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Abstract:
This paper reports an extensive Monte Carlo simulation study based on six
estimators for the long memory fractional parameter when the time series
is non-stationary, i.e., ARFIMA(p, d, q) process for d > 0.5. Parametric
and semiparametric methods are compared. In addition, the effect of the
parameter estimation is investigated for small and large sample sizes and
non-Gaussian error innovations. The methodology is applied to a well known
data set, the so-called UK short interest rates.
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1. INTRODUCTION

A time series exhibits long memory when there is significant dependence
between observations that are separated by a long period of time. Charac-
teristics of a long memory time series are an autocorrelation function ρk that
decays hyperbolically to zero and a spectral density function fX(·) that is
unbounded in the neighbourhood of the zero frequency.

The literature on ARFIMA processes has rapidly increased since early
contributions by Granger and Joyeux (1980), Hosking (1981) and Geweke
and Porter-Hudak (1983). This theory has been widely used in different fields
such as meteorology, astronomy, hydrology and economics (further details
can be found in Beran (1994) and Hosking (1981) and (1984)).

Geweke and Porter-Hudak (1983) presented a very important work on
stationary long memory processes. Their paper gave rise to several other
works, and presented a proof for the asymptotic distribution of the long
memory parameter d ∈ (−0.5, 0.0). These authors proposed an estimator of
d as the ordinary least squares estimator of the slope parameter in a sim-
ple linear regression of the logarithm of the periodogram. Reisen (1994)
proposed a modified form of the regression method, based on a smoothed
version of the periodogram function. Robinson (1995a), making use of mild
modifications on Geweke and Porter-Hudak’s estimator, dealt simultaneously
with d ∈ (−0.5, 0.0) and d ∈ (0.0, 0.5). Hurvich and Deo (1999), among oth-
ers, addressed the problem of selecting the number of frequencies necessary
for estimating the differencing parameter in the stationary case. Fox and
Taqqu (1986) considered an approximated method, whereas Sowell (1992)
presented the exact maximum likelihood procedure for estimating the frac-
tional parameter. These two papers considered the estimation procedures
for the stationary case. Simulation studies comparing estimates of d may
be found, for instance, in Smith et al. (1997), Bisaglia and Guégan (1998),
Reisen and Lopes (1999), Reisen et al. (2000) and (2001).

Recently, much work has focused on long memory non-stationary stochas-
tic ARFIMA processes. More recent works include Hurvich and Ray (1995),
Liu (1998), Velasco (1999a,b) and Velasco and Robinson (2000). Hurvich
and Ray (1995) consider the asymptotic characteristics of the periodogram
ordinates for both cases, d ≥ 0.5 and d ≤ −0.5. They found that the peri-
odogram of a non-stationary or noninvertible fractionally integrated process
at the jth Fourier frequency λj = 2πj

n
, where n is the sample size, has an

asymptotic relative bias depending on j. For finite sample size, Hurvich
and Ray (1995) examined the impact of the periodogram and the tapered
periodogram bias on the regression estimator of d proposed by Geweke and
Porter-Hudak (1983).

Liu (1998) studies the asymptotic theory of non-stationary ARFIMA pro-
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cess with special attention to the unit root KPSS test. Velasco (1999a)
showed that it is possible to estimate consistently the memory of non-statio-
nary process using log-periodogram methods designed for stationary cases.
The estimator given by Robinson (1995b) was also extended to non-stationa-
ry case in Velasco (1999b). Velasco and Robinson (2000) extended the results
of the Whittle’s maximum likelihood estimator to include non-stationary
(d ∈ (0.5, 1.0)) or intermediate memory (d ∈ (−0.5, 0.0)) observations.

