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Abstract - We consider the fractionally integrated ARFIMA Processes with seasonality s, de-
noted by SARFIMA(0, D, 0)s. This work presents a closed formula for the Durbin-Levinson’s
algorithm relating the partial autocorrelation and the autocorrelation functions of these pro-
cesses. In order to obtain the closed formula we show a hypergeometric identity, namely
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for any non-negative integer l and for any D ∈ (−0.5, 0.5).
Any recursive algorithm that requires the use of the left-hand side of the above expression

will have smaller error under the use of the right-hand side formula.
The Durbin-Levinson’s algorithm is fully calculated for the SARFIMA(0, D, 0)s processes.
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1. INTRODUCTION

In practical situations many time series exhibit a periodic pattern. These time series are very
common, for instance, in meteorology, economics, hydrology, and astronomy. Sometimes, even
in these fields, the seasonality period can depend on time, that is, the autocorrelation structure
of the data can vary from season to season. Here, in our analysis, we consider the seasonal
period constant over seasons.

∗Corresponding author. E-mail: slopes@mat.ufrgs.br.
C. Bisognin was supported by CAPES-Brazil. S.R.C. Lopes was partially supported by CNPq-Brazil, by Pronex
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The purpose of this paper is to review the Durbin-Levinson’s algorithm for the partial au-
tocorrelation function of the seasonal fractionally integrated processes.

The algorithm due to Durbin [1] is a method of efficient estimation for the parameters of a
model involving recurrence relations among partial autocorrelation and autocorrelation functions
of any stochastic stationary process. Ramsey [2] used the same idea as Durbin-Levinson’s
algorithm to give a characterization of the partial autocorrelation function of any wide sense
stationary process.

We show that for seasonal fractionally integrated processes the Durbin-Levinson’s algorithm
has a closed formula based on the Gamma function and on the product of monomials. The
result is obtained from the Identity of Pfaff-Saalschütz (see [3]) for hypergeometric functions.
We point out that the mathematical proof of the main equality envolving the Durbin-Levinson’s
algorithm becomes simpler using the expression displayed in the abstract of this paper.

The seasonal fractionally integrated processes, given in some detail in Section 2, are treated in
[4-7]. For some applications of these models in fields as hydrology, communications, economics,
and finances, we refer the reader to [5], [8-10]. The paper [8] uses the full SARFIMA(p, d, q) ×
(P, D, Q)s model considering the maximum likelihood estimation method and also gives a com-
plete analysis for the Nile river monthly flows. Porter-Hudak [9] considers the estimation method
proposed by [11] to estimate the parameter D in a SARFIMA(0, D, 0)s model and apply this
technique to monetary aggregates data. Ray [10] uses the full SARFIMA(p, d, q) × (P, D, Q)s

model to forecast the series of monthly IBM product revenues. Bisognin and Lopes [7] analyzes
different estimation methods to estimate the parameter D in SARFIMA(0, D, 0)s models. In
this work several semi-parametric methods, besides the maximum likelihood one, are proposed
to estimate D. For forecasting a future observation from seasonal fractionally integrated models
we refer to the papers [7] and [9, 10].

The paper is organized as follows. In the next section we review the seasonal fractionally
integrated processes with some definitions and we provide a proof of the main theorem on prop-
erties of these processes. Section 3 states the Durbin-Levinson’s algorithm for these processes.
The main results are in Section 4 and Section 5 concludes.

2. SEASONAL FRACTIONALLY INTEGRATED PROCESSES

We shall consider the autoregressive fractionally integrated moving average processes with
seasonality s, denoted here by SARFIMA(p, d, q) × (P, D, Q)s, which are an extension of the
ARFIMA(p, d, q) models, proposed by [12-14].

In the following sub-section we give some definitions and some properties for the SARFIMA
(p, d, q) × (P, D, Q)s processes.

2.1. Some Definitions and Properties

Definition 2.1: For all D > −1, the seasonal difference operator ∇D
s := (1−Bs)D, where s ∈ N

is the seasonality, is defined by the binomial expansion

∇D
s (B) := (1 − Bs)D =

∑

k≥0

(

D

k

)

(−Bs)k = 1 − DBs −
D(1 − D)

2!
B2s − · · · , (2.1)
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where

(

D

k

)

=
Γ(1 + D)

Γ(1 + k)Γ(1 + D − k)
,

with Γ(·) the Gamma function (see [15]).

