ITERATION OF MAPPINGS AND FIXED POINTS IN MIXED SPECTRUM
ANALYSIS

Silvia Lopes * and Benjamin Kedem **

* Instituto de Matemédtica Universidade Federal do Rio Grande do Sul Porto Alegre
— RS — Brasil and ** Department of Mathematics University of Maryland College Park
- MD - USA

Here we will analyze the mixed spectrum model

P
Ty = ZAj cos(wjt+ ¢j) +er = Xy +¢e, for teZ,
j=1

where p is not necessarily known and, for each j € {1,2,---,p}, A; is an unknown constant,
w; is an unknown frequency with value in (—m, 7] and the phase ¢; is a random variable
uniformly distributed in (—7, 7] independent of each other and of the noise component.
We assume that the noise component is Gaussian white noise such that e, ~ N(0,02).
Observe that the process {Z;}icz is not Gaussian. Here we present a recursive method
of updating parameters for estimating the frequencies w;, 1 < j < p. The cosines of the
frequencies are obtained as attracting fixed points of a certain map.

1. Introduction

Consider the mixed spectrum model

P
Zt:ZAjcos(wjt-i-d)j)-i-st =Xi+e, for teT, (1.1)
j=1

where the set T is either Z or R depending on the time parameter being discrete or contin-
uous, p is not necessarily known and, for each j € {1,2,---,p}, A; is an unknown constant,
w; is an unknown frequency with value in (—m, 7] and the phase ¢; is a random variable
uniformly distributed in (—, 7] independent of each other and of the noise component.
We assume here, for simplicity, that the noise component is Gaussian white noise such
that e, ~ N(0,02). The assumption of white noise is not really needed, but it simplifies
the exposition. In fact, any continuous spectrum noise will do just as well.

We present a method inspired by the He and Kedem (HK) Algorithm (see He and
Kedem (1989)) that allows one to obtain, from an iterative procedure, with high order of
accuracy, the estimated values of w;, 1 < j < p. The method is based on Higher Order
Correlation (HOC) analysis (see Kedem (1990)). The HOC analysis is a faster way to
estimate the frequencies w;, 1 < j < p, than the traditional periodogram analysis since the
“fast Fourier transform” algorithm requires O(N log, N) computational complexity while
in the former we can achieve order of magnitude O(N).

We use successive applications of the complez filter (see Definition (3.2)) to obtain all
frequencies of the model (1.1) when T' = Z (see Section 4 of this paper).
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Let {Z;(a, M) }1e7 be the stochastic process filtered by the compler filter (see Defini-
tion (3.2)),where o € (—1,1) and M € N — {0}. Given an initial value o € (—1,1), the
first-order autocorrelation of the complex-filtered process {Z;(«, M) }scr is, by definition,

o (o) = RAE[Zi(cwo, M) Zy11(co, M)]}
= E|Zy(c, M)|? ’

where here and elsewhere, a bar denotes complex conjugate and R{z} the real part of z.

We should write p;(ag, M) to also show the dependence on M (we use this notation
in Sections 3 and 4) but, in order to simplify the notation in this section, we write only
p1(ap). Suppose M is fixed. With a3 = p1(ap) € (—1,1) as the updated filter parameter
we calculate again the first autocorrelation of the complex-filtered process and we obtain

R{E[Z¢(ar, M) Zy41(cn, M)]}
E\|Zi(on, M)|? '

as = pi(a1) =

In an analogous way, we define az = p1(a2) € (—1,1) from a3, to update the procedure.
In general, define

ak+1 = p1(ak), for ke N.

We consider here the iterative procedure of applying p; successively to the variable a.. The
main point in this paper is to derive useful information on the process (1.1) from the value
ag, when k is large, and «q is chosen at random in (-1,1). Notice that in Section 4 we
update just the variable a and not the parameter M. This is the reason why we consider
here o as a variable and M a parameter.

Our goal is to show in Section 4 that this iterative procedure of updating the complex
filter parameter will converge to a value close to the cosine of some frequency. Now if M
is large enough the possible values where the iterative procedure converges will give us all
frequencies of the model. Taking a large number of different initial values, we are able to
locate all frequencies.

Another way is to take just one initial value o, consider the iterates p¥ (g, M) for k
large then filter out the value aj through a bandpass filter. This value ay will be close to
the cos(wy, ), for some Iy € {1,2,---,p}. Now one applies the same above procedure to the
resulting time series. Considering again «qg at random, we estimate another value cos(wy, ),
for i; € {1,2,--- ,p} — {lo}, through the updating procedure described above. In this way
we obtain, successively, all frequencies wj, for j € {1,2,---,p}.

There is very important information about the iterative updated parameter procedure
that can be obtained by analyzing the intersection of the graphs of the function p; with
the diagonal line. This will be explored and explained in Section 3.

We applied the method to a simulated model with p = 2, A; = Ay = 0. = 1.0,
w1 = 0.7 and wy = 2.2 (cos(wy) = 0.7684, cos(wz) = —0.5885) and we find the strong
consistent estimates @w; = 0.7044 and @, = 2.1965. We simulate a time series with N = 3000
observations and we considered M = 15. For an initial value as ag = cos(0.4) we obtained
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ag = 0.7620 = co0s(0.7044) and for oy = cos(1.6) we obtained ag = 0.5857 = c0s(2.1965).
Therefore, the estimated frequencies when p = 2 are @; = 0.7044 and W, = 2.1965.

In order to use the data of a time series of length N to obtain information about p1,
we need the sample autocovariance and variance to be consistent estimators. The strong
consistency property of the estimators is proved in the Appendix of this paper.

2. General Definitions

For this section we shall give some definitions necessary for the whole understanding
of the paper.

Definition 2.1: A Borel set C' C [—1, 1] is said to have full measure in [-1,1] if and only if

w(C) = u(-1,1])

where p is the Lebesgue measure in [-1,1].
Observe that p(C¢) = 0.