Here, by a Monte Carlo study, we compare the semiparametric methods
given in Geweke and Porter-Hudak (1983) and Reisen (1994); two modified
forms of the Geweke and Porter-Hudak’s estimator; the cosine-bell tapered
data and the parametric Whittle method (see Fox and Taqqu, 1986). These
estimation methods are investigated in the situation where d ∈ (0.5, 1.5).
The model and the estimation procedures are summarized in Section 2. The
simulation study is presented in Section 3. The methodology is applied to a
real data set in Section 4. Conclusions are given in Section 5.

2. THE MODEL AND THE ESTIMATORS

2.1. Stationary and Invertible ARFIMA Processes

Let {Xt}t∈Z be a zero mean ARFIMA(p, d, q) process given by

Φ(B)(1− B)dXt = Θ(B)εt, d ∈ R, (2.1)

where B is the lag operator. The polynomials Φ(B) =
∑p

i=0(−φi)Bi and
Θ(B) =

∑q
i=0 θi Bi are of orders p and q, respectively, with φ0 = −1 and

θ0 = 1. The process {εt}t∈Z is white noise process with zero mean and finite
variance σ2

ε .
The process {Xt}t∈Z is both stationary and invertible if the polynomials

Φ(B) and Θ(B) have roots outside of the unit circle and |d| < 0.5. Its spectral
density function, fX(·), is given by

fX(λ) = fU(λ)

[
2 sin

(
λ

2

)]−2d

, λ ∈ [−π, π], (2.2)

where fU(·) is the spectral density function of an ARMA(p, q) process. Hosk-
ing (1981), Beran (1994) and Reisen (1994) describe ARFIMA models in
detail.

The process (2.1) exhibits long memory when d ∈ (0.0, 0.5), intermediate
memory when d ∈ (−0.5, 0.0) and short memory when d = 0.

2.2. Non-stationary ARFIMA Processes

Now, replacing the parameter d in (2.1) with d∗ = d + r, where d ∈
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(0.0, 0.5), r > 0, r ∈ R the resulting model is given by

Φ(B)(1− B)d∗Xt = Θ(B)εt. (2.3)

The above equation can be rewritten as

Yt = (1− B)rXt

such that
Φ(B)(1− B)dYt = Θ(B)εt (2.4)

is an ARFIMA(p, d, q) process.
For d∗ ≥ 0.5, the process (2.3) is non-stationary, and level-reverting for
d∗ ∈ [0.5, 1.0), considering there is no long-run impact of an innovation on
the value of the process (see Velasco, 1999a).

2.3. Estimates of the Parameters in ARFIMA(p, d∗, q) Processes

We deal with some well known estimation methods of d to estimate d∗.
The first five estimators are semiparametric methods based on an approxi-
mated regression equation obtained from the logarithm of the spectral density
function of the process. The first method is the one proposed by Geweke and
Porter-Hudak (1983), denoted in the following by GPH. The second esti-
mator is the smoothed periodogram regression (SPR), suggested by Reisen
(1994).

As a third method we consider the GPH, based on the trimming l and
bandwidth m, denoted hereafter by GPHtr, suggested by Robinson (1995a).
The GPHtr method regresses log {I(λj)} on log {2 sin(λj/2)}2, for j ∈ {l, l+
1, · · · ,m}, where l tends to infinity more slowly than m. One observes that
the independent regressors are related to the fractional integration compo-
nent in the spectral density function given by (2.2).

The fourth method is a modified form of the GPH method, denoted here-
after by MGPH, obtained by replacing in the regression equation the quantity
2 sin(

λj

2
) by j (see Velasco, 1999b, p. 101).

The cosine-bell tapered data method, denoted in the following by GPHTa,
is the fifth approach considered here. In this method the modified peri-
odogram function is given by

I(λj) =
1

2π
∑n−1

t=0 g(t)2

∣∣∣∣∣
n−1∑
t=0

g(t)Xte
−iλjt

∣∣∣∣∣

2

,

where the tapered data is obtained from the cosine-bell function

g(t) =
1

2

[
1− cos

(
2π(t + 0.5)

n

)]
.
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This estimator was also used in the works by Hurvich and Ray (1995) and
Velasco (1999a).