Definition 2.2: Let {Xt}t∈Z be a stochastic process with zero mean and autocovariance function
γX(·) such that γX(h) → 0, as h → 0. The partial autocorrelation function, denoted by φX(k, j),
k ∈ Z≥, j = 1, · · · , k, are the coefficients in the equation

Psp(X1,X2,···,Xk)(Xk+1) =
k

∑

j=1

φX(k, j)Xk+1−j ,

where Psp(X1,X2,···,Xk)(Xk+1) is the orthogonal projection of Xk+1 in the closed span sp(X1,
X2, · · · , Xk) generated by the previous observations. Then, from the equations

〈Xk+1 − Psp(X1,X2,···,Xk)(Xk+1), Xj〉 = 0, j = 1, · · · , k,

where 〈·, ·〉 defined the internal product on the Hilbert space L2(Ω,A, P) given by 〈X, Y 〉 =
E(XY ), we obtain
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, (2.2)

with ρX(·) the autocorrelation function of the process {Xt}t∈Z. The coefficients φX(k, j), k ∈ Z>,
j = 1, · · · , k, are uniquely determined by (2.2). For more details, see [15] .

The definition of partial autocorrelation function plays an important role in the Durbin-
Levinson’s algorithm (see expressions (3.1) and (3.2) in Section 3) and its expression for seasonal
fractionally integrated processes is given in Theorem 2.1 (v) below.

Definition 2.3: Let {Xt}t∈Z be a stochastic process given by the expression

φ(B)Φ(Bs)∇d∇D
s (Xt − µ) = θ(B)Θ(Bs)εt, (2.3)

where µ is the mean of the process, {εt}t∈Z is a white noise process, s is the seasonal period,
B is the backward-shift operator, that is, BkXt = Xt−k and BskXt = Xt−sk, ∇

d and ∇D
s are,

respectively, the difference and the seasonal difference operators, φ(·), θ(·), Φ(·), and Θ(·) are
the polynomials of order p, q, P , and Q, respectively, defined by

φ(B) =

p
∑

i=0

(−φi)B
i, θ(B) =

q
∑

j=0

(−θj)B
j ,

Φ(B) =
P

∑

k=0

(−Φk)B
k, Θ(B) =

Q
∑

l=0

(−Θl)B
l,
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where φi, 1 ≤ i ≤ p, θj , 1 ≤ j ≤ q, Φk, 1 ≤ k ≤ P , and Θl, 1 ≤ l ≤ Q are constants. Then,
{Xt}t∈Z is a seasonal fractionally integrated ARIMA(p, d, q) × (P, D, Q)s process with period
s, denoted by SARFIMA(p, d, q) × (P, D, Q)s, where d and D are, respectively, the degree of
differencing and of seasonal differencing parameters.

Remarks: (1). A particular case of the SARFIMA(p, d, q)×(P, D, Q)s process is when p = q =
P = Q = 0. This process is called seasonal fractionally integrated ARIMA model with period s,
denoted by SARFIMA(0, D, 0)s, which will be the goal of this work and it is given by

∇D
s (Xt − µ) = εt, t ∈ Z. (2.4)

(2). When P = Q = 0, D = 0 and s = 1 the SARFIMA(p, d, q) × (P, D, Q)s process is just
the ARFIMA(p, d, q) process (see [16]). In this situation we already know the behaviour of the
parameter estimators (see, for instance, [17, 18]).

(3). From the paper [4] one may generate the process {Xt}t∈Z, given by the expression (2.4),
using its infinite moving average representation given in Theorem 2.1 (ii), whenever D < 0.5.
However, this technique requires a truncation point r smaller than or equal to the sample size
n, given by

∇−D
s;r (B) =

r
∑

k=0

(

−D
k

)

(−Bs)k =
r

∑

k=0

ψk(B
sk), (2.5)

where the coefficients ψk are given in the expression (2.7). To exemplify the error magnitude
of this truncation, one observes than when B = 1, the expression (2.1) gives ∇D

1 (1) = 0. We
also point out that using r = 1, 000 one gets ∇0.75

1;1,000(1) = 0.00155 while using r = 10, 000 one

get ∇0.75
1;10,000(1) = 0.0002758. These two values show how important is the right choice of the

truncation point r. Baillie et al. [20] point out that the use of this technique to generate a
stochastic process can give meaningless estimation results. To overcome with this problem we
use the generate algorithm, also proposed by [14], based on the partial autocorrelation function
of the SARFIMA(0, D, 0)s process. When the goal is mainly to forecast a future value we
consider the infinite moving average representation for this process to obtain the forecast error
expression (see [7]).

Before giving some properties of the SARFIMA(0, D, 0)s processes it is convenient to in-
troduce the notation Z≥ = {k ∈ Z | k ≥ 0}, Z≤ = {k ∈ Z | k ≤ 0} and let A be the set
{1, · · · , s − 1} ⊂ N.

For the proof of the following theorem we refer the reader to [4, 5] and [7]. In the following,
we use the notation [Γ(0)]−1 = 0.

