A THERMODYNAMIC FORMALISM FOR DENSITY MATRICES IN QUANTUM INFORMATION

A. BARAVIERA, C. F. LARDIZABAL, A. O. LOPES, AND M. TERRA CUNHA

Abstract. We consider new concepts of entropy and pressure for stationary systems acting on density matrices which generalize the usual ones in Ergodic Theory. Part of our work is to justify why the definitions and results we describe here are natural generalizations of the classical concepts of Thermodynamic Formalism (in the sense of R. Bowen, Y. Sinai and D. Ruelle). It is well-known that the concept of density operator should replace the concept of measure for the cases in which we consider a quantum formalism.

We consider the operator Λ acting on the space of density matrices \mathcal{M}_{N} over a finite N-dimensional complex Hilbert space

$$
\Lambda(\rho):=\sum_{i=1}^{k} \operatorname{tr}\left(W_{i} \rho W_{i}^{*}\right) \frac{V_{i} \rho V_{i}^{*}}{\operatorname{tr}\left(V_{i} \rho V_{i}^{*}\right)}
$$

where W_{i} and $V_{i}, i=1,2, \ldots, k$ are linear operators in this Hilbert space. In some sense this operator is a version of an Iterated Function System (IFS). Namely, the $V_{i}(.) V_{i}^{*}=: F_{i}(),. i=1,2, \ldots, k$, play the role of the inverse branches (i.e., the dynamics on the configuration space of density matrices) and the W_{i} play the role of the weights one can consider on the IFS. In this way a family $W:=\left\{W_{i}\right\}_{i=1, \ldots, k}$ determines a Quantum Iterated Function System (QIFS).

We also present some estimates related to the Holevo bound.

1. Introduction

In this work we investigate a generalization of the classical Thermodynamic Formalism (in the sense of Bowen, Sinai and Ruelle) for the setting of density matrices. We consider the operator Λ acting on the space of density matrices \mathcal{M}_{N} over a finite N-dimensional complex Hilbert space

$$
\begin{equation*}
\Lambda(\rho):=\sum_{i=1}^{k} \operatorname{tr}\left(W_{i} \rho W_{i}^{*}\right) \frac{V_{i} \rho V_{i}^{*}}{\operatorname{tr}\left(V_{i} \rho V_{i}^{*}\right)}, \tag{1}
\end{equation*}
$$

where W_{i} and $V_{i}, i=1,2, \ldots, k$ are linear operators in this Hilbert space. Note that Λ is not a linear operator. This operator can be seen as a version of an Iterated Function System (IFS). Namely, the $V_{i}(.) V_{i}^{*}=: F_{i}(),. i=1,2, \ldots, k$, play the role of the inverse branches (i.e., the dynamics on the configuration space of density matrices ρ) and the W_{i} play the role of the weights one can consider on the IFS. We suppose that for all ρ we have that $\sum_{i=1}^{k} \operatorname{tr}\left(W_{i} \rho W_{i}^{*}\right)=1$. Note that such trace preserving condition, for any normalized operator ρ (that is, with $\operatorname{tr}(\rho)=1$), is

[^0]equivalent to the explicit condition $\sum_{i} W_{i}^{*} W_{i}=I$. We say that Λ is a normalized operator.

A family $W:=\left\{W_{i}\right\}_{i=1, \ldots, k}$ determines a Quantum Iterated Function System (QIFS) \mathcal{F}_{W},

$$
\mathcal{F}_{W}=\left\{\mathcal{M}_{N}, F_{i}, W_{i}\right\}_{i=1, \ldots, k}
$$

Basic references on QIFS are [13] and [16]. We want to consider a new concept of entropy for stationary systems acting on density matrices which generalizes the usual one in Ergodic Theory. In our setting the $V_{i}, i=1,2, \ldots, k$ are fixed (i.e. the dynamics of the inverse branches is fixed in the beginning) and we consider the different families $W_{i}, i=1,2, \ldots, k$, (also with the attached corresponding eigendensity matrix ρ_{W}) as possible Jacobians of stationary probabilities.

Given a normalized family $W_{i}, i=1,2, \ldots, k$, a natural definition of entropy is given by

$$
\begin{equation*}
h_{V}(W)=-\sum_{i=1}^{k} \frac{\operatorname{tr}\left(W_{i} \rho_{W} W_{i}^{*}\right)}{\operatorname{tr}\left(V_{i} \rho_{W} V_{i}^{*}\right)} \sum_{j=1}^{k} \operatorname{tr}\left(W_{j} V_{i} \rho_{W} V_{i}^{*} W_{j}^{*}\right) \log \left(\frac{\operatorname{tr}\left(W_{j} V_{i} \rho_{W} V_{i}^{*} W_{j}^{*}\right)}{\operatorname{tr}\left(V_{i} \rho_{W} V_{i}^{*}\right)}\right) \tag{2}
\end{equation*}
$$

where ρ_{W} denotes the barycenter of the unique invariant, attractive measure for the Markov operator \mathcal{V} associated to \mathcal{F}_{W}. We show that this generalizes the entropy of a Markov System.

We also want to present a concept of pressure for stationary systems acting on density matrices which generalizes the usual one in Ergodic Theory. In addition to the dynamics obtained by the V_{i}, which are fixed, a family of potentials H_{i}, $i=1,2, \ldots k$ induces a kind of Ruelle operator given by

$$
\begin{equation*}
\mathcal{L}_{H}(\rho):=\sum_{i=1}^{k} \operatorname{tr}\left(H_{i} \rho H_{i}^{*}\right) V_{i} \rho V_{i}^{*} \tag{3}
\end{equation*}
$$

We show that such operator admits an eigenvalue β and an associated eigenstate ρ_{β}, that is, one satisfying $\mathcal{L}_{H}\left(\rho_{\beta}\right)=\beta \rho_{\beta}$.

The natural generalization of the concept of pressure for a family $H_{i}, i=$ $1,2, \ldots, k$ is the problem of maximizing, on the possible normalized families W_{i}, $i=1,2, \ldots k$, the expression

$$
\begin{equation*}
h_{V}(W)+\sum_{j=1}^{k} \log \left(\operatorname{tr}\left(H_{j} \rho_{\beta} H_{j}^{*}\right) \operatorname{tr}\left(V_{j} \rho_{\beta} V_{j}^{*}\right)\right) \operatorname{tr}\left(W_{j} \rho_{W} W_{j}^{*}\right) \tag{4}
\end{equation*}
$$

We show a relation between the eigendensity matrix ρ_{β} for the Ruelle operator and the set of $W_{i}, i=1,2, \ldots k$, which maximizes pressure. In the particular case that each of the V_{i} is unitary, $i=1,2, \ldots k$, the maximum value is $\log \beta$.

Our work is inspired by the results presented in [16] and [21]. We would like to thank these authors for supplying us with the corresponding references.

It is well-known that completely positive mappings (operators) acting on density matrices are of great importance in Quantum Computing. These operators can be written in the Stinespring-Kraus form (see section 12). Also a nice exposition on the interplay of Ergodic Theory and Quantum Information is presented in [4].

The initial part of our work aims to present some of the definitions and concepts that are not very well-known (at least for the general audience of people in Dynamical Systems), in a systematic way. We present the main basic definitions which are necessary to understand the theory. However, we do not have the intention of exhausting what is already known. We believe that the theoretical results presented here can be useful as a general tool to understand problems in Quantum Computing.

Several examples are presented in the text. We believe that this will help the reader to understand some of the main issues of the theory. In order to simplify the notation we will present most of our results for the case of matrices of order 2 .

In sections 2 and 3 we present some basic definitions, examples and we show some preliminary relations of our setting to the classical Thermodynamic Formalism. In section 4 we present an eigenvalue problem for non-normalized Ruelle operators which will be required later. Some properties and concepts about density matrices and Ruelle operators are presented in sections 6 and 7 . Sections 8 and 9 are dedicated to the introduction of some different kinds of entropy that were already known but do not have a stationary character. In section 10 we introduce the concept of stationary entropy for measures defined on the set of density matrices. In section 11 we compare this definition with the usual one for Markov Chains. Section 12 is dedicated to motivate the interest on pressure and the capacity-cost function. Section 13, 14, 15 and 16 are dedicated to the presentation of our main results on pressure, important inequalities, examples and its relation with the classical theory of Thermodynamic Formalism.

In [1] we present a general exposition (describing the setting we consider here) where we omit proofs, but provide many examples. We believe that paper will help to complement the present paper for the reader which is a newcomer in the area. We also present there some basic results concerning the discrete Wigner measure.

In [2] we propose a different concept of entropy which is also a generalization of the classical one. We also describe some properties of the Quantum Stochastic Process associated to the Quantum Iterated Function System.

This work is part of the thesis dissertation of C. F. Lardizabal in Prog. Pos-Grad. Mat. UFRGS (Brazil).

2. Basic definitions

Let $M_{N}(\mathbb{C})$ the set of complex matrices of order n. If $\rho \in M_{N}(\mathbb{C})$ then ρ^{*} denotes the transpose conjugate of ρ. A state (or vector) in \mathbb{C}^{n} will be denoted by ψ or $|\psi\rangle$, and the associated projection will be written $|\psi\rangle\langle\psi|$. Define

$$
\begin{gathered}
\mathcal{H}_{N}:=\left\{\rho \in M_{N}(\mathbb{C}): \rho^{*}=\rho\right\} \\
\mathcal{P} \mathcal{H}_{N}:=\left\{\rho \in \mathcal{H}_{N}:\langle\rho \psi, \psi\rangle \geq 0, \forall \psi \in \mathbb{C}^{N}\right\} \\
\mathcal{M}_{N}:=\left\{\rho \in \mathcal{P} \mathcal{H}_{N}: \operatorname{tr}(\rho)=1\right\} \\
\mathcal{P}_{N}:=\left\{\rho \in \mathcal{H}_{N}: \rho=|\psi\rangle\langle\psi|, \psi \in \mathbb{C}^{N},\langle\psi \mid \psi\rangle=1\right\},
\end{gathered}
$$

the space of hermitian, positive, density operators and pure states, respectively. Density operators are also called mixed states. If a quantum system can be in one of the states $\left\{\psi_{1}, \ldots, \psi_{k}\right\}$ then a mixed state ρ will be written as

$$
\begin{equation*}
\rho=\sum_{i=1}^{k} p_{i}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right| \tag{5}
\end{equation*}
$$

where the p_{i} are positive numbers with $\sum_{i} p_{i}=1$.

Definition 1. Let $F_{i}: \mathcal{M}_{N} \rightarrow \mathcal{M}_{N}, p_{i}: \mathcal{M}_{N} \rightarrow[0,1], i=1, \ldots, k$ and such that $\sum_{i} p_{i}(\rho)=1$. We call

$$
\begin{equation*}
\mathcal{F}_{N}=\left\{\mathcal{M}_{N}, F_{i}, p_{i}: i=1, \ldots, k\right\} \tag{6}
\end{equation*}
$$

a Quantum Iterated Function System (QIFS).
Definition 2. A QIFS is homogeneous if p_{i} and $F_{i} p_{i}$ are affine mappings, $i=$ $1, \ldots, k$.

