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Abstract:

In this work we analyze the convergence in distribution sense for the
periodogram function based on a time series of a stationary process obtained
from the iterations of a continuous transformation invariant for an ergodic
probability µ. We only assume a certain rate of convergence to zero for the
autocovariance function of the stochastic process, that is, we assume there
exist C > 0 and β > 2 such that |γX(h)| ≤ C|h|−β, for all h ∈ Z, where
γX(·) is the autocovariance function of the process.

Keywords: Periodogram Function, Convergence in Distribution, Chaotic Pro
cesses.

1. Introduction

Here we consider the stochastic process {Xt}t∈Z obtained from the iter-
ations of a continuous transformation T from the unit interval to itself and
µ an ergodic probability invariant under T . This stochastic and stationary
process {Xt}t∈Z is given by

Xt ≡ (ϕ ◦ T t)(X0) = ϕ(T t(X0)) = (ϕ ◦ T )(Xt−1), for t ∈ Z, (1.1)

1Corresponding author. E-mail: slopes@mat.ufrgs.br
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where ϕ is a continuous map ϕ : [0, 1) → R and X0 is distributed over [0, 1)
according to µ.

We shall assume a certain rate of convergence to zero for the autoco-
variance function of such stochastic process. We will denote by γX(·) the
autocovariance function for the process {Xt}t∈Z, that is,

γX(h) ≡ Eµ(XhX0)− Eµ(X0), for h ∈ Z.

In this work we analyze the convergence in distribution sense, to fX(λ) =
1
2π

∑
h∈Z γX(h)e−ihλ, for the periodogram function, based on a time series

{Xt}N
t=1 from the stochastic process {Xt}t∈Z. This periodogram function is

given by

I(λk) = fN(λk)fN(λk),

where

fN(λ) =
1

2π
√

N

N∑
t=1

ϕ(T t(x0))e
−iλt, λ ∈ (0, 2π],

fN(·) indicates the complex conjugate of fN(·) and

λk =
2πk

N
, for k = 0, 1, · · · , N,

is the k-th Fourier frequency.
The periodogram function allows one to have an idea of the spectral

density function fX(·) (see Brockwell and Davis (1991)). See remark after
the claim of Theorem 3.1.

This paper proceeds in the following way: Section 2 presents some defini-
tions related to the chaotic process of the form (1.1) while Section 3 presents
the proof of the convergence in distribution sense for the periodogram func-
tion I(·), with the assumption, given by the expression (2.3), imposed on the
autocovariance function γX(·), after some preliminary lemmas.

2. Chaotic Processes

Let T be a continuous transformation from the circle S to itself, not nec-
essarily invertible, and µ an ergodic probability invariant under T . Suppose
that µ is absolutely continuous with respect to the Lebesgue measure.
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Considering the identification of the circle z ∈ S with x ∈ [0, 1) by
z ≡ e2πxi, from now on we can use either one of the two forms T : S → S or
T : [0, 1) → [0, 1).

We assume that µ has density function φ(·) such that dµ(x) = φ(x)dx.
Let ϕ be a continuous map ϕ : [0, 1) → R. Then, one can define the stochastic
process obtained from the iterations of T in the following way

Xt ≡ (ϕ ◦ T t)(X0) = ϕ(T t(X0)) = (ϕ ◦ T )(Xt−1), for t ∈ N, (2.1)

where X0 is distributed over [0, 1) according to µ. From Birkhoff’s theorem
let x0 ∈ [0, 1) be a fixed number chosen according to µ such that for all
continuous function g (or indicator function of an interval)

lim
N→∞

1

N

N−1∑
j=0

g(T j(x0)) =

∫
g(x)dµ(x).

Assume, without loss of generality, that

Eµ(X0) =

∫
ϕ(x)dµ(x) =

∫
ϕ(x)φ(x)dx = 0.

We will assume that T has a natural extension F : S ×S → S ×S of the
form

F (x, y) = (T (x), H(x, y)),

for some function H(·, ·). Then, in this case, the process {Xt}t∈N, given by
the expression (2.1), can be extended to

X̃t = (ϕ̃ ◦ F t)(X̃0) = ϕ̃(F t(X̃0)) = (ϕ̃ ◦ F )(X̃t−1), for t ∈ Z, (2.2)

where the function ϕ̃ : S × S → R is given by ϕ̃(x, y) = ϕ(x) (see Lopes
and Lopes (1998)). We refer the reader to Borovkova, Burton and Dehling
(2001) for several examples of such general procedure.

