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Abstract

We will denote by M the space of Borel probabilities on the sym-
bolic space Ω = {1, 2...,m}N. M is equipped Monge-Kantorovich
metric. We consider here the push-forward map T :M→M as a dy-
namical system. The space of Borel probabilities onM is denoted by
M. Given a continuous function A :M→ R, an a priori probability
Π0 onM, and a certain convolution operation acting on pairs of prob-
abilities on M, we define an associated Level-2 IFS Ruelle operator.
We show the existence of an eigenfunction and an eigenprobability
Π̂ ∈ M for such an operator. Under a normalization condition for
A, we show the existence of some T-invariant probabilities Π̂ ∈ M.
We are able to define the variational entropy of such Π̂ and a related
maximization pressure problem associated to A. In some particular
examples, we show how to get eigenprobabilities solutions on M for
the Level-2 Thermodynamic Formalism problem from eigenprobabili-
ties onM for the classical (Level-1) Thermodynamic Formalism; this
shows that our approach is a natural generalization of the classic case.
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1 Introduction

Denote by M the space of Borel probabilities on the symbolic space Ω =
{1, 2...,m}N. We consider here the push-forward map T : M → M as a
dynamical system (see Definition 1). First, we will briefly investigate the
dynamical properties of the push-forward map in Section 2 (related results
appear in [4], [5], [29] and[27]). Later, given a continuous function (a poten-
tial) A : M→ R we will introduce an associated Ruelle operator acting on
continuous functions f :M→ R, and we will present a version of the Ruelle
Theorem about the existence of eigenvalues, eigenprobabilities, etc... For the
classical Ruelle Theorem see [25] (or [2], [16], [22]).
M is equipped Monge-Kantorovich metric (see [30] and [31]). The space

of Borel probabilities on M is denoted by M. In order to define our Ruelle
operator it will be essential to consider an a priori probability Π0 on M,
and the introduction of a certain convolution operation acting on pairs of
probabilities on M (see Section 3); it will be also necessary to combine this
convolution with the action of the push-forward map T (see Section 4).

At the beginning of Subsection 4.1 we present the main assumptions for
defining an IFS Ruelle operator BΠ0 on our setting, in order to be able to
obtain (after some work), from already known general results on IFS, the
main conclusions of the paper. For example, one of our main results is
Theorem 16 which claims

Theorem 1. If A : M → R is a Lipschitz potential, then there exists a
positive and continuous eigenfunction h :M→ R, such that, BΠ0(h) = λh,
λ > 0.

In ergodic theory, questions at level-2 refer to properties related to the
global study of the set of different probabilities on a set Y . For instance, when
the compact metric space is Y = {1, 2, .., d}N; in this case, in [15], given an
ergodic probability µ on Y , the author study large deviations (when time n
goes to infinity) for the so-called n-empirical probability 1

n

∑n−1
j=0 δσj(y) → µ,

y ∈ Y , in the set of probabilities over Y , and minus entropy plays the role
of a deviation function. On the other hand, given an ergodic probability µ
on Ω and a continuous function A : Y → R, the study of large deviations
of Birkhoff sums 1

n

∑n−1
j=0 A(σj(y)) −

∫
Adµ, y ∈ Y , is a problem at level-1

framework. A useful and important fact is that large deviation properties
at level-1 can be derived from large deviation properties at level-2 (which is
more general), via a contraction principle (for general results see [8]).
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We will provide examples later on in the text (see Examples 9, 11 and 13);
they will clarify to the reader the unequivocal fact that the results obtained
in our setting are a natural generalization of classical Thermodynamical For-
malism (in the sense of [25]); which can be considered the Level-1 setting.

It will be natural to consider in our Level-2 setting the concept of vari-
ational entropy of a holonomic probability, the pressure problem, and equi-
librium probabilities (see Definitions 7 and 9 on Subsection 4.1). Later, we
present our main result which is the relation between the Ruelle Theorem
and the equilibrium probability (see expression (63)). In the Example 12
we show that our formalism can be used to provide examples of T-invariant
probabilities on M.

General references in Thermodynamic Formalism for IFS are [1], [6], [7],
[12], [19], [20], [21] and [24].

2 The push-forward map acting on the space

of probabilities on the symbolic space

In the present section, we will describe preliminary results (we also present
several examples to facilitate the understanding of the theory) that will be
needed later in other sections.

We consider the shift acting on the symbolic space Ω = {1, 2, ...,m}N. In
Ω we consider the usual metric d = dΩ : Ω2 → R which makes Ω a compact
space:

dΩ(α, β) :=

{
0, α = β
1
2k
, k = minαi 6= βi

(1)

for any α, β ∈ Ω.
As we mentioned before, we denote by M the set of probabilities on

the Borel sigma-algebra which is a compact convex space when considering
the Hutchinson distance (also called Monge-Kantorovich or 1- Wasserstein)
dMK :M2 → R defined by

dMK(µ, ν) = sup
f∈Lip1(Ω)

∫
Ω

fdµ−
∫

Ω

fdν, (2)

for any µ, ν ∈ M, which equivalent to the weak-∗ convergence because Ω is
compact, see [1] Theorem 1.6.

Note that if d(x0, x1) ≤ ε, then dMK(δx0 , δx1) ≤ ε.
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We denote Mi
σ the set of σ-invariant probabilities and by Me

σ the set of
σ-ergodic probabilities.

Definition 1. Given probability µ1 ∈ M, the push-forward of µ1 is the
probability T(µ1) = µ2 such that for all Borel set E we get that µ2(E) =
µ1(σ−1(E)). T is called the push-forward map acting on the space of prob-
abilities on Ω.

To say that µ is σ-invariant is the same that to say that T(µ) = µ.
Equivalently, for any f ∈ C(Ω,R)∫

f dT(µ1) =

∫
(f ◦ σ) dµ1. (3)

In particular,
T(δx) = δσ(x). (4)

Note that if x1, x2 are such that σ(x1) = x0 = σ(x2), then,

T(δx1) = δσ(x1) = δσ(x2) = T(δx2). (5)

Moreover,
Tn(δx1) = δσn(x1). (6)

We denote by M the set of probabilities on the Borel sigma-algebra of
M which is a non-empty compact convex space, when considering a metric
dMK associated to the weak-∗ topology (the Monge-Kantorovich metric for
instance). We denote MT the set of T-invariant probabilities and by Me

T the
set of T-ergodic probabilities.