Suppose that the QIFS considered is such that there are V_{i} and W_{i} linear maps, $i=1, \ldots, k$, with $\sum_{i=1}^{k} W_{i}^{*} W_{i}=I$ such that

$$
\begin{equation*}
F_{i}(\rho)=\frac{V_{i} \rho V_{i}^{*}}{\operatorname{tr}\left(V_{i} \rho V_{i}^{*}\right)} \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
p_{i}(\rho)=\operatorname{tr}\left(W_{i} \rho W_{i}^{*}\right) \tag{8}
\end{equation*}
$$

Then we have that a QIFS is homogeneous if $V_{i}=W_{i}, i=1, \ldots, k$. Now we can define a Markov operator $\mathcal{V}: \mathcal{M}^{1}\left(\mathcal{M}_{N}\right) \rightarrow \mathcal{M}^{1}\left(\mathcal{M}_{N}\right)$,

$$
\begin{equation*}
(\mathcal{V} \mu)(B)=\sum_{i=1}^{k} \int_{F_{i}^{-1}(B)} p_{i}(\rho) d \mu(\rho), \tag{9}
\end{equation*}
$$

where $\mathcal{M}^{1}\left(\mathcal{M}_{N}\right)$ denotes the space of probability measures over \mathcal{M}_{N}. We also define $\Lambda: \mathcal{M}_{N} \rightarrow \mathcal{M}_{N}$,

$$
\begin{equation*}
\Lambda(\rho):=\sum_{i=1}^{k} p_{i}(\rho) F_{i}(\rho) \tag{10}
\end{equation*}
$$

The operator defined above has no counterpart in the classical Thermodynamic Formalism. We will also consider the operator defined on the space of density matrices ρ,

$$
\begin{equation*}
\mathcal{L}(\rho)=\sum_{i=k}^{k} q_{i}(\rho) V_{i} \rho V_{i}^{*} \tag{11}
\end{equation*}
$$

If for all ρ we have $\sum_{i=k}^{k} q_{i}(\rho)=1$, we say the operator is normalized. We are also interested in the non-normalized case. If the QIFS is homogeneous, then

$$
\begin{equation*}
\Lambda(\rho)=\sum_{i} V_{i} \rho V_{i}^{*} \tag{12}
\end{equation*}
$$

Theorem 1. [21] A mixed state $\hat{\rho}$ is Λ-invariant if and only if

$$
\begin{equation*}
\hat{\rho}=\int_{\mathcal{M}_{N}} \rho d \mu(\rho), \tag{13}
\end{equation*}
$$

for some \mathcal{V}-invariant measure μ.
We recall the definition of the integral above in section 5.
In order to define hyperbolic QIFS, one has to define a distance on the space of mixed states. For instance, we could choose one of the following:

$$
\begin{gather*}
D_{1}\left(\rho_{1}, \rho_{2}\right)=\sqrt{\operatorname{tr}\left[\left(\rho_{1}-\rho_{2}\right)^{2}\right]} \tag{14}\\
D_{2}\left(\rho_{1}, \rho_{2}\right)=\operatorname{tr} \sqrt{\left(\rho_{1}-\rho_{2}\right)^{2}} \tag{15}\\
D_{3}\left(\rho_{1}, \rho_{2}\right)=\sqrt{2\left\{1-\operatorname{tr}\left[\left(\rho_{1}^{1 / 2} \rho_{2} \rho_{1}^{1 / 2}\right)^{1 / 2}\right]\right\}} \tag{16}
\end{gather*}
$$

the Hilbert-Schmidt, trace, and Bures distances, respectively. Such metrics generate the same topology on \mathcal{M}_{N}. Considering the space of mixed states with one of those metrics we can use a definition of hyperbolicity similar to the one used for IFS. That is, we say a QIFS is hyperbolic if the quantum maps F_{i} are contractions with respect to one of the distances on \mathcal{M}_{N} and if the maps p_{i} are Hölder-continuous and positive, see for instance [16].

Proposition 1. If a QIFS (6) is homogeneous and hyperbolic then the associated Markov operator admits a unique invariant measure μ. Such invariant measure determines a unique Λ-invariant state $\rho \in \mathcal{M}_{N}$, given by (13).

See [16], [21] for the proof.

3. Examples of QIFS

Example 1. $\Omega=\mathcal{M}_{N}, k=2, p_{1}=p_{2}=1 / 2, G_{1}(\rho)=U_{1} \rho U_{1}^{*}, G_{2}(\rho)=U_{2} \rho U_{2}^{*}$. The normalized identity matrix $\rho_{*}=I / N$ is Λ-invariant, for any choice of unitary U_{1} and U_{2}. Note that we can write

$$
\begin{equation*}
\rho_{*}=\int_{\mathcal{M}_{N}} \rho d \mu(\rho) \tag{17}
\end{equation*}
$$

where the measure μ, uniformly distributed over \mathcal{P}_{N} (the Fubini-Study metric), is \mathcal{V}-invariant.

We recall that a mapping Λ is completely positive (CP) if $\Lambda \otimes I$ is positive for any extension of the Hilbert space considered $\mathcal{H}_{N} \rightarrow \mathcal{H}_{N} \otimes \mathcal{H}_{E}$. We know that every CP mapping which is trace-preserving can be represented (in a nonunique way) in the Stinespring-Kraus form

$$
\begin{equation*}
\Lambda(\rho)=\sum_{j=1}^{k} V_{j} \rho V_{j}^{*}, \quad \sum_{j=1}^{k} V_{j}^{*} V_{j}=1 \tag{18}
\end{equation*}
$$

where the V_{i} are linear operators. Moreover if we have $\sum_{j=1}^{k} V_{j} V_{j}^{*}=I$, then $\Lambda(I / N)=I / N$. This is the case if each of the V_{i} are normal.

We call a unitary trace-preserving CP map a bistochastic map. An example of such a mapping is

$$
\begin{equation*}
\Lambda_{U}(\rho)=\sum_{i=1}^{k} p_{i} U_{i} \rho U_{i}^{*} \tag{19}
\end{equation*}
$$

where the U_{i} are unitary operators and $\sum_{i} p_{i}=1$. Note that if we write $F_{i}(\rho)=$ $U_{i} \rho U_{i}^{*}$, then example 1 is part of this class of operators. For such operators we have that ρ_{*} is an invariant state for Λ_{U} and also that $\delta_{\rho_{*}}$ is invariant for the Markov operator P_{U} induced by this QIFS.

We will present a simple example of the kind of problems we are interested here, namely eigenvalues and eigendensity matrices. Let \mathcal{H}_{N} be a Hilbert space of dimension N. As before, let \mathcal{M}_{N} be the space of density operators on \mathcal{H}_{N}. A natural problem is to find fixed points for $\Lambda: \mathcal{M}_{N} \rightarrow \mathcal{M}_{N}$,

$$
\begin{equation*}
\Lambda(\rho)=\sum_{i=1}^{k} V_{i} \rho V_{i}^{*} \tag{20}
\end{equation*}
$$

In order to simplify our notation we fix $N=2$ and $k=2$. Let

$$
V_{1}=\left(\begin{array}{ll}
v_{1} & v_{2} \\
v_{3} & v_{4}
\end{array}\right), \quad V_{2}=\left(\begin{array}{ll}
w_{1} & w_{2} \\
w_{3} & w_{4}
\end{array}\right), \quad \rho=\left(\begin{array}{ll}
\rho_{1} & \rho_{2} \\
\overline{\rho_{2}} & \rho_{4}
\end{array}\right)
$$

where V_{1} and V_{2} are invertible and ρ is a density operator. We would like to find ρ such that

$$
\begin{equation*}
V_{1} \rho V_{1}^{*}+V_{2} \rho V_{2}^{*}=\rho \tag{21}
\end{equation*}
$$

Example 2. Let

$$
V_{1}=e^{i k}\left(\begin{array}{cc}
\sqrt{p} & 0 \\
0 & -\sqrt{p}
\end{array}\right), \quad V_{2}=e^{i l}\left(\begin{array}{cc}
\sqrt{1-p} & 0 \\
0 & -\sqrt{1-p}
\end{array}\right)
$$

where $k, l \in \mathbb{R}, p \in(0,1)$. Then $V_{1}^{*} V_{1}+V_{2}^{*} V_{2}=I$. A simple calculation shows that $\rho_{2}=0$, and then

$$
\rho=\left(\begin{array}{cc}
q & 0 \\
0 & 1-q
\end{array}\right)
$$

is invariant to $\Lambda(\rho)=V_{1} \rho V_{1}^{*}+V_{2} \rho V_{2}^{*}$, for $q \in(0,1)$.

Now we make a few considerations about the Ruelle operator \mathcal{L} defined before. In particular, we show that Perron's classic eigenvalue problem is a particular case of the problem for the operator \mathcal{L} acting on matrices. Let

$$
\begin{gathered}
V_{1}=\left(\begin{array}{cc}
p_{00} & 0 \\
0 & 0
\end{array}\right), \quad V_{2}=\left(\begin{array}{cc}
0 & p_{01} \\
0 & 0
\end{array}\right) \\
V_{3}=\left(\begin{array}{cc}
0 & 0 \\
p_{10} & 0
\end{array}\right), \quad V_{4}=\left(\begin{array}{cc}
0 & 0 \\
0 & p_{11}
\end{array}\right), \quad \rho=\left(\begin{array}{ll}
\rho_{1} & \rho_{2} \\
\rho_{3} & \rho_{4}
\end{array}\right)
\end{gathered}
$$

Define

$$
\begin{equation*}
\mathcal{L}(\rho)=\sum_{i=1}^{4} q_{i}(\rho) V_{i} \rho V_{i}^{*} \tag{22}
\end{equation*}
$$

We have that $\mathcal{L}(\rho)=\rho$ implies $\rho_{2}=0$ and

$$
\begin{align*}
& a \rho_{1}+b \rho_{4}=\rho_{1} \tag{23}\\
& c \rho_{1}+d \rho_{4}=\rho_{4} \tag{24}
\end{align*}
$$

where

$$
a=q_{1} p_{00}^{2}, \quad b=q_{2} p_{01}^{2}, \quad c=q_{3} p_{10}^{2}, \quad d=q_{4} p_{11}^{2}
$$

Solving (23) and (24) in terms of ρ_{1} gives

$$
\rho_{1}=\frac{b}{1-a} \rho_{4}, \quad \rho_{1}=\frac{1-d}{c} \rho_{4}
$$

that is,

$$
\begin{equation*}
\frac{b}{1-a}=\frac{1-d}{c} \tag{25}
\end{equation*}
$$

which is a restriction over the q_{i}. For simplicity we assume here that the q_{i} are constant. One can show that

$$
\rho=\left(\begin{array}{cc}
\frac{q_{2} p_{01}^{2}}{q_{2} p_{01}^{2}-q_{1} p_{00}^{2}+1} & 0 \tag{26}\\
0 & \frac{1-q_{1} p_{00}^{2}}{q_{2} p_{01}^{2}-q_{1} p_{00}^{2}+1}
\end{array}\right)=\left(\begin{array}{cc}
\frac{1-q_{4} p_{11}^{2}}{1-q_{4} p_{11}^{2}+q_{3} p_{10}^{2}} & 0 \\
0 & \frac{q_{3} p_{10}^{2}}{1-q_{4} p_{11}^{2}+q_{3} p_{10}^{2}}
\end{array}\right)
$$

Now let

$$
P=\sum_{i} V_{i}=\left(\begin{array}{ll}
p_{00} & p_{01} \\
p_{10} & p_{11}
\end{array}\right)
$$

be a column-stochastic matrix. Let $\pi=\left(\pi_{1}, \pi_{2}\right)$ such that $P \pi=\pi$. Then

$$
\begin{equation*}
\pi=\left(\frac{p_{01}}{p_{01}-p_{00}+1}, \frac{1-p_{00}}{p_{01}-p_{00}+1}\right) \tag{27}
\end{equation*}
$$

Comparing (27) and (26) suggests that we should fix

$$
\begin{equation*}
q_{1}=\frac{1}{p_{00}}, \quad q_{2}=\frac{1}{p_{01}}, \quad q_{3}=\frac{1}{p_{10}}, \quad q_{4}=\frac{1}{p_{11}} \tag{28}
\end{equation*}
$$

Then the nonzero entries of ρ are equal to the entries of π and therefore we associate the fixed point of P to the fixed point of some \mathcal{L} in a natural way. But note that such a choice of q_{i} is not unique, because

$$
\begin{equation*}
q_{2}=\frac{1-q_{1} p_{00}^{2}}{p_{01} p_{10}}, \quad q_{4}=\frac{1-q_{3} p_{10} p_{01}}{p_{11}^{2}} \tag{29}
\end{equation*}
$$

for any q_{1}, q_{3} also produces ρ with nonzero coordinates equal to the coordinates of π. We also note that the above calculations can be made by taking the V_{i} matrices with nonzero entries equal to $\sqrt{p_{i j}}$ instead of $p_{i j}$.

