









such that

L∗(ν) = ν,

where L∗ denotes the dual function of L. The probability ν is the stationary probability
law considered by Piccioni (1990). In the notation of Elton and Piccioni (1992) ν = µ.

¿From L(1) = 1 (see Lopes and Withers (1993)), it follows that the equilibrium measure
ν satisfies the following variational problem

(4.5) 0 = P (log V ) = sup
θ∈M(T )

{h(θ) +
∫

log V (x)dθ(x)} = h(ν) +
∫

log V (x)dν(x),

where h(θ) is the entropy of θ and P (log V ) is the topological pressure of log V .
Consider now the potential −t log T ′(x). One also wants to estimate, for each value of

t, the pressure

s(t) = P (−t log T
′
) = sup

θ∈M(T )

{h(θ) − t

∫
log T ′(x)dθ(x)}.

It is known (Parry and Pollicott (1991) or Lopes (1990)) that s(·) is convex and s(t0) = 0 ⇔
t0 = HD(S), where S is the support’s closure of ν (see also Lemma 2 in Piccioni (1990)).

Now, we will explore a special relationship between log V and log T ′.
In order to estimate HD(S) and s(t) we consider the difference

(4.6) log V (x)− 1
2

log T ′(x) = log
a(1 − b2)

2(a − b|x|) −
1
2

log
a(1 − b2)
(a − b|x|)2 =

1
2

log a(1− b2)+ log
1
2
.

It follows from relation (4.6) that log V and 1
2 log T ′ have the homology property (the

last expression does not depend on x). Therefore, they determine the same equilibrium
states, in other words, ν = ν 1

2 log T ′ .
¿From the expressions (4.5) and (4.6) one gets

0 = P (log V ) = sup
θ∈M(T )

{h(θ) +
∫

log
a(1 − b2)

2(a − b|x|)dθ(x)}

= sup
θ∈M(T )

{
h(θ) +

1
2

∫
log

a(1 − b2)
(a − b|x|)2 dθ(x) +

1
2

log a(1 − b2) + log
1
2

}

= sup
θ∈M(T )

{
h(θ) +

1
2

∫
log

a(1 − b2)
(a − b|x|)2 dθ(x)

}
+ log

√
a(1 − b2)

2

= s(−1
2
) + log

√
a(1 − b2)

2
.

Therefore,

(4.7)

s(−1
2
) = P (

1
2

log T ′) = sup
θ∈M(T )

{
h(θ) +

1
2

∫
log

a(1 − b2)
(a − b|x|)2 dθ(x)

}
= log

2√
a(1 − b2)

.



One observes (see Parry and Pollicott (1991)) that the function s(t) = P (−t log T ′)
satisfies

s(0) = sup
θ∈M(T )

h(θ) = topological entropy of T = log 2

and

s(−1
2
) = log

2√
a(1 − b2)

> log 2,

where the above inequality is due to the fact that a(1 − b2) < 1. The linear function

(4.8) Q(t) = t log a(1 − b2) + log 2

also satisfies Q(0) = log 2 and Q(−1/2) = log 2√
a(1−b2)

. Furthermore,

Q(t) = t log a(1 − b2) + log 2 = 0 ⇔ t = − log 2
log a(1 − b2)

.

As s(·) is a convex function, the value HD(S) is greater than k = − log 2
log a(1−b2) (see Figure

2).
Therefore, one concludes that an estimation for the Hausdorff dimension of the closure

of the support of ν is given by

k = − log 2
log a(1 − b2)

< HD(S) ≤ 1.

¿From the considerations made in Section 3 about the homology property, the proba-
bility ν is equal to ν 1

2 log T ′ . From the convexity of s(t) it is easy to see that α, the exponent
scale of ν 1

2 log T ′ = ν, is smaller than k (see Figure 2), that is

(4.9) α < k.

This follows from the property of αt described in Section 3.
The above estimation refers to the case c ≤ b.
This is the end of the proof of Theorem 3.1.
Now we want to estimate more precisely the exponent scale of ν, specifically for the

case b = c, corresponding to the invariant measure’s support not being a Cantor set.
The case c > b will not be analyzed here, since one can not obtain a map T such

that f+ and f− are the inverse branches of T . In this case, f+[−c, c] ∩ f−[−c, c] �= ∅ and
f+[−c, c] ∪ f−[−c, c] = [−c, c] (see Piccioni (1990), page 326). Therefore, thermodynamic
formalism can not be directly applied.

First one observes that the case b = c corresponds to a = 1+b2

2 . In fact,

b = c ⇔ b = f+(b) ⇔ b = a
2b

1 + b2
⇔ a =

1 + b2

2
.

In this case the upper bound estimate k for α in (4.9) is given by



(4.10) k = − log 2
log a(1 − b2)

⇔ k = − log 2
log 1−b4

2

⇔ k =
1

1 − log (1−b4)
log 2

.

It follows from the expression (4.10), that for any b ∈ (0, 1) , k < 1.
One concludes that the stationary law ν is singular with respect to the Lebesgue mea-

sure, since α the exponent scale of ν is smaller than k < 1.
For the case b = c, this is the answer for the question raised by Piccioni (1990): the

measure ν is singular with respect to the Lebesgue measure.
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