If a property is true in a set of full measure we will say that this property is true
almost surely (a.s.).
Suppose we have an updating scheme

ag+1 = p1(ag), for ke N, (2.1)

applied to the process (1.1). We consider the following definition.

Definition 2.2: An updating scheme for the stochastic process (1.1) is globally convergent
if there exist a set C of full measure in [-1,1] and | € {1,2,-- -, p} such that for any «g € C,

lim ag = cos(wy)
k—o0

where w; is a frequency of the process (1.1).

The above limit expression may depend on o € C.

In the case p = 1, the iterative procedure of updating the alpha filter parameter (see
definition in He and Kedem (1989)) is globally convergent. However, this is not true for p
= 2. Therefore, the relevant question is: how do we estimate all frequencies of the process
(1.1) when p > 2?7 The alpha filter is not convenient for our purpose. In Section 4 we
show that using the complex filter, and considering oy, with large k, we can have as good
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approximations for the frequencies as we want, by increasing M.

Suppose the updating scheme (2.1) depends on an extra parameter M € N — {0},
that is, p1(a, M) is the first-order autocorrelation of the filtered process {Z;(a, M) }ier.
Then, we consider the following definition.

Definition 2.3: An updating scheme of the form (2.1) is said to be approzimately globally
convergent if for each fixed M € N — {0} there exists a set Cjs of full measure in [-1,1]
such that for any ag € Cjs there exists the limit

lim oy = o).
k—o0

The iterative updated procedure is considered with respect to the filter with parameter M
and the value of o}, can depend on . We shall require in this definition that there exist
p of these possible values o}, and for each one of them there exists [ € {1,2,---,p} such
that

A}i_r)noo ayy = cos(wp).

In simple terms, if we take an initial condition ag at random and iterate the function p;
k times, if k is large, then p¥(ag) = ax = p1(ax—1) will be very close to the cosine of a
frequency by taking M large.

The main purpose of the next section is to define a useful parametric filter family and
show in Section 4 how to estimate the frequencies w;, 1 < j < p, of the process (1.1).

This work is part of the Ph.D. dissertation of the first author under the guidance of
the second at the University of Maryland, College Park, 1991.

In a forthcoming paper we will present a method to estimate the amplitudes and the
noise variance in the system (1.1).

3. Complex Filter

In this section we will consider a parametric family of filters. Consider the stochastic
process {Z;}ter as in (1.1).

Definition 3.1: A parametric family Ly of linear time invariant filters is defined as the
set of filters

{[’9() ; NS 6}7
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where © is the parameter space, with impulse response function {h,, (6)}5=_

function H(A;#) obtained from the Fourier Transform of the h, (), that is,

and transfer

oo

H(X0)= Y exp(—inA)hy, (0).

n=-—oo

For this to happen we consider the following matching condition

(o.]

S Iha(0) < oo

n=—oo

and that

|[H(X;0)|?dFz(X) < oo,
TI

where T' = (—m,n] or R depending on the process being considered with discrete or
continuous time parameter set T.
Let us denote {Z:(0)}scr the filtered process defined by the convolution

Z4(0) = Lo(Z); = i ho(0)Ze—n = (ho * Z);

where * denotes convolution.
We shall consider a particular parametric family of linear filters where, from now on,
T = Z. Denote 0(c) = cos™(a).

Definition 3.2: The complez filter applied to the process {Z;}icz is defined by the
transformation

Zy(a,M)=(1+e®@BMz,  for teZ -1<a<l and —x<6(a)<m,

where M is a positive integer and B is the shift operator BZ; = Z;_1. We think of #(«) as
the “center of the filter”.

Clearly,
Mo
Zy(a, M) =Y (n)e“)(a)nzt_n, for teZ, —w<60(a)<m and M e N-{0} (3.1
n=0

and the impulse response function is



M

( )ew(a)", for 0<n<M
h(n;a, M) = n - T

0, otherwise

The transfer function is

HX o, M)=(1+C@NWM " for _g<A<m

and the corresponding square gain function is

A—0(a)

|H(X; 0(), M)|2 = 4M cos?M ( 5

), for —m< A\ 0<mand —-1<a<l. (3.2

If M is large then (see He and Kedem (1989))

. coszM(%(a)) cos(\) dA

a = cos(f(a)) ~ JT_cos2M (A=8(2)y gy

(3.3)

As we mention before, we will consider only large values of M. Therefore, we can change
T A—0 T A—10
/ cos?M (#) cos(A)dA by « / cos?M (%) d.

In fact, already with M = 20 the approximation is excellent. See Figure 1 for the graph of

[T cos®™ (258) cos(X) dA
ffw cos2M(¥) d\

(3.4)

as a function of the variable 6 for several values of M (M = 2, 11, 20) to appreciate the
closeness of this quotient to cos(f).

Let {Z;} be a time series of length N + M obtained from the process (1.1), when
T =1Z, and {Z(a, M)} be the complex-filtered time series version.

Our analysis is based on iterations of the first order autocorrelation function of the fil-
tered time series, that is, on iterations of the quotient between the autocovariance function
of the filtered time series at lag 1 and its variance, where E(Z;) = 0, for all ¢ € Z.