Now we consider the following problem. Let

$$
\begin{gathered}
V_{1}=\left(\begin{array}{cc}
h_{00} & 0 \\
0 & 0
\end{array}\right), \quad V_{2}=\left(\begin{array}{cc}
0 & h_{01} \\
0 & 0
\end{array}\right), \quad V_{3}=\left(\begin{array}{cc}
0 & 0 \\
h_{10} & 0
\end{array}\right) \\
V_{4}=\left(\begin{array}{cc}
0 & 0 \\
0 & h_{11}
\end{array}\right), \quad H=\sum_{i} V_{i}, \quad \rho=\left(\begin{array}{cc}
\rho_{1} & \rho_{2} \\
\rho_{3} & \rho_{4}
\end{array}\right)
\end{gathered}
$$

Define

$$
\begin{equation*}
\mathcal{L}(\rho)=\sum_{i=1}^{4} q_{i} V_{i} \rho V_{i}^{*} \tag{30}
\end{equation*}
$$

where $q_{i} \in \mathbb{R}$. Assume that $h_{i j} \in \mathbb{R}$, so we want to obtain λ such that $\mathcal{L}(\rho)=\lambda \rho$, $\lambda \neq 0$, and λ is the largest eigenvalue. With a few calculations we obtain $\rho_{2}=\rho_{3}=$ 0 ,

$$
\begin{aligned}
& q_{1} h_{00}^{2} \rho_{1}+q_{2} h_{01}^{2} \rho_{4}=\lambda \rho_{1} \\
& q_{3} h_{10}^{2} \rho_{1}+q_{4} h_{11}^{2} \rho_{4}=\lambda \rho_{4}
\end{aligned}
$$

that is,

$$
\begin{align*}
& a \rho_{1}+b \rho_{4}=\lambda \rho_{1} \tag{31}\\
& c \rho_{1}+d \rho_{4}=\lambda \rho_{4}, \tag{32}
\end{align*}
$$

$$
a=q_{1} h_{00}^{2}, \quad b=q_{2} h_{01}^{2}, \quad c=q_{3} h_{10}^{2}, \quad d=q_{4} h_{11}^{2}
$$

Therefore

$$
\rho=\left(\begin{array}{cc}
\frac{\lambda-d}{c} \rho_{4} & 0 \\
0 & \rho_{4}
\end{array}\right)=\left(\begin{array}{cc}
\frac{b}{\lambda-a} \rho_{4} & 0 \\
0 & \rho_{4}
\end{array}\right)
$$

and

$$
\frac{\lambda-d}{c}=\frac{b}{\lambda-a}
$$

Solving for λ, we obtain the eigenvalues

$$
\begin{gathered}
\lambda=\frac{a+d}{2} \pm \frac{\zeta}{2}=\frac{a+d}{2} \pm \frac{\sqrt{(d-a)^{2}+4 b c}}{2} \\
=\frac{1}{2}\left(q_{1} h_{00}^{2}+q_{4} h_{11}^{2} \pm \sqrt{\left(q_{4} h_{11}^{2}-q_{1} h_{00}^{2}\right)^{2}+4 q_{2} q_{3} h_{01}^{2} h_{10}^{2}}\right),
\end{gathered}
$$

where

$$
\zeta=\sqrt{(d-a)^{2}+4 b c}=\sqrt{\left(q_{4} h_{11}^{2}-q_{1} h_{00}^{2}\right)^{2}+4 q_{2} q_{3} h_{01}^{2} h_{10}^{2}}
$$

and the associated eigenfunctions

$$
\rho=\left(\begin{array}{cc}
\frac{a-d \pm \zeta}{2 c} \rho_{4} & 0 \\
0 & \rho_{4}
\end{array}\right)=\left(\begin{array}{cc}
\frac{2 b}{d-a \pm \zeta} \rho_{4} & 0 \\
0 & \rho_{4}
\end{array}\right)
$$

But $\rho_{1}+\rho_{4}=1$ so we obtain

$$
\rho=\left(\begin{array}{cc}
\frac{a-d \pm \zeta}{a-d \pm \zeta+2 c} & 0 \\
0 & \frac{2 c}{a-d \pm \zeta+2 c}
\end{array}\right)
$$

$$
=\left(\begin{array}{cc}
\frac{q_{1} h_{00}^{2}-q_{4} h_{11}^{2} \pm \zeta}{q_{1} h_{00}^{2}-q_{4} h_{11}^{2} \pm \zeta+2 q_{3} h_{10}^{2}} & 0 \tag{33}\\
0 & \frac{2 q_{3} h_{10}^{2}}{q_{1} h_{00}^{2}-q_{4} h_{11}^{2} \pm \zeta+2 q_{3} h_{10}^{2}}
\end{array}\right)
$$

that is,

$$
\begin{gather*}
\rho=\left(\begin{array}{cc}
\frac{-2 b}{a-2 b-d \mp \zeta} & 0 \\
0 & \frac{a-d \mp \zeta}{a-2 b-d \mp \zeta}
\end{array}\right) \\
=\left(\begin{array}{cc}
\frac{-2 q_{2} h_{01}^{2}}{q_{1} h_{00}^{2}-2 q_{2} h_{01}^{2}-q_{4} h_{11}^{2} \mp \zeta} & 0 \\
0 & \frac{q_{1} h_{00}^{2}-q_{4} h_{11}^{2} \mp \zeta}{q_{1} h_{00}^{2}-2 q_{2} h_{01}^{2}-q_{4} h_{11}^{2} \mp \zeta}
\end{array}\right) \tag{34}
\end{gather*}
$$

Therefore we obtained that $\rho_{1}, \rho_{4}, q_{1}, \ldots, q_{4}, \lambda$ are implicit solutions for the set of equations (31)-(32). Recall that in this case we obtained $\rho_{2}=\rho_{3}=0$.

Now we consider the problem of finding the eigenvector associated to the dominant eigenvalue of H. The eigenvalues are

$$
\lambda=\frac{1}{2}\left(h_{00}+h_{11} \pm \sqrt{\left(h_{00}-h_{11}\right)^{2}+4 h_{01} h_{10}}\right)
$$

Then we can find v such that $H v=\lambda v$ from the set of equations

$$
\begin{align*}
& h_{00} v_{1}+h_{01} v_{2}=\lambda v_{1} \tag{35}\\
& h_{10} v_{1}+h_{11} v_{2}=\lambda v_{2} \tag{36}
\end{align*}
$$

which determine v_{1}, v_{2}, λ implicitly. Note that if we set

$$
\begin{equation*}
q_{1}=\frac{1}{p_{00}}, \quad q_{2}=\frac{1}{p_{01}}, \quad q_{3}=\frac{1}{p_{10}}, \quad q_{4}=\frac{1}{p_{11}} \tag{37}
\end{equation*}
$$

we have that the set of equations (31)-(32) and (35)-(36) are the same. Hence we conclude that Perron's classic eigenvalue problem is a particular case of the problem for \mathcal{L} acting on matrices.

A different analysis in the quantum setting which is related to Perron's theorem is presented in [6].

4. A theorem on eigenvalues for the Ruelle operator

The following proposition is inspired in [18]. We say that a hermitian operator $P: V \rightarrow V$ on a Hilbert space $(V,\langle\cdot\rangle)$ is positive if $\langle P v, v\rangle \geq 0$, for all $v \in V$, denoted $P \geq 0$. Consider the positive operator $\mathcal{L}_{W, V}: \mathcal{P} \mathcal{H}_{N} \rightarrow \mathcal{P} \mathcal{H}_{N}$,

$$
\begin{equation*}
\mathcal{L}_{W, V}(\rho):=\sum_{i=1}^{k} \operatorname{tr}\left(W_{i} \rho W_{i}^{*}\right) V_{i} \rho V_{i}^{*} \tag{38}
\end{equation*}
$$

We point out that this operator is completely general. In an analogy with the classical case we can say it corresponds to the general Perron Theorem for positive matrices (having positive eigenvalues which can be bigger or smaller than one), by the other hand the setting described in [16], [21] "basically" considers the analogous case of the Perron Theorem for stochastic matrices.

We need a result in this form in order to better understand the Pressure problem which will be described later.

Proposition 2. There exists $\rho \in \mathcal{M}_{N}$ and $\beta>0$ such that $\mathcal{L}_{W, V}(\rho)=\beta \rho$. The value β is obtained explicitly: $\beta=\operatorname{tr}\left(\mathcal{L}_{W, V}(\rho)\right)$.

Proof Define $\mathcal{L}_{n}: \mathcal{M}_{N} \rightarrow \mathcal{M}_{N}$,

$$
\mathcal{L}_{n}(\rho):=\frac{\mathcal{L}_{W, V}\left(\rho+\frac{I}{n}\right)}{\operatorname{tr}\left(\mathcal{L}_{W, V}\left(\rho+\frac{I}{n}\right)\right)}, n \geq 1
$$

The operator above is well defined. In fact, note that $\mathcal{L}_{W, V}(\rho), W_{j} W_{j}^{*}, V_{j} V_{j}^{*}$ are positive for all j. Then

$$
\begin{gathered}
\operatorname{tr}\left[\sum_{i} \operatorname{tr}\left(W_{i}\left(\rho+\frac{I}{n}\right) W_{i}^{*}\right) V_{i}\left(\rho+\frac{I}{n}\right) V_{i}^{*}\right]=\sum_{i} \operatorname{tr}\left(W_{i}\left(\rho+\frac{I}{n}\right) W_{i}^{*}\right) \operatorname{tr}\left(V_{i}\left(\rho+\frac{I}{n}\right) V_{i}^{*}\right) \\
=\sum_{i} \operatorname{tr}\left(W_{i} \rho W_{i}^{*}+\frac{1}{n} W_{i} W_{i}^{*}\right) \operatorname{tr}\left(V_{i} \rho V_{i}^{*}+\frac{1}{n} V_{i} V_{i}^{*}\right) \geq \\
\geq \sum_{i} \operatorname{tr}\left(W_{i} \rho W_{i}^{*}\right) \operatorname{tr}\left(V_{i} \rho V_{i}^{*}\right)=\operatorname{tr}\left(\mathcal{L}_{W, V}\right)
\end{gathered}
$$

We know that for any positive operator $P \neq 0$, if $\left\{v_{1}, \ldots, v_{N}\right\}$ is a orthonormal base for \mathcal{H}_{N}, then

$$
\operatorname{tr}(P)=\sum_{i=1}^{N}\left\langle P v_{i}, v_{i}\right\rangle>0
$$

Therefore, $\operatorname{tr}\left(\mathcal{L}_{W, V}\left(\rho+\frac{I}{n}\right)\right)>0, n \geq 1$. Hence $\mathcal{L}_{n}(\rho)$ is well defined.

We know that \mathcal{M}_{N} is compact and convex, so we can apply Schauder's theorem for each of the mappings $\mathcal{L}_{n}, n \geq 1$ and get $\rho_{n} \in \mathcal{M}_{N}$ such that

$$
\mathcal{L}_{n}\left(\rho_{n}\right)=\rho_{n} \Rightarrow \mathcal{L}_{W, V}\left(\rho_{n}+\frac{I}{n}\right)=\beta_{n} \rho_{n}, \quad n \geq 1
$$

where

$$
\beta_{n}:=\operatorname{tr}\left(\mathcal{L}_{W, V}\left(\rho_{n}+\frac{I}{n}\right)\right)
$$

By the compacity of \mathcal{M}_{N}, we can choose a point $\rho \in \mathcal{M}_{N}$ which is limit of the sequence $\left\{\rho_{n}\right\}_{n=1}^{\infty}$ and then, by continuity, $\mathcal{L}_{W, V}(\rho)=\beta \rho$, where $\beta=\operatorname{tr}\left(\mathcal{L}_{W, V}(\rho)\right)$. Also, note that $\beta \geq 0$, because if $\left\{v_{1}, \ldots, v_{N}\right\}$ is a orthonormal base of \mathcal{H}_{N},

$$
\operatorname{tr}\left(\mathcal{L}_{W, V}(\rho)\right)=\sum_{i=1}^{N}\left\langle\mathcal{L}_{W, V}(\rho) v_{i}, v_{i}\right\rangle \geq 0
$$

since $\mathcal{L}_{W, V}(\rho)$ is positive, and the inequality will be equal to zero if and only if $\mathcal{L}_{W, V}(\rho)$ is the zero operator. Hence, we proved that there exists $\rho \in \mathcal{M}_{N}$ and $\beta>0$ such that $\mathcal{L}_{W, V}(\rho)=\beta \rho$.

5. Vector integrals and barycenters

We recall here a few basic definitions. For more details, see [16] and [21]. Let X be a metric space. Let $(V,+, \cdot)$ be a real vector space, and τ a topology on V. We say that $(V,+, \cdot ; \tau)$ is a topological vector space if it is Hausdorff and if the operations + and \cdot are continuous. For instance, in the context of density matrices, we will consider V as the space of hermitian operators \mathcal{H}_{N} and X will be the space of density matrices \mathcal{M}_{N}.