The measure µ̃ has a natural extension of µ on S × S. In this case

∫
ϕ̃(x, y)dµ̃(x, y) =

∫
ϕ(x)dµ(x) = 0.

The process {X̃t}t∈Z defined by the expression (2.2) is a stationary process
with zero mean if the distribution of X̃0 is µ̃.
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In order to simplify the notation, since ϕ̃ depends only on the first coor-
dinate, that is, ϕ̃(x, y) = ϕ(x), we will consider, in the sequel, Xt, ϕ, T and
µ instead of X̃t, ϕ̃, F and µ̃.

The process {Xt}t∈Z has autocovariance function of order h given by

γX(h) ≡ Eµ(XhX0), for h ∈ Z,

since Eµ(Xt) = Eµ[(ϕ ◦ T t)(X0)] = 0. We will assume here a certain rate of
convergence to zero of γX(·), that will be specified below.

Assumption: We will assume that T is such that for any given ϕ : [0, 1) →
R continuous map there exist C > 0 and β > 2 such that the autocovariance
function of the process {Xt}t∈Z has the rate of convergence to zero given by

|γX(h)| ≤ C|h|−β, for all h ∈ Z. (2.3)

Examples of such systems appear when T is a transformation of the circle
with an indifferent fixed point (see Isola (1999), Fisher and Lopes (2001),
Maes et al. (1999) and Young (1999)). In the notation of Fisher and Lopes
(2001), β > 2 is equivalent to γ > 4.

The above assumption includes the case where γX(·) exponentially decays
to zero, that is, when there exists 0 < λ < 1 such that

|γX(h)| = Eµ(XhX0) ≤ C1λ
|h|, for h ∈ Z, (2.4)

where C1 is a positive constant and Eµ(Xt) = Eµ[(ϕ ◦ T t)(X0)] = 0.
We observe that we are not considering general fractionally integrated

processes (see Reisen and Lopes (1999)).
The spectral density function of the process {Xt}t∈Z defined in the ex-

pression (2.2) is given by

fX(λ) =
1

2π

∑

h∈Z
γX(h)e−iλh, for λ ∈ (0, 2π], (2.5)

where γX(·) is the autocovariance function of the process.
The periodogram function is an unbiased estimator for the spectral density

function fX(·), even though it is not consistent (see Brockwell and Davis
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(1991)). We will show that the periodogram function gives an approximation
of the following truncated function

fX,r(λ) =
1

2π

∑

|h|<r

γX(h)e−iλh, for λ ∈ (0, 2π],

where r > 0 is a large but fixed constant. In practical situations, this is
what we really need: an approximation, as close as we want (see Lemma 1
below) of the function fX(·) by fX,r(·) and an approximation of fX,r(·) by
the periodogram function.

The point x0 will be chosen in a set of measure one. The value r will
appear later and it is considered fixed from now on.

The periodogram function of a time series {Xt}N
t=1 of size N ∈ N for

the point x0 obtained from the stationary process {Xt}t∈Z, given by the
expression (2.2), is given by

I(λk) = fN(λk)fN(λk), (2.6)

where

fN(λ) =
1

2π
√

N

N∑
t=1

ϕ(T t(x0))e
−iλt, λ ∈ (0, 2π],

fN(·) indicates the complex conjugate of fN(·) and

λk =
2πk

N
, for k = 0, 1, · · · , N,

is the k-th Fourier frequency.
In this work we want to show the convergence in distribution of the pe-

riodogram function defined by (2.6) under the Assumption given by the ex-
pression (2.3). This will be done in the next section.

3. Convergence in Distribution for the Periodogram

In this section we will show the convergence in distribution of the peri-
odogram function. First we need Lemma 1.

Lemma 1: Let fX(·) be the spectral density function of the process {Xt}t∈Z
defined by the expression (2.2). Let fX,r(·) be the truncated r-spectral density
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function of the process {Xt}t∈Z given by

fX,r(λ) =
1

2π

∑

|h|≤K0

γX(h)e−iλh, for λ ∈ (0, 2π], (3.1)

for r ∈ N. Then, for all ε > 0, there exists r0 ∈ N such that for all K0 ≥ r0,

||fX(λ)− fX,K0(λ)||∞ < ε, for all λ ∈ (0, 2π],

where ||g||∞ means the infinity norm of the function g.