It is important not to confuse the concept that a probability measure
µ ∈ M is invariant for T, in the sense of T(µ) = µ, with the statement that
a probability measure Π ∈M is invariant for the dynamical transformation
T :M→M, that is Π ∈Mi

T. The later means: for any continuous function
F :M→ R ∫

F (ρ)dΠ(ρ) =

∫
(F ◦ T)(ρ)dΠ(ρ). (7)

Via the Ruelle operator, we will show the existence of nontrivial T-
invariant probabilities in Example 12 (see also Remark 3).
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Remark 1. As Tn(δx1) = δσn(x1), we get that in the case σn(x1) = x1, then,
δx1 , δσ(x1), ..., δσn−1(x1) is a periodic orbit of period n for T. Note also that

T(
∑k

j=1 pj δxj) =
∑k

j=1 pj δσ(xj), where
∑k

j=1 pj = 1, pj ≥ 0.

Then,
∑k

j=1 pj δxj ∈ T−1(
∑k

j=1 pj δσ(xj)).

If µ is σ-invariant, as T(µ) = µ, we get that µ ∈ T−1(µ).
Therefore, if σn(x1) = x1, then

T(
1

n

n−1∑
j=0

δσj(x1)) = (
1

n

n−1∑
j=0

δσj(x1)) (8)

and 1
n

∑n−1
j=0 δσj(x1) ∈ T−1( 1

n

∑n−1
j=0 δσj(x1)).

The transformation T :M→M is continuous (see [4]), takes probabili-
ties to probabilities and is not injective.

Example 1. Suppose σ(x̃) = x̃. Then, δδx̃ is T-invariant.
More generally, if µ is σ-invariant, then Π = δµ ∈ M is T-invariant.

Indeed, given a continuous function f :M→ R, we get that∫
(f ◦ T) d δµ = f(T (µ) ) = f(µ) =

∫
f d δµ. (9)

Then, δµ ∈ Mi
T. That is T∗ acting on M is such that Π = δµ satisfies

T∗(Π) = Π, that is T∗(δµ) = δµ.

More generally given µj ∈ Mi
σ, j = 1, 2, .., k, then, when

∑k
j=1 pj = 1,

pj ≥ 0, j = 1, 2, .., k

T∗(
k∑
j=1

pj δµj) =
k∑
j=1

pj δµj . (10)

Therefore,
∑k

j=1 pj δµj ∈MT

Note that
dMK(δx0 , δy0) ≤ d(x0, y0). (11)

Moreover, if µn → µ, then, T(µn)→ T(µ).
Note that T is not a d to 1 map: consider x 6= y, in Ω such that σ(x) =

σ(y) = z, and the family µt = tδx + (1− t)δy for t ∈ [0, 1], then

T(µt) = tδσ(x) + (1− t)δσ(x) = δz, ∀t
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thus, T−1(δx) contains infinitely many distinct measures (Lemma 5 also con-
firms this claim).

For x = (x1, x2, .., xn, ...) and a symbol a denote a x = (a, x1, x2, .., xn, ...).
Given a Hölder potential A : Ω→ R, the Ruelle operator LA acts on contin-
uous functions ψ : Ω→ R via:

LA(ψ)(x) =
m∑
a=1

eA(ax)ψ(ax), for all x ∈ Ω. (12)

The dual of the Ruelle operator LA, denoted L∗A, acts on finite measures
on Ω, and to say that L∗A(µ1) = µ2, means that for any continuous function
ψ we have ∫

ψdµ2 =

∫
LA(ψ) dµ1.

We say that µA is the eigenprobability for the dual of the Ruelle operator
if there exists λ > 0 such that L∗A(µA) = λµA. When A is continuous an
eigenprobability always exists, but may exist more than one (however the
eigenvalue is unique). In the case A is Hölder it is unique; for all this see [25]
or [22].

We say that Hölder function A is normalized, if LA(1) = 1. In this case it
is usual to write A in the form A = log J , where J : Ω→ (0, 1) is such that
for all x ∈ Ω we get that

∑m
a=1 J(a x) = 1. We call Jacobian such function J .

We say that µ is a Hölder Gibbs probability, if there exists a normalized
Hölder potential A = log J , such that, L∗log J(µ) = L∗A(µ) = µ. We say that
J is the Jacobian of the Hölder Gibbs probability µ.

It is known that such µ is the unique equilibrium probability for the
potential log J (maximizes pressure) (see [25]).

The shift transformation σ : Ω → Ω is such that σ(x1, x2, .., xn, ...) =
(x2, x3, .., xn, ...).

Note that for any x ∈ Ω we get

L∗A(δx) =
∑
σ(y)=x

J(y)δy. (13)

We denote by G the set of all Hölder Gibbs probabilities.

Theorem 2. (see [25]) Given a Hölder Gibbs probability µ associated to the
Hölder Jacobian J , and any point x0 ∈ Ω, we get that in the 1-Wassertein
distance

lim
n→∞

(L∗log J)n (δx0) = µ. (14)
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(14) follows from Theorem 5.1 in [14], which claims that the dual of the
Ruelle operator L∗log J : P(X)→ P(X) is a contraction for the 1-Wasserstein
metric W1, in the sense that: there exist C > 0, such that ∀n ∈ N and all
µ, ν ∈ P(X)

W1( (L∗log J)n(µ), (L∗log J)n(ν) ) ≤ C λnW1(µ, ν). (15)

In this case, taking ν = δx0 , it follows from (15) that indeed the conver-
gence in (14) is exponential for the 1-Wassertein distance.

The support of the probability (L∗log J)n (δx0) is in the set of n-preimages
of x0 by σ.

Theorem 3. The set G is dense in the set Mi
σ.

The above result was proved in Theorem 8 in [15] (see also [13]).

Theorem 4. (see [26] and also [18]) Given a probability µ in G, it can be
weakly approximated by a probability ρ, which is a finite convex combination
of probabilities with support in periodic orbits. Of course, ρ is a periodic orbit
for T.

The above result was proved in [26] (see (3.1) in page 622).

Lemma 5. T : M → M is surjective over M and L∗A is injective. This
follows from the fact that when A is normalized,

if L∗A(ν) = µ, then T(µ) = ν. (16)

Proof. Given ν ∈M, is there exist µ ∈M such that T(µ) = ν?
Suppose that A is any Hölder normalized potential, then, take µ = L∗A(ν).
For any continuous f we get that∫

fdT(µ) =

∫
(f ◦ σ)dµ =

∫
(f ◦ σ)dL∗A(ν) =

∫
LA(f ◦ σ)dν =∫

fLA(1)dµ =

∫
fdν.

Therefore,
T(µ) = ν. (17)

In [17] it is shown that if µ1 is Hölder Gibbs, then L∗A(µ1) is not σ-
invariant (unless it is the unique fixed point). Therefore, given a Hölder
Gibbs probability ν, there exists preimages µ of ν by T, such that, are not
σ-invariant. It also follows that L∗A is injective.
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The push-forward F map is surjective: when µ = L∗A(ν)

F(µ) = F(L∗A(ν)) = ν. (18)

Note that F(δx) = δσ(x) = ν; however, there is no Jacobian J , taking only
positive values, such that L∗log J(δσ(x)) = δx = µ.