Theorem 2.1. Let {Xt}t∈Z be the SARFIMA (0, D, 0)s process, given by the expression (2.4),
with mean zero and s ∈ N as the seasonal period. Then,

(i) when D > −0.5, {Xt}t∈Z is an invertible process with infinite autoregressive representation
given by

Π(Bs)Xt =
∑

k≥0

πkXt−sk = εt,
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where

πk =
−D(1 − D) · · · (k − D − 1)

k!
=

(k − D − 1)!

k!(−D − 1)!
=

Γ(k − D)

Γ(−D)Γ(k + 1)
· (2.6)

When k → ∞, πk ∼ k−D−1

Γ(−D) ·

(ii) when D < 0.5, {Xt}t∈Z is a stationary process with an infinite moving average representa-
tion given by

Xt = Ψ(Bs)εt =
∑

k≥0

ψkεt−sk,

where

ψk =
D(1 + D) · · · (k + D − 1)

k!
=

(k + D − 1)!

k!(D − 1)!
=

Γ(k + D)

Γ(D)Γ(k + 1)
· (2.7)

When k → ∞, ψk ∼ kD−1

Γ(D) ·

In the following, we assume that D ∈ (−0.5, 0.5).

(iii) The process {Xt}t∈Z has spectral density function given by

fX(w) =
σ2

ε

2π

[

2 sin
(sw

2

)]−2D

, 0 < w ≤ π. (2.8)

At the seasonal frequencies, for ν = 0, 1, · · · , [s/2], where [x] means the integer part of x,
it behaves as

fX

(

2πν

s
+ w

)

∼ fε

(

2πν

s

)

(sw)−2D, when w → 0·

(iv) The process {Xt}t∈Z has autocovariance and autocorrelation functions of order k, k ∈ Z≥,
given respectively by

γX(sk + ξ) =

{

(−1)kΓ(1−2D)
Γ(k−D+1)Γ(1−k−D)σ

2
ε = γX(k), if ξ = 0

0, if ξ ∈ A,
(2.9)

and

ρX(sk + ξ) =

{

Γ(1−D)Γ(k+D)
Γ(D)Γ(k−D+1) = ρX(k), if ξ = 0

0, if ξ ∈ A.
(2.10)

When k → ∞, ρX(sk) ∼ Γ(1−D)
Γ(D) k2D−1.
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(v) The process {Xt}t∈Z has partial autocorrelation function given by

φX(sk + ξ, sl + η) =

{

−
(

k
l

)Γ(l−D)Γ(k−l+1−D)
Γ(−D)Γ(k−D+1) = φX(k, l), if η = 0

0, if η ∈ A,
(2.11)

for any k, l ∈ Z≥ and ξ ∈ A ∪ {0}.

From the expression (2.11), when k = l, the partial autocorrelation function of order k is
given by

φX(sk, sk) =
D

k − D
= φX(k, k), for all k ∈ Z≥. (2.12)

Proof: Let {Xt}t∈Z be a SARFIMA(0, D, 0)s process with zero mean and seasonality s, given
by the expression (2.4).

(i) Writing Π(Bs)Xt = εt, we have Π(zs) = (1 − zs)D. When D > −0.5, the power series
expansion of Π(zs) converges for |z| ≤ 1, and so the process {Xt}t∈Z is stationary. The
binomial expansion of (1 − zs)D gives (2.6). As k → ∞, by Stirling’s formula

πk ∼
eD+1(k − D − 1)−D−1

Γ(−D)
∼

c1k
−D−1

Γ(−D)
∼

k−D−1

Γ(−D)
,

where c1 = eD+1.

From the above equation it follows that
∑∞

k=0π
2
k<∞ holds if and only if

∑

k>N (1/k)2+2D<∞,

for N sufficiently large, that is, when 2 + 2D > 1. Since D > −0.5, than
∑∞

k=0 π2
k < ∞.

In this case, the series
∑

k>0 πkXt−sk converges in L2(Ω). We than say that

(1 − Bs)DXt =
∑

k>0

πkXt−sk = εt.

(ii) The proof is similar to (i) replacing D by −D.

(iii) From the definition of a spectral density function for any stationary stochastic process, for
a SARFIMA(0, D, 0)s process, given by expression (2.4), one has

fX(w) =
[

|1 − e−isw|−D
]2

fε(w) =
σ2

ε

2π

[

|1 − e−isw|2
]−D

=
σ2

ε

2π

[

2 sin
(sw

2

)]−2D

,

for any w ∈ (0, π], where {εt}t∈Z is the white noise process.

Since sin
(

sw
2

)

→
(

sw
2

)

, when w → 0, one has

fX

(

2πν

s
+ w

)

∼
σ2

ε

2π
(sw)−2D, when w → 0,

where ν = 0, 1, · · · , [s/2], with [x] meaning the integer part of x.
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(iv) From the Herglotz’s theorem (see [15, 19]) and expression (2.8), for any s ∈ N, one has

γX(sk) =

∫ π

−π

cos(swk)
σ2

ε

2π

∣

∣

∣
2 sin

(sw

2

)
∣

∣

∣

−2D

dw

=
σ2

ε

2π
2−2D

∫ 2π

0
cos(swk)

∣

∣

∣
sin

(sw

2

)∣

∣

∣

−2D

dw

=
σ2

ε

π
2−2D π(−1)kΓ(−2D + 1)

2−2DΓ(k − D + 1)Γ(1 − k − D)

=
(−1)kΓ(−2D + 1)

Γ(k − D + 1)Γ(1 − k − D)
σ2

ε , (2.13)

where the third equality in expression (2.13) is formula 3.631.8, page 372, in [21]. It is
easy to see that

γX(sk + ζ) = 0, for ζ ∈ A.

