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SUMMARY

The purpose of this paper is to show explicitly the spectral distribution function of
some stationary stochastic processes as

Xt = F (Xt−1), for t ∈ Z,

where F is a deterministic two-dimensional invertible map. The invertible map F that will
be considered in this paper is the natural extension of a map T on a class F2 (see Section 1
for definition) of one-dimensional piecewise linear expanding monotonic transformations.

Any non-linear expanding piecewise monotonic transformation g ∈ F1 (see Section 1
for definition) can be approximated by a map T ∈ F2. From the structural stability of
the maps we consider here, it will follow that the spectral density function of the natural
extension of any non-linear expanding piecewise monotonic transformation g ∈ F1 can
be approximated by explicit expressions obtained for the spectral density function of the
natural extension of maps T in F2.

Results for the one-dimensional map T can be obtained from results for the two-
dimensional map F .

We also show in last section, that the periodogram is a good estimator (in the dis-
tribuition sense) in the case of expanding maps.

Keywords: CHAOTIC TIME SERIES; SPECTRAL ANALYSIS; EXPANDING TRANS-
FORMATION.

1. INTRODUCTION

We shall consider a special class of non-linear piecewise monotonic expanding C2

transformations g in which the image of any interval of monotonicity is all the interval
(0, 1) (see Lasota and Mackey (1994) or Section 3 for definition). For instance, Figure 1
shows an example of a map g of such class while Figure 2 shows the graph of a map that
is not of the above defined class. The number of intervals of monotonicity of g will be
assumed to be finite.
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We will denote the set of such class of maps g by F1.
Consider the class of piecewise linear monotonic continuous expanding transformations

T of the following form.
Let Ai, 1 ≤ i ≤ n, be an open interval and ai be the length of Ai, 1 ≤ i ≤ n, the

intervals of monotonicity (we assume that T (Ai) = (0, 1), for 1 ≤ i ≤ n), and suppose that
ai =

∑m
j=1 bij , where m > n. Denote by Bij , for 1 ≤ i ≤ n and 1 ≤ j ≤ m, intervals such

that the length of Bij is bij and ∪m
j=1Bij = Ai, for all 1 ≤ i ≤ n. Suppose there exists Cj ,

for 1 ≤ j ≤ m, such that g(Bij) = Cj , independent of i. Finally, assume that each Cj is
contained in a unique Ai and each Cj is a union of sets of the form Bul. Denote by cj the
length of Cj , for 1 ≤ j ≤ m.

The analytic expression of T (x) is given by

T (x) =
j−1∑
k=0

ck +


x −

i−1∑
α=1

aα −
j−1∑
β=1

biβ


 cj

bij
, for x ∈ Bij .

We will denote the set of this second class of maps T by F2.
In Góra and Boyarsky (1989) and Parry and Pollicott (1990) the explicit expression

of the invariant density

m∑
j=1

ICj (x)pj , pj ∈ (0, 1), with
m∑

j=1

pj = 1

of T ∈ F2 is obtained by finding the eigenvector (p1, p2, · · · , pm) of a large matrix. In this
way the number pj , for 1 ≤ j ≤ m, can be explicitly obtained.

It is easy to see (we refer the reader to Góra and Boyarsky (1989)) that each g ∈ F1

can be C1 approximated by T ∈ F2 (up to a finite number of points where T is not
differentiable). In Figure 3, we show the graph of a map T ∈ F2.

We will show an explicit formula (see Section 4) for the spectral density function of
the natural extension of the piecewise linear map T ∈ F2 described above.

Góra and Boyarsky (1989), Li (1976), Ding and Li (1991) and also Parry and Pollicott
(1990) show that the invariant density ηn(x) of a sequence of maps Tn ∈ F2 converging to
g ∈ F1 satisfies the weak convergence

ηn(x) → η(x),

where η(x) is the invariant density for the map g.
Therefore, one can obtain an approximation of the spectral density function of g ∈ F1

by an explicit formula for the spectral density function of Tn ∈ F2.
The spectral density function of such map g ∈ F1 will be a meromorphic function (see

Ruelle (1987)).
The spectral density function of maps g of the class F1 are important for the spectral

analysis of chaotic time series and also because the zeta function associated with the
potential − log g′(x) has poles on the same values of the poles of the spectral density
function (see Ruelle (1978, 1987) and Rugh (1992)).
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We show in section 5, a result of independent interest: the consistency of the peri-
odogram in the distribuition sense for the class of maps F1 (or for the class F2).