The first-order autocorrelation of the complex- filtered process {Z;(c, M)};cz, where
Zy is the process (1.1), is given by

RAE[Zi(a, M) Zyy1(ct, M)]}
M) = = e T
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P 2 1 (8% wi— « 2
.217][(:0321”(7#29( ))+c032M(7’ 29( ))] cos(wj) + 2= [
J:

(%@)cos()\) d\
P 52
Z 7J[COS2M(%+9(&))+COS2M(% 9(0))]+0 f coszM(A G(Q))d)\

(3.5)
or, from (3.3)

p1(a, M) =

2
e

P 42 . o o (e _ o
3 3 loos? M (25 cos? (1) cos(ey) + [7 S, cos?M (2=5Le)

P 42
Z TJ[COS2M(“’j+§(Q))+COS2M(‘*’j 9(a)

H = [T cos?M ( A- g(a))d)\

(3.6)

From (3.6) p1(a, M) is a weighted average of cos(w;) and «, a crucial observation that
helps in recovering all the w;. Define by BJM (), for 0 < j < p, the following weights

A2 wi+0(a w; —0(x
BM(a) _ = 1 [cos? (JT()) +COS2M(J#())]

p A2 2 T a
Z TI[COSZM(UJI—ZG(C())+COS2M(wl_26(a))]+&f cos?M ( 6( ))d)\

b

for j € {1,2,---,p} and

a2 f 2M A— 9(04))d)\
By'(a) =

™M

M=
vl B

l

[cos2M(“”+29(a)) + COS2M(wz—29(a))] 4 22 [™ cos?M( G(a)) d\
1
Therefore, p1(c, M) is a weighted average of cos(w;) and «, that is

p
1(a, M) Z

) cos(w;) + a B (a)

(3.7)
where the weights BM(a), 0 < j < p, are nonnegative, sum up to one and depend on «
and M.

Given any a € (—1,1), p1(a, M) will be in the convex hull (the intersection of all
convex sets that contain the p+1 points) of @ and cos(w;), for j € {1,2,---,p}.
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Notice that the weight B} (a), associated to the noise component o., multiplies the
variable a. The other weights BJM (), 1 < j < p, are associated to the signal component.
Then, for a; = p1(ao, M), as = p}(ap, M) is a convex combination of cos(w;), 1 < j < p,
and o3 and so on. In this way, one can see the influence of the weights B;VI (). For instance,
if one B} (a) is much larger than By’ («) and the others B} (), 1 < j < pand j # I, then
there is a strong tendency of converging, by iteration of p;(a, M), to a fixed point close
to cos(w;). Notice the important point that the weights BJM (), 0 < j < p, depend on
a. The reason for considering M large is that for values of « close to cos(w;) the relative
value of BM () is larger than the others B}V" (), for j € {1,2,--- ,p} —{l}. Therefore, the
weighted average above has more tendency of converging, through the recursive process,
to an attracting fixed point very close to cos(w;) when the value of « is close to cos(wy).
For each j € {1,2,---,p}, BJM (a) depends on a multiplicative factor A?. These factors
have, of course, influence on the relative weights BJM (), 1<j<p.

We think of p;(a, M) as a function of o with parameter M.

Remark 3.1: One can see from the graph of pi(a) = p1(e, M) as in expression (3.6)
(see Figure 2) that this mapping is structural stable (Devaney (1989)). Therefore, the
properties related to the iterations of the mapping as in (3.6) can be extended to the ap-
proximated mapping as in expression (3.5). This is a common procedure in the theory of
iterations of mappings and it justifies the use of expression (3.6) instead of (3.5).

Remark 3.2: Observe that pi(a, M) in expression (3.5) is defined by mathematical ex-
pectations. When we consider a time series of finite length N 4+ M, we are assuming that
the sample autocorrelation of size N is close to the expression (3.5), that is, p1(a, M) is
a consistent estimate for p;(a, M). The sample autocorrelation of size N when using the
complex filter is given by

ARLY, 1730 M) = 700, M) Z 2 M) = 2 M)
ﬁl (Ot, M) = J;V
% gl[zj(aa M) - Z(a7 M)][Zj(a7M) - Z(avM)]

where here the inner bar denotes the mean average value. In order to have p;(a, M) as a
consistent estimator for p;(a, M) it suffices to show that the sample autocovariance and
sample variance are, respectively, consistent estimators for R{E[Z:(a, M)Z;1(ca, M)]}
and E|Z;(a, M)|%. In the Appendix we derive these properties from the Ergodic Theorem.

The following claim is not difficult to show but rather technical and we will not prove
it here.

Claim: For each fired M € N — {0}, p1(a, M), as in expression (3.5), as a function of
the variable o, is a map from [-1,1] to [-1,1].

We use the standard notation for iterations of mappings
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pi(@) = pilp1()] = p1 o p1()
and, in general,

pi(@) = pi[pi " (a)].
Denote by p¥(a) the k& iterate of the mapping p1 at the value o. We refer Devaney (1989)
for the properties of iterations of mappings that we use here.
We look for a method for finding the frequencies by iterating the mapping p1(a, M),
for « € (—1,1). Our reasoning is based on the geometric properties of the graph of
p1(a, M) and its derivative at the fixed points, for M large but fixed.

Definition 3.3: Let f be a smooth mapping from an interval into itself. A fixed point for
the function f is a value o* such that f(a*) = o*.

Definition 3.4: A value o* is called an attracting fized point of a mapping f(x) if a* is a
fixed point and |f/'(a*)| < 1. It is called a repelling fized point if o* is a fixed point and

[f'(a®)[ > 1.
A graphic way to locate a fixed point of a mapping f is to look at the intersection of
its graph with the diagonal line. In the figures presented here we always plot the graph

of the function and the diagonal line. This makes easier to visualize the fixed points. We
denote

ar = f(ap), az= f(a1) = fZ(ao)

and, in general,

ar = f(ak—1) = fF(a).

The set {ao, f(ao), f2(),-- -, fF(ap),. ..} is called the orbit of the point .

Property of Attractor Points: An attracting fized point o* has the property that nearby
points a on both sides of a* are attracted to o* by iterations of f, that s,

lim f*(a)=ao* for a near o.
k—o0

Note that this is a local property and it does not mean necessarily that a* is a global
attractor point, that is, almost every point o € (—1,1) will converge to a*.



Property of Repelling Points: A repelling fixed point o* has the property that nearby
points «, different from o*, on both sides of a* are repelled from o* by iterations of f.

In practice, repelling points are not observable but attractor fixed points can be de-
tected by high iterations of the mapping to an initial value o chosen at random.