F :M→M is mixing:

Theorem 6. Given ε > 0, a probability µ̃2 ∈M, and σ-invariant probability
µ̃1, there exist probabilities ρ1 and µ2 in Ω, and N > 0, such that

dMK(ρ1, µ̃1) < ε, dMK(µ2, µ̃2) < ε, and TN(ρ1) = µ2.

Proof. Given the probability µ̃2 we get an ε-approximation µ2 of µ̃2 of the
form

µ2 =
k∑
j=1

pj δxj ,

where
∑k

j=1 pj = 1.
From Theorem 3 we can ε/2-approximate µ̃1 by a Hölder Gibbs proba-

bility µ1 associated to the Hölder Jacobian J1.
From Theorem 2, for each j = 1, 2, ..., k, we get that for large Nj, the

probability (L∗log J1
)Nj(δxj) is an ε/2-approximation of µ1. Therefore, for some

uniform large N we get that

ρ1 =
k∑
j=1

pj(L∗log J1
)N(δxj) = (L∗log J1

)N(
k∑
j=1

pj δxj) = (L∗log J1
)N(µ2)

is an ε/2-approximation of µ1, and therefore an ε-approximation of µ̃1.
It follows from (17) in Lemma 5 that TN(ρ1) = µ2.

Corollary 7. There exists a dense orbit for T in M.

Proof. As there exists a countable dense set of probabilities ρn, n ∈ N, in
M, the result follows from last result and Baire Theorem. Indeed, for each
k, r ∈ N, take the ball B(ρk,

1
r
). From Baire Theorem and Theorem 6 we get

that

∩∞r,k=1 ∪∞n=1 T−n
(
B(ρk,

1

r
)

)
is not empty.
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Example 2. Consider a probability µ ∈ M and a natural number k. Take
the partition {x1, x2, ..., xk , xr ∈ {1, 2, ...,m}, r ∈ {1, 2, ..., k}}. Consider the
lexicographic order on the set of finite words (x1, x2, ..., xk). Now we re-index
these words using this order and αj denotes the cylinder associated with the
j-th word αj = αkj , j = 1, 2, ...,mk. Finally, denote by zk ∈ Ω the periodic
orbit obtained by the repetition of the string (α1, α2, ..., αmk).

For instance, when m = 2 and k = 2 we get

α1 = 11, α2 = 12, α3 = 21, α4 = 22.

In this case z2 = 1, 1, 1, 2, 2, 1, 2, 2, 1, 1, 1, 2, 2, 1, 2, 2, 1, 1, 1, 2, 2, 1, 2, 2, ...
Note that σ23(z2) = z2. Note that the orbit of z2 visit all cylinders of size 2.

Note that in the general case, for j > 1,

σk(αj, αj+1, ..., αmk , α1, ..., αj−1, αj, ...) =

(αj+1, ..., αmk , α1, ..., αj−1, αj, αj+1, ...).

Therefore, there exists a value rk = rk k, such that, σrk(zk) = zk. In
the above example when m = 2 and k = 2, we get that r2 = 23, and
σk(α1, α2, ...) = σ2(α1, α2, ...) = (α2, α3, ...).

When m = 2 and k = 3 we get that r3 = 3× 8 = kmk.
From (6)

Trk(
mk∑
j=1

µ(αj)δ(αj ,αj+1,...,αmk ,α1,...,αj−1,αj ,...)) =

∑
j

µ(αj)δ(αj ,αj+1,...,αmk ,α1,...,αj−1,αj ,...). (19)

We denote µk ∈M, k ∈ N, the probability

µk =
∑
j

µ(αj)δ(αj ,αj+1,...,αmk ,α1,...,αj−1,αj ,...), (20)

which is periodic of period rk for T. Therefore, µk ∈Mi
Trk .

Note that µk(αj) = µ(αj), and µk is a probability with weights in T-
periodic orbits, for any k.

Lemma 8. The periodic points of T are dense in M.
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Proof. Indeed, given any measure µ and ε > 0, take k such that 2−k < ε.
The diameter of each cylinder set x1, x2, ..., xk is 2−k.

Consider a Lipchitz function f with Lipschitz constant smaller or equal
to 1; then, for s1, s2 ∈ x1, x2, ..., xk we get that |f(s1)− f(s2)| ≤ 2−k.

Consider the T-periodic probability µk of expression (20). We will show
that dMK(µ, µk) ≤ ε.

Indeed, ∫
fdµ−

∫
fdµk ≤

mk∑
j=1

|
∫
αj

fdµ−
∫
αj

fdµk| =

mk∑
j=1

|
∫
αj

f dµ − f(αj, αj+1, ..., αmk , α1, ..., αj−1, αj, ...)µ(αj) | ≤

mk∑
j=1

µ(αj) 2−k = 2−k ≤ ε. (21)

One way to generate probabilities Ξ ∈ M is the following: take a prob-
ability ν on Ω and define for each continuous function F : M → R the
bounded linear transformation

F → Λ(F ) =

∫
Ω

F (δx)dν(x). (22)

By Riesz Theorem there exist a probability Ξν on M such that for all
F ∈ C we get

Λ(F ) =

∫
M
F (µ) dΞν (µ). (23)

We say that Ξν ∈M is the Level-2 version of ν ∈M.

Example 3. An interesting case is when the ν above is the maximal entropy
µ0. Given a point y0 ∈ Ω and n ∈ N, denote by xmj , j = 1, 2, ...,mn, the mn

solutions of σn(x) = y0. Then

F → Λ(F ) =

∫
Ω

F (δx)dν(x) =

∫
Ω

F (δx)dµ0(x) = lim
n→∞

1

mn

mn∑
j=1

F (δxmj ). (24)

Then, in some sense Ξµ0 is a Level-2 version of the maximal entropy
measure.
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Definition 2. Given a probability Π ∈ M, we call mΠ the probability such
that ∀f ∈ C(Ω) ∫

M
ν(f) dΠ (ν) = mΠ(f)

the barycenter of Π.

In this way: for any continuous function f : Ω→ R∫
Ω

f(x)dmΠ(x) =

∫ (∫
Ω

f(y) dρ(y)

)
dΠ (ρ). (25)

It is is easy to see that mδρ = ρ for any ρ ∈M.

Proposition 9. The map Π→ mΠ is a weak contraction.

Proof. Indeed, dMK(mΠ1 ,mΠ2) = sup
{ ∫

Ω
fdmΠ1 −

∫
Ω
fdmΠ2 |Lip f ≤ 1

}
,

thus we need to evaluate∫
Ω

fdmΠ1 −
∫

Ω

fdmΠ2 =

∫
M
ν(f)dΠ1(ν)−

∫
M
ν(f)dΠ2(ν).