Proof: Let ε be a positive fixed constant. For all K0 ∈ N , let us consider
the spectral density function for all h ∈ Z such that |h| ≤ K0, that is, the
function fX,K0(·) given by expression (3.1). Then,

fX(λ) =
1

2π

∑

h∈Z
Eµ(XhX0)e

−iλh

=
1

2π

∑

h∈Z
γX(h)e−iλh

=
1

2π

∑

|h|≤K0

γX(h)e−iλh +
1

2π

∑

|h|>K0

γX(h)e−iλh

= fX,K0(λ) +
1

2π

∑

|h|>K0

γX(h)e−iλh. (3.2)

Now, since there exist C > 0 and β > 2 such that, for all h ∈ Z, we have
|γX(h)| ≤ C|h|−β we also have that

∑
h∈Z |γX(h)| converges.

The last term in the expression (3.2) goes to zero when r goes to infinity
since 1

2π

∑
h∈Z γX(h)e−iλh converges. Therefore, given ε > 0, there exists such

r0.
Therefore, the Lemma 1 is proved.

¤

The Lemma 1 says that h > K0 is not important for considering in the
spectral density function.

We will consider, in the sequel, several numbers such as N, q and r that
will go to infinity. It will be very important the order we take them, that is,
which number goes to infinity first, and then which one will be the next, etc...
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However, the value K0 will be much larger than all of them. It contains the
information of the approximation to the function fX(·), that is, the function
we want to approximate.

Let x0 be a point in a set of µ-probability one. From now on we will
denote T t(x0) ≡ xt and Xt = ϕ(T t(x0)) ≡ ϕ(xt).

From the expression (2.6) one has, for N fixed, that

I(λk) =
1

4π2N

N∑
s,t=1

XtXse
−iλk(t−s) =

1

4π2N

∑
1≤s≤N

1≤s+h≤N

XsXs+he
−iλkh, (3.3)

where in the last equality we change variable t− s by h. Therefore, for each
s fixed, the range of h is 1− s ≤ h ≤ N − s.

Now, we want to prove the convergence in distribution for the peri-
odogram function fX(·) based on a time series {Xt}N

t=1 of the process {Xt}t∈Z
given by (2.2) beginning with x0.

In the sequel, δy will denote the Dirac delta function in y.
Note that I(λk), for k ∈ {0, 1, 2, · · · , N}, depends on the initial chosen

point x0 and also on N .

Theorem 3.1: Let {Xt}t∈Z be the stationary zero mean process given by
(2.2). Let x0 be as above and let γX(·) be the autocovariance function of the
process {Xt}t∈Z such that the assumption given by (2.3) holds. Let fX(·) be
the spectral density function of the process {Xt}t∈Z given by (2.5).

Then, in the distribution sense

lim
N→∞

1

N

N∑

k=0

I(λk)δλk
= fX(λ), for λ ∈ (0, 2π],

where I(·) is the periodogram function defined by (2.6),

λk =
2πk

N
, for k ∈ {0, 1, · · · , N},

is the k-th Fourier frequency and δλk
is the Dirac delta function with concen-

trated mass at this k-th frequency.

The proof of Theorem 3.1 will be given after some lemmas. In order to
have the convergence in distribution sense we will show that for any smooth

7



function g : S → R

lim
N→∞

〈
1

N

N∑

k=0

I(λk)δλk
, g

〉
= 〈fX , g〉 =

∫ 2π

0

fX(λ)g(λ)dλ =

=
1

2π

∫ 2π

0

∑

h∈Z
γX(h)e−iλhg(λ)dλ,

where
〈

1

N

N∑

k=0

I(λk)δλk
, g

〉
≡

∫ 2π

0

g(x)
1

N

N∑

k=0

I(λk)δλk
=

=
1

N

N∑

k=0

I(λk)g(λk) =

=
1

4π2N2

N∑

k=0

g(λk)
∑

1≤s≤N

1≤s+h≤N

XsXs+he
−iλkh,

with the last equality obtained from the expression (3.3).

Remark: To find fX(x) one takes a continuous function g such that it has
support in a small neighborhood of x.