We know that in the case where p = 1, by using the alpha filter, we can determine
the unique frequency w;. This is not true when p = 2.

The main point here is to show that for the complex filter the cosines of the frequencies
w; are arbitrarily close to the attracting fixed points of the mapping p; when M is large.

4. Fixed Bandwidth

Our interest is to estimate the frequencies w;. With this purpose in mind we shall
consider the parameter M as being large but fixed. The frequencies w; are obtained by
increasing the iterations of the mapping p;(ao, M) with M fixed.

He and Kedem (1989) discuss the complex filter when there is no noise, that is when
o. =0, if we take an a9 € (—1,1) then

lim p;1 (g, M) = cos(wy)

M—oco
where w; is the closest frequency to cos™!(ay), that is,

lag — cos(wy)| < | — cos(wj)|, for 1<j<p, j#L

In this case, there is no need to iterate the mapping pi(a, M).
The main result in this section is Theorem 4.1 that claims, in the presence of noise
(0. # 0), if we consider an ag € (=1, 1) chosen at random and iterate p¥(ag, M) then

lim p¥(ag, M)
k—o0
will exist and it will be close to cos(w;), where w; is such that

lag — cos(wy)| < |ap — cos(wj)|, for 1<j<p, j#L

Here we consider M large but fixed.

In a real situation we do not know a priori where the frequencies are. In any case,
using the method described here, if one iterates p1 () = p1(a, M) starting from any initial
value o (a.s. with respect to the Lebesgue measure on [-1,1]) then p¥(ag, M) converges
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to a fixed point. Denote this fixed point by a3,. Now, as M goes to infinity, the sequence
{a}s} m>0 will converge to cos(w;) (no iterations are used here when M — oo), where w;
is the closest frequency to cos™!(ag). In this way if we consider a sufficient large number
of initial values chosen at random in the interval (-1,1) and iterate each one of them by
p1(a, M), we shall find very good approximations to all frequencies (if M is large enough).
Therefore, we are also able to estimate the number of frequencies.

An alternative way to locate all frequencies is the following: for an initial value «y,
consider the iterated function p¥(ag, M) for k large. In this way we will locate one fre-
quency. Now we apply a very narrow bandpass filter to isolate this located frequency and
we obtain a new time series with p — 1 frequencies. The next step is to apply the same
iterative procedure as above and then to locate another frequency. Now filter out this
located frequency. Therefore, by using the same procedure again and again we locate all
frequencies.

We show in Theorem 4.1 below that the method is approrimately globally convergent,
that is, there is no way that the iteration of p;(a, M), beginning at an initial value ayq
almost surely, will converge to something else that is not the cosine of an approximated
frequency (if M is large enough). Before the proof of this theorem we show several pictures
that will help to understand, in an intuitive way, why the method is approzimately globally
convergent.

A good indication of the above fact can be observed in the graph of p;(a, M) in [-1,1]
in Figures 2 and 3. These figures show, for the complex filter with M = 15 (in the case
when p = 2) with 47 = As = 0. = 1.0, w1 = 0.7 and wy = 2.2 (cos(wy) = 0.7684 and
cos(we) = —0.5885) the graph of, respectively, pi(a, M) and p3(a, M). We also plot the
graph of the constant functions cos(w;) and cos(ws) in order to see how precise the method
is when M is large. In all figures the graphs of the constant functions cos(w;) and cos(ws)
are plotted by dotted lines.

Figures 4 and 5 show (in the case when p = 3) the graph of, respectively, p;(a, M)
and p%o(a, M) for the complex filter with M = 40, A; = Ay = A3 = 0. = 1.0 and
frequencies w; = 0.5, wy = 1.7 and w3 = 2.4 (cos(wy) = 0.8775, cos(ws) = —0.1288 and
cos(wg) = —0.7373). From the graph of p;(a, M) in Figures 2 and 4 one can see that the
only attracting fixed points are very close to the cosine of the true frequencies. There exist
other fixed points but they are repelling ones. From the considerations made just after
the Definition 3.4 for repelling fixed points, we know that they will not attract iterations
of an initial value a by p1(c, M) (a.s.).

Note that there exist other fixed points for the mapping p; different from cos(w;),
j€{1,2,---,p}, but they are all repelling fixed points.

Remark 4.1: In a compact set, the number of zeros of a real analytic function f(x) - x
is finite (see Rudin (1987)). Then, the set of fixed points and, more specifically, the set of
repelling fixed points is finite. Therefore, it has Lebesgue measure zero. The set Cps in
Definition 2.1 is the interval [-1,1] without the repelling fixed points of p; (o, M).

If we increase M the attracting fixed points o}, will be closer and closer to the true
frequencies w;. This can be seen in Figure 6 where we consider the graph of p;(a, M) (in
the case when p = 2) in an interval very close to the cosine of the frequency w; = 0.7,
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where cos(wq) = 0.7684. Notice that by increasing M, the fixed point a}, will be as close
as one wants to cos(wy). The intersection of the diagonal line and the graph of p;(a, M)
show where the fixed point is located. Figure 7 shows the same situation when we look at
the graph of pi(a, M) in a small interval very close to the cosine of the other frequency
we = 2.2, where cos(wy) = —0.5885.

Remark 4.2: We would like to mention here that one must not confuse M and k. First,
we fix M and consider an o chosen at random, and then we consider p¥ (g, M) for a large
k. The sequence {p¥(ap, M)}x>1 converges to a fixed point very close to the cosine of one
of the frequencies. We consider p¥ (g, M), for a certain large M, as a good approximation
for the cosine of the frequency to be detected. This is a different approach from the one
in Kedem and Lopes (1991), where one shrinks the bandwidth (by increasing M) at each
iteration of ag41 = p1(ag, M).