The other results for the autocorrelation function follow immediately.

(v) The proof of this part is given in Section 3 below.

Remarks: (1). The spectral density function of the stationary SARFIMA(0, D, 0)s process is
unbounded when 0 < D < 0.5 and it has zeroes when D is negative.

(2). In the SARFIMA(0, D, 0)s processes the spectral density function is unbounded at fre-
quencies 2πν

s
, for ν = 1, · · · , [s/2]. While, in ARFIMA(p, d, q) processes, the long memory is

characterized by its spectral density function being unbounded at zero frequency only. Between
two seasonal frequencies a SARFIMA process has similar behavior as an ARFIMA process (see
Figure 2.1: (a) and (d)).

The autocorrelation function of a SARFIMA(0, D, 0)s process has values different from zero
at lags that are multiples of s and zero otherwise. While in an ARFIMA(p, d, q) process the
values of the autocorrelation function do not depend on s (see Figure 2.1: (b) and (e)).

The partial autocorrelation function φX(k, j) in SARFIMA(0, D, 0)s processes has zero values
whenever j 6= sl, for l ∈ Z> and nonzero otherwise. Although in ARFIMA(p, d, q) processes this
function does not depend on s (see Figure 2.1: (c) and (f)).

(3). The SARFIMA(p, d, q) × (P, D, Q)s process is stationary when d and D are less than 0.5
and the polynomials φ(B) · Φ(B) = 0 and θ(B) · Θ(B) = 0 have no roots in common and all roots
are outside of the unit circle. When D > 0, the process is said to have seasonal long memory .

(4). If {Xt}t∈Z is a stationary stochastic SARFIMA(p, d, q)× (P, D, Q)s process (see expression
(2.3)), with d, D ∈ (−0.5, 0.5) and zero mean, its spectral density function is given by

fX(w) =
σ2

ε

2π

|θ(e−iw)|2

|φ(e−iw)|2
|Θ(e−isw)|2

|Φ(e−isw)|2

[

2 sin
(w

2

)]−2d [

2 sin
(sw

2

)]−2D

,

for all 0 < w ≤ π, where {εt}t∈Z is a white noise process.
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Figure 2.1: The graphs the left-hand side are related to the ARFIMA(0, 0.3, 0) process while in the
right-hand side they are related to the SARFIMA(0, 0.3, 0)4: (a) and (d) spectral density functions; (b)
and (e) autocorrelation functions; (c) and (f) partial autocorrelation functions.

3. DURBIN-LEVINSON’S ALGORITHM

Let {Xt}t∈Z be a SARFIMA(0, D, 0)s process, given in expression (2.4), with mean µ equal
to zero. We want to show that its partial autocorrelation function φX(·, ·), given by Theorem
2.1 (v), satisfies the following systems
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φX(sl, sl) =
ρX(sl) −

∑sl−1
j=1 φX(sl − 1, j)ρX(sl − j)

1 −
∑sl−1

j=1 φX(sl − 1, j)ρX(j)
(3.1)

and

φX(k + 1, sl) = φX(k, sl) − φX(k + 1, k + 1)φX(k, k + 1 − sl), (3.2)

for any l ∈ Z≥ such that sl < k + 1, where k + 1 may or may not be a multiple of s.
Recurrence relations (3.1) and (3.2) are known as the Durbin-Levinson’s algorithm and they

explain how to go from lag k to lag (k + 1). We shall prove the recurrence relation (3.1) for any
D ∈ (−0.5, 0.5) with D 6= 0.

Considering only the sum in the numerator of expression (3.1) we have

sl−1
∑

j=1

φX(sl − 1, j)ρX(sl − j) = φX(sl − 1, 1)ρX(sl − 1)

+φX(sl − 1, 2)ρX(sl − 2) + · · · + φX(sl − 1, s)ρX(sl − s)

+φX(sl − 1, s + 1)ρX(sl − s − 1) + · · · + φX(sl − 1, 2s)ρX(sl − 2s) + · · ·

+φX(sl − 1, sl − 2)ρX(sl − sl + 2) + φX(sl − 1, sl − 1)ρX(sl − sl + 1)

= φX(sl − 1, s)ρX(s(l − 1)) + φX(sl − 1, 2s)ρX(s(l − 2)) + · · ·

+φX(sl − 1, s(l − 1))ρX(1) =
l−1
∑

j=1

φX(sl − 1, sj)ρX(s(l − j)) (3.3)

=
l−1
∑

j=1

φX(l − 1, j)ρX(l − j). (3.4)

The equality in expression (3.3) is true since φX(sk+ξ, sl+η) = 0, if η ∈ A, for any k, l ∈ Z≥

and ξ ∈ A∪ {0}. On the other hand, the equality in expression (3.4) is due to Theorem 2.1 (iv)
and (v).