Definition 3. Let (X, Σ) be a measurable space, let $\mu \in M(X)$, let $(V,+, \cdot ; \tau)$ be a locally convex space and let $f: X \rightarrow V$. we say that $x \in V$ is the integral of f in X, denoted by

$$
\begin{equation*}
x:=\int_{X} f d \mu \tag{39}
\end{equation*}
$$

if

$$
\begin{equation*}
\Psi(x)=\int_{X} \Psi \circ f d \mu \tag{40}
\end{equation*}
$$

for all $\Psi \in V^{*}$.
It is known that if we have a compact metric space X, V is a locally convex space and $f: X \rightarrow V$ is a continuous function such that $\overline{c o} f(X)$ is compact then the integral of f in X exists and belongs to $\overline{c o} f(X)$. We will also use the following well-known result, the barycentric formula:

Proposition 3. [22] Let V be a locally convex space, let $E \subset V$ be a complete, convex and bounded set, and $\mu \in M^{1}(E)$. Then there is a unique $x \in E$ such that

$$
l(x)=\int_{E} l d \mu
$$

for all $l \in V^{*}$.
In the context of QIFS, we can take $V=E=\mathcal{M}_{N}$.

6. Example: DEnsity matrices

In this section we briefly review how the constructions of the previous section adjust to the case of density matrices. Define $V:=\mathcal{H}_{N}, V^{+}:=\mathcal{P} \mathcal{H}_{N}$ (note that such space is a convex cone), and let the partial order \leq on $\mathcal{P} \mathcal{H}_{N}$ be $\rho \leq \psi$ if and only if $\psi-\rho \geq 0$, i.e., if $\psi-\rho$ is positive. Then

$$
\left(V, V^{+}, e\right)=\left(\mathcal{H}_{N}, \mathcal{P} \mathcal{H}_{N}, t r\right)
$$

is a regular state space [21]. Also, the set B of unity trace in V^{+}is, of course, the space of density matrices, so $B=\mathcal{M}_{N}$.

Let $Z \subset V^{*}$ be a nonempty vector subspace of V^{*}. The smallest topology in V such that every functional defined in Z is continuous on that topology, denoted by $\sigma(V, Z)$, turns V into a locally convex space. In particular, $\sigma\left(V, V^{*}\right)$ is the weak topology in V. If $(V,\|\cdot\|)$ is a normed space, then $\sigma\left(V^{*}, V\right)$ is called a
weak ${ }^{*}$ topology in V^{*} (we identify V with a subspace of $V^{* *}$). We also have that $(C, \tau)=\left(\mathcal{P} \mathcal{H}_{N}, \tau\right)$, where τ is the weak* topology (and which is equal to the Euclidean, see [21]) is a metrizable compact structure. In this case we have that $B_{C}=B \cap C=\mathcal{M}_{N}$.

Definition 4. A Markov operator for probability measures is an operator P : $M^{1}(X) \rightarrow M^{1}(X)$ such that

$$
\begin{equation*}
P\left(\lambda \mu_{1}+(1-\lambda) \mu_{2}\right)=\lambda P \mu_{1}+(1-\lambda) P \mu_{2} \tag{41}
\end{equation*}
$$

for $\mu_{1}, \mu_{2} \in M^{1}(X), \lambda \in(0,1)$.
An example of such operator is the one which we have defined before and we denote it by $\mathcal{V}: M^{1}\left(\mathcal{M}_{N}\right) \rightarrow M^{1}\left(\mathcal{M}_{N}\right)$,

$$
\begin{equation*}
(\mathcal{V} \nu)(B)=\sum_{i=1}^{k} \int_{F_{i}^{-1}(B)} p_{i} d \nu \tag{42}
\end{equation*}
$$

We call it the Markov operator induced by the QIFS $\mathcal{F}=\left\{\mathcal{M}_{N}, F_{i}, p_{i}\right\}_{i=1, \ldots, k}$. Define

$$
m_{b}(X):=\{f: X \rightarrow \mathbb{R}: \mathrm{f} \text { is bounded, measurable }\}
$$

Then define $\mathcal{U}: m_{b}(X) \rightarrow m_{b}(X)$,

$$
\begin{equation*}
(\mathcal{U} f)(x):=\sum_{i=1}^{k} p_{i}(x) f\left(F_{i}(x)\right) \tag{43}
\end{equation*}
$$

Proposition 4. [21] Let $f \in m_{b}(X)$ and $\mu \in M^{1}(X)$, then

$$
\begin{equation*}
\langle f, \mathcal{V} \mu\rangle=\langle\mathcal{U} f, \mu\rangle=\sum_{i=1}^{k} \int p_{i}\left(f \circ F_{i}\right) d \mu \tag{44}
\end{equation*}
$$

where $\langle f, \mu\rangle$ denotes the integral of f with respect to μ.
Definition 5. An operator $Q: V^{+} \rightarrow V^{+}$is submarkovian if
(1) $Q(x+y)=Q(x)+Q(y)$
(2) $Q(\alpha x)=\alpha Q(x)$
(3) $\|Q(x)\| \leq\|x\|$,
for all $x, y \in V^{+}, \alpha>0$.
Every submarkovian operator $Q: V^{+} \rightarrow V^{+}$can be extended in a unique way to a positive linear contraction on V, see [21].

Definition 6. Let $P: V^{+} \rightarrow V^{+}$a Markov operator and let $P_{i}: V^{+} \rightarrow V^{+}, i=$ $1, \ldots, k$ be submarkovian operators such that $P=\sum_{i} P_{i}$. We say that $\left(P,\left\{P_{i}\right\}_{i=1}^{k}\right)$ is a Markov pair.

From [21], we know that there is a 1-1 correspondence between homogeneous IFS and Markov pairs.

7. Some lemmas for IFS

We want to understand the structure of $\Lambda: \mathcal{M}_{N} \rightarrow \mathcal{M}_{N}$,

$$
\begin{equation*}
\Lambda(\rho):=\sum_{i=1}^{k} p_{i} F_{i}=\sum_{i=1}^{k} \operatorname{tr}\left(W_{i} \rho W_{i}^{*}\right) \frac{V_{i} \rho V_{i}^{*}}{\operatorname{tr}\left(V_{i} \rho V_{i}^{*}\right)} \tag{45}
\end{equation*}
$$

where V_{i}, W_{i} are linear, $\sum_{i} W_{i}^{*} W_{i}=I$. Such operator is associated in a natural way to an IFS which is not homogeneous. In this section we state a few useful properties which are relevant for our study. The following lemmas hold for any IFS, except for lemma 3, where the proof presented here is valid only for homogeneous IFS.

Lemma 1. Let $\left\{X, F_{i}, p_{i}\right\}_{i=1, \ldots, k}$ be an IFS, Ψ a linear functional on X. Then $\mathcal{U} \circ \Psi=\Psi \circ \Lambda$, where \mathcal{U} is given by (43).

Proof We have

$$
(\mathcal{U} \Psi)(x)=\sum_{i} p_{i}(x) \Psi\left(F_{i}(x)\right)=\Psi\left(\sum_{i} p_{i}(x) F_{i}(x)\right)=\Psi(\Lambda(x))
$$

Corollary 1. Let $\mathcal{F}=\left(X, F_{i}, p_{i}\right)_{i=1, \ldots, k}$ be an IFS and let $\rho_{0} \in X$. Then $\Lambda\left(\rho_{0}\right)=$ ρ_{0} if and only if $\mathcal{U}\left(\Psi\left(\rho_{0}\right)\right)=\Psi\left(\rho_{0}\right)$, for all Ψ linear functional.

Proof Suppose that $\mathcal{L}\left(\rho_{0}\right)=\rho_{0}$. Then

$$
\mathcal{U}\left(\Psi\left(\rho_{0}\right)\right)=\sum_{i} p_{i}\left(\rho_{0}\right) \Psi\left(F_{i}\left(\rho_{0}\right)\right)=\Psi\left(\sum_{i} p_{i}\left(\rho_{0}\right) F_{i}\left(\rho_{0}\right)\right)=\Psi\left(\Lambda\left(\rho_{0}\right)\right)=\Psi\left(\rho_{0}\right)
$$

Conversely, if $\mathcal{U}\left(\Psi\left(\rho_{0}\right)\right)=\Psi\left(\rho_{0}\right)$, then

$$
\Psi\left(\Lambda\left(\rho_{0}\right)\right)=\mathcal{U}\left(\Psi\left(\rho_{0}\right)\right)=\Psi\left(\rho_{0}\right)
$$

Lemma 2. Let $\mathcal{F}=\left\{X, F_{i}, p_{i}\right\}_{i=1, \ldots, k}$ be an IFS.
(1) Let $\rho_{0} \in X$ such that $F_{i}\left(\rho_{0}\right)=\rho_{0}, i=1, \ldots, k$. Then $\mathcal{V} \delta_{\rho_{0}}=\delta_{\rho_{0}}$.
(2) Let $\rho_{0} \in X$ such that $\mathcal{V} \delta_{\rho_{0}}=\delta_{\rho_{0}}$, then $\Lambda\left(\rho_{0}\right)=\rho_{0}$.

Proof 1. We have

$$
\begin{gathered}
\mathcal{V} \delta_{\rho_{0}}(B)=\sum_{i=1}^{k} \int_{F_{i}^{-1}(B)} p_{i} d \delta_{\rho_{0}}=\sum_{i=1}^{k} \int p_{i}(\rho) 1_{B}\left(F_{i}(\rho)\right) d \delta_{\rho_{0}} \\
=\sum_{i=1}^{k} p_{i}\left(\rho_{0}\right) 1_{B}\left(F_{i}\left(\rho_{0}\right)\right)=\sum_{i=1}^{k} p_{i}\left(\rho_{0}\right) 1_{B}\left(\rho_{0}\right)=\delta_{\rho_{0}}(B)
\end{gathered}
$$

2. Let Ψ be a linear functional. Then

$$
\begin{gathered}
\Psi\left(\Lambda\left(\rho_{0}\right)\right)=\mathcal{U}\left(\Psi\left(\rho_{0}\right)\right)=\int \mathcal{U}(\Psi(\rho)) d \delta_{\rho_{0}}=\int \Psi(\rho) d \mathcal{V} \delta_{\rho_{0}} \\
=\int \Psi(\rho) d \delta_{\rho_{0}}=\Psi\left(\rho_{0}\right)
\end{gathered}
$$

Lemma 3. Let $\left\{X, F_{i}, p_{i}\right\}_{i=1, \ldots, k}$ be a homogeneous IFS, $\Lambda=\sum_{i} p_{i} F_{i}$.
(1) Let ρ_{ν} be the barycenter of a probability measure ν. Then $\Lambda\left(\rho_{\nu}\right)$ is the barycenter of $\mathcal{V} \nu$, where \mathcal{V} is the associated Markov operator.
(2) Let μ be an invariant probability measure for \mathcal{V}. Then the barycenter of μ, denoted by ρ_{μ}, is a fixed point of Λ.

Proof 1. We have, for Ψ linear functional,

$$
\Psi\left(\Lambda\left(\rho_{\nu}\right)\right)=\int \Psi(\Lambda(\rho)) d \nu=\int \mathcal{U} \circ \Psi d \nu=\int \Psi d \mathcal{V} \nu
$$

2. By lemma (1), we have

$$
\Psi\left(\Lambda\left(\rho_{\mu}\right)\right)=\mathcal{U} \circ \Psi\left(\rho_{\mu}\right)=\int \mathcal{U} \circ \Psi d \mu=\int \Psi d \mathcal{V} \mu=\int \Psi d \mu=\Psi\left(\rho_{\mu}\right)
$$

where the fact that $\mathcal{U} \circ \Psi$ is linear follows from the homogeneity of \mathcal{F}.

In order to prove uniqueness in item (2) above it would be necessary to assume hyperbolicity [20]. It is known that without this hypothesis even in the classical case (for transformations for instance) it can happen the phenomena of phase transition (two or more probabilities which are solutions) [23] [15]. The present setting contains the classical case and therefore in general there is no uniqueness.

Example 3. Let $k=N=2$,

$$
V_{1}=\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right), \quad V_{2}=\left(\begin{array}{cc}
0 & -\frac{3 \sqrt{2}}{4} \\
-\frac{3 \sqrt{2}}{2} & 0
\end{array}\right)
$$

$W_{1}=(1 / 2) I, W_{2}=(\sqrt{3} / 2) I$. Then

$$
\begin{aligned}
& \Lambda(\rho)=\sum_{i} p_{i}(\rho) F_{i}(\rho)=\sum_{i} \operatorname{tr}\left(W_{i} \rho W_{i}^{*}\right) \frac{V_{i} \rho V_{i}^{*}}{\operatorname{tr}\left(V_{i} \rho V_{i}^{*}\right)} \\
= & \frac{1}{4} V_{1} \rho V_{1}^{*}+\frac{3}{4} \frac{V_{2} \rho V_{2}^{*}}{\operatorname{tr}\left(V_{2} \rho V_{2}^{*}\right)}=\frac{1}{4} V_{1} \rho V_{1}^{*}+\frac{3}{4} \frac{V_{2} \rho V_{2}^{*}}{\left(\frac{9}{8}+\frac{27}{8} \rho_{1}\right)}
\end{aligned}
$$

induces an IFS and it is such that $\rho_{0}=\frac{1}{3}|0\rangle\langle 0|+\frac{2}{3}|1\rangle\langle 1|$ is a fixed point, with $F_{1}\left(\rho_{0}\right)=F_{2}\left(\rho_{0}\right)=\rho_{0}$. We can apply lemma 2 and conclude that $\delta_{\rho_{0}}$ is an invariant measure for the Markov operator \mathcal{V} associated to the IFS determined by p_{i} and F_{i}.