The method presented above is reminiscent of Newton’s Method for locating the roots
of a polynomial equation. If the initial value is very close to a certain root, the iterative
procedure of Newton’s Method will converge to this root. If the initial value is close to
another root then the iterative procedure will converge to that other root.

We now give a rigorous proof of why this method works well. The important point
here is the weighted average property of pi(a, M) (see (3.7)).

Theorem 4.1: The family of complex filters is approximately globally convergent.

Proof:
First we give the proof of the following claim.

Claim 1: The relative masses of the weights B]M(a) (see expression (3.7)) are in such
way that if the initial value o is closer to cos(w;) than the other cos(w;), 1 < j <p, j #1,
then

i D) << p and 41 (4.1)
Ml—r>nooBlM(a0)_’ or 0<j<p and j#I. .

Proof of Claim 1:

Since cos(%§) is monotone decreasing in (0, ), then

w; — B(ap) w; £ (o)

)| >

cos( cos( )‘, for 1<j<p and j#I (4.2)

where 6(ap) = cos™! () because 0(ayp) is closer to w; than wj, for j # L.
Notice that for a fixed M, each B}/f (ap), 1 < j < p, is related to

cos?M (7“’”' i 0(a°)> + cos?M <7“’j - 0(0‘0)) . (4.3)

2 2

Observe that the values in (4.2) are raised to the power 2M in the expression (4.3). There-
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fore, if M is large then the quotient

B} (o)
B (o)

M for 1<j<p and j#1,

will be close to zero if oy is close to cos(w;) since large values of M amplify the difference
between the weights when one is close to the cosine of one frequency. For each j €
{1,2,---,p}, the influence of the multiplicative term (4.3) is of higher order than the
multiplicative term A? when M is large. In this case, the successive iteration of p; (g, M)
(the weighted average applied to an initial value c) will have a strong bias in the direction
of cos(w;) (the closest one to ). For j = 0, the above claim follows from the fact that

lim cos?M (%W) d\ = 0.

M—oo J_

This is the end of the proof of Claim 1.

Ky

Now we want to prove that for any small interval I = (a4, @) C (—1,1) containing
cos(wy), for some | € {1,2,---,p}, there exists My large enough such that, for all M > M,
there exists a}, € I satisfying

pl(a}k\lvM) = a*M7

that is, p1(a, M) has a fixed point o}, € I.
Let o, and «p be any two values in (-1,1) such that there exists [ € {1,2,--- ,p} where

a, < cos(wy) < ap

and
g — cos(wy)|, [ap — cos(wr)| < lglj.igp{laa — cos(wyj)|, |ap — cos(w;)|}
AU
such that

, for 1<j<p and j#l,

cos <M> >

2

cos (wj ie(Of))

2

with 0(a) = cos™(a).
We will show that for M large enough

O < pl(aa,M) < cos(wl) < pl(ab,M) < .

Since p1(a, M) is the convex combination (3.7) and the weights B} (a), j € {0,1,--- ,p},
sum up to one for any o € (—1,1), we have

13



p1(a, M) = Z BJM(oz) cos(w;) + a By ()

= BM(a) cos(w;) + Z BJM(a) cos(w;) + a By ()

J=1
il
= (1- B Z BM ) cos(wy) + a BY (a) + ZBM ) cos(w;)
J#l J#l
P
= cos(wy) + B} (a)(a — cos(w;)) — cos(w) Z B;VI Z BM ) cos(wj).

j=1 4.4
J#l J#l (44

As wy is the frequency closest to the cosine of the initial value ap with cos(w;) < oy
then for any fixed j € {1,2,---,p}, j # [, it holds (4.1), that is,

limsupw =0, for j#I
M—oo Bl‘M(ab) ’ .

This fact was shown in Claim 1.
Hence, from (4.1), taking limit sup in both sides of expression (4.4), for a = ap, we
have

M BM _
lim sup prlaw, M) _ Jim sup cos(wy) + By JE/Iab)[ab cos(wl)]_
M—oo Bj (o) M—o0 B; (o)

However, 0 < BM(ap) < 1 (one notices here the strict inequality) and ap — cos(w;) > 0.
Hence,

) p1(ap, M) . cos(wy) + 1 (ap —cos(wy)) .
lim sup —+—— < limsup = lim sup .
Moo B} (ap) M—s00 BM () Moo By (ap)

The weights B}l(a), for j € {0,1,---,p}, sum up to one for any a € (—1,1). Hence, from
(4.1) one has

A}lf)noij () =0, for j#1, and A}l_r)nooBl () =1.

14



Therefore, since

. . pl(aba M)
lim sup p1(ap, M) = limsup ———— < ap,
M—sco i ) M—oo BM(ap)

there exists M € N — {0} such that

p1(ap, M) < .

Note the strict inequality.

By similar argument, we will show that cos(w;) < p1(ap, M). Again, from equality (4.4),
we have

p1(ap, M) _ cos(wy) BM (o) (ap — cos(wy))
BlM (ab) BlM (O!b) Blﬂ/f (ab)

P BM(a) P BM(CMb)

b
—cos(wy) Y ——=+ Y —L——cos(w;).
= B () ; B (o) !
J#l J#l

Since 0 < B} (ap) < 1 and ap — cos(w;) > 0, from expression (4.1) we have

cos(wy)

M
cos(wy) = = limsup M < lim sup pi(es, M) = lim sup p1 (ap, M).

llInM—)oo BlJM(ab) M—oo Bl ab) M —oo Bllw(ab) M—oo

Therefore, there exists M € N — {0} such that

cos(wy) < p1(ap, M).

We conclude that

cos(wy) < p1(ap, M) < .

Similarly, since w; is the frequency closest to the cosine of the initial value «,, one
can show that

15



g < p1(aq, M) < cos(wy).

Recall that I = (a4, ap) C (—1,1). We have shown that p;(I, M) C I. Therefore,
by Brouwer Fixed Point Theorem (see Proposition 2.11 in Devaney (1989)), there exists a
real value o}, € (—1,1) such that

p1(ay, M) =a}y and oy € 1.