Considering only the sum in the denominator of expression (3.1) we have

sl−1
∑

j=1

φX(sl − 1, j)ρX(j) = φX(sl − 1, 1)ρX(1) + φX(sl − 1, 2)ρX(2) + · · ·

+φX(sl − 1, s)ρX(s) + · · · + φX(sl − 1, 2s)ρX(2s) + · · ·

+φX(sl − 1, s(l − 1))ρX(s(l − 1)) + · · · + φX(sl − 1, sl − 2)ρX(sl − 2)

+φX(sl − 1, sl − 1)ρX(sl − 1) =
l−1
∑

j=1

φX(sl − 1, sj)ρX(sj) (3.5)

=
l−1
∑

j=1

φX(l − 1, j)ρX(j). (3.6)

The equality in expression (3.5) is true since φX(sk+ξ, sl+η) = 0, if η ∈ A, for any k, l ∈ Z≥

and ξ ∈ A∪ {0}. On the other hand, the equality in expression (3.6) is due to Theorem 2.1 (iv)
and (v).
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From the expressions (3.4) and (3.6) the system (3.1) is then given by

φX(sl, sl) =
ρX(l) −

∑l−1
j=1 φX(l − 1, j)ρX(l − j)

1 −
∑l−1

j=1 φX(l − 1, j)ρX(j)
= φX(l, l). (3.7)

Also, from Theorem 2.1 (v), the system (3.2) is given by

φX(k + 1, l) = φX(k, l) − φX(k + 1, k + 1)φX(k, k + 1 − l), (3.8)

for any l ∈ Z≥ such that l < k + 1.
We want to show that the partial autocorrelation functions of the SARFIMA(0, D, 0)s pro-

cess, given in Theorem 2.1 (v) satisfy the systems in expressions (3.7) and (3.8), for any k, l ∈ Z≥,
where ρX(·) is given in Theorem 2.1 (iv).

Lemma 3.1: Let {Xt}t∈Z be a process given by (2.4 ). For any k, l ∈ Z≥ such that l < k + 1,
the system given in (3.8 ) is true for the partial autocorrelation function of {Xt}t∈Z.

Proof: The right-hand side of the expression (3.8) can be written as

φX(k, l) − φX(k + 1, k + 1)φX(k, k + 1 − l) =

−

(

k

l

)

Γ(l − D)Γ(k − D − l + 1)

Γ(−D)Γ(k − D + 1)
−

(

k + 1

k + 1

)

Γ(k + 1 − D)Γ(−D + 1)

Γ(−D)Γ(k + 2 − D)

·

(

k

k + 1 − l

)

Γ(k + 1 − l − D)Γ(k − D − k − 1 + l + 1)

Γ(−D)Γ(k − D + 1)

= −

(

k

l

)

Γ(l − D)Γ(k − D − l + 1)

Γ(−D)Γ(k − D + 1)
−

(

k

k + 1 − l

)

Γ(k + 1 − D)Γ(1 − D)

Γ(−D)Γ(k + 2 − D)

·
Γ(k + 1 − l − D)Γ(l − D)

Γ(−D)Γ(k + 1 − D)

= −

(

k

l

)

Γ(l − D)Γ(k + 1 − l − D)

Γ(−D)Γ(k + 1 − D)
−

(

k

k + 1 − l

)

(−D)Γ(k + 1 − l − D)Γ(l − D)

(k + 1 − D)Γ(−D)Γ(k + 1 − D)

= −

(

k

l

)

Γ(l − D)Γ(k + 1 − l − D)

Γ(−D)Γ(k + 1 − D)
−

(

k

k + 1 − l

)

(−D)Γ(k + 1 − l − D)Γ(l − D)

Γ(−D)Γ(k + 2 − D)

= −
Γ(l − D)Γ(k + 2 − l − D)

Γ(−D)Γ(k + 2 − D)

[(

k

l

)

k + 1 − D

k + 1 − l − D
−

(

k

k + 1 − l

)

D

k + 1 − l − D

]

. (3.9)

The terms in brackets in (3.9) can be rewritten as

(

k

l

)

k + 1 − D

k + 1 − l − D
−

(

k

k + 1 − l

)

D

k + 1 − l − D

=
k!

(l)!(k − l)!
·

k + 1 − D

k + 1 − l − D
−

k!

(k + 1 − l)!(l − 1)!
·

D

k + 1 − l − D

=
(k + 1)!

l!(k + 1 − l)!