Let r ∈ N−{0} be a fixed value such that Lemma 1 holds. Then, we can
write

〈
1

N

N∑

k=0

I(λk)δλk
, g

〉
=

1

4π2N2

N∑

k=0

g(λk)
∑

1≤s≤N

1≤s+h≤N

XsXs+he
−iλkh (3.4)

=
1

4π2N2

N∑

k=0

g(λk)
∑

1≤s≤N
1≤s+h≤N

|h|≤r

XsXs+he
−iλkh (3.5)

+
1

4π2N2

N∑

k=0

g(λk)
∑

1≤s≤N
1≤s+h≤N

|h|>r

XsXs+he
−iλkh. (3.6)
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In Lemma 2 below we shall prove that the expression (3.6), goes to zero,
when N →∞.

Lemma 2: Given ε1 > 0, there exists r such that, for all K0 > r and for
x0 ∈ [0, 1) µ-almost everywhere, there exists N1 ∈ N− {0} such that

∣∣∣∣∣∣∣∣∣∣

1

4π2N2

N∑

k=0

g(λk)
∑

1≤s≤N
1≤s+h≤N

K0>|h|>r

XsXs+he
−iλkh

∣∣∣∣∣∣∣∣∣∣

< ε1, for all N > N1.

Proof: Given ε1 > 0, let ε be such that

ε =
4π2

2M1

ε1.

Given r and K0 fixed, the function

v(x) ≡
∑

r<|h|<K0

∣∣ϕ(x)ϕ(T h(x))
∣∣ ∣∣e−iλkh

∣∣ =
∑

r<|h|<K0

∣∣ϕ(x)ϕ(T h(x))
∣∣

is continuous. If r is large enough one has, for this ε > 0 and K0 > r, that
∣∣∣∣
∫

v(x)dµ(x)

∣∣∣∣ <
ε

3
. (3.7)

Here we use again that
∑

h∈Z |γX(h)| converges, since the autocovariance
function of order h of the process {Xt}t∈Z goes to zero with order of conver-
gence |h|−β, with β > 2.

Now we fix r and K0 (much more larger than r). For such fixed function
v(·), we want to estimate the µ-measure of “bad” points x0 given by

P
ε
3

N0
= µ

({
x0; sup

N>N0

∣∣∣∣∣
1

N

N∑
s=1

v(T s(x0))−
∫

v(x)dµ(x)

∣∣∣∣∣ >
ε

3

})
.

From Theorem 13, part 1, in Kachurovskii (1996), as σf (−δ, δ) = o(δβ−1) as

δ → 0 (since Assumption (2.3) holds), then P
ε
3

N0
= o(N

−(β−1)
0 ) as N0 → ∞.

Therefore, as β > 2,
∞∑

N0=1

P
ε
3

N0
< ∞.
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Then, from Borel-Cantelli Lemma, one has that

µ

({
x0; sup

N>N0

∣∣∣∣∣
1

N

N∑
s=1

v(T s(x0))−
∫

v(x)dµ(x)

∣∣∣∣∣ >
ε

3

}
i.o.

)
= 0,

that, is, for any x0 µ-almost everywhere, there exists N1 = N1(x0) > 0 such

that x0 /∈ P
ε
3

N0
, for all N0 > N1. Hence,

sup
N>N0

∣∣∣∣∣
1

N

N∑
s=1

v(T s(x0))−
∫

v(x)dµ(x)

∣∣∣∣∣ ≤
ε

3
. (3.8)

From the expressions (3.7) and (3.8), for all N0 > N1 and for all N > N0, we
have

∣∣∣∣∣
1

N

N∑
s=1

v(T s(x0))

∣∣∣∣∣ =

∣∣∣∣∣∣
1

N

∑
1≤s≤N

∑

r<|h|<K0

ϕ(T s(x0))ϕ(T s+h(x0))

∣∣∣∣∣∣
<

2ε

3
.

This is not enough. As r and K0 are fixed, one has

lim
N→∞

1

N

1−h∑
s=0

∑

r<|h|<K0

ϕ(T s(x0))ϕ(T s+h(x0)) = 0

and

lim
N→∞

1

N

N∑

s=N−h

∑

r<|h|<K0

ϕ(T s(x0))ϕ(T s+h(x0)) = 0.