Now we want to show that the fixed point o}, is unique and attracting.

The mapping pi(-, M) is defined on the variable §(«) € (—m, w), for any o € (—1,1).
The extension of the mapping p1(-, M) to a neighborhood V of (—1,1) in the Complex
Plane is now considered. This extension will be necessary for using a strong form of
Schwarz Lemma (see Hervé (1963)) and it will be made clear later. Let us consider the
complex analytic mapping

p1(-,M):V = C
such that @ — p;(a, M) is given by
P
p1(a, M) = Z BJM(a) cos(w;) + a By ()
7=1

for « € V C C, where the weights BJM (a), for 0 < j < p, are defined by the expressions
given before (3.7).
Let a function f be defined by

fi(=m,m)—=C

such that t — f(t) = cos(w;) + re®t with r € R, 7 > 0.

We want to show that any circle of center cos(w;) and small radius r is contracted by the
transformation p(-, M), if M is large enough. That is, we want to show that, for a fixed
small value r, there exists M € N — {0} such that

p1(a, M) — cos(wy)

a — cos(wy) ’

uniformly for all « of the form f(t) = cos(w;) + re®, t € (—m, w). Observe that

loe — cos(wy)| = |f(t) — cos(wy)| = |ret| =7

16



Claim 2:

: B} (as) .
limsup |[=4——|=0 for j#1 and any o€V close enough to w;. (4.5)
M—oo | B (o)

Proof of Claim 2:
The proof of this claim is similar to the case when the mapping p; (-, M) was considered
defined only in the interval (-1,1). Then, we suppose Claim 2 is proved.

Since >-¥_ B} (a) = 1, from the above claim one has

lim |B}(a)|=0, forall j+#1I, and A}i_r)noo\BlM(a)\zl

M —o0

for all @ € (—1,1). Considering the analytic function p;(-, M) at a = cos(w;) + re®t, for
t € (—m,m), and applying Claim 2 we get

limsupy,_, o |p1(c, M) — cos(w;)|

lim su a, M) — cos(wy)| = ;
imsup [ p1 (e, M) — cos(wr)| limsupy, o | BM ()]

) p1(a, M) — cos(wy)
= lim sup

B (a)(a — cos(wy)) — cos(wy) . BJM(a) +>5 B}”(a) cos(w;)

= lim sup i el
. |B{" ()] : 1 it
<limsup ——=|a — cos(w;)| + 0 < limsup ————|re"*| =r.
SUD (| ~ oS0l 0 < Hmsup pprsyire™

Therefore, there exists M € N — {0} such that

|p1(a, M) — cos(w;)| < r = |a — cos(wy)],

for all « of the form f(t) = cos(w;) + ret, for t € (—m, 7). Note the strict inequality.

We conclude that the circle with center in cos(w;) and small radius r > 0 is contracted
by p1(-, M).

Denote by U the ball of center cos(w;) and radius r in C. Since an analytic mapping
is an open mapping, the set U is mapped by p1(-, M) inside U.

17



Now we recall a strong version of Schwarz Lemma (see Hervé (1963), page 83).

Theorem: Suppose U is a simply connected open subset of C not equal to C itself. Suppose
F:U — U is complex analytic and the closure of F(U) is contained in U. Then F has a
fixed point zo € U and

o |F'(2)| <1 and F™(z) — 2y, forall z € U.

Therefore, there exists a unique fixed point for p;(-, M) in the set U = B(cos(w;), )
in C and this fixed point is an attractor for the set U. We have shown before the existence
of a real fixed point a},. From the above we conclude that a7}, is the unique attracting
fixed point in U. Then, this point a}, attracts all the real values in a small neighborhood
of cos(wy).

|

Remark 4.3: The expressions (3.5) and (3.6) are very close if M is large. This follows
from (3.3). In Figures 8 and 9 we plot the graph of (3.5) and (3.6) for p = 2, M = 20
where wy = 0.7, we = 2.2, A1 = A3 = 0. = 1.0. One can see that, if M is large then the
graph given by the expressions (3.5) and (3.6) are almost the same. Theorem 4.1 shows,
among other things, that the mapping given by the expression (3.6) is structural stable
and, therefore, our reasoning using (3.6) instead of (3.5) is justifiable.

Conclusion:

First consider, for simplification of the argument, the case p = 2. We consider a large
number of equally spaced initial values o (for instance, 10) in (-1,1). For each o we take
p8(ag, M) as a good approximation for the cosine of the frequencies. Some of these values
will be very close to cos(wy) and some of them will be close to cos(ws). If M is large, the
values obtained by the above procedure will be so close to cos(wy) or cos(wz) as one wants.
We will choose among these ten values p$(ag, M) two of them that are distant apart. We
will denote these two values @; and Wy the estimated frequencies. In general, M = 20 is
good enough when p = 2 and w; and wsy are distant apart. Two examples are provided in
Table 4.1 and Table 4.2.

In the general case, when we have p > 3 frequencies, we will consider a large number
of equally spaced initial values ap € (—1,1) and with the same iterative procedure we will
get approximated values of w;, 1 < j < p, when M is large. We will choose p among these
values p%(ap, M) that are distant apart and we will denote @;, 1 < j < p, the estimated
frequencies.

Remark 4.4: A problem that can appear in the method is when two frequencies are close.
In some cases, we will need to take M = 200 requiring more computational time due to the
calculations of the binomial coefficients (see expression (3.1)). The method still works but
the convergence can be very slow for some initial values agy. Other filters, with narrower
band like AR(2), for instance, will do better.
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It is convenient in the numerical implementation of the method to compute the bi-
nomial coefficients (see expression (3.1)) in the beginning of the code and store them in
order to decrease the computational complexity (remember that M is fixed) .
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Appendix: Ergodicity of the Stochastic Process

Let (€2, F, P) be the probability space where €2 is the sample space, F is the o-algebra
of Borel sets and P is a probability function on 2. Consider T a transformation defined
from €2 to itself, so that T is measurable and also measurably invertible.