The sixth estimator is the parametric technique proposed by Fox and
Taqqu (1986), denoted in the following by FT. For computational purposes
this estimator is obtained by minimizing a finite and discrete form of a func-
tion depending on the vector of unknown parameters.

3. MONTE CARLO SIMULATION STUDY

The processes {Yt}t∈Z in equation (2.4) were simulated as suggested by
Hosking (1984), where {εt}t∈Z is a Gaussian white noise process with zero
mean and variance σ2

ε = 1.0. The error process was generated using the
RNNOR subroutine in the IMSL library. The process {Xt}t∈Z is obtained
through the algebraic form Xt = (1−B)−rYt, for t ∈ N−{0}, with X1 = Y1.

The estimation results are obtained for time series with small and large
sample sizes, i.e., for n = 100 and 300 respectively, and in both cases are
based upon 1,000 replications of the error process. We calculate the empirical
values of the mean, the bias, the standard deviation (sd) and the mean
squared error (mse). These quantities are given in the tables. The largest
bias and mean squared error, in absolute values, are given in bold-face. The
truncation point in the Parzen lag window, for the SPR’s method, is ν = nβ,
where we consider β = 0.9 (see Reisen, 1994, for a discussion on the value of
β). The bandwidth m in the semiparametric methods is a function of n, that
is, m = nα. In the GPH, SPR and GPHTa methods, we fixed α = 0.5 (as it
is widely used). For both GPHtr and MGPH methods we use two different
values of the bandwidth m: we consider α1 = 0.6 and α2 = 0.7 and we denote
the estimators respectively by GPHtr(i) and MGPH(i), for i = 1, 2. Also,
the trimming number l in the regression methods is l = 1 except for GPHtr
and GPHTa, where we consider l = 2. The reason for taking l = 2 in the
GPHTa estimator is given by Theorem 3 in Hurvich and Ray (1995).

First, we deal with ARFIMA(0, d∗, 0) models and the results are in Tables
1 and 2. Table 1 presents the cases where d∗ ∈ {0.6, 1.0}. Other values of d∗

were also simulated and the results are available upon request. For d∗ < 1.0
we can see the estimates are positively biased, except in the SPR method.
The FT method seems, in general, to be more accurate (smaller bias and
mean squared error values) than the other methods which also give good
results. Note that increasing the bandwidth m in the GPHtr and MGPH
methods results in a decrease in the bias and a substantial decrease in the
mse of the estimates (one observes that the mse values decrease almost by
half). The SPR estimator has better performance than GPH estimator in
the sense of minimizing the mse values, as it was expected since SPR uses
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the smoothed periodogram to estimate the spectral density function. The
tapering method (GPHTa) gives estimates with the largest mse value due to
the large value of its sd.

Table 1: Estimates of the parameter d∗ for the ARFIMA(0, d∗, 0) model
when d∗ ∈ {0.6, 1.0}.

d∗ n Methods m mean bias sd mse

GPH 10 0.6134 0.0134 0.2807 0.0789
SPR 10 0.5109 -0.0891 0.2261 0.0590

GPHtr(1) 16 0.6100 0.0100 0.3392 0.1150
GPHtr(2) 25 0.6181 0.0181 0.2267 0.0517

100 MGPH(1) 16 0.6067 0.0067 0.2056 0.0423
MGPH(2) 25 0.6009 0.0009 0.1546 0.0239
GPHTa 10 0.6169 0.0169 0.4862 0.2364

FT - 0.6058 0.0058 0.0905 0.0082
0.6 GPH 17 0.6182 0.0182 0.2154 0.0467

SPR 17 0.5618 -0.0382 0.1755 0.0322
GPHtr(1) 31 0.6073 0.0073 0.1912 0.0366
GPHtr(2) 54 0.6099 0.0099 0.1250 0.0157