The following lemma, a simple variation from results seen in [21], specifies a condition we need in order to obtain a fixed point for Λ from a certain measure which is invariant for the Markov operator \mathcal{V}.

Lemma 4. Let $\left\{\mathcal{M}_{N}, F_{i}, p_{i}\right\}_{i=1, \ldots, k}$ be an IFS which admits an attractive invariant measure μ for \mathcal{V}. Then $\lim _{n \rightarrow \infty} \Lambda^{n}\left(\rho_{0}\right)=\rho_{\mu}$, for every $\rho_{0} \in \mathcal{M}_{N}$, where ρ_{μ} is the barycenter of μ.

Proof Let $\rho_{0} \in \mathcal{M}_{N}$. Then

$$
\Psi\left(\Lambda^{n}\left(\rho_{0}\right)\right)=\mathcal{U}^{n}\left(\Psi\left(\rho_{0}\right)\right)=\int \mathcal{U}^{n}(\Psi(\rho)) d \delta_{\rho_{0}}=\int \Psi(\rho) d \mathcal{V}^{n} \delta_{\rho_{0}}
$$

so $\Psi\left(\Lambda^{n}\left(\rho_{0}\right)\right) \rightarrow \int \Psi(\rho) d \mu=\Psi\left(\rho_{\mu}\right)$, as $n \rightarrow \infty$, for all Ψ linear functional. Hence, $\Lambda^{n}\left(\rho_{0}\right) \rightarrow \rho_{\mu}$ as $n \rightarrow \infty$, for all $\rho_{0} \in \mathcal{M}_{N}$.

In lemma 4, we have a general QIFS and an attractive invariant μ, then μ is the unique invariant measure, an easy consequence of attractivity [21]. In general, we will be interested in QIFS which has an attractive invariant measure. This will follow if we assume hyperbolicity.

8. Integral formulae for the entropy of IFS

Part of the results we present here in this section are variations of results presented in [21]. Let (X, d) be a complete separable metric space. Let $\left(V, V^{+}, e\right)$ be a complete state space, $B=\left\{x \in V^{+}: e(x)=1\right\}$ and $\mathcal{F}=\left(X, F_{i}, p_{i}\right)_{i=1, \ldots, k}$ the homogeneous IFS induced by the Markov pair $\left(\Lambda,\left\{\Lambda_{i}\right\}_{i=1}^{k}\right)$. Now define $I_{k}:=$ $\{1, \ldots, k\}$. Let $n \in \mathbb{N}, \iota \in I_{k}^{n}, i \in I_{k}$. Define $F_{\iota i}:=F_{i} \circ F_{\iota}$ and

$$
p_{\iota i}(x)= \begin{cases}p_{i}\left(F_{\iota} x\right) p_{\iota}(x) & \text { if } p_{\iota}(x) \neq 0 \tag{46}\\ 0 & \text { otherwise }\end{cases}
$$

Proposition 5. Let $n \in \mathbb{N}, f \in m_{b}(X), x \in X$. Then

$$
\left(\mathcal{U}^{n} f\right)(x)=\sum_{\iota \in I_{k}^{n}} p_{\iota}(x) f\left(F_{\iota}(x)\right)
$$

Proposition 6. Let $x \in B, n \in \mathbb{N}$. Then

$$
\Lambda^{n}(x)=\sum_{\iota \in I_{k}^{n}} p_{\iota}(x) F_{\iota}(x)
$$

Proposition 7. Let \mathcal{F} be an IFS and let $g: B \rightarrow \mathbb{R}$. Then for $n \in \mathbb{N}$,
(1) If g is concave (resp. convex, affine) then $\mathcal{U}^{n} g \leq g \circ \Lambda^{n}$ (resp. $\mathcal{U}^{n} g \geq g \circ \Lambda^{n}$, $\left.\mathcal{U}^{n} g=g \circ \Lambda^{n}\right)$.
(2) If \bar{x} is a fixed point for Λ then the sequence $\left.\left(\mathcal{U}^{n} g\right)(\bar{x})\right)_{n \in \mathbb{N}}$ is decreasing (resp. increasing, constant) if g is concave (resp. convex, affine).

Also suppose that \mathcal{F} is homogeneous. Then
(3) If g is concave (resp. convex, affine), then $\mathcal{U} g$ is concave (resp. convex, affine).

We recall some well-known definitions and results. Define $\eta: \mathbb{R}^{+} \rightarrow \mathbb{R}$ as

$$
\eta(x)= \begin{cases}-x \log x & \text { if } x \neq 0 \tag{47}\\ 0 & \text { if } x=0\end{cases}
$$

Then the Shannon-Boltzmann entropy function is $h: X \rightarrow \mathbb{R}^{+}$,

$$
\begin{equation*}
h(x):=\sum_{i=1}^{k} \eta\left(p_{i}(x)\right) \tag{48}
\end{equation*}
$$

Let $n \in \mathbb{N}$. Define the partial entropy $H_{n}: X \rightarrow \mathbb{R}^{+}$as

$$
\begin{equation*}
H_{n}(x):=\sum_{\iota \in I_{k}^{n}} \eta\left(p_{\iota}(x)\right) \tag{49}
\end{equation*}
$$

for $n \geq 1$ and $H_{0}(x):=0, x \in X$. Define, for $x \in X$,

$$
\begin{equation*}
\overline{\mathcal{H}}(x):=\limsup _{n \rightarrow \infty} \frac{1}{n} H_{n}(x),, \underline{\mathcal{H}}(x):=\liminf _{n \rightarrow \infty} \frac{1}{n} H_{n}(x), \tag{50}
\end{equation*}
$$

the upper and lower entropy on x. If such limits are equal, we call its common value the entropy on \mathbf{x}, denoted by $\mathcal{H}(x)$.

Denote by $M^{\mathcal{V}}(X)$ the set of \mathcal{V}-invariant probability measures on X. Let $\mu \in$ $M^{\mathcal{V}}(X)$. The partial entropy of the measure μ is defined by

$$
\begin{equation*}
H_{n}(\mu):=\sum_{\iota \in I_{k}^{n}} \eta\left(\left\langle p_{\iota}, \mu\right\rangle\right) \tag{51}
\end{equation*}
$$

for $n \geq 1$ and $H_{0}(\mu):=0$.
Proposition 8. Let $\mu \in M^{\mathcal{V}}(X)$. Then the sequences $\left(\frac{1}{n} H_{n}(\mu)\right)_{n \in \mathbb{N}}$ and $\left(H_{n+1}(\mu)-\right.$ $\left.H_{n}(\mu)\right)_{n \in \mathbb{N}}$ are nonnegative, decreasing, and have the same limit.

We denote the common limit of the sequences mentioned in the proposition above as $\mathcal{H}(\mu)$ and we call it the entropy of the measure μ, i.e.,

$$
\begin{equation*}
\mathcal{H}(\mu):=\lim _{n \rightarrow \infty} \frac{1}{n} H_{n}(\mu)=\lim _{n \rightarrow \infty}\left(H_{n+1}(\mu)-H_{n}(\mu)\right) \tag{52}
\end{equation*}
$$

The following result gives us an integral formula for entropy, and also a relation between the entropies defined before. We write $S(\mu):=M^{\mathcal{V}}(X) \cap \operatorname{Lim}\left(\mathcal{V}^{n} \mu\right)_{n \in \mathbb{N}}$, where $\operatorname{Lim}\left(\mathcal{V}^{n} \mu\right)_{n \in \mathbb{N}}$ is the convex hull of the set of accumulation points of $\left(\mathcal{V}^{n} \mu\right)_{n \in \mathbb{N}}$, and $S_{\mathcal{F}}(\mu)$ is the set $S(\mu)$ associated to the Markov operator induced by the IFS \mathcal{F}. For the definition of compact structure and (C, τ)-continuity, see [21].

Theorem 2. [21] (Integral formula for entropy of homogeneous IFS, compact case). Let (C, τ) be a metrizable compact structure $\left(V, V^{+}, e\right)$ such that $\left(\Lambda,\left\{\Lambda_{i}\right\}_{i=1}^{k}\right)$ is (C, τ)-continuous. Assume that $\rho_{0} \in B_{C}:=B \cap C$ is such that $\Lambda\left(\rho_{0}\right)=\rho_{0}$. Then

$$
\mathcal{H}\left(\rho_{0}\right)=\mathcal{H}(\nu)=\int_{X} h d \nu
$$

for each $\nu \in S_{\mathcal{F}_{C}}\left(\delta_{\rho_{0}}\right)$, where \mathcal{F}_{C} is the IFS \mathcal{F} restricted to $\left(B_{C}, \tau\right)$.
The analogous result for hyperbolic IFS is the following.

Theorem 3. [21] Let $\mathcal{F}=\left(X, F_{i}, p_{i}\right)_{i=1, \ldots, k}$ be a hyperbolic IFS, $x \in X, \mu \in$ $M^{1}(X)$ an attractive invariant measure for \mathcal{F}. Then

$$
\mathcal{H}(x)=\lim _{n \rightarrow \infty}\left(H_{n+1}(x)-H_{n}(x)\right)
$$

and

$$
\mathcal{H}(x)=\mathcal{H}(\mu)=\int_{X} h d \mu
$$

9. Some calculations on entropy

Let U be a unitary matrix of order $m n$ acting on $\mathcal{H}_{m} \otimes \mathcal{H}_{n}$. Its Schmidt decomposition is

$$
U=\sum_{i=1}^{K} \sqrt{q_{i}} V_{i}^{A} \otimes V_{i}^{B}, \quad K=\min \left\{m^{2}, n^{2}\right\}
$$

The operators $V_{i}{ }^{A}$ and V_{i}^{B} act on certain Hilbert spaces \mathcal{H}_{m} and \mathcal{H}_{n}, respectively. We also have that $\sum_{i=1}^{K} q_{i}=1$. Let $\sigma=\rho_{A} \otimes \rho_{*}^{B}=\rho_{A} \otimes I_{n} / n$ and define

$$
\Lambda\left(\rho_{A}\right):=\operatorname{tr}_{B}\left(U \sigma U^{*}\right)=\sum_{i=1}^{K} q_{i} V_{i}^{A} \rho_{A} V_{i}^{A *}
$$

Above, recall that the partial trace is

$$
\operatorname{tr}_{B}\left(\left|a_{1}\right\rangle\left\langle a_{2}\right| \otimes\left|b_{1}\right\rangle\left\langle b_{2}\right|\right):=\left|a_{1}\right\rangle\left\langle a_{2}\right| \operatorname{tr}\left(\left|b_{1}\right\rangle\left\langle b_{2}\right|\right)
$$

where $\left|a_{1}\right\rangle$ and $\left|a_{2}\right\rangle$ are vectors on the state space of A and $\left|b_{1}\right\rangle$ and $\left|b_{2}\right\rangle$ are vectors on the state space of B. The trace on the right side is the usual trace on B. A calculation shows that if $\rho_{*}^{A}=I_{m} / m$, then $\Lambda\left(\rho_{*}^{A}\right)=\rho_{*}^{A}$ and so Λ is such that $\Lambda\left(I_{m} / m\right)=I_{m} / m$ and Λ is trace preserving.