Define G(ν) = ν(f). We claim that Lip(G) ≤ 1. Indeed,

G(ν)−G(ν ′) = ν(f)− ν ′(f) ≤ dMK(ν, ν ′),

because Lip f ≤ 1. By definition,∫
M
ν(f)dΠ1(ν)−

∫
M
ν(f)dΠ2(ν) =

=

∫
M
G(ν)dΠ1(ν)−

∫
M
G(ν)dΠ2(ν) ≤ dMK(Π1,Π2),

because Lip(G) ≤ 1. Thus, dMK(mΠ1 ,mΠ2) ≤ dMK(Π1,Π2).

It is not a contraction, indeed, take Πi = δδxi , i = 1, 2 then∫
f(x)dmΠi(x) =

∫ ∫
f(x) dν(x) dδδxi (ν) = f(xi),

so that mΠi = δxi . We recall that G(ν) = ν(f) satisfy Lip(G) ≤ 1 provided
that Lip(f) ≤ 1 (w.r.t. the respective metrics). Thus,

dMK(Π1,Π2) ≥ sup
G(ν)=ν(f), Lip(f)≤1

∫
M
G(ν)dΠ1(ν)−

∫
M
G(ν)dΠ2(ν) =

11



= sup
Lip(f)≤1

δx1(f)− δx2(f) = dMK(δx2 , δx2) = dMK(mΠ1 ,mΠ2).

From the other inequality we get that dMK(mΠ1 ,mΠ2) = dMK(Π1,Π2),
so the weak contraction is not a contraction.

Each µ ∈ Mi
σ can be associated to a probability Θµ ∈ Me

σ such that
mΘµ = µ (see Remark after Theorem 6.10 in [32]). In this case, for any
continuous f : Ω→ R we get∫

f(x)dµ(x) =

∫ (∫
f(y)dν(y)

)
dΘµ(ν). (26)

The support of Θµ is the set of σ-ergodic probabilities.
Θµ is called the ergodic decomposition of the σ-invariant probability µ.

Therefore, µ is the barycenter of Θµ.

Proposition 10. For any σ-invariant µ we get that mΘµ = µ

Proof. We will show that for any continuous f we get that∫
f(x)dmΘµ(x) =

∫
f(x)dµ(x).

From (26) we get∫
f(x)dµ(x) =

∫
(

∫
f(y)dν(y) )dΘµ(ν),

and from (25) we get∫
f(x)dmΘµ(x) =

∫
(

∫
f(x) dν(x) ) dΘµ (ν).

One can consider the Level-2 version of the above.
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Theorem 11. (see Remark after Theorem 6.10 in [32]) For any Π ∈ MT

and any continuous function ψ :M→ R, there exists a probability measure
OΠ on MT such that the following expression holds∫

M
ψ(β)dΠ(β) =

∫
K

(∫
M
ψ(γ) dΠ̃(γ)

)
dOΠ(Π̃),

where Π̃ ∈ K, and K ⊂Me
T. For each Π ∈MT the probability OΠ on MT is

called the T-ergodic decomposition of Π.

In this case Π is the barycenter of OΠ. We will need a non-dynamical
version of the above kind of results.

Remark 2. The set of extreme points of the set M = { probabilities on Ω},
is the set (see [11])

R = {probabilities of the form δy where y is any point in Ω} ⊂ M.

Given µ ∈M, for some Θ̃µ ∈M, we get∫
Ω

f(x)dµ(x) =

∫ (∫
f(z)dδy(z)

)
dΘ̃µ(δy). (27)

The support of Θ̃µ ∈M is the set R.
The set of extreme points of the set M = { probabilities on M}, is the

set

K̃ = {probabilities of the form δµ whereµ is any probability in M} ⊂M.

For any Π ∈ M there exists OΠ such that for any continuous function
ψ :M→ R ∫

M
ψ(β)dΠ(β) =

∫
K

[

∫
M
ψ(γ) dΠ̃(γ) ] dOΠ(Π̃), (28)

where K̃ has probability 1 for OΠ.
Then, we can write

∫
M
ψ(β)dΠ(β) =

∫
M

[

∫
M
ψ(γ) dδµ(γ) ]OΠ(δµ) =

∫
M

ψ(δµ)OΠ(δµ). (29)
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In this case Π is the barycenter of OΠ.

Example 4. Given a probability µ ∈M we can associate, via barycenter, a
probability µ̂ = Πµ ∈M in the following way: denote K = {δy, y ∈ Ω} ⊂ M,
and then we associate δy in M with y ∈ Ω, and δδy ∈M with y. Given a set

B̂ ⊂ K in M we associate it to a set B ∈ Ω via this association.
Now we denote by µ̂ ∈ M a probability, where K = {δy, y ∈ Ω} has

probability 1, and such that, given a Borel set Ĉ in M

µ̂(Ĉ) =

∫
Ω

IĈ∩K(δy)dµ̂(δy) = µ(Ĉ ∩ K).

In this way, given a continuous function F :M→ R∫
Fdµ̂ =

∫
M
F (δy)dµ̂(δy) =

∫
Ω

F (δy)dµ(y). (30)

Remark 3. Given n denote by Γn the equality distributed probability on M
with support on the set

Λn = {δx |σn(x) = x}.

That is Γn = 1
mn

∑
x∈Λn

δδx , because #Λn = mn.

By compactness there exist a probability Πp on M such that for a con-
vergent subsequence Γnk → Πp, when k → ∞. We call Πp the periodic
preference probability. As Γn is T invariant for each n, it follows that Πp

is T-invariant.

3 Convolution and a contractive dynamics in

the space of probabilities

Given a continuous function R : Ω× Ω→ Ω we will define a product convo-
lution ∗ :M×M→M. Take two probabilities ν, µ ∈M we set

(ν ∗ µ)(A) = [ν × µ] (R−1(A))

in the sense that for any continuous function f : Ω→ R∫
Ω

fd(ν ∗ µ) =

∫
Ω

f(R(x, y)) dν(x) dµ(y).

14



ν ∗ µ is a new probability in M.

We refer the reader to [28] and [3] for results considering distinct concepts
of convolution that are different from ours.

Lemma 12. Given a convolution ∗ obtained from R, for a fixed η, the map
µ→ η∗µ is s-Lipschitz with respect to Monge-Kantorovich distance, provided
that R is s-Lipschitz w.r.t. the second variable.