[

(k + 1 − l)(k + 1 − D)

(k + 1)(k + 1 − l − D)
−

lD

(k + 1)(k + 1 − l − D)

]

=

(

k + 1

l

) (

(k + 1 − l)(k + 1 − D) − lD

(k + 1)(k + 1 − l − D)

)

=

(

k + 1

l

)

. (3.10)
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Therefore, from the equality (3.10), the expression (3.9) can be rewritten as

φX(k, l) − φX(k + 1, k + 1)φX(k, k + 1 − l)

= −

(

k + 1

l

)

Γ(l − D)Γ(k + 2 − l − D)

Γ(−D)Γ(k + 2 − D)
= φX(k + 1, l). (3.11)

In view of the expression (3.11) this lemma holds.

Lemma 3.2: Let {Xt}t∈Z be a process given by (2.4 ), where D ∈ (−0.5, 0.5) with D 6= 0.
Then, the quocient in expression (3.7 ) is given by

ρX(l) −
∑l−1

j=1 φX(l − 1, j)ρX(l − j)

1 −
∑l−1

j=1 φX(l − 1, j)ρX(j)
=

l−1
∑

j=0

(

l − 1

j

)

Γ(j − D)Γ(l − j − D)Γ(l − j + D)

Γ(l − j − D + 1)

l−1
∑

j=0

(

l − 1

j

)

Γ(j − D)Γ(l − j − D)Γ(j + D)

Γ(j − D + 1)

. (3.12)

Proof: Let us consider the left-hand side of expression (3.12). Then, we observe that its
numerator is given by

ρX(l) −
l−1
∑

j=1

φX(l − 1, j)ρX(l − j) =
Γ(1 − D)Γ(l + D)

Γ(D)Γ(l − D + 1)

−

l−1
∑

j=1

(−1)

(

l − 1

j

)

Γ(j − D)Γ(l − 1 − D − j + 1)

Γ(−D)Γ(l − 1 − D + 1)
·
Γ(1 − D)Γ(l − j + D)

Γ(D)Γ(l − j − D + 1)

=
Γ(1 − D)Γ(l + D)

Γ(D)Γ(l − D + 1)
+

(−D)

Γ(D)Γ(l − D)

·

l−1
∑

j=1

(

l − 1

j

)

Γ(j − D)Γ(l − j − D)Γ(l − j + D)

Γ(l − j − D + 1)
(3.13)

=
(−D)

Γ(D)Γ(l − D)

l−1
∑

j=0

(

l − 1

j

)

Γ(j − D)Γ(l − j − D)Γ(l − j + D)

Γ(l − j − D + 1)
, (3.14)

since the j = 0 term in the sum of expression (3.14) is equal to the first term in the expression
(3.13).

Now we observe that the denominator of the left-hand side of expression (3.12) is given by

1 −
l−1
∑

j=1

φX(l − 1, j)ρX(j) = 1 +
l−1
∑

j=1

(

l − 1

j

)

Γ(j − D)Γ(l − j − D)

Γ(−D)Γ(l − D)

·
Γ(1 − D)Γ(j + D)

Γ(D)Γ(j − D + 1)

11



= 1 +
(−D)

Γ(D)Γ(l − D)

l−1
∑

j=1

(

l − 1

j

)

Γ(j − D)Γ(j + D)Γ(l − j − D)

Γ(1 + j − D)
(3.15)

=
(−D)

Γ(D)Γ(l − D)

l−1
∑

j=0

(

l − 1

j

)

Γ(j − D)Γ(j + D)Γ(l − j − D)

Γ(j − D + 1)
, (3.16)

since the j = 0 term in the sum of expression (3.16) is equal to the first term in expression
(3.15).

From expressions (3.14) and (3.16), the equality (3.12) holds. Hence, this lemma is proved.

We still need to show that (3.12) is equal to φX(l, l). This will follow from Theorem 4.2 in
Section 4.

4. MAIN RESULTS

In this section we will show that the numerator of the left-hand side of expression (3.12)
times (l − D) (or its denominator times D) is equal to φX(l, l), that is,

(l − D)
l−1
∑

j=0

(

l − 1

j

)

Γ(j − D)Γ(l − j − D)Γ(l − j + D)

Γ(l − j − D + 1)

= D
l−1
∑

j=0

(

l − 1

j

)

Γ(j − D)Γ(l − j − D)Γ(j + D)

Γ(j − D + 1)
. (4.1)

Moreover, we will also show that

(l − D)
l−1
∑

j=0

(

l − 1

j

)

Γ(j − D)Γ(l − j − D)Γ(l − j + D)

Γ(l − j − D + 1)

= DΓ(−D)Γ(D − l + 1)(l − 1)! 2l−1 ·
l−2
∏

i=0

(

D −
i + 1

2

)

. (4.2)

The equalities (4.1) and (4.2) will be proved, respectively, in Corollary 4.3 and 4.1. The
Durbin-Levinson’s algorithm is a consequence of Theorem 2.1 and equality (4.2) above.

We shall first define the hypergeometric function.