Therefore, given ε
3

> 0, there exists N2 ∈ N−{0} such that, for all N > N2,
∣∣∣∣∣∣
1

N

1−h∑
s=0

∑

r<|h|<K0

ϕ(T s(x0))ϕ(T s+h(x0))

∣∣∣∣∣∣
<

ε

6

and ∣∣∣∣∣∣
1

N

N∑

s=N−h

∑

r<|h|<K0

ϕ(T s(x0))ϕ(T s+h(x0))

∣∣∣∣∣∣
<

ε

6
.

Since ∣∣∣∣∣∣∣
1

N

∑
1≤s≤N

1≤s+h≤N

∑

r<|h|<K0

ϕ(T s(x0))ϕ(T s+h(x0))

∣∣∣∣∣∣∣
=
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=

∣∣∣∣∣∣∣
1

N

∑
1≤s≤N

∑

r<|h|<K0

ϕ(T s(x0))ϕ(T s+h(x0))− 1

N

∑
1≤s≤N

s<1−h

∑

r<|h|<K0

ϕ(T s(x0))ϕ(T s+h(x0))− 1

N

∑
1≤s≤N

s>N−h

∑

r<|h|<K0

ϕ(T s(x0))ϕ(T s+h(x0))

∣∣∣∣∣∣∣
<

<
2ε

3
+

ε

6
+

ε

6
= ε.

Since M1 = supλ∈[0,2π) |g(λ)|, one has, for large N , that

∣∣∣∣∣∣∣∣∣∣

1

4π2N

N∑

k=0

g(λk)
1

N

∑
1≤s≤N

1≤s+h≤N

r<|h|<K0

XsXs+he
−iλkh

∣∣∣∣∣∣∣∣∣∣

≤ 1

4π2N

N∑

k=0

|g(λk)| ε <

<
N + 1

4π2N
M1ε <

2M1

4π2
ε = ε1.

Therefore, Lemma 2 is proved.
¤

Important Remark: The constant K0 is fixed from now on. We choose
K0 and r of Lemma 2 larger than r0 of Lemma 1. Note that everything
depends on the initially chosen x0. For this x0 and K0 fixed (and large)
there is a number N1. All N > 0, in the future, will be larger than such
N1. This lemma says that h such that r < h < K0 is not important for the
periodogram function.

Now we will return to the proof of Theorem 3.1.
Therefore, from Lemma 2, the equality in expression (3.3), when N →∞,

can be rewritten as
〈

1

N

N∑

h=0

I(λk)δλk
, g

〉
=

1

4π2N2

N∑

k=0

g(λk)
∑

1≤s≤N
1≤s+h≤N

|h|≤r

XsXs+he
−iλkh + o(1). (3.9)
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Now, we fix q and let us define B1, · · · , Bq a partition of the unit interval.
The intervals Bj, j ∈ {1, · · · , q}, are such that Bi ∩ Bj = φ, for all i, j ∈
{1, · · · , q}, i 6= j, and such that

q⋃
j=1

Bj = [0, 1),

where

Bj =

[
j

q
,
j + 1

q

)
, for j ∈ {1, · · · , q}.

Let αj be a fixed interior point of Bj, for j ∈ {1, · · · , q}. Then, the
expression (3.9) can be rewritten as

〈
1

N

N∑

h=0

I(λk)δλk
, g

〉
=

1

4π2N2

N∑

k=0

g(λk)
∑

1≤s≤N
1≤s+h≤N

|h|≤r

XsXs+he
−iλkh + o(1) =

=
1

4π2

1

N

N∑

k=0

g(λk)
1

N

∑
1≤s≤N

1≤s+h≤N

|h|≤r

XsXs+he
−iλkh + o(1) =

=
1

4π2

1

N

N∑

k=0

g(λk)

q∑
j=1

1

N

∑
s:xs∈Bj
1≤s≤N

1≤s+h≤N

|h|≤r

[
ϕ(xs)ϕ(T h(xs))− ϕ(αj)ϕ(T h(αj))

]
e−iλkh

+
1

4π2

1

N

N∑

k=0

g(λk)
∑

1≤s≤N
1≤s+h≤N

|h|≤r

q∑
j=1

1

N
#[xs ∈ Bj]ϕ(αj)ϕ(T h(αj))e

−iλkh (3.10)