Let \mathcal{F} be the homogeneous IFS associated to the V_{i}^{A}, that is, $p_{i}(\rho)=\operatorname{tr}\left(q_{i} V_{i}^{A} \rho V_{i}^{A *}\right)$, $F_{i}(\rho)=\left(q_{i} V_{i}^{A} \rho V_{i}^{A *}\right) / \operatorname{tr}\left(q_{i} V_{i}^{A} \rho V_{i}^{A *}\right)$ and let ρ_{0} be a fixed point of $\Lambda=\sum_{i} p_{i} F_{i}$. Following [21], we have that ρ_{0} is the barycenter of $\mathcal{V}^{n} \delta_{\rho_{0}}, n \in \mathbb{N}$. By theorem 2, we can calculate the entropy of such IFS. In this case we have

$$
\begin{equation*}
\mathcal{H}\left(\rho_{0}\right)=\mathcal{H}(\nu)=\int_{\mathcal{M}_{N}} h d \nu \tag{53}
\end{equation*}
$$

where $\nu \in M^{\mathcal{V}}(X) \cap \operatorname{Lim}\left(\mathcal{V}^{n} \delta_{\rho_{0}}\right)_{n \in \mathbb{N}}$.

Let $\mathcal{F}=\left(\mathcal{M}_{N}, F_{i}, p_{i}\right)_{i=1, \ldots, k}$ be an IFS, $\Lambda(\rho)=\sum_{i} p_{i} F_{i}$. Let \mathcal{U} be the conjugate of \mathcal{V}. By proposition 5 ,

$$
\left(\mathcal{U}^{n} h\right)(\rho)=\sum_{\iota \in I_{k}^{n}(\rho)} p_{\iota}(\rho) h\left(F_{\iota}(\rho)\right)
$$

and since $h(\rho)=\sum_{j=1}^{k} \eta\left(p_{j}(\rho)\right)$, we have, for $\iota=\left(i_{1}, \ldots, i_{n}\right)$, and every $\rho_{0} \in \mathcal{M}_{N}$,

$$
\begin{equation*}
\int_{\mathcal{M}_{N}} h d \mathcal{V}^{n} \delta_{\rho_{0}}=\int_{\mathcal{M}_{N}} \mathcal{U}^{n} h d \delta_{\rho_{0}} \tag{54}
\end{equation*}
$$

$$
\begin{align*}
& (57) \quad=-\sum_{\iota \in I_{k}^{n}} p_{i_{1}}\left(\rho_{0}\right) p_{i_{2}}\left(F_{i_{1}} \rho_{0}\right) \cdots p_{i_{n}}\left(F_{i_{n-1}}\left(F_{i_{n-2}}\left(\cdots\left(F_{i_{1}} \rho_{0}\right)\right)\right)\right) \times \tag{57}\\
& (58) \times \sum_{j=1}^{k} p_{j}\left(F_{i_{n}}\left(F_{i_{n-1}}\left(\cdots\left(F_{i_{1}} \rho_{0}\right)\right)\right)\right) \log p_{j}\left(F_{i_{n}}\left(F_{i_{n-1}}\left(\cdots\left(F_{i_{1}} \rho_{0}\right)\right)\right)\right)=\left(\mathcal{U}^{n} h\right)\left(\rho_{0}\right)
\end{align*}
$$

Suppose $\Lambda\left(\rho_{0}\right)=\rho_{0}$. We have by proposition 7 , since h is concave, that $\left(\mathcal{U}^{n} h\right)_{n \in \mathbb{N}}$ is decreasing, $\mathcal{U}^{n} h \leq h \circ \Lambda^{n}$ and so

$$
\begin{equation*}
\int_{\mathcal{M}_{N}} h d \mathcal{V}^{n} \delta_{\rho_{0}} \leq h\left(\Lambda^{n}\left(\rho_{0}\right)\right)=h\left(\rho_{0}\right) \tag{59}
\end{equation*}
$$

for every n.

10. An expression for a stationary entropy

In this section we present a definition of entropy which captures a stationary behavior. Let H be a hermitian operator and $V_{i}, i=1, \ldots, k$ linear operators. We can define the dynamics $F_{i}: \mathcal{M}_{N} \rightarrow \mathcal{M}_{N}$:

$$
\begin{equation*}
F_{i}(\rho):=\frac{V_{i} \rho V_{i}^{*}}{\operatorname{tr}\left(V_{i} \rho V_{i}^{*}\right)} \tag{60}
\end{equation*}
$$

Let $W_{i}, i=1, \ldots, k$ be linear and such that $\sum_{i=1}^{k} W_{i}^{*} W_{i}=I$. This determines functions $p_{i}: \mathcal{M}_{N} \rightarrow \mathbb{R}$,

$$
\begin{equation*}
p_{i}(\rho):=\operatorname{tr}\left(W_{i} \rho W_{i}^{*}\right) \tag{61}
\end{equation*}
$$

Then we have $\sum_{i=1}^{k} p_{i}(\rho)=1$, for every ρ. Therefore a family $W:=\left\{W_{i}\right\}_{i=1, \ldots, k}$ determines a QIFS $\mathcal{F}_{W}=\left\{\mathcal{M}_{N}, F_{i}, p_{i}\right\}_{i=1, \ldots, k}$, with F_{i}, p_{i} given by (60) and (61). We introduce the following definition.

Definition 7. Let \mathcal{F}_{W} be a QIFS such that there is a unique attractive invariant measure for the associated Markov operator \mathcal{V}. Let ρ_{W} be the barycenter of such measure. Define the QIFS entropy:

$$
\begin{equation*}
h_{V}(W):=-\sum_{i=1}^{k} \operatorname{tr}\left(W_{i} \rho_{W} W_{i}^{*}\right) \sum_{j=1}^{k} \operatorname{tr}\left(\frac{W_{j} V_{i} \rho_{W} V_{i}^{*} W_{j}^{*}}{\operatorname{tr}\left(V_{i} \rho_{W} V_{i}^{*}\right)}\right) \log \operatorname{tr}\left(\frac{W_{j} V_{i} \rho_{W} V_{i}^{*} W_{j}^{*}}{\operatorname{tr}\left(V_{i} \rho_{W} V_{i}^{*}\right)}\right) \tag{62}
\end{equation*}
$$

Remember that by lemma 4, we have that ρ_{W} is a fixed point for

$$
\begin{equation*}
\Lambda(\rho)=\Lambda_{\mathcal{F}_{W}}(\rho):=\sum_{i=1}^{k} p_{i}(\rho) F_{i}(\rho)=\sum_{i=1}^{k} \operatorname{tr}\left(W_{i} \rho W_{i}^{*}\right) \frac{V_{i} \rho V_{i}^{*}}{\operatorname{tr}\left(V_{i} \rho V_{i}^{*}\right)} \tag{63}
\end{equation*}
$$

Lemma 5. $h_{V}(W) \geq 0$, for every family W_{i} of linear operators satisfying $\sum_{i} W_{i}^{*} W_{i}=$ I.

Proof Note that, by definition,

$$
h_{V}(W)=(\mathcal{U} h)\left(\rho_{W}\right)=\int_{\mathcal{M}_{N}} h d \mathcal{V} \delta_{\rho_{W}}
$$

and the function h (Shannon-Boltzmann entropy) is ≥ 0. This proves the lemma. Another elementary proof is the following. Since ρ_{W} is positive, we have that $\left\langle W_{i} \rho_{W} W_{i}^{*} v, v\right\rangle=\left\langle\rho_{W} W_{i}^{*} v, W_{i}^{*} v\right\rangle \geq 0, v \in \mathcal{H}_{N}$. So for $\left\{v_{l}\right\}_{l=1, \ldots N}$ an orthonormal base for \mathcal{H}_{N},

$$
\operatorname{tr}\left(W_{i} \rho_{W} W_{i}^{*}\right)=\sum_{l=1}^{N}\left\langle W_{i} \rho_{W} W_{i}^{*} v_{l}, v_{l}\right\rangle>0
$$

Analogously the expression above holds for the $V_{i} \rho_{W} V_{i}^{*}$, and therefore also for $W_{j} V_{i} \rho_{W} V_{i}^{*} W_{j}^{*}$, because

$$
\left\langle W_{j} V_{i} \rho_{W} V_{i}^{*} W_{j}^{*} v, v\right\rangle=\left\langle V_{i} \rho_{W} V_{i}^{*} W_{j}^{*} v, W_{j}^{*} v\right\rangle \geq 0
$$

To conclude that $h_{V}(W) \geq 0$, we have to show that $\operatorname{tr}\left(W_{j} V_{i} \rho_{W} V_{i}^{*} W_{j}^{*}\right) \leq \operatorname{tr}\left(V_{i} \rho_{W} V_{i}^{*}\right)$. From $\sum_{i=1}^{k} W_{i}^{*} W_{i}=I$, we get

$$
\begin{gathered}
\operatorname{tr}\left(W_{j} V_{i} \rho_{W} V_{i}^{*} W_{j}^{*}\right)=\operatorname{tr}\left(W_{j}^{*} W_{j} V_{i} \rho_{W} V_{i}^{*}\right) \leq \sum_{j=1}^{k} \operatorname{tr}\left(W_{j}^{*} W_{j} V_{i} \rho_{W} V_{i}^{*}\right) \\
=\operatorname{tr}\left(\sum_{j=1}^{k} W_{j}^{*} W_{j} V_{i} \rho_{W} V_{i}^{*}\right)=\operatorname{tr}\left(V_{i} \rho_{W} V_{i}^{*}\right)
\end{gathered}
$$

Remark For any fixed dynamics V, if we have that $W_{m}^{*} W_{m}=I$ for some m then the remaining p_{i} must be zero, because of the condition $\sum_{i} W_{i}^{*} W_{i}=I$. In this case we have $h_{V}(W)=0$. We also have that $h_{V}(W) \leq \log k$ and for any given dynamics $V, h_{V}(W)$ attains the maximum if we choose $W_{i}=1 / \sqrt{k} I$, for each i, where I denotes the identity operator.

Note that by the calculations made in section 9, we have $h_{V}(W)=\mathcal{U} h\left(\rho_{W}\right)$, where $\mathcal{U} h(\rho)=\sum_{i} p_{i}(\rho) h\left(F_{i}(\rho)\right)$.

Lemma 6. Let $\mathcal{F}=\left(\mathcal{M}_{N}, F_{i}, p_{i}\right)$ be a QIFS, with F_{i}, p_{i} in the form (60) and (61). Suppose there is $\rho_{0} \in \mathcal{M}_{N}$ such that $\delta_{\rho_{0}}$ is the unique \mathcal{V}-invariant measure. Then $\Lambda_{\mathcal{F}}\left(\rho_{0}\right)=\rho_{0}\left(\Lambda_{\mathcal{F}}\right.$ is the operator associated to $\left.\mathcal{F}\right)$ and

$$
\int \mathcal{U}^{n} h d \delta_{\rho_{0}}=\mathcal{U}^{n} h\left(\rho_{0}\right)=h\left(\rho_{0}\right),
$$

for all $n \in \mathbb{N}$. Besides, $\mathcal{U}^{n} h\left(\rho_{0}\right)=\mathcal{U} h\left(\rho_{0}\right)$ and so

$$
h_{V}(W)=\mathcal{U}^{n} h\left(\rho_{0}\right),
$$

for all $n \in \mathbb{N}$.

Proof The fact that $\Lambda\left(\rho_{0}\right)=\rho_{0}$ follows from lemma 2, item 2. Also,

$$
\mathcal{U}^{n} h\left(\rho_{0}\right)=\int \mathcal{U}^{n} h d \delta_{\rho_{0}}=\int h d \mathcal{V}^{n} \delta_{\rho_{0}}=\int h d \delta_{\rho_{0}}=h\left(\rho_{0}\right)
$$

and

$$
\mathcal{U}^{n} h\left(\rho_{0}\right)=\int \mathcal{U}^{n} h d \delta_{\rho_{0}}=\int h d \mathcal{V}^{n} \delta_{\rho_{0}}=\int h d \mathcal{V} \delta_{\rho_{0}}=\int \mathcal{U} h d \delta_{\rho_{0}}=\mathcal{U} h\left(\rho_{0}\right)
$$

Lemma 7. Let μ be a \mathcal{V}-invariant attractive measure. Then if ρ_{μ} is the barycenter of μ we have, for any ρ,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \mathcal{U}^{n} h(\rho)=\int \mathcal{U} h d \mu=\int h d \mu \leq h\left(\rho_{\mu}\right) \tag{64}
\end{equation*}
$$

Proof The inequality follows from [21], proposition 1.15. Also, by proposition 4 we have

$$
\lim _{n \rightarrow \infty} \mathcal{U}^{n} h(\rho)=\lim _{n \rightarrow \infty} \int \mathcal{U}^{n} h d \delta_{\rho}=\lim _{n \rightarrow \infty} \int \mathcal{U} h d \mathcal{V}^{n-1} \delta_{\rho}=\int \mathcal{U} h d \mu
$$

the last equality being true because of the weak convergence of $\left(\mathcal{V}^{n} \delta_{\rho}\right)_{n \in \mathbb{N}}$. This proves the first equality in (64). Since $\int \mathcal{U} h d \mu=\int h d \mathcal{V} \mu=\int h d \mu$, we obtain the second equality.