300 MGPH(1) 31 0.6122 0.0122 0.1475 0.0219
MGPH(2) 54 0.6056 0.0056 0.1062 0.0113
GPHTa 17 0.6208 0.0208 0.3291 0.1086

FT - 0.6041 0.0041 0.0519 0.0027
GPH 10 0.9692 -0.0308 0.2381 0.0576
SPR 10 0.9330 -0.0670 0.2022 0.0453

GPHtr(1) 16 0.9856 -0.0144 0.2885 0.0834
GPHtr(2) 25 0.9970 -0.0030 0.1895 0.0359

100 MGPH(1) 16 0.9679 -0.0321 0.1801 0.0334
MGPH(2) 25 0.9604 -0.0396 0.1320 0.0190
GPHTa 10 1.1153 0.1153 0.4967 0.2597

FT - 0.9970 -0.0030 0.1895 0.0359
1.0 GPH 17 0.9835 -0.0165 0.1734 0.0303

SPR 17 0.9789 -0.0211 0.1482 0.0224
GPHtr(1) 31 0.9982 -0.0012 0.1553 0.0241
GPHtr(2) 54 0.9971 -0.0029 0.1035 0.0107

300 MGPH(1) 31 0.9856 -0.0144 0.1182 0.0142
MGPH(2) 54 0.9783 -0.0217 0.0861 0.0079
GPHTa 17 1.0648 0.0648 0.3120 0.1014

FT - 0.9948 -0.0052 0.0433 0.0019

When the process is a random walk (d∗ = 1.0) all procedures perform
well and are very competitive. The mean of the estimates underestimates
the true parameter for all methods, except for GPHTa. This estimator again
presented the largest value for both sd and mse. The empirical results in
Table 1 also indicate that the sd and mse values decrease when n increases.

Table 2 presents results for d∗ = 1.2 where the level-reversion property
does not hold. We have observed that when d∗ > 1.0 the non-tapered esti-
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mators give an average value of approximately 1 for their estimates, indepen-
dently of the value of d. The estimates are negatively biased while tapering
gives estimates which are positively biased (see Figure 1). This study reveals
that, in practical situations, if one of these non-tapered methods give an es-
timate close to one, this does not necessarily indicate that the series follows
a random walk. One solution is to take first differences of the series and
then to estimate d∗. However, as pointed out by Hurvich and Ray (1995),
the GPH estimator is not, in general, invariant under first differences. The
estimated d∗ based on the original data is not, in general, equal to one plus
the estimated d∗ based on the differenced data (this is the subject of the
paper Olbermann et al. (2002) in http://athena.mat.ufrgs.br/ slopes).

Table 2: Estimates of the parameter d∗ for the ARFIMA(0, 1.2, 0) model.

n Methods m mean bias sd mse

GPH 10 1.0829 -0.1171 0.2354 0.0691
SPR 10 1.0582 -0.1418 0.1788 0.0521

GPHtr(1) 16 1.0760 -0.1240 0.2606 0.0832
GPHtr(2) 25 1.0698 -0.1302 0.1843 0.0509

100 MGPH(1) 16 1.0705 -0.1295 0.1814 0.0496
MGPH(2) 25 1.0463 -0.1537 0.1378 0.0426
GPHTa 10 1.3437 0.1437 0.4771 0.2480

FT - 1.0628 -0.1372 0.0939 0.0276

GPH 17 1.0690 -0.1310 0.1708 0.0463
SPR 17 1.0889 -0.1111 0.1283 0.0288

GPHtr(1) 31 1.0588 -0.1412 0.1589 0.0452
GPHtr(2) 54 1.0594 -0.1406 0.1199 0.0341