2. STATIONARY STOCHASTIC PROCESSES

The general setting of chaotic time series we shall analyze is the following. Consider
K a compact subset of Rn with a given Borel σ-algebra F , a bijective continuous trans-
formation F : K → K, an invariant probability P on K (that is, P(F−1(A)) = P(A), for
any set A ∈ F) and φ : K → R a continuous function. We will analyze the stationary
stochastic process {Zt}t∈Z given by

Zt = Xt + ξt = (φ ◦ F )(Xt−1) + ξt, for t ∈ Z. (2.1)

The natural measure on KZ is the product measure PZ on KZ and it is invariant
for the stationary process {Xt}t∈Z or {Zt}t∈Z. The process {ξt}t∈Z is considered to be
a Gaussian white noise process (see Brockwell and Davis (1987)) independent of {(φ ◦
F )(Xt)}t∈Z, with zero mean and variance σ2

ξ . One observes that in the model (2.1) the
random variables Xt (or Zt) and Xt+1 (or Zt+1) are generally not independent.

We shall denote the above system by

(K, F,P, φ,F , σ2
ξ ). (2.2)

Following the terminology in Tong (1990) we may call the system (2.1), when σ2
ξ = 0,

the skeleton of the system.
Given a certain measurable function φ : K → R the autocovariance function at lag

h ∈ Z (see Brockwell and Davis (1987)) of the process {Xt}t∈Z as in (2.1) is given by

RXX(h) = E(XtXt+h) − [E(Xt)]2 =
∫

φ(x)φ(Fh(x))dP(x) −
[∫

φ(x)dP(x)
]2

. (2.3)

The autocovariance function RXX(h) in (2.3) measures the covariance between two values
of the process {Xt}t∈Z separated by lag h. The autocorrelation function at lag h of the
process {Xt}t∈Z (see Brockwell and Davis (1987)) is given by

ρX(h) =
RXX(h)
RXX(0)

, for h ∈ Z, (2.4)

where RXX(0) = E[(Xt − E(Xt))2] = Var(Xt) is the variance of the process.
From the Herglotz’s theorem (see Brockwell and Davis (1987)) a function ρX(h) is

non-negative definite if and only if

ρX(h) =
∫ π

−π

eiλhdFX(λ), for any h ∈ Z, (2.5)

where FX(·) is a right-continuous, non-decreasing, bounded function on [−π, π] with
FX(−π) = 0. The function FX(·) is called the spectral distribution function of {Xt}t∈Z

and if
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FX(λ) =
∫ λ

−π

fX(ω) dω, for − π < λ ≤ π, (2.6)

then fX(·) is called the spectral density function of the process {Xt}t∈Z. When

∞∑
h=−∞

|ρX(h)| < ∞,

then ρX(h) =
∫ π

−π
eihλfX(λ) dλ, for h ∈ Z, where fX(·) is given by

fX(λ) =
1
2π

∞∑
h=−∞

e−ihλρX(h). (2.7)

This function has real values if ρX(h) = ρX(−h), for all h ∈ N.
The reason to consider F a bijective map and not just a non-invertible map is for

defining RXX(h) also for negative values of h ∈ Z and, from this, (2.7) will be well
defined.

Each particular invertible transformation F will require different technique in order
to obtain explicitly the spectral distribution function (see Lopes and Lopes (1995)).

Example: When the compact subset K is equal to [−π, π], the transformation F is
given by F (x) = ω0 + x (mod 2π), with ω0 ∈ (0, π), and φ(x) = cos(x). This is the
classical harmonic model Zt = cos(w0t + x) + ξt. The spectral measure of the process
{Xt}t∈Z = {(φ ◦ F )(Xt−1)}t∈Z as in (2.1) is not a function but a distribution function
given by

dFX(λ) =
1
2
(δω0 + δ−ω0), (2.8)

where δω0 is the Dirac delta function concentrated at ω0.

Remark: Expanding maps (see Section 3 for the definition) always have an exponential
decay of autocorrelations, for any φ Holder continuous function (see Parry and Pollicott
(1990)). Therefore, in this case the spectral density function always exists and it is a
meromorphic function (see Ruelle (1978, 1987)).

3. THE NATURAL EXTENSION F OF T

It is well known that in general larger the dimension of the set K, more difficult is to
analyze the dynamics of the map F .

When K is one-dimensional, that is, when K is a segment, the diffeomorphism
F : K → K has simple dynamics.

In general, the dynamics of an one-dimensional diffeomorphism is very simple.
The simplest example in dimension 2, that is, when K is a square [0, 1] × [0, 1], is

obtained when F is the natural extension of an one-dimensional map T . The map T is not
an one-to-one map, but F is.