Definition 4.1: If ai, bi and x are complex numbers, with bi /∈ Z≤, we define the hypergeometric
function by

3F2(a1, a2, a3; b1, b2; x) =
∞

∑

n=0

(a1)n(a2)n(a3)n

(b1)n(b2)n

xn

n!
,

where (a)n stands for the Pochhammer symbol
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(a)n =
Γ(a + n)

Γ(a)
=

{

a(a + 1) · · · (a + n − 1), if n ≥ 1
1, if n = 0.

This series is absolutely convergent for all x ∈ C such that |x| < 1, and also for |x| = 1, provided
ℜ(b1 + b2) > ℜ(a1 + a2 + a3). Furthermore, it is said to be balanced if b1 + b2 = 1+ a1 + a2 + a3.
Note that in case some ai is a nonpositive integer the above sum is finite and it suffices to let n
range from 0 to −ai.

The following identity for a terminating balanced hypergeometric sum is of fundamental
importance in the sequel. For the identity’s proof we refer the reader to [3], Thm. 2.2.6, page
69.

Theorem 4.1 (Identity of Pfaff–Saalschütz). Let k ∈ Z≥, and a, b, and c be complex
numbers such that c, 1 + a + b − c − k /∈ Z≤. Then,

3F2(−k, a, b; c, 1 + a + b − c − k; 1) =
(c − a)k(c − b)k

(c)k(c − a − b)k

. (4.3)

Remark. If (cn)n≥0 is a sequence of complex numbers satisfying

cn+1

cn

=
(a1 + n)(a2 + n)(a3 + n)x

(n + 1)(b1 + n)(b2 + n)
for all n,

straightforward computations show that

∞
∑

n=0

cn = c0 · 3F2(a1, a2, a3; b1, b2; x) . (4.4)

Theorem 4.2. Let x and z be complex numbers, with x /∈ Z and z /∈ Z≥. Then

l−1
∑

j=0

(

l − 1

j

)

Γ(j − x) Γ(l − j + x)

z − j
=

Γ(−x) Γ(1 + x) Γ(1 − z)

z Γ(l − z)
· (l − 1)!

l−1
∏

i=1

(x − z + i) . (4.5)

For z ∈ {l, l + 1, . . .} the right-hand side of expression (4.5 ) has a removable singularity and by
analytic continuation the result is still true.

Proof: Setting

cj :=

(

l − 1

j

)

Γ(j − x) Γ(l − j + x)

z − j
,

we have

cj+1

cj

=
j!(l − 1 − j)!

(j + 1)!(l − 2 − j)!
·
Γ(j + 1 − x) Γ(l − 1 − j + x)

Γ(j − x) Γ(l − j + x)
·

z − j

z − j − 1
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=
l − 1 − j

j + 1
·

j − x

l − 1 − j + x
·

z − j

z − j − 1

=
j − l + 1

j + 1
·

j − x

j − x − l + 1
·

j − z

j + 1 − z
.

Hence, from (4.4) we have

l−1
∑

j=0

cj = c0 · 3F2(−l + 1,−x,−z;−x − l + 1, 1 − z; 1) .

We now apply (4.3) with a = −x , b = −z , and c = 1 − z . Note that the hypotheses of
Pfaff-Saalschütz’s Identity are satisfied, since 1 + a + b − c − l + 1 = −x − l + 1 and c = 1 − z
do not belong to Z≤. It follows that

l−1
∑

j=0

cj = c0 ·
(1 + x − z)l−1(1)l−1

(1 − z)l−1(1 + x)l−1

.

Therefore,

l−1
∑

j=0

cj =
Γ(−x) Γ(x + l)

z
·
(x − z + 1)(x − z + 2) · · · (x − z + l − 1)(l − 1)!

Γ(l − z)

Γ(1 − z)
·

Γ(x + l)

Γ(x + 1)

=
Γ(−x) Γ(1 + x) Γ(1 − z)

z Γ(l − z)
· (l − 1)!

l−1
∏

i=1

(x − z + i) .

Corollary 4.1. If l ∈ N − {1} and D is a noninteger complex number, then

(l − D)
l−1
∑

j=0

(

l − 1

j

)

Γ(j − D) Γ(l + D − j)

l − D − j

= D Γ(−D) Γ(D − l + 1) (l − 1)! 2l−1 ·
l−2
∏

i=0

(

D −
i + 1

2

)

. (4.6)

Proof: Taking x = D and z = l − D in (4.5) and multiplying both sides by l − D yields

(l − D)
l−1
∑

j=0

(

l − 1

j

)

Γ(j − D) Γ(l + D − j)

l − D − j

= (l − D)
Γ(−D) Γ(1 + D) Γ(D − l + 1)

(l − D) Γ(D)
· (l − 1)!

l−1
∏

i=1

(2D − l + i)
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=
Γ(−D)D Γ(D) Γ(D − l + 1)

Γ(D)
· (l − 1)!

l−2
∏

i=0

(2D − i − 1)

= D Γ(−D) Γ(D − l + 1) (l − 1)! 2l−1
l−2
∏

i=0

(

D −
i + 1

2

)

.