Proof. Indeed, consider µ, µ′ ∈M then

dMK(η ∗ µ, η ∗ µ′) = sup
Lip(f)≤1

∫
fd(η ∗ µ)−

∫
fd(η ∗ µ′) =

sup
Lip(f)≤1

∫
f(R(x, y)) dη(x) dµ(y)−

∫
f(R(x, y)) dη(x) dµ′(y). (31)

Given f satisfying Lip (f) ≤ 1, define g(y) :=
∫
f(R(x, y)) dη(x), then, ∀y ∈

Ω we get,

|g(y)− g(y′)| = |
∫
f(R(x, y)) dη(x)−

∫
f(R(x, y′)) dη(x)| ≤

≤
∫
Lip(f) · dΩ(R(x, y), R(x, y′))dη(x) ≤ Lip(f)sdΩ(y, y′) ≤ sdΩ(y, y′),

thus Lip(1
s
g) ≤ 1. Returning to expression (31) we obtain

dMK(η ∗µ, η ∗µ′) ≤ s sup
Lip(f)≤1

[

∫
1

s
g(y) dη(x) dµ(y)−

∫
1

s
g(y) dη(x) dµ′(y)] ≤

≤ s · dMK(µ, µ′).

Corollary 13. Let ηj, j = 1, 2, ... be a sequence of probabilities on Ω and R :
Ω2 → Ω a convolution kernel which is s-Lipschitz contractive w.r.t. second
variable. Then the CIFS(countable iterated function system) R = (Ω, φj),
j ∈ N, where φj(µ) = ηj ∗µ, is uniformly contractible with Lipschitz constant
s.

Lemma 14. If R(x, y) = R(y, x) we get for the associated convolution ∗:

µ ∗ ν = ν ∗ µ.

15



Proof. ∀f ∈ C(Ω)∫
Ω

fd(ν ∗ µ) =

∫
Ω

f(R(x, y))dν(x)dµ(y) =∫
Ω

f(R(y, x))dν(x)dµ(y) =

∫
Ω

fd(µ ∗ ν).

The next example will exhibit the concept of convolution that we will use
here (which is not commutative).

Example 5. For example, given n ∈ N, we can get a product convolution ∗n
in M via Rn(x, y) = (πn(x), y1, y2, ...) = (x1, ..., xn, y1, y2, ...), where πn(x) =
(x1, ..., xn). In this case

dΩ(Rn(x, y), Rn(x, y′)) ≤ 1

2n
dΩ(y, y′),

and thus Rn is 1
2n

-Lipschitz w.r.t. y.
The ∗n convolution is defined for pairs of probabilities η, µ in M: we set

η∗nµ ∈M as the probability such that for any continuous function f : Ω→ R∫
f(z)d(η ∗n µ)(z) =

∫ ∫
f(Rn(x, y)) dη(x) dµ(y) =∫ ∫

f(x1, ..., xn, y1, y2, ...) dη(x) dµ(y).

This product convolution is not commutative.

Example 6. For example, when n = 1, we write µ→ η ∗1 µ. One can show
that

(η ∗1 µ) ∗ µ = (η ∗1 µ).

We leave the proof to the reader. Note that (η1 ∗1 µ)∗1 µ is different from
η ∗1 (η ∗1 µ).

Example 7. Now we introduce the dynamics of T, and at the same time
we will combine it with the convolution µ → η ∗1 µ. In this way, for any
continuous function f : Ω→ R∫

f(z) d(T(ν) ∗1 µ)(z) =

∫ ∫
f(R1(σ(x), y))dν(x) dµ(y) =

16



∫ ∫
f(π1(σ(x)), y)dν(x) dµ(y) =

∫ ∫
f(x2, y)dν(x) dµ(y). (32)

If ν is σ-invariant then∫
f(z) d(T(ν) ∗1 µ)(z) =

∫ ∫
f(x1, y)dν(x) dµ(y). (33)

In this case is not necessarily true that T(ν) ∗1 µ is σ-invariant, even if
µ is σ-invariant.

Moreover,
T(δx) ∗1 δz = δx2,z, (34)

where x = (x1, x2, ..., xn, ..) ∈ Ω and z ∈ Ω.
Note that ∫

f(z)d(T(δx) ∗1 µ)(z) =

∫
f(x2, y) dµ(y). (35)

If σ(x) = x, then
T(δx) ∗1 δz = δx1,z. (36)

If we denote ψν(µ) = T(ν) ∗1 µ, then

ψν2(ψν1(µ)) = T(ν2) ∗1 (T(ν1) ∗1 µ) (37)

is such that for a continuous function A : Ω→ R∫
A(z)dψν2(ψν1(µ))(z) =

∫
A(z)d [T(ν2) ∗1 (T(ν1) ∗1 µ) ](z)

∫ ∫
A(π1(σ(x)), y) dν2(x) d(T(ν1) ∗1 µ)(y) =∫ ∫ ∫

A(π1(σ(x)), π1(σ(u)) , v) dν1(u) dµ(v) dν2 (x) =∫ ∫ ∫
A(x2, u2, v)dν2(x) dν1(u) dµ(v). (38)

If µ = δy, ν2 = δb, ν1 = δa, a, b, y ∈ Ω, then∫
Adψν2(ψν1(µ)) = A(b2, a2, y). (39)

17



We present a particular example that will illustrate the theory.

Example 8. Given n ∈ N and x, y, it is easy to see that

T(δx)∗nδy = δx2,x3,...,xn+1,y, (40)

when x = (x1, x2, ..., xn, ..). If σ(x) = x, then

T(δx)∗nδy = δx1,x2,x3,...,xn,y.

Given the probabilities ν and µ, if ν is σ-invariant, then for any n ∈ N∫
fd(T(ν)∗nµ) =

∫ ∫
f(x1, x2, ..., xn, y) dν(x) dµ(y). (41)

We leave the proof to the reader.

4 IFSs in probability spaces

In the bibliography, there are two main ways to introduce an IFS inM: us-
ing a countable number of maps (which includes the case of a finite number),
or indexing the maps by compact metric space.

4.1 The compact model and holonomic probabilities

It was introduced in [6] the concept of IFS with measures (IFSm for short).
In this case, (X, d) is a compact metric space and Λ is another compact
space, R = (φλ, q := (qx))λ∈Λ where φλ : X → X are continuous maps and
q = (qx)x∈X is a collection of measures on Λ for all x ∈ X, such that

H1 supx∈X qx(Λ) <∞,

H2 infx∈X qx(Λ) > 0,

H3 x 7→ qx(A) is a Borel map, i.e, is B(X)-measurable for all fixed A ∈
B(Λ),

H4 x 7→ qx is weak-∗-continuous.
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The transfer operator acts on continuous functions f : X → R is given
by

Bq(f)(x) =

∫
Λ

f(φλ(x))dqx(λ). (42)

The dual operator acts in probabilities ρ on X via Riesz representation
theorem:

B∗q (ρ)(f) =

∫
X

Bq(f)(x)dρ(x). (43)

Below we consider the convolution ∗n, where n is fixed, previously defined
in Example 5.

Our setup is:
1) X =M, compact and d = dMK ;
2) Λ =M, compact;
3) φν(µ) = T(ν) ∗n µ;
4) dqµ(ν) := eA(φν(µ))dΠ0(ν), where A is a continuous potential A :M→ R
and Π0 ∈ M is a fixed a priori probability over M. This defines the family
q considered in the above general setting.