4



When the transformation T is an expanding map, that is, there exists λ > 1 such that
|T ′(x)| > λ, for all x ∈ [0, 1], then there exists (see Lasota and Yorke (1973) and also Parry
and Pollicott (1990)) a density η(x) such that dµ(x) = η(x) dx is invariant for T (that is,
µ(T−1(A)) = µ(A), for any Borel set A). The probability µ is ergodic (see Cornfeld, et al.
(1982) for the definition) for such map T . There exists a natural way to obtain from such
T a bijective map F , called the natural extension of T . Denote by (x, y) a vector in the
domain K and by (x′, y′) = F (x, y) its image by the map F . Then, (see Bogomolny and
Carioli (1995))

T (x) = x′ and T (y′) = y

defines F .
If T is an expanding map the corresponding F is Axiom A (see Robinson (1995) for

definition).
The invariant probability µ for T on [0, 1] has a natural extension to a probability

ν = P (according to the notation of Section 2) on K = [0, 1] × [0, 1] invariant for F .
Consider now the random variable φ : K → R of the form φ(x, y) = φ(x). Then, the

time series
Xt = φ(F t(x, y)) = φ(T t(x)), for 1 ≤ t ≤ N,

and the probability ν define the simplest example of a chaotic time series on dimension 2.
The dynamics comes basically from an one-dimensional map even if the setting is for

a two-dimensional bijective map. As we mentioned before the reason to consider bijective
maps is to obtain RXX(h), for h ∈ Z.

The analysis of the dynamics of F is more general and results for T can be derived
from the former transformation.

When φ(x, y) = x, for a certain class of maps T in F2 (see Section 4) we shall be able
to show explicitly the spectral density function. This is obtained by solving some linear
systems as we shall explain later. We call a stochastic process obtained from the system
(F, φ) as above a standard stochastic process obtained from (T, φ).

Any expanding map g in F1 can be approximated by maps T in F2 and the corre-
sponding absolutely continuous invariant measure of T will converge to the corresponding
one for g (see Góra and Boyarsky (1989)). Therefore, we will be able to approximate
the spectral density function of expanding maps by known expressions. This is the main
purpose of this paper.

In the sequel, we shall omit the noise process {ξt}t∈Z of the system due to the fact
that it does not interfere in the dynamics of T and that the spectral density function of
the whole system with noise can be easily obtained from the one without noise (see Lopes
et al. (1995, 1996)).

4. THE SPECTRAL DENSITY OF PIECEWISE LINEAR EXPANDING TRANSFOR-
MATIONS

In this section we will show the explicit expression of the spectral density function of
the system Xt = T t(X0), where T ∈ F2.

We will denote by µ the T -invariant measure absolutely continuous with respect to
the Lebesgue measure. Denote by p(x) the density of such measure µ. It is well known
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(see Parry and Pollicott (1990)) that p(x) is of the form

p(x) =
m∑

j=1

ICj (x) pj .

Therefore, µ(Cj) =
∫

Cj
p(x)dx = pj , for 1 ≤ j ≤ m. The number pj , for 1 ≤ j ≤ m, can

be obtained by finding an eigenvector of a large matrix (see Góra and Boyarsky (1989) and
Li (1976)). Denote also by pij the measure µ of the interval Bij , 1 ≤ i ≤ n and 1 ≤ j ≤ m.

It is enough to show the explicit expression of

γ(z) =
∞∑

k=0

(∫ 1

0

x T k(x)p(x)dx

)
zk

and the corresponding explicit expression for the spectral density function (2.7) will easily
follow (see Lopes et al. (1996)).

In the sequel, we shall consider the following notation:

A(k, i, j) =
∫

Bij

x T k(x)p(x)dx, (4.1)

V (k, i, j) =
∫

Bij

T k(x)dx, (4.2)

B(k, i, j) =
∫

Bij

x T k(x)dx (4.3)

and

A(k) =
∫ 1

0

x T k(x)p(x)dx. (4.4)

First of all we shall compute a recursive formula for V (k, i, j). One observes, from the
expression (4.2), that

V (k + 1, r, s) =
∫

Brs

T k+1(x)dx =
∫

Brs

T k(T (x))dx =

=
∫

Cs

T k(y)dy
brs

cs
=

∑
Buv⊂Cs

(∫
Buv

T k(y)dy

)
brs

cs
=

brs

cs

∑
Buv⊂Cs

V (k, u, v). (4.5)

Now we shall obtain the recursive formula for B(k, i, j). One observes, from the
expression (4.3), that