+ o(1),

where Xs = ϕ(Xs−1) = ϕ(T s(X0)) and xs = T s(x0).
Note that the restriction 1 ≤ s + h ≤ N , with |h| < r and r fixed, is a

mild assumption because the number of s such that 1− h < s < N − h is of
the same order as N . By Birkoff’s Theorem

lim
N→∞

1

N
#

[
xs ∈ Bj

1 ≤ s + h ≤ N

]
= lim

N→∞
1

N
#[xs ∈ Bj] = µ(Bj),
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given ε > 0 take N large enough such that
∣∣∣∣
1

N
#[xs ∈ Bj]− µ(Bj)

∣∣∣∣ ≤
4π2

2M1rqM2
2

ε,

for any j ∈ {1, · · · , q}, where M1 = supλ∈[0,2π] |g(λ)| and M2 = supx∈S |ϕ(x)|.
Suppose N goes to infinity faster than q.

Now, we will show the following claim:

Claim: Given ε > 0, the absolute value of the expression (3.10) can be
written as

∣∣∣∣∣∣∣∣∣∣

1

4π2

1

N

N∑

k=0

g(λk)
∑

1≤s≤N
1≤s+h≤N

|h|≤r

q∑
j=1

1

N
#[xs ∈ Bj]ϕ(αj)ϕ(T h(αj))e

−iλkh

∣∣∣∣∣∣∣∣∣∣

<

<

∣∣∣∣∣∣
1

4π2

1

N

N∑

k=0

g(λk)
∑

|h|≤r

q∑
j=1

µ(Bj)ϕ(αj)ϕ(T h(αj))e
−iλkh

∣∣∣∣∣∣
+

+
N + 1

N
ε, (3.11)

for large N .

Proof: Observe that using Birkoff’s Theorem, for large N ,

∣∣∣∣∣∣∣∣∣∣

1

4π2

1

N

N∑

k=0

g(λk)
∑

1≤s≤N
1≤s+h≤N

|h|≤r

q∑
j=1

1

N
#[xs ∈ Bj]ϕ(αj)ϕ(T h(αj))e

−iλkh

∣∣∣∣∣∣∣∣∣∣

≤

≤
∣∣∣∣∣∣

1

4π2

1

N

N∑

k=0

g(λk)
∑

|h|≤r

q∑
j=1

µ(Bj)ϕ(αj)ϕ(T h(αj))e
−iλkh

∣∣∣∣∣∣
+

+
1

4π2

1

N

N∑

k=0

|g(λk)|
∑

|h|≤r

q∑
j=1

4π2ε

2M1rqM2
2

|ϕ(αj)
∣∣ϕ(T h(αj))

∣∣ ≤

13



≤
∣∣∣∣∣∣

1

4π2

1

N

N∑

k=0

g(λk)
∑

|h|≤r

q∑
j=1

µ(Bj)ϕ(αj)ϕ(T h(αj))e
−iλkh

∣∣∣∣∣∣
+

+
1

N

N∑

k=0

|g(λk)|
∑

|h|≤r

q∑
j=1

ε

2M1rqM2
2

M2
2 =

=

∣∣∣∣∣∣
1

4π2

1

N

N∑

k=0

g(λk)
∑

|h|≤r

q∑
j=1

µ(Bj)ϕ(αj)ϕ(T h(αj))e
−iλkh

∣∣∣∣∣∣
+

+
1

N

N∑

k=0

|g(λk)|2rq ε

2M1rq
<

<

∣∣∣∣∣∣
1

4π2

1

N

N∑

k=0

g(λk)
∑

|h|≤r

q∑
j=1

µ(Bj)ϕ(αj)ϕ(T h(αj))e
−iλkh

∣∣∣∣∣∣
+

N + 1

N
ε.

This proves the Claim.
¤

As〈
1

N

N∑

h=0

I(λk)δλk
, g

〉
=

1

4π2N2

N∑

k=0

g(λk)
∑

1≤s≤N
1≤s+h≤N

|h|≤r

XsXs+he
−iλkh + o(1) =

=
1

4π2

1

N

N∑

k=0

g(λk)

q∑
j=1

1

N

∑
s:xs∈Bj
1≤s≤N

1≤s+h≤N

|h|≤r

[
ϕ(xs)ϕ(T h(xs))− ϕ(αj)ϕ(T h(αj))