Definition 1: We say that P is an invariant measure for T or T is measure-preserving if
P(T~'(A)) = P(A), for any Borel set A € F.

Definition 2: We say that P is ergodic for T, if for any Borel set A such that T71(A) = A,
we have that P(A) =0 or P(A) = 1.

A very important result is the Birkhoff Ergodic Theorem (see Skorokhod (1989)). We
next state this theorem.

Birkhoff Ergodic Theorem: Suppose V is an integrable random variable on 2, P is a
probability invariant measure on €2 and T is a measurable transformation on . Let G
be the smallest o-algebra of sets in F with respect to which all random variables W with
W (T*(w)) = W(w) for P-almost all w and for ¢ > 0 are measurable. Then,

lim = S V(Ttw) = B(V/G)(w) P - as.

N—)ooNt

When P is ergodic (that is, G is trivial) then E(V/G) reduces to E(V) = constant
and the above result essentially says that for the typical trajectory with respect to P, time
average of V converge to spatial average of V.

In terms of stochastic processes, we are considering in the above setting the stationary
process X;(w) = V(Tt(w)), w € Q and ¢ € Z. This is the standard way to transfer results
from transformations with invariant measures to stationary processes (we refer to Lamperti
(1977), chapter 5 for further details). Basically, one has to consider on the space QN the
product measure generated by P on 2 and the above defined stochastic process X;. We
remark here that P will be a product measure in the case of independent and identical
distributed coordinates.

Remark 1: Suppose that [V (w)P(dw) = 0. Then, in this case, if the probability is
ergodic, the autocovariance at lag k

[ Ve atw) Paw)
can be obtained as the almost-sure limit of the mean
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L t t+k >
Jim ZV(T V(T *(w)), for k> 0.

In this way, we can say that the sample autocovariance (the case k=1) and variance (the
case k=0) are consistent estimators.

In our case we will need to consider 2 = (—7, 7] and for any w € 2, we have

T(w) =w+w; (mod 27),

where wq is a fixed number in the interval (—7, 7]. Now P will be the normalized Lebesgue
measure on (—m, 7], and this probability P is clearly invariant for T.

It is well known (see Cornfeld, Fomin and Sinai (1984), page 64) that when $* is an
irrational number, then P is ergodic for T.
Remark 2: The Ergodic Theorem in the case when 3 is irrational, is true in a stronger
form than the one provided by Birkhoff Ergodic Theorem. In fact, if V is continuous,
the statement about time averages is true, not only P- almost surely, but in fact for all
w € (=, m]. The analogous statement for numbers wy, such that $ is rational is false.

Now let us concentrate on the specific case we want to understand here. We will denote
elements in our space €2 by ¢, in order to have a coherent notation with the one we used
previously. We will need here to consider the random variable V(w) = V(¢) = A cos(¢).
Notice that

[ V) Plaw) = 4 [ coste) P(ag) ~o.

Therefore, the assumption of Remark 1 is satisfied.

Note that for any n € N and ¢ € (—m, 7|, we have that T"(¢) = ¢ + nw; (mod 27).

If 5% is irrational then we can apply the Ergodic Theorem for the random variable
V(gb)V(T k(¢)), because P is ergodic (see Remark 1). In this way, we have a consistent
estimator for the autocovariance.

Therefore, from the Ergodic Theorem it follows that

N-1 N-1
A}i_r)noo % ; V(T ())V(TH*(¢)) = A}gnoo L ; cos(wi t + @) cos(wy (t+ k) + ¢)

A? /cos(d)) cos(wi k + ¢) P(do) = Az/cos(qﬁ) cos(T*(4)) P(d¢), for k> 0.
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Therefore, for any ¢ € (—x, 7], we have that the sample means of the autocovariance
give an almost sure consistent estimator for the autocovariance of the process {X;}icz.
The analogous statement for the variance is also true.

Recall that we first consider the stochastic process

Xi(¢) = V(T (¢)) = V(¢ +tw) = Acos(wy t + @).

Now we will add Gaussian white noise process €; to X;.

Therefore, we want to analyze autocovariance and variance for the process Z; given
by

Zi = Xy + &1 = V(TH)) + ¢

For the autocovariance we have to consider the following sum

Z1(9) Zt41(p) = Xe(d) Xi41(9) + Xi (@) €041 + Xiq1(0) €1 + €1 €441

In the case we want to take samples for the autocovariance the above equality is given as
follows

1 N-1 1 N-1
N Zy(9) Z41( - N V(T (¢))V(T**(9))
t=0 t=0
1 N-1 1 N-1
o 2 VT @) een + 5 2 VT (@)
t=0 t=0
N-1

The sample means corresponding to the first term on the right hand side of the above
equality were analyzed by previous considerations using the Ergodic Theorem (that means,
when we have only the process X;).

The sample means corresponding to the second and third terms on the right hand side
of the above equality converge to zero since from the uncorrelatedness of the variables e,
and X; = V(T (¢)) we have

A}gnoo— ZV ) ety = 0, for k> 0.
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Finally, the sample means in the fourth term converge to zero, from the hypothesis
of uncorrelatedness of the variables ¢; in the definition of white Gaussian noise. More
precisely,

1 N-1
lim — = 0.
Nl—I)nooN z_%(stat—i_k 0

Therefore, we conclude that for the process
Zy = Acos(wi t + @) + e,

where 5 is irrational and {e;}scz is Gaussian white noise, the sample autocovariance is
an almost sure consistent estimator for the autocovariance of the process {Z;}icz. We
mention here that, for simplicity, the noise component is assumed to be Gaussian white
noise but the reasoning holds more generally for any ergodic colored noise.

When one wants the variance, one just has to consider the case k=0 in the above
considerations.