B(k + 1, r, s) =
∫

Brs

x T k+1(x)dx =
∫

Brs

x T k(T (x))dx =
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=
∫

Brs

x T k

[s−1∑
k=0

ck +
(

x −
r−1∑
α=1

aα −
s−1∑
β=1

brβ

)
cs

brs

]
dx =

=
∫

Cs

[(
y −

s−1∑
k=0

ck

)
brs

cs
+

r−1∑
α=1

aα +
s−1∑
β=1

brβ

]
T k(y)

brs

cs
dy =

=
∑

Bls⊂Cs

brs

cs

[∫
Bls

y T k(y)dy
brs

cs
+

+
(
−

s−1∑
k=0

ck
brs

cs
+

r−1∑
α=1

aα +
s−1∑
β=1

brβ

) ∫
Bls

T k(y)dy

]
=

=
∑

Bls⊂Cs

brs

cs

[
B(k, l, s)

brs

cs
+

(
−

s−1∑
k=0

ck
brs

cs
+

r−1∑
α=1

aα +
s−1∑
β=1

brβ

)
V (k, l, s)

]
. (4.6)

We denote ψij(z) by

ψij(z) =
∑
k≥0

V (k, i, j) zk =
∑
k≥0

(∫
Bij

T k(x)dx

)
zk (4.7)

and ϕij(z) by

ϕij(z) =
∑
k≥0

B(k, i, j) zk =
∑
k≥0

(∫
Bij

x T k+1(x)dx

)
zk. (4.8)

Our purpose is to estimate

γ(z) =
∑
k≥0

Akzk =
∑
k≥0

(∫
x T k(x)p(x)dx

)
zk, (4.9)

but first we need to estimate ψij(z).
From (4.5), the power series of V (k, i, j) satisfies the following equation

ψij(z) =
∑
k≥0

V (k, i, j) zk = V (0, i, j) +
∑
k≥0

V (k + 1, i, j) zk+1 =

= V (0, i, j) + z
∑
k≥0

V (k + 1, i, j) zk =

= V (0, i, j) + z
∑
k≥0

(
bij

cj

∑
Buv⊂Cj

V (k, u, v)
)

zk =
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= V (0, i, j) + z
bij

cj

∑
Buv⊂Cj

(∑
k≥0

V (k, u, v) zk

)
=

= V (0, i, j) + z
bij

cj

∑
Buv⊂Cj

ψu,v(z).

Therefore, one can estimate ψi,j(z) by solving the linear system

ψij(z) = V (0, i, j) + z
bij

cj

∑
Buv⊂Cj

ψu,v(z). (4.10)

Finally, the power series of B(k, i, j) satisfies the equation

ϕi,j(z) =
∑
k≥0

B(k, i, j) zk = B(0, i, j) + z
∑
k≥0

B(k + 1, i, j) zk =

= B(0, i, j)+

+z
∑
k≥0

zk

( ∑
Blj⊂Cj

bij

cj

[
B(k, l, j)

bij

cj
+

(
−

j−1∑
k=0

ck
bij

cj
+

i−1∑
α=1

aα +
j−1∑
β=1

biβ

)
V (k, l, j)

])
=

= B(0, i, j) + z

[ ∑
Blj⊂Cj

(
bij

cj

)2

ϕlj(z)+

+
∑

Blj⊂Cj

(
bij

cj

)2(
−

j−1∑
k=0

ck
bij

cj
+

i−1∑
α=1

aα +
j−1∑
β=1

biβ

)
ψl,j(z)

]
. (4.11)

As we know the values ψij(z) from (4.10), one can obtain ϕi,j(z) from the linear
equation (4.11).

Finally, we obtain γ(z) explicitly by

γ(z) =
∑
k≥0

Akzk =
∑
k≥0

(∫ 1

0

x T k(x)p(x)dx

)
zk

=
∑
i,j

∑
k≥0

(∫
Bij

x T k(x)p(x)dx

)
zk =

=
∑
i,j

pij

∑
k≥0

(∫
Bij

xT k(x)dx

)
zk =

∑
i,j

pij ϕi,j(z). (4.12)

The spectral density function of Xt is given by

fX(λ) =
1

2π V ar(Xt)
[
γ(eiλ) + γ(e−iλ) − E(X2

t )
]
, for any λ ∈ (−π, π], (4.13)
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where V ar(Xt) = E(X2
t ) − [E(Xt)]2 and γ(z) is given by the expression (4.12).

Remark: The power series γ(z) is an analytic function on the unit disc
{z ∈ C| ‖ z ‖< 1} and the expression (4.13) has the meaning of the radial limit

lim
r→1

reiλ = eiλ = z.

In this sense, the series

∑
n∈Z

ein λ = 2Re
(

1
1 − eiλ

)
− 1 = 0, for λ �= 0,

even though the series
∑

n∈Z ein λ does not converge. We are using this fact in the expres-
sion (4.13) above.
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