300 MGPH(1) 31 1.0587 -0.1413 0.1229 0.0351
MGPH(2) 54 1.0471 -0.1525 0.1021 0.0337
GPHTa 17 1.2780 0.0780 0.3001 0.0960

FT - 1.0651 -0.1349 0.0747 0.0238

Now, we deal with ARFIMA(p, d∗, q) models and in Table 3 we present
the case where p = 1, q = 0, d∗ = 0.6 and n = 300. Simulations for different
sizes of n and also different cases when p = 0 and q = 1 are available upon
request. Besides revealing the estimates of d∗, this table also shows the
mean of the estimates for the short-run parameter and their corresponding
standard deviation and mean squared error values. In the FT method, the
parameters of the process are estimated simultaneously by using BCONF
subroutine in the IMSL library. For the semiparametric methods, the short-
run parameters are estimated using the NSLSE subroutine after the series
being differentiated by the estimate of d∗. Table 3 reveals the impact of the
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Table 3: Estimates of the parameters in the ARFIMA(1, 0.6, 0) model when
n = 300.

φ Methods mean(d̂∗) bias(d̂∗) sd(d̂∗) mse(d̂∗) mean(φ̂) sd(φ̂) mse(φ̂)

GPH 0.6200 0.0200 0.2030 0.0416 -0.6827 0.1162 0.0138
SPR 0.5556 -0.0444 0.1698 0.0308 -0.6621 0.1030 0.0120

GPHtr(1) 0.5952 -0.0048 0.1976 0.0390 -0.6696 0.1262 0.0168
GPHtr(2) 0.5633 -0.0367 0.1238 0.0166 -0.6737 0.0789 0.0069

-0.7 MGPH(1) 0.6033 0.0033 0.1506 0.0227 -0.6875 0.0815 0.0068
MGPH(2) 0.5701 -0.0299 0.1037 0.0116 -0.6814 0.0628 0.0043
GPHTa 0.6281 0.0281 0.3321 0.1110 -0.6237 0.2545 0.0705

FT 0.6365 0.0365 0.0687 0.0060 -0.8772 0.1467 0.0529

GPH 0.6166 0.0166 0.2026 0.0413 -0.4790 0.1524 0.0236
SPR 0.5544 -0.0456 0.1700 0.0309 -0.4486 0.1337 0.0205

GPHtr(1) 0.5977 -0.0023 0.1991 0.0396 -0.4654 0.1600 0.0267
GPHtr(2) 0.5620 -0.0380 0.1258 0.0173 -0.4643 0.1005 0.0113

-0.5 MGPH(1) 0.6023 0.0023 0.1467 0.0215 -0.4864 0.1060 0.0114
MGPH(2) 0.5675 -0.0325 0.1033 0.0117 -0.4732 0.0838 0.0077
GPHTa 0.5620 -0.0380 0.1258 0.0895 -0.4155 0.2810 0.0860

FT 0.6102 0.0102 0.0768 0.0060 -0.5421 0.1618 0.0279

GPH 0.6175 0.0175 0.2040 0.0419 -0.1855 0.1899 0.0362
SPR 0.5609 -0.0391 0.1665 0.0292 -0.1473 0.1641 0.0297

GPHtr(1) 0.6072 0.0072 0.1987 0.0395 -0.1772 0.1923 0.0374
GPHtr(2) 0.5813 -0.0187 0.1296 0.0171 -0.1744 0.1289 0.0173

-0.2 MGPH(1) 0.6113 0.0113 0.1435 0.0207 -0.1972 0.1343 0.0180
MGPH(2) 0.5836 -0.0164 0.1012 0.0105 -0.1830 0.1019 0.0106
GPHTa 0.6224 0.0224 0.3211 0.1035 -0.1396 0.3078 0.0983

FT 0.6034 0.0034 0.0756 0.0057 -0.1962 0.0834 0.0070

GPH 0.6225 0.0225 0.2129 0.0458 0.2001 0.0563 0.0032
SPR 0.5627 -0.0373 0.1777 0.0329 0.2433 0.1827 0.0352

GPHtr(1) 0.6396 0.0396 0.1963 0.0400 0.1734 0.1952 0.0387
GPHtr(2) 0.6692 0.0692 0.1310 0.0219 0.1352 0.1311 0.0213