Lemma 8. Let $\mathcal{F}=\left(\mathcal{M}_{N}, F_{i}, p_{i}\right)$ be a QIFS, with F_{i}, p_{i} in the form (60) and (61). Suppose that ρ is the unique point such that $\Lambda_{\mathcal{F}}(\rho)=\rho$. Suppose that $F_{i}(\rho)=\rho$, $i=1, \ldots, k$. Then

$$
\mathcal{U}^{n} h(\rho)=h(\rho),
$$

$n=1,2, \ldots$, and therefore $h_{V}(W)$ does not depend on n.
Proof The proof follows by induction. Let $n=1$. We have:

$$
\mathcal{U} h(\rho)=\sum_{i} p_{i}(\rho) h\left(F_{i}(\rho)\right)=h(\rho) \sum_{i} p_{i}(\rho)=h(\rho)
$$

And note that $\mathcal{U}^{n} h(\rho)=\mathcal{U}\left(\mathcal{U}^{n-1} h\right)(\rho)$, which concludes the proof.

11. Entropy and Markov chains

Let V_{i}, W_{i} be linear operators, $i=1, \ldots, k, \sum_{i=1}^{k} W_{i}^{*} W_{i}=I$. Suppose the V_{i} are fixed and that they determine a dynamics given by $F_{i}: \mathcal{M}_{N} \rightarrow \mathcal{M}_{N}, i=1, \ldots, k$. Define

$$
\begin{gather*}
P:=\left\{\left(p_{1}, \ldots, p_{k}\right): p_{i}: \mathcal{M}_{N} \rightarrow \mathbb{R}^{+}, i=1, \ldots, k, \sum_{i=1}^{k} p_{i}(\rho)=1, \forall \rho \in \mathcal{M}_{N}\right\} \tag{65}\\
P^{\prime}:=P \cap\left\{\left(p_{1}, \ldots, p_{k}\right): \exists W_{i}, i=1, \ldots, k: p_{i}(\rho)=\operatorname{tr}\left(W_{i} \rho W_{i}^{*}\right)\right.
\end{gather*}
$$

$$
\begin{equation*}
\left.W_{i} \text { linear }, \sum_{i} W_{i}^{*} W_{i}=I\right\} \tag{66}
\end{equation*}
$$

$$
\begin{equation*}
\mathcal{M}_{F}:=\left\{\mu \in M^{1}\left(\mathcal{M}_{N}\right): \exists p \in P^{\prime} \text { such that } \mathcal{V}_{p} \mu=\mu\right\} \tag{67}
\end{equation*}
$$

where $\mathcal{V}_{p}: M^{1}\left(\mathcal{M}_{N}\right) \rightarrow M^{1}\left(\mathcal{M}_{N}\right)$,

$$
\begin{equation*}
\mathcal{V}_{p}(\mu)(B):=\sum_{i=1}^{k} \int_{F_{i}^{-1}(B)} p_{i} d \mu \tag{68}
\end{equation*}
$$

Note that a family $W:=\left\{W_{i}\right\}_{i=1, \ldots, k}$ determines a QIFS \mathcal{F}_{W},

$$
\mathcal{F}_{W}=\left\{\mathcal{M}_{N}, F_{i}, p_{i}\right\}_{i=1, \ldots, k}
$$

Let $P=\left(p_{i j}\right)_{i, j=1, \ldots, N}$ be a stochastic, irreducible matrix. Let p be the stationary vector of P. The entropy of P is defined as

$$
\begin{equation*}
H(P):=-\sum_{i, j=1}^{N} p_{i} p_{i j} \log p_{i j} \tag{69}
\end{equation*}
$$

We consider a few examples which will be useful later in this work.
Example 4. (Homogeneous case, 4 matrices). Let $N=2, k=4$ and

$$
\begin{aligned}
& V_{1}=\left(\begin{array}{cc}
\sqrt{p_{00}} & 0 \\
0 & 0
\end{array}\right), \quad V_{2}=\left(\begin{array}{cc}
0 & \sqrt{p_{01}} \\
0 & 0
\end{array}\right), \\
& V_{3}=\left(\begin{array}{cc}
0 & 0 \\
\sqrt{p_{10}} & 0
\end{array}\right), \quad V_{4}=\left(\begin{array}{cc}
0 & 0 \\
0 & \sqrt{p_{11}}
\end{array}\right)
\end{aligned}
$$

Note that

$$
\sum_{i} V_{i}^{*} V_{i}=\left(\begin{array}{cc}
p_{00}+p_{10} & 0 \\
0 & p_{01}+p_{11}
\end{array}\right)
$$

and so $\sum_{i} V_{i}^{*} V_{i}=I$ if we suppose that

$$
P:=\left(\begin{array}{ll}
p_{00} & p_{01} \\
p_{10} & p_{11}
\end{array}\right)
$$

is column-stochastic. We have

$$
\begin{aligned}
& V_{1} \rho V_{1}^{*}=\left(\begin{array}{cc}
p_{00} \rho_{1} & 0 \\
0 & 0
\end{array}\right), \quad V_{2} \rho V_{2}^{*}=\left(\begin{array}{cc}
p_{01} \rho_{4} & 0 \\
0 & 0
\end{array}\right) \\
& V_{3} \rho V_{3}^{*}=\left(\begin{array}{cc}
0 & 0 \\
0 & p_{10} \rho_{1}
\end{array}\right), \quad V_{4} \rho V_{4}^{*}=\left(\begin{array}{cc}
0 & 0 \\
0 & p_{11} \rho_{4}
\end{array}\right)
\end{aligned}
$$

so

$$
\begin{gathered}
\operatorname{tr}\left(V_{1} \rho V_{1}^{*}\right)=p_{00} \rho_{1}, \quad \operatorname{tr}\left(V_{2} \rho V_{2}^{*}\right)=p_{01} \rho_{4} \\
\operatorname{tr}\left(V_{3} \rho V_{3}^{*}\right)=p_{10} \rho_{1}, \quad \operatorname{tr}\left(V_{4} \rho V_{4}^{*}\right)=p_{11} \rho_{4}
\end{gathered}
$$

The fixed point of $\Lambda(\rho)=\sum_{i} V_{i} \rho V_{i}^{*}$ is

$$
\rho_{V}=\left(\begin{array}{cc}
\frac{p_{01}}{1-p_{00}+p_{01}} & 0 \\
0 & \frac{1-p_{00}}{1-p_{00}+p_{01}}
\end{array}\right)
$$

Let $\pi=\left(\pi_{1}, \pi_{2}\right)$ such that $P \pi=\pi$. We know that

$$
\begin{equation*}
\pi=\left(\frac{p_{01}}{1-p_{00}+p_{01}}, \frac{1-p_{00}}{1-p_{00}+p_{01}}\right) \tag{70}
\end{equation*}
$$

Then the nonzero entries of ρ_{V} are the entries of π and so we associate the fixed point of P to the fixed point of a certain Λ in a natural way. Let us calculate $h_{V}(W)$. Note that Λ defined above is associated to a homogeneous IFS. Then $W_{i}=V_{i}, i=1, \ldots, k$ and

$$
\begin{gathered}
h_{V}(W)=h_{V}(V) \\
=-\sum_{i=1}^{k} \frac{\operatorname{tr}\left(W_{i} \rho_{V} W_{i}^{*}\right)}{\operatorname{tr}\left(V_{i} \rho_{V} V_{i}^{*}\right)} \sum_{j=1}^{k} \operatorname{tr}\left(W_{j} V_{i} \rho_{V} V_{i}^{*} W_{j}^{*}\right) \log \left(\frac{\operatorname{tr}\left(W_{j} V_{i} \rho_{V} V_{i}^{*} W_{j}^{*}\right)}{\operatorname{tr}\left(V_{i} \rho_{V} V_{i}^{*}\right)}\right) \\
=-\sum_{i, j} \operatorname{tr}\left(V_{j} V_{i} \rho_{V} V_{i}^{*} V_{j}^{*}\right) \log \left(\frac{\operatorname{tr}\left(V_{j} V_{i} \rho_{V} V_{i}^{*} V_{j}^{*}\right)}{\operatorname{tr}\left(V_{i} \rho_{V} V_{i}^{*}\right)}\right)
\end{gathered}
$$

A simple calculation yields $H(P)=h_{V}(V)$, where $H(P)$ is the entropy of P, given by (69). This shows that the entropy of Markov chains is a particular case of the QIFS entropy.

Example 5. (Nonhomogeneous case, 4 matrices). Let $N=2, k=4$ and

$$
\begin{aligned}
V_{1} & =\left(\begin{array}{cc}
\sqrt{p_{00}} & 0 \\
0 & 0
\end{array}\right), \quad V_{2}=\left(\begin{array}{cc}
0 & \sqrt{p_{01}} \\
0 & 0
\end{array}\right) \\
V_{3} & =\left(\begin{array}{cc}
0 & 0 \\
\sqrt{p_{10}} & 0
\end{array}\right), \quad V_{4}=\left(\begin{array}{cc}
0 & 0 \\
0 & \sqrt{p_{11}}
\end{array}\right) \\
W_{1} & =\left(\begin{array}{cc}
\sqrt{q_{00}} & 0 \\
0 & 0
\end{array}\right), \quad W_{2}=\left(\begin{array}{cc}
0 & \sqrt{q_{01}} \\
0 & 0
\end{array}\right) \\
W_{3} & =\left(\begin{array}{cc}
0 & 0 \\
\sqrt{q_{10}} & 0
\end{array}\right), \quad W_{4}=\left(\begin{array}{cc}
0 & 0 \\
0 & \sqrt{q_{11}}
\end{array}\right)
\end{aligned}
$$

Note that

$$
\sum_{i} V_{i}^{*} V_{i}=\left(\begin{array}{cc}
p_{00}+p_{10} & 0 \\
0 & p_{01}+p_{11}
\end{array}\right), \quad \sum_{i} W_{i}^{*} W_{i}=\left(\begin{array}{cc}
q_{00}+q_{10} & 0 \\
0 & q_{01}+q_{11}
\end{array}\right)
$$

and so $\sum_{i} V_{i}^{*} V_{i}=\sum_{i} W_{i}^{*} W_{i}=I$ if we suppose that

$$
P:=\left(\begin{array}{ll}
p_{00} & p_{01} \\
p_{10} & p_{11}
\end{array}\right), \quad Q:=\left(\begin{array}{ll}
q_{00} & q_{01} \\
q_{10} & q_{11}
\end{array}\right)
$$

are column-stochastic. Then

$$
\begin{gathered}
\operatorname{tr}\left(V_{1} \rho V_{1}^{*}\right)=p_{00} \rho_{1}, \quad \operatorname{tr}\left(V_{2} \rho V_{2}^{*}\right)=p_{01} \rho_{4} \\
\operatorname{tr}\left(V_{3} \rho V_{3}^{*}\right)=p_{10} \rho_{1}, \quad \operatorname{tr}\left(V_{4} \rho V_{4}^{*}\right)=p_{11} \rho_{4} \\
\operatorname{tr}\left(W_{1} \rho W_{1}^{*}\right)=q_{00} \rho_{1}, \quad \operatorname{tr}\left(W_{2} \rho W_{2}^{*}\right)=q_{01} \rho_{4} \\
\operatorname{tr}\left(W_{3} \rho W_{3}^{*}\right)=q_{10} \rho_{1}, \quad \operatorname{tr}\left(W_{4} \rho W_{4}^{*}\right)=q_{11} \rho_{4}
\end{gathered}
$$

We want the fixed point of $\Lambda(\rho)=\sum_{i} p_{i}(\rho) F_{i}(\rho)$. This leads us to
$\frac{q_{00}}{p_{00}}\left(\begin{array}{cc}p_{00} \rho_{1} & 0 \\ 0 & 0\end{array}\right)+\frac{q_{01}}{p_{01}}\left(\begin{array}{cc}p_{01} \rho_{4} & 0 \\ 0 & 0\end{array}\right)+\frac{q_{10}}{p_{10}}\left(\begin{array}{cc}0 & 0 \\ 0 & p_{10} \rho_{1}\end{array}\right)+\frac{q_{11}}{p_{11}}\left(\begin{array}{cc}0 & 0 \\ 0 & p_{11} \rho_{4}\end{array}\right)=\rho$
Note that the $p_{i j}$ cancel and so we obtain a calculation which is the same as the one obtained in the previous example. Hence

$$
\rho_{W}=\left(\begin{array}{cc}
\frac{q_{01}}{1-q_{00}+q_{01}} & 0 \\
0 & \frac{1-q_{00}}{1-q_{00}+q_{01}}
\end{array}\right)
$$

and its nonzero entries are the entries of the fixed point for the stochastic matrix Q. Calculating $h_{V}(W)$ gives

$$
\begin{equation*}
h_{V}(W)=-\sum_{i=1}^{k} \frac{\operatorname{tr}\left(W_{i} \rho_{W} W_{i}^{*}\right)}{\operatorname{tr}\left(V_{i} \rho_{W} V_{i}^{*}\right)} \sum_{j=1}^{k} \operatorname{tr}\left(W_{j} V_{i} \rho_{W} V_{i}^{*} W_{j}^{*}\right) \log \left(\frac{\operatorname{tr}\left(W_{j} V_{i} \rho_{W} V_{i}^{*} W_{j}^{*}\right)}{\operatorname{tr}\left(V_{i} \rho_{W} V_{i}^{*}\right)}\right) \tag{72}
\end{equation*}
$$

$=-\frac{q_{01}}{q_{01}+q_{10}}\left(q_{00} \log q_{00}+q_{10} \log q_{10}\right)-\frac{q_{10}}{q_{01}+q_{10}}\left(q_{01} \log q_{01}+q_{11} \log q_{11}\right)=H(Q)$
So we have obtained a calculation which is analogous to the one for the homogeneous case. This result generalizes what we have seen in the previous example.