]
e−iλkh

+
1

4π2

1

N

N∑

k=0

g(λk)
∑

1≤s≤N
1≤s+h≤N

|h|≤r

q∑
j=1

1

N
#[xs ∈ Bj]ϕ(αj)ϕ(T h(αj))e

−iλkh + o(1),

from the above Claim, we can write
〈

1

N

N∑

h=0

I(λk)δλk
, g

〉
=

14



=
1

4π2

1

N

N∑

k=0

g(λk)

q∑
j=1

∑
xs∈Bj
1≤s≤N

1≤s+h≤N

|h|≤r

[ϕ(xs)ϕ(T h(xs))− ϕ(αj)ϕ(T h(αj))]e
−iλkh

+
1

4π2

1

N

N∑

k=0

g(λk)
∑

|h|≤r

q∑
j=1

µ(Bj)ϕ(αj)ϕ(T h(αj))e
−iλkh + o(1). (3.12)

In Lemma 3 we shall prove that the first term in the expression (3.12)
can be taken as small as we want if N and q are large enough.

Lemma 3: Given ε > 0,

1

4π2

1

N

N∑

k=0

g(λk)

q∑
j=1

1

N

∑
xs∈Bj
1≤s≤N

1≤s+h≤N

|h|≤r

[ϕ(xs)ϕ(T h(xs))− ϕ(αj)ϕ(T h(αj))]e
−iλkh < ε,

for q sufficiently large but fixed and for all N large enough.

Proof: Since ϕ is a continuous map on the compact set [0, 1) it is uniformly
continuous. The transformation T is also continuous, so ϕ(·)ϕ(T h(·)) is also
a uniformly continuous function. Therefore, for fixed h ∈ Z, for all ε1 > 0,
there exists δh such that for all x, y with |x− y| < δh, then

|ϕ(x)ϕ(T h(x))− ϕ(y)ϕ(T h(y))| < ε1.

Since |h| < r is uniformly bounded one can find a uniform δ that works for
all h ∈ Z such that |h| < r.

Take ε1 = 4π2

2M1
ε > 0 and q large enough such that 1

q
< δ. Therefore, if

length of Bj < δ, for all j ∈ {1, · · · , q}, we have

|ϕ(x)ϕ(T h(x))− ϕ(y)ϕ(T h(y))| < ε1,

for all x, y ∈ Bj and for any h ∈ Z such |h| < r .
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Therefore,
∣∣∣∣∣∣∣∣∣∣∣∣

1

4π2

1

N

N∑

k=0

g(λk)

q∑
j=1

1

N

∑
xs∈Bj
1≤s≤N

1≤s+h≤N

|h|≤r

[ϕ(xs)ϕ(T h(xs))− ϕ(αj)ϕ(T h(αj))]e
−iλkh

∣∣∣∣∣∣∣∣∣∣∣∣

≤

≤ 1

4π2N

N∑

k=0

|g(λk)| 1
N

q∑
j=1

∑
xs∈Bj
1≤s≤N

1≤s+h≤N

|h|≤r

∣∣ϕ(xs)ϕ(T h(xs))− ϕ(αj)ϕ(T h(αj))
∣∣ ≤

≤ 1

4π2N

N∑

k=0

|g(λk)| 1
N

q∑
j=1

∑
xs∈Bj
1≤s≤N

1≤s+h≤N

|h|<r

ε1 =
1

4π2N

N∑

k=0

|g(λk)| 1
N

∑
1≤s≤N

1≤s+h≤N

|h|<r

ε1,

for xs and αj such that |xs − αj| < δ, where the double summation, in the
above expression, has N terms all of them less than ε1. Therefore,

1

4π2N

N∑

k=0

g(λk)

q∑
j=1

1

N

∑
xs∈Bj
1≤s≤N

1≤s+h≤N

|h|≤r

[ϕ(xs)ϕ(T h(xs))− ϕ(αj)ϕ(T h(αj))]e
−iλkh <

<
(N + 1)M1

4π2N
ε1 <

2M1

4π2
ε1 = ε,

where
M1 = sup

λ∈(0,2π]

|g(λ)|.

Therefore, Lemma 3 is proved.
¤

Now, using Lemma 3, the whole expression (3.12) can be rewritten as
〈

1

N

N∑

k=0

I(λk)δλk
, g

〉
=

16



=
1

4π2N

N∑

k=0

g(λk)
∑

|h|≤r

q∑
j=1

µ(Bj)ϕ(αj)ϕ(T h(αj))e
−iλkh (3.13)

+ o(1).