0.2 MGPH(1) 0.6267 0.0267 0.1482 0.0227 0.1771 0.1517 0.0235
MGPH(2) 0.6461 0.0461 0.1057 0.0133 0.1538 0.1104 0.0143
GPHTa 0.6404 0.0404 0.3211 0.1046 0.2008 0.3015 0.0908

FT 0.7854 0.1854 0.5382 0.3237 0.2236 0.1501 0.0231

GPH 0.6698 0.0698 0.2046 0.0467 0.4168 0.1930 0.0441
SPR 0.6074 0.0074 0.1682 0.0283 0.4747 0.1638 0.0274

GPHtr(1) 0.7333 0.1333 0.1977 0.0568 0.3581 0.1860 0.0547
GPHtr(2) 0.8404 0.2404 0.1247 0.0733 0.2575 0.1206 0.0733

0.5 MGPH(1) 0.7039 0.1039 0.1406 0.0305 0.3836 0.1402 0.0332
MGPH(2) 0.7854 0.1854 0.0954 0.0435 0.3066 0.1002 0.0474
GPHTa 0.6855 0.0855 0.3195 0.1093 0.4048 0.2838 0.0895

FT 1.2428 0.6428 0.6796 0.8746 0.5033 0.1692 0.0286

GPH 0.7276 0.1276 0.2061 0.0587 0.5579 0.1838 0.0539
SPR 0.6774 0.0774 0.1673 0.0339 0.6048 0.1504 0.0316

GPHtr(1) 0.9121 0.3121 0.1895 0.1333 0.3930 0.1770 0.1255
GPHtr(2) 1.0600 0.4600 0.1287 0.2245 0.2562 0.1244 0.2124

0.7 MGPH(1) 0.8303 0.2303 0.1430 0.0735 0.4699 0.1403 0.0726
MGPH(2) 0.9596 0.3596 0.1025 0.1384 0.3491 0.1074 0.1346
GPHTa 0.7923 0.1923 0.3217 0.4129 0.4912 0.2753 0.1192

FT 1.2839 0.6839 0.6417 0.8789 0.6052 0.1793 0.0411

estimates when the short-run AR parameter is included in the model. For
negative values of φ, the methods still work well and are very competitive.

The FT method generally gives better estimates. For positive AR param-
eters the bias of the estimates are positive and they increase with φ. The
FT method loses its superiority, showing the largest bias and mse values.
In this situation, the bias of d̂∗ is predominantly positive, and negative for
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the AR parameter. The SPR method has a bias and mse that is increasing
more slowly than that of the other estimation methods as φ increases. This
is even more evident when φ increases from 0.5 to 0.7. In the GPHtr and
MGPH approaches, one observes that larger values of m produce opposite
effect than those in the ARFIMA(0, d∗, 0) model. Now the bias and the mean
squared error values tend to increase with m, specifically for positive short-
run parameter values. This is not surprising as long as the presence of AR
components in the model makes a larger contribution to the spectral density
function of the process at certain frequencies (away from the zero frequency,
but that are still involved in the regression equation). The GPHTa presents
larger mse compared with the other semiparametric methods. The sd and
mse values of d̂∗ for the semiparametric methods are essentially the same, as
it was found for the case ARFIMA(0, 0.6, 0), when n = 300, given in Table
1. The ARFIMA(1, 0.8, 0) was also considered and the results are available
upon request. It was noticed the same behaviour observed in the case of
Table 3 for all methods where the bias and mean squared error values in-
crease significantly for positive values of φ. The SPR method, in general,
has better behaviour compared with the others. For instance, when φ = 0.7
and n = 300, the estimates of d∗ and φ are respectively 0.8804 and 0.6050
and their corresponding mean squared error values are 0.0335 and 0.0307,
respectively.