Therefore, we conclude that for the process
Zy = Acos(wy t + @) + ey,

where 3L is irrational and {e; }¢cz is Gaussian white noise, the sample variance is an almost

sure consistent estimator for the variance of the process {Z; }icz.

Then, we can also take the sample variance to estimate the variance of the process {Z; }+cz.
Therefore, p1(«) is an almost sure consistent estimator for p; («) as mentioned in Remark
3.2 of Section 3.

It follows that the sample means of the variance and autocovariance converge, respec-
tively, to

A2
E[Z?] = -+ o?

€

and
2

A
E[ZtZt+]_] = 7 COS(C&J]_).

Now we will briefly explain how to extend the above results to the process

P
Zt = ZAJ COS(u)j t+ ¢J) + &4

=1

where A;, wj, ¢; and the ¢, were previously defined (see expression (1.1)).
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In this case we consider Q as the p-torus (—m, 7|, and let the transformation T be
defined as

T(¢p1,¢2, - ,¢p) = (w1 + ¢1 (mod 27), wa + ¢2 (mod 27), - - - ,wp + ¢, (mod 27))

for any p-uple w = (¢1, d2, -+, ¢p).
The measure P, in this case, will be the normalized product measure on the torus

when we consider the Lebesgue measure in the interval (—m, 7]

We refer to Cornfeld, Fomin and Sinai (1984), page 64, for a careful analysis of the
above mentioned situation.

First we want to analyze the signal component in {Z; };cz, that is, we want to analyze
the process

P
X = ZAj cos(w;jt+ ¢;), where A; are unknown constants.

i=1
In the case when all 52 are irrational and rationally independent (that is, Z§:1 sjsl =gq
where s; and ¢ are integers, is possible only when s; = s = -+ = s, = 0), for any

j € {1,2,---,p}, the above probability P in the torus is ergodic for the map T defined
above (see page 64 in Cornfeld, Fomin and Sinai), and results similar to the ones in Remark
1 can also be applied to the random variable

V(d1, d2,--- 7¢p) = Ajcos(¢1) + Az cos(da) + -+ + Ap COS(¢p)-

Notice that we can assume, without loss of generality, that the frequencies are irra-
tional and also rationally independent, because the set of such frequencies has probability
one among the possible values of frequencies.

Therefore, it follows that the samples of the autocovariance and variance are almost
sure consistent estimators also in the case when we have p irrational frequencies.

Now if we introduce an additive white noise to the above defined stochastic process
{Xi}tez, we will have the model that we called {Z;};cz with p frequencies and additive
noise component.

With the same reasoning as before, when p = 1, we can transfer results from {X;}icz
to {Zi}tez. This means that we just have to use the fact that the noise is white and
Gaussian with mean zero and variance o2, and also that P is ergodic for T and V is
uniformly bounded. In this case we can also conclude that the empirical autocovariance
and variance are consistent estimators for the autocovariance and variance of the process
{Zi}iez.

We recall here that the sum of any two independent ergodic stochastic process is also
an ergodic process and any linear transformation of an ergodic stochastic process gives
rise to an ergodic process. So, if {X;(0)} and {e;(0)} are uncorrelated ergodic stochastic
process then so is the process {Z;(0)}. That is, the sample autocovariance and variance
are strongly consistent estimators.
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Figure 1: Graph of the expression (3.3) as a function of § € [—m, w] with values M =
2,11,20. The dotted line is the function y = cos(#), for 0 € [—x, 7].
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Figure 2: Fixed points in p; (e, 15) from the complex filter for p = 2, A; = Ay = 0. = 1.0,
w1 = 0.7 and we = 2.2 (cos(wy) = 0.7684, cos(wz) = —0.5885).

Figure 3: Fixed points in p}(c, 15) from the complex filter for p = 2, A1 = Ay = 0. = 1.0,
w1 = 0.7 and wy = 2.2 (cos(wy) = 0.7684, cos(ws) = —0.5885).
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Figure 4: Fixed points in p;(a, 40) from the complex filter for p = 3, A; = Ay = A3 =
0. = 1.0, w; = 0.5, wp = 1.7 and w3 = 2.4 (cos(w1) = 0.8775, cos(wz) = —0.1288 and
cos(wsz) = —0.7373).

Figure 5: Fixed points in p3°(«, 40) from the complex filter for p = 3, A} = Ay = A3 =
0. = 1.0, w; = 0.5, wy = 1.7 and w3z = 2.4 (cos(wy) = 0.8775, cos(ws) = —0.1288 and
cos(wsz) = —0.7373).

29



Figure 6: p;(a, M) from the complex filter for p = 2 in a neighborhood of the cosine of
the frequency wy = 0.7 (cos(w1) = 0.7684). The graph of the constant function y = cos(w1)
and the diagonal line are also plotted.

(a) M =8; (b) M =11; (c) M = 15.

(a)

(b)

(c)
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Figure 7: p;(a, M) from the complex filter for p = 2 in a neighborhood of the cosine of
the frequency we = 2.2 (cos(w2) = —0.5885).
(a) M =8; (b) M =11; (¢c) M = 15.

(b)

(c)
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Figure 8: p;(a,20) as in expression (3.5) for p =2, w1 = 0.7, wy = 2.2, A) = Ay = 0. =
1.0.

Figure 9: p;(«,20) as in expression (3.6) for p =2, w1 = 0.7, wy = 2.2, A = Ay = 0. =
1.0.
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Table 4.1: Estimation of the frequency wj, j = 1,2, from the Complex Filter. p = 2,
wi = 2.2, we = 0.8, N =3,000 and SNR = 20log;, <w) dB. Number of iterations

std. noise
= 8.

Table 4.2: Estimation of the frequency wj, j = 1,2, from the Complex Filter. p = 2,
wy = 2.5, ws = 0.5, N = 3,000 and SNR = 20log;, <M) dB. Number of iterations

std. noise
= 8.
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