Thus, we will consider here the IFSm

S = (M, φν , q)ν∈M. (44)

Then, for a fixed n ∈ N, we can write the transfer operator BΠ0 := BΠ0,A,T

as:

BΠ0(F )(µ) =

∫
M
F (T(ν) ∗n µ)dqµ(ν) =∫

M
eA(φν(µ))F (T(ν) ∗n µ)dΠ0(ν), (45)

for any continuous function F :M→ R
We will see that, under mild assumptions, the definitions 1), 2), 3), and 4),

mentioned above in our setup satisfy the required hypothesis described in [6],
so we can derive the standard properties obtained in classical thermodynamic
formalism for our IFSm (44).

Indeed, the above hypothesis (H1)-(H4) from [6] are trivially satisfied
for dqµ(ν) = eA(φν(µ))dΠ0(ν), if A is at least continuous. But, some of the
theorems will require more regularity from the IFS.

We say that A : M → R is Π0-normalized if for any µ ∈ M we get
BΠ0(1)(µ) = 1.
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Example 9. Following the above definition of BΠ0 for n = 1 consider a
continuous function Ã : Ω→ R, and for any ρ ∈M we set A(ρ) =

∫
Ã dρ.

Such potential A satisfies the necessary conditions of the future Theorem
15.

Take Π0 = 1
m

∑m
j=1 δδ(j,j,j,..,j..) ∈ M. Considering the probability µ = δy,

according to (36) we get that

φδ(j,j,j,..,j..)(µ) = T(δ(j,j,j,..,j..)) ∗1 µ = T(δ(j,j,j,..,j..)) ∗1 δy = δj,y. (46)

Therefore, for ν = 1
m
δ(j,j,j,..,j..), we get from (34)

A(φν (µ)) = A(φ δ(j,j,j,..,j..)(µ)) = Ã(j, y).

Given the continuous function f : Ω→ R, consider the continuous func-
tion F : M → R such that F (ρ) =

∫
Ω
f dρ. Then, we get from (46), (34)

and (12)

BΠ0(F )(δy) =

∫
M
eA(φν(δy))F (T(ν) ∗1 δy)dΠ0(ν) =

∫
M
eA(φν(δy))F (T(ν) ∗1 δy) d

1

m

m∑
j=1

δδ(j,j,j,..,j..)(ν) =

1

m

m∑
j=1

∫
M
e
A(φ δ(j,j,j,..,j..) (δy))

F (T(δ(j,j,j,..,j..)) ∗1 δy) =

1

m

m∑
j=1

eA(δj,y)F (δj,y) =
1

m

m∑
j=1

eÃ(j,y)f(j, y) = LÃ(f)(y). (47)

Remark 4. The last expression describes the action of the classical Ruelle
operator for the a priori probability 1

m

∑m
j=1 δj and the potential Ã (see [16]

or[22]). Therefore, in some sense, the above definition of BΠ0 is a Level-2
version of the classical Ruelle operator.

Example 10. Note that for n = 1 we get φν2(φν1(µ)) = T(ν2) ∗1 (T(ν1)∗1µ),
a case which was discussed in expression (38).

In this case
B2

Π0
(F )(δy) =∫

M

∫
M
eA(φν2 (φν1 (δy)))+A(φν1 (δy))F (φν2 (T(ν1) ∗1 δy) ) dΠ0(ν1)dΠ0(ν2) =
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m∑
r,s=1

eÃ(r,s,y)+Ã(s,y)f(r, s, y).

In the general case we get that for any µ ∈M

B2
Π0

(F )(µ) =∫
M

∫
M
eA(φν2 (φν1 (µ)))+A(φν1 (µ))F (φν2(φν1(µ))))dΠ0(ν1) dΠ0(ν2). (48)

Given the potential A we will derive a probability ΠA ∈ M which will
play the role of the Gibbs probability for the potential A (see Definition 10).

A natural choice for the a priori probability Π0 is the probability Πp which
was described above.

We recall the main results derived from [6] (when applied to our setting):

Theorem 15. [6, Theorem 2.5] Denote by S the IFSm described by (44) and
suppose that there is a positive number λ and a strictly positive continuous
function h :M→ R such that BΠ0(h) = λh. Then the following limit exists

lim
N→∞

1

N
ln
(
BN

Π0
(1)(µ)

)
= log λ (49)

the convergence is uniform in µ ∈ M and λ = λ(BΠ0) is the spectral radius
of BΠ0 acting on C(Ω,R).

In our case, the family of measures satisfies the requirements from [6].
Indeed, as dqµ(ν) = eA(φν(µ))dΠ0(ν), we get that u(µ, ν) := log dqµ

dΠ0
(ν) =

A(φν(µ)) has the regularity prescribed in [7].

Note that in the case A is Π0-normalized, that is BΠ0(1) = 1, we get that
λ = 1 and h = 1.

Theorem 16. [6, Theorem 2.6] Let S be the IFSm described by (44). If A is
Lipschitz, then there exists a positive and continuous eigenfunction h :M→
R such that BΠ0(h) = λ(BΠ0)h.

Definition 3. Given A and Π0 we say that Π̂ = Π̂A,Π0 is eigenprobability
for A and Π0 if there exist a positive number λ such that for all continuous
F :M→ R

B∗Π0
(Π̂) = λΠ̂.
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This means that for any F :M→ R we get

λ

∫
M
F (ρ)dΠ̂(ρ) =

∫
M
BΠ0(F )(µ) d Π̂(δµ) =

∫
M

(

∫
M
eA(φν(µ))F (φν(µ)))dΠ0(ν) ) d Π̂(δµ). (50)

Remark 5. Note that the eigenvalue λ is identified when we apply (50) to
the function F = 1. Moreover, (50) shoud be true for functions of the form
F (ρ) =

∫
fdρ, where we take a fixed continuous function f : Ω→ R.

Remark 6. Given A,Π0 and Π̂ = Π̂A,Π0, the eigenprobability for A and Π0,
we get from (29) that the equation (50) is equivalent to

λ

∫
M
F (ρ)dΠ̂(ρ) = λ

∫
M
F (µ) dOΠ̂(δµ) =

∫
M

∫
M

[

∫
M
eA(φν(ρ))F (φν(ρ))dΠ0(ν) ) ] dΠ̃ (ρ) dOΠ̂(Π̃) =∫

M

∫
M

[

∫
M
eA(φν(ρ))F (φν(ρ))dΠ0(ν) ) ] dδµ (ρ) dOΠ̂(δµ)∫

M
[

∫
M
eA(φν(µ))F (φν(µ))dΠ0(ν) ) ] dOΠ̂(δµ). (51)

We will present several examples always taking n = 1 in our main theorem
above.