We have also considered the performance of estimating the parameter
d∗ in ARFIMA(p, d∗, q) models when the innovation distributions are non
Gaussian. We considered innovation processes with the following distribu-
tions: uniform over the interval (−√3,

√
3), exponential with rate 1 (with

re-centered zero mean), Student’s t with 3 degrees of freedom and χ2 with
1 degree of freedom (with re-centered zero mean). All estimators have the
same behaviour as when the distribution of the innovation process is Gaus-
sian. As the results are quite similar we do not report them here, however
they are available upon request. Non-Gaussian distributed innovation pro-
cesses have also been the focus of many works, more recently in Velasco
(2000) for stationary time series.

4. APPLICATION

Does the UK short interest rates time series have long memory or a unit
root? The UK short interest rate time series is a 91 days of UK treasury bill
rates, measured quarterly, from quarter 1 in 1952 to quarter 4 in 1988 (with
148 observations). This series is presented and analyzed by Mills (1997) with
special interest in the theory of the unit root tests. From the plots of the
time series and its sample autocorrelation given in Mills (1997), it is clear
that this data exhibits non-stationary behaviour.
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The GPH and GPHTa estimates indicated that the process is a random
walk. The other procedures gave d̂∗ < 1.0. The GPHtr and MGPH methods
gave similar estimates where their values are between SPR and FT estimates.
In the FT method we tried different values for p and q, and the results sug-
gested an ARFIMA(0, d∗, 0) model. When using the semiparametric methods
the ARMA process order was identified after the time series has been dif-
ferentiated by d̂∗. The choices of the model were made by testing the AR
and MA estimates and the AIC (Akaike’s information) criterion. The esti-
mates of the short-run parameters and other statistics were obtained by using
the MINITAB package. The results related to the identification, estimation
models and forecasting analyses are given in Table 4.

The residual analyses were performed for the fitted models, and they all
indicated that the errors are approximately Gaussian white noise. Based on
the modified Box-Pierce test (MBP) the hypothesis of adequated model is
not rejected for all cases at 5% of significance level.

Forecasting issues were also considered by calculating the quantities mean
squared error (mse) and the mean absolute percentage error (MAPE) (see
Wei, 1990, p. 179) at the forecast initial value t = 135. This analysis
indicates that the series may be a non-stationary long memory one with
d∗ < 1.0. Hence, the use of d∗ = 1.0 may over-differentiate the series.

Table 4: Identification, estimation, and forecast results for the UK short
interest rates.

Estimate ARFIMA(0,FT,0) ARFIMA(0,SPR,1) ARFIMA(0,1,0)

d̂∗ 0.8514 0.7675 -

σ(d̂∗) 0.0640 0.1140 -

θ̂1 - -0.1936 -

σ(θ̂1) - 0.0836 -
σ̂2

ε 1.4671 1.4553 1.5089
AIC 53.30 56.12 57.18
MBP 0.108 0.107 0.064
mse 1.126 1.041 1.171

MAPE(%) 33.70 32.20 34.60

MBP- the modified Box-Pierce chi-square statistic with 11 degrees of freedom.

5. CONCLUSION

The performance of the semiparametric and parametric methods of esti-
mating the fractional difference parameter in a non-stationary process were

10



investigated. For the ARFIMA(0, d, 0) model, when d∗ ∈ (0.5, 1.0), the non-
tapered and tapered estimates perform well and the FT method, in general,
gives better estimates. This last estimator is outperformed by the semipara-
metric methods when positive and large short-run parameters are included
in the process. Also, the estimators improve as the sample sizes increase. In
the non-stationary case with no level-reversion property we observed that all
non-tapered estimators are strongly biased and underestimate the true pa-
rameter value. In this situation the bias of GPHTa is positive and is always
smaller than the value for the other estimators. The time series UK short
interest rates was analyzed as an example and the results indicate that it may
belong to a class of non-stationary long memory process with the fractional
parameter d∗ ∈ (0.7, 1.0).
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Figure 1: Box-Plot of estimators of d in ARFIMA(0, 1.4, 0) model when
n = 300.
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