Corollary 4.2. If l ∈ N − {1} and D is a noninteger complex number, then

D
l−1
∑

k=0

(

l − 1

k

)

Γ(l − 1 − k + D) Γ(k − D + 1)

l − 1 − k − D

= D Γ(−D) Γ(D − l + 1) (l − 1)! 2l−1 ·
l−2
∏

i=0

(

D −
i + 1

2

)

. (4.7)

Proof: Use the same idea as in the proof of Corollary 4.1, taking x = D− 1 and z = l− 1−D
in (4.5) and multiplying both sides by D .

Corollary 4.3. If l ∈ N and D is a noninteger complex number, then

(l − D)
l−1
∑

j=0

(

l − 1

j

)

Γ(j − D) Γ(l + D − j)

l − D − j

= D
l−1
∑

k=0

(

l − 1

k

)

Γ(l − 1 − k + D) Γ(k − D + 1)

l − 1 − k − D
. (4.8)

Proof: For l ≥ 2, combine the expression (4.6) with (4.7). If l = 1, expression (4.8) holds
trivially.

5. CONCLUSIONS

In this paper we gave some results for the seasonal fractionally integrated SARFIMA(0, D, 0)s

processes. The Durbin-Levinson’s algorithm recurrent expression was fully calculated for these
processes.

Based on some properties of the hypergeometric functions, we derived a simpler and closed
formula for the Durbin-Levinson’s algorithm to obtain the partial autocorrelation functions of
order k for SARFIMA(0, D, 0)s processes.

15



REFERENCES

1. J. Durbin, The fitting of time-series models, Revue Inst. Int. de Stat. 28 (3), 233-244,
(1960).

2. F.L. Ramsey, Characterization of the partial autocorrelation function, Annals of Statistics
2 (6), 1296-1301, (1974).

3. G.E. Andrews, R. Askey and R. Roy, Special Functions, Encyclopedia of Mathematics and
its Applications 71, (ed.) G. C. Rota, Cambridge University Press, New York, (1999).

4. U. Hassler, (Mis)specification of long memory in seasonal time series, Journal of Time
Series Analysis 15 (1), 019-030, (1994).

5. M. Ooms, Flexible seasonal long memory and economic time series, Preprint of the Econo-
metric Institute, Erasmus University, Rotterdam, (1995).

6. M.S. Peiris and N. Singh, Predictors for seasonal and nonseasonal fractionally integrated
ARIMA models, Biometrics Journal 6, 741-752, (1996).

7. C. Bisognin and S.R.C. Lopes, Estimating and forecasting the long memory parameter in
the presence of periodicity, Submitted, (2004).

8. A. Montanari, R. Rosso and M.S. Taqqu, A seasonal fractional ARIMA model applied to
the Nile river monthly flows at Aswan, Water Resources Research 36 (5), 1249-1259, (2000).

9. S. Porter-Hudak, An application of the seasonal fractionally differenced model to the mon-
etary aggregates, Journal of American Statistical Association 85, 338-344, (1990).

10. B.K. Ray, Long range forecasting of IBM product revenues using a seasonal fractionally
differenced ARMA model, International Journal of Forecasting 9, 255-269, (1993).

11. J. Geweke and S. Porter-Hudak, The estimation and application of long memory time series
model, Journal of Time Series Analysis 4 (4), 221-238, (1983).

12. C.W.J. Granger and R. Joyeux, An introduction to long memory time series models and
fractional differencing, Journal of Time Series Analysis 1 (1), 15-29, (1980).

13. J.R.M. Hosking, Fractional differencing, Biometrika 68, 165-167, (1981).

14. J.R.M. Hosking, Modelling persistence in hydrological time series using fractional differenc-
ing, Water Resources Research 20, 1898-1908, (1984).

15. P.J. Brockwell and R.A. Davis, Time Series: Theory and Methods, Second Edition,
Springer-Verlag, New York, (1991).

16. J. Beran, Statistics for Long-Memory Processes, Chapman & Hall, New York, (1994).

17. V.A. Reisen and S.R.C. Lopes, Some simulations and applications of forecasting long mem-
ory time series models, Journal of Statistical Planning and Inference 80 (2), 269-287, (1999).

16



18. S.R.C. Lopes, B.P. Olbermann and V.A. Reisen, A comparison of estimation methods in
non-stationary ARFIMA processes, Journal of Statistical Computation and Simulation 74
(5), 339-347, (2004).

19. R.T. Baillie, T. Bollerslev and H.O. Mikkelsen, Fractionally integrated generalized condi-
tional heteroskedasticity, Journal of Econometrics 74, 3-30, (1996).

20. I.S. Gradshteyn and I.M. Ryzhik, Table of Integrals, Series and Products, Academic Press,
New York, (1965).

17