Example 11. Assume the hypothesis of Example 9. Here we will apply the
reasoning of Remark 2.

Take Π0 = 1
m

∑m
j=1 δδ(j,j,j,..,j..) and a continuous potential A :M→ R.

We will show that we can describe the eigenprobability Π̂ for Π0 and A
of Definition 3 via the eigenprobability µB for the dual of the Ruelle operator
LB of a certain continuous potential B : Ω → R. Consider a continuous
function F :M→ R.

We assume Π̂ satisfies equation (51) for some λ. From (51) and (36) this
means

λ

∫
M
F (ρ)dΠ̂(ρ) = λ

∫
M
F (µ)dOΠ̂(δµ) =
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∫
M

[

∫
M
eA(φν(µ))F (φν(µ))dΠ0(ν) ) ] dOΠ̂(δµ) =∫

M

1

m

m∑
j=1

e
A(φδ(j,j,j,..,j..) (µ))

F (φδ∞j (µ)) dOΠ̂(δµ). (52)

We will test if a probability Π̂ that has support on probabilities of the form
δδy , y ∈ Ω, can satisfy (52). Using (4) and (34), in the affirmative case, this
would imply that

λ

∫
Ω

F (δy)dOΠ̂(δδy) =∫
Ω

1

m

m∑
j=1

e
A(φδ(j,j,j,..,j..) (δy))

F (φδ∞j (δy)) dOΠ̂(δδy)

∫
Ω

1

m

m∑
j=1

eA(δ(j,y))F (δ(j,y)) dOΠ̂(δδy). (53)

Next we will describe some expressions that will be useful in the future
Example 29.

Consider the continuous potential B(r) = B(r1, r2, ..) = A(δr) and the
Gibbs probability µB associated to the corresponding eigenvalue β. Denote
G(y) = F (δy).

Then, we get

β

∫
Ω

G(y)dµB(y) =∫
Ω

LA(G)(y)dµB(y) =

∫
Ω

1

m

m∑
j=1

eA(δ(j,y))G(j, y))dµB(y). (54)

Therefore, taking dOΠ̂(δδy) as dµB(y), and λ = β we get that equality
(54) is equivalent to equality 53.

The final conclusion is that dOΠ̂(δδy) can be taken as dµB(y).

For such class of potentials A and such a priori Π0, the action of Π̂ in
each continuous function F is given by (29)∫

M
F (β)dΠ̂(β) =

∫
Ω

[

∫
M

F (γ) dδδy(γ) ] dOΠ̂(δδy) =∫
Ω

[

∫
M
F (γ) dδδy(γ) ] d µB(y) =

∫
Ω

F (δy) d µB(y). (55)
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From now on, we can assume that the operator is Π0-normalized, that is
BΠ0(1) = 1, otherwise, we can replace the measures by

pµ(ν) =
h(φν(µ))

ρh(µ)
qµ(ν)

obtaining BΠ0(1) = 1. Note, however, that in this procedure we may lose the
knowledge about the regularity of pµ.

Definition 4. If A is Π0-normalized we say that Π̂ = Π̂A,Π0 is Gibbs if

B∗Π0
(Π̂) = Π̂.

This means that for any F :M→ R we get∫
M
F (ρ)dΠ̂(ρ) =

∫
M
BΠ0(F )(µ) d Π̂(δµ) =

∫
M

(

∫
M
eA(φν(µ))F (φν(µ) )dΠ0(ν) ) d Π̂(δµ). (56)

Example 12. Assume the hypothesis of Example 11.
Take Π0 = 1

m

∑m
j=1 δδ(j,j,j,..,j..) and assume that A is normalized. We will

show the existence of T-invariant probabilities.
We showed in Example 11 that we can describe the eigenprobability Π̂ of

Definition 3 (or the one in Definition 4) via the eigenprobability µB for the
Ruelle operator of a certain continuous potential B. We take G(y) = F (δy).

Therefore, can recover for such class of potentials A, the action of Π̂ in
each continuous function F via∫

M
F (ρ)dΠ̂(ρ) =

∫
M

(

∫
F dδδy) dµB(y) =

∫
G(y)dµB(y).

Therefore, from the above and (4)∫
M

(F ◦ T)(ρ)dΠ̂(ρ) =

∫
M

(∫
(F ◦ T) dδδy

)
dµB(y) =∫

G(σ(y))dµB(y) =

∫
G(y)dµB(y) =

∫
M
F (ρ)dΠ̂(ρ),

because µB is σ-invariant. Then Π̂ is T-invariant.
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Example 13. Assume the hypothesis of Example 9. We will show the exis-
tence of normalized potentials A :M→ R.

Then, for A(ρ) =
∫

Ω
Ã dρ, Π0 = 1

m

∑m
j=1 δδ(j,j,j,..,j..), and a special class of

functions F (ρ) =
∫

Ω
f(x) dρ(x), we showed that for any y

BΠ0(F )(δy) = LÃ(f)(y).

We will assume from now on that LÃ(1) = 1.
Then, if p =

∑
k pkδyk ∈ M, where

∑
k pk = 1, we get from above that

BΠ0(1)(p) = 1. As Ã (and also A) is continuous and any probability inM can
be approximated by probabilities of the form p, we get that A is Π0-normalized.
This means

1 =

∫
M
eA(φν(µ)) dΠ0(ν).

Consider the Gibbs probability Π̂ = Π̂A,Π0 associate to the Π0-normalized

potential A. We will show a natural relation of Π̂ with mΠ̂.

Π̂ should satisfy in this case the property: for any G :M→ R (not just
for F of the above form)∫

M
G(ρ)dΠ̂(ρ) =

∫
M

(

∫
M
eA(φν(µ))G(φν(µ)) dΠ0(ν) ) d Π̂(µ).

This should be true in particular for the case when G is in the particular
form of the F above. The above means for our choice of Π0∫

M

∫
M
eA(φν(µ))F (φν(µ)) dΠ0(ν) d Π̂(µ) =

∫
M

1

m

m∑
j=1

e
A(φδj∞ (µ))

F (φδj∞ (µ))d Π̂(µ) =

∫
M

1

m

m∑
j=1

e
∫
Ã(j,z) dµ(z) (

∫
f(j, z) dµ(z) )d Π̂(µ) =

∫
M
F (ρ)dΠ̂(ρ) =

∫
(

∫
f(x)dρ(x) ) dΠ̂(ρ) =

∫
f(y)dmΠ̂(y).
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Theorem 17. There exists a duality of the a priori Π0 and the eigenprob-
ability Π̂. Moreover, if we interchange them, the eigenvalue in (50) is the
same, and furthermore

mΠ0 = mΠ̂.

Proof. Given A :M→ R, we will show a relation of the a priori Π0 and the
eigenprobability Π̂ for A.