The following lemma proves that the expression (3.13) goes to 〈fX,r, g〉,
when N →∞.

Lemma 4: For r fixed,

1

4π2N

N∑

k=0

g(λk)
∑

|h|≤r

q∑
j=1

µ(Bj)ϕ(αj)ϕ(T h(αj))]e
−iλkh → 〈fX,r, g〉 ,

when q,N →∞ (N much more faster than q).

Proof: Given ε1 > 0, note that for fixed N , with N much larger than q,
where q is also large, one has

∣∣∣∣∣∣
∑

|h|≤r

q∑
j=1

µ(Bj)ϕ(αj)ϕ(T h(αj))e
−iλkh −

∑

|h|≤r

(∫ 1

0

ϕ(x)ϕ(T h(x))dµ(x)

)
e−iλkh

∣∣∣∣∣∣

≤
∑

|h|≤r

ε1

2r
= ε1.

This is true since, for fixed h and |h| < r,

q∑
j=1

µ(Bj)ϕ(αj)ϕ(T h(αj)) →
∫ 1

0

ϕ(x)ϕ(T h(x))dµ(x), when q →∞.

Therefore, given ε1 > 0, if q is large then, for all |h| < r,

∣∣∣∣∣
q∑

j=1

µ(Bj)ϕ(αj)ϕ(T h(αj))−
∫ 1

0

ϕ(x)ϕ(T h(x))dµ(x)

∣∣∣∣∣ < ε1.

Since ∫ 1

0

ϕ(x)ϕ(T h(x))dµ(x) = γX(h), for fixed h,
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and

fX,r(λk) =
1

2π

∑

|h|≤r

γX(h)e−iλkh,

one has
∣∣∣∣∣∣

1

4π2N

N∑

k=0

g(λk)
∑

|h|≤r

q∑
j=1

µ(Bj)ϕ(αj)ϕ(T h(αj))e
−iλkh−

− 1

4π2N

N∑

k=0

g(λk)
∑

|h|≤r

(∫ 1

0

ϕ(x)ϕ(T h(x))dµ(x)

)
e−iλkh

∣∣∣∣∣∣
≤

≤
∣∣∣∣∣

1

4π2N

N∑

k=0

g(λk)e
−iλkh

∣∣∣∣∣ ε1,

for large q. Therefore, one has
∣∣∣∣∣∣

1

4π2N

N∑

k=0

g(λk)
∑

|h|≤r

q∑
j=1

µ(Bj)ϕ(αj)ϕ(T h(αj))e
−iλkh−

− 1

2πN

N∑

k=0

g(λk)fX,r(λk)

∣∣∣∣∣ ≤
1

4π2N

N∑

k=0

|g(λk)|ε1, (3.14)

for large q, and N much larger than q. Expression (3.14) suggests to take

ε1 =
2π2

M1

ε > 0.

Then,
〈

1

N

N∑

k=0

I(λk)δλk
, g

〉
=

1

2πN

N∑

k=0

g(λk)fX,r(λk) +
1

4π2N

N∑

k=0

g(λk)ε1 + o(1)

=
1

2π

1

N

N∑

k=0

g(λk)fX,r(λk) +
N + 1

N
ε + o(1)

=
1

2π

∫ 2π

0

g(λ)fX,r(λ)dλ +
N + 1

N
ε + o(1),
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for large N .
Then, for large N , one has

∣∣∣∣∣

〈
1

N

N∑

k=0

I(λk)δλk
, g

〉
− 1

2π

∫ 2π

0

fX,r(λ)g(λ)dλ

∣∣∣∣∣ < o(1). (3.15)

This proves Lemma 4.
¤

Now we shall prove Theorem 3.1. Considering the expression (3.15) and
Lemma 1, for given ε > 0, one has

∣∣∣∣∣

〈
1

N

N∑

k=0

I(λk)δλk
, g

〉
− 1

2π

∫ 2π

0

fX(λ)g(λ)dλ

∣∣∣∣∣ ≤ ε,

for N large enough.
This proves Theorem 3.1.

¤
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de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS). S.R.C.
Lopes was also partially supported by Pronex Fenômenos Cŕıticos em Prob-
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