In this case we get for any F :M→ R

λ

∫
M
F (ρ)dΠ̂(ρ) =

∫
M

(

∫
M
eA(φν(µ))F (φν(µ)) dΠ0(ν) ) d Π̂(µ). (57)

Now suppose that for the potential A we take the a priori as Π̂, and then
we get the eigenprobability, denoted by Π1, for this pair associated to to
some eigenvalue β > 0. Then, for any F

β

∫
M
F (ρ)dΠ1(ρ) =

∫
M

(

∫
M
eA(φν(µ))F (φν(µ)) d Π̂(µ) )dΠ1(ν) . (58)

If in the above equation, we set Π1 = Π0 we get in (58) the same expres-
sion as in (57), up to the values λ and β. From Remark 2 we get that λ = β.
As F is any continuous function we get that Π0 is the eigenprobability for
the a priori Π̂.

(50) should be true in particular for the case when F is in the particular
form

F (ρ) =

∫
f(x)dρ(x), (59)

for some fixed f : Ω → R. This means for our choice of Π0 and the eigen-
probability Π̂ that for any f

λ

∫
f(y)dmΠ̂(y) = λ

∫
(

∫
f(x)dρ(x))dΠ̂(ρ) = λ

∫
F (ρ)dΠ̂(ρ) =

∫
M

(

∫
M
eA(φν(µ)) (

∫
f(x)d φν(µ)(x) ) dΠ0(ν) ) d Π̂(µ) =∫

M
(

∫
M
eA(φν(µ))F (φν(µ)) dΠ0(ν) ) d Π̂(µ). (60)

Note that λ = β in (57) and (58).
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Now suppose that for A we take the a priori Π̂, and then we get that
Π1 = Π0 is the eigenprobability for this pair and the eigenvalue λ > 0. For
F of the above form (59) we get from (60)

λ

∫
f(y)dmΠ0(y) = λ

∫
(

∫
f(x)dρ(x))dΠ0(ρ) = λ

∫
F (ρ)dΠ0 =

∫
M

(

∫
M
eA(φν(µ)) (

∫
f(x)d φν(µ)(x) ) d Π̂(µ) ))dΠ0(ν) =∫

M
(

∫
M
eA(φν(µ))F (φν(µ)) dΠ0(ν))d Π̂(µ) = λ

∫
f(y)dmΠ̂(y). (61)

As the equality is for any f : Ω→ R we get that mΠ̂ = mΠ0 .

Theorem 18. [6, Theorem 3.2] Let S be the IFSm described by (44). Then
there exists a positive number ρ ≤ ρ(BΠ0), such that the set

G∗(Π0) = {Π ∈M : B∗Π0
(Π) = ρΠ}

is not empty.

Definition 5. Given the cartesian product space M̂ ≡ M × Λ, for each
f ∈ C(M,R) consider the “Λ-differential” df : M̂ → R which is defined by
df [µ](ν) ≡ f(φν(µ))− f(µ).

Definition 6. A measure Π̂ over M̂ is said holonomic, with respect to the
IFS S, if for all f ∈ C(M,R) we have∫

M̂
df [µ](ν) dΠ̂(µ, ν) = 0.

Notation,

H(S) ≡ {Π̂ | Π̂ is a holonomic probability measure with respect to the IFSm S}.

We now define the Variational Entropy of a holonomic measure.

Definition 7. [6, Definition 5.1, Theorem 5.6] or [21] for a preceding point
of view. Let S the IFSm described by (44), Π̂ ∈ H(S), Q any probability with
full support on M, and dΠ̂(µ, ν) = dΠµ(ν)dπ(µ) a disintegration of Π̂, with
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respect to the marginal π. The variational entropy of Π̂ with respect to the a
priori probability Q is defined by

hQv (Π̂) ≡ inf
g ∈C(M,R)

g>0

{∫
M

ln
BQ(g)(µ)

g(µ)
dπ(µ)

}
≤ 0,

where BQ(g)(µ) =
∫
M g(φν(µ))dQ(ν).

We will consider from now on the operator BΠ0 as in (45) and the varia-
tional entropy hΠ0

v , where Π0 is the fixed a priori probability on M.
Recall that, for the IFSm S, dqµ(ν) := eA(φν(µ))dΠ0(ν), for a continuous

potential A :M→ R.

Definition 8. Following [6, Definition 5.8], we define the topological pressure
for the potential ψ := eA :M→ R by

P(ψ) ≡ sup
Π̂∈H(S)

inf
g ∈C(M,R)

g>0

{∫
M

ln
BΠ0(g)(µ)

g(µ)
dπ(µ)

}
≤ 0,

where
dΠ̂(µ, ν) = dΠµ(ν)dπ(µ) (62)

is the disintegration of Π̂, with respect to the marginal π.

Proposition 19. [6, Lema 5.9] The pressure satisfies

P(ψ) = sup
Π̂∈H(S)

hΠ0
v (Π̂) +

∫
M

ln(ψ(µ)) dπ(µ)

sup
Π̂∈H(S)

hΠ0
v (Π) +

∫
M
A(µ) dπ(µ) (63)

Definition 9. A holonomic probability Π̂A ∈ H(S) satisfying the equality

P(ψ) = hΠ0
v (Π̂A) +

∫
M
A(µ) dπA(µ),

where πA comes from the disintegration of Π̂A (as in (62)), is called an
equilibrium state for the potential A :M→ R.
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From [6, Theorem 5.13] the set of equilibrium states is not empty for the
IFSm S, since dqµ(ν) := eA(φν(µ))dP (ν) (a continuous and positive weight).

Remark 7. As we already show that there exists a positive eigenfunction
for BΠ0 (Theorem 16) and an eigenmeasure for B∗Π0

(Theorem 18), then it
follows from [6] that the pressure obtained by the entropy with respect to the
a priori measure Π0 satisfy P(ψ) = ln(ρ(BΠ0)). Thus an equilibrium measure
Π̂A satisfies

ln(ρ(BΠ0)) = hΠ0
v (Π̂A) +

∫
M
A(µ) dπ(µA).

Recall that the projection Φ from Π̂ over M̂ to M, defining Π = Φ(Π̂),
is given by∫

M
g(µ)dΦ(µ) =

∫
M
g(µ)dΦ(Π̂)(µ) :=

∫
M̂
g(µ)dΠ̂(µ, ν), ∀g.

Definition 10. The probability ΠA = Φ(Π̂A) ∈ M is caled the projected
equilibrium probability for A and the a priori probability Π0 ∈M.

Consider the functional m : C(M,R)→ R given by

m(A) = P(eA). (64)

It is immediate to verify that m is a convex and a finite valued functional.

Theorem 20. [6, Theorem 6.1, Corollary 6.2] Consider the IFSm S. If m
is Gâteaux differentiable in A then

#{Φ(Π̂) : Π̂ is an equilibrium state for ψ = eA} = 1.
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