Example 6. (Homogeneous case, 2 matrices). Let $N=2, k=2$ and

$$
V_{1}=\left(\begin{array}{cc}
\sqrt{p_{00}} & 0 \\
\sqrt{p_{10}} & 0
\end{array}\right), \quad V_{2}=\left(\begin{array}{cc}
0 & \sqrt{p_{01}} \\
0 & \sqrt{p_{11}}
\end{array}\right)
$$

Note that, just as in the previous examples

$$
\sum_{i} V_{i}^{*} V_{i}=\left(\begin{array}{cc}
p_{00}+p_{10} & 0 \\
0 & p_{01}+p_{11}
\end{array}\right)
$$

and so $\sum_{i} V_{i}^{*} V_{i}=I$ if we suppose

$$
P:=\left(\begin{array}{ll}
p_{00} & p_{01} \\
p_{10} & p_{11}
\end{array}\right)
$$

is column-stochastic. The fixed point for Λ is

$$
\rho_{V}=\left(\begin{array}{cc}
\frac{p_{01}}{p_{01}+p_{10}} & \frac{p_{00} p_{10} p_{01}}{p_{01}+p_{10}}+\frac{p_{01} p_{11} p_{10}}{p_{01}+p_{10}} \\
\frac{p_{00} p_{10} p_{01}}{p_{01}+p_{10}}+\frac{p_{01} p_{11} p_{10}}{p_{01}+p_{10}} & \frac{p_{10}+p_{10}}{p_{01}}
\end{array}\right)
$$

The entries of the main diagonal of ρ_{V} correspond to the entries of the fixed point of P. The entries of the secondary diagonal are a linear combination of the ones in the main diagonal. Then for the V_{i} chosen we have

$$
\begin{equation*}
h_{V}(W)=h_{V}(V)=-\sum_{i, j} \operatorname{tr}\left(V_{j} V_{i} \rho_{V} V_{i}^{*} V_{j}^{*}\right) \log \left(\frac{\operatorname{tr}\left(V_{j} V_{i} \rho_{V} V_{i}^{*} V_{j}^{*}\right)}{\operatorname{tr}\left(V_{i} \rho_{V} V_{i}^{*}\right)}\right)=H(P) \tag{73}
\end{equation*}
$$

by an identical calculation made for the equation (72) from the previous example. In other words, the fact that the fixed point of Λ is not diagonal does not change the calculations for the entropy.

Example 7. (Nonhomogeneous case, 2 matrices). Let $N=2, k=2$,

$$
\begin{aligned}
V_{1} & =\left(\begin{array}{cc}
\sqrt{p_{00}} & 0 \\
\sqrt{p_{10}} & 0
\end{array}\right), \quad V_{2}=\left(\begin{array}{cc}
0 & \sqrt{p_{01}} \\
0 & \sqrt{p_{11}}
\end{array}\right) \\
W_{1} & =\left(\begin{array}{cc}
\sqrt{q_{00}} & 0 \\
\sqrt{q_{10}} & 0
\end{array}\right), \quad W_{2}=\left(\begin{array}{cc}
0 & \sqrt{q_{01}} \\
0 & \sqrt{q_{11}}
\end{array}\right)
\end{aligned}
$$

As in the other examples, $\sum_{i} V_{i}^{*} V_{i}=\sum_{i} W_{i}^{*} W_{i}=I$ if we suppose

$$
P:=\left(\begin{array}{ll}
p_{00} & p_{01} \\
p_{10} & p_{11}
\end{array}\right), \quad Q:=\left(\begin{array}{ll}
q_{00} & q_{01} \\
q_{10} & q_{11}
\end{array}\right)
$$

is column-stochastic. From

$$
\begin{gathered}
\operatorname{tr}\left(V_{1} \rho V_{1}^{*}\right)=\rho_{1}, \quad \operatorname{tr}\left(V_{2} \rho V_{2}^{*}\right)=\rho_{4} \\
\operatorname{tr}\left(W_{1} \rho W_{1}^{*}\right)=\rho_{1}, \quad \operatorname{tr}\left(W_{2} \rho W_{2}^{*}\right)=\rho_{4} \\
\operatorname{tr}\left(W_{1} V_{1} \rho V_{1}^{*} W_{1}^{*}\right)=p_{00} \rho_{1}, \quad \operatorname{tr}\left(W_{2} V_{1} \rho V_{1}^{*} W_{2}^{*}\right)=p_{10} \rho_{1} \\
\operatorname{tr}\left(W_{1} V_{2} \rho V_{2}^{*} W_{1}^{*}\right)=p_{01} \rho_{4}, \quad \operatorname{tr}\left(W_{2} V_{2} \rho V_{2}^{*} W_{2}^{*}\right)=p_{11} \rho_{4}
\end{gathered}
$$

and a simple calculation, we get $h_{V}(W)=H(P)$.

Lemma 9. Let $V_{i j}$ be matrices of order n,

$$
V_{i j}=\sqrt{p_{i j}}|i\rangle\langle j|
$$

for $i, j=1, \ldots, n$. Let

$$
\Lambda_{P}(\rho):=\sum_{i, j} V_{i j} \rho V_{i j}^{*}
$$

where $P=\left(p_{i j}\right)_{i, j=1, \ldots, n}$. Then for all $n, \Lambda_{P}^{n}(\rho)=\Lambda_{P^{n}}(\rho)$.
Proof Note that

$$
\begin{equation*}
V_{k l} V_{i j}=\sqrt{p_{k l}} \sqrt{p_{i j}} \delta_{l i}|k\rangle\langle j| \tag{74}
\end{equation*}
$$

so

$$
\begin{gathered}
\Lambda_{P}^{2}(\rho)=\Lambda_{P}\left(\sum_{i, j} V_{i j} \rho V_{i j}^{*}\right)=\sum_{k, l, i, j} V_{k l} V_{i j} \rho\left(V_{k l} V_{i j}\right)^{*} \\
=\sum_{k, j} \sum_{i} p_{k i} p_{i j}|k\rangle\langle j| \rho|j\rangle\langle k|=\sum_{k, j} p_{k j}^{2}|k\rangle\langle j| \rho|j\rangle\langle k|=\Lambda_{P^{2}}(\rho)
\end{gathered}
$$

The general case follows by iterating the above calculation.

Corollary 2. Under the lemma hypothesis, we have $\lim _{n \rightarrow \infty} \Lambda_{P}^{n}(\rho)=\Lambda_{\pi}(\rho)$, where $\pi=\lim _{n \rightarrow \infty} P^{n}$ is the stochastic matrix which has all columns equal to the stationary vector for P.

12. Capacity-cost function and pressure

Recall that every trace preserving, completely positive (CP) mapping can be written in the Stinespring-Kraus form,

$$
\Lambda(\rho)=\sum_{i=1}^{k} V_{i} \rho V_{i}^{*}, \quad \sum_{i=1}^{k} V_{i}^{*} V_{i}=I
$$

for V_{i} linear operators. These mappings are also called quantum channels. This is one of the main motivations for considering the class of operators (a generalization of the above ones) described in the present paper. These are natural objets in the analysis of certain problems in quantum computing.

Definition 8. The Holevo capacity for sending classic information via a quantum channel Λ is defined as

$$
\begin{equation*}
C_{\Lambda}:=\max _{\substack{p_{i} \in[0,1] \\ \rho_{i} \in \mathcal{M}_{N}}} S\left(\sum_{i=1}^{n} p_{i} \Lambda\left(\rho_{i}\right)\right)-\sum_{i=1}^{n} p_{i} S\left(\Lambda\left(\rho_{i}\right)\right) \tag{75}
\end{equation*}
$$

where $S(\rho)=-\operatorname{tr}(\rho \log \rho)$ is the von Neumann entropy. The maximum is, therefore, over all choices of $p_{i}, i=1, \ldots, n$ and density operators ρ_{i}, for some $n \in \mathbb{N}$. The Holevo capacity establishes an upper bound on the amount of information that a quantum system contains [17].

Definition 9. Let Λ be a quantum channel. Define the minimum output entropy as

$$
H^{\min }(\Lambda):=\min _{|\psi\rangle} S(\Lambda(|\psi\rangle\langle\psi|))
$$

Additivity conjecture We have that

$$
C_{\Lambda_{1} \otimes \Lambda_{2}}=C_{\Lambda_{1}}+C_{\Lambda_{2}}
$$

Minimum output entropy conjecture For any channels Λ_{1} and Λ_{2},

$$
H^{\min }\left(\Lambda_{1} \otimes \Lambda_{2}\right)=H^{\min }\left(\Lambda_{1}\right)+H^{\min }\left(\Lambda_{2}\right)
$$

In [19], is it shown that the additivity conjecture is equivalent to the minimum output entropy conjecture, and in [10] a counterexample is obtained for this last conjecture.

Remark Concerning QIFS, our interest in capacity is motivated by the following observation. Considering expression (75), note that the term

$$
\begin{equation*}
\sum_{i=1}^{n} p_{i} S\left(\Lambda\left(\rho_{i}\right)\right) \tag{76}
\end{equation*}
$$

is a convex combination of von Neumann entropies, in the same way as the QIFS entropy. So we see that given a QIFS, we can consider capacity functions, and the QIFS entropy arises in a natural way. For an example, we perform the following calculation. If λ_{i} are the eigenvalues of ρ then we can write

$$
\begin{equation*}
S(\rho)=-\sum_{i} \lambda_{i} \log \lambda_{i} \tag{77}
\end{equation*}
$$

Then write the QIFS entropy as

$$
\begin{equation*}
h_{V}(W)=-\sum_{i, j=1}^{k} \operatorname{tr}\left(W_{i} \rho_{W} W_{i}^{*}\right) a_{i j}\left(\rho_{W}\right) \log a_{i j}\left(\rho_{W}\right) \tag{78}
\end{equation*}
$$

where

$$
\begin{equation*}
a_{i j}(\rho):=\frac{\operatorname{tr}\left(W_{j} V_{i} \rho V_{i}^{*} W_{j}^{*}\right)}{\operatorname{tr}\left(V_{i} \rho V_{i}^{*}\right)} \tag{79}
\end{equation*}
$$

We see that for $\rho_{W} \in \mathcal{M}_{N}$ and i fixed, we have $\sum_{i} a_{i j}\left(\rho_{W}\right)=1$. Define for each i the density operator

$$
\begin{equation*}
\rho_{i}:=\sum_{j} a_{i j}\left(\rho_{W}\right)|j\rangle\langle j| \tag{80}
\end{equation*}
$$

Then by (77),

$$
\begin{equation*}
S\left(\rho_{i}\right)=-\sum_{j} a_{i j}\left(\rho_{W}\right) \log a_{i j}\left(\rho_{W}\right) \tag{81}
\end{equation*}
$$

By (78), we can write

$$
\begin{equation*}
h_{V}(W)\left(\rho_{W}\right)=\sum_{i=1}^{k} \operatorname{tr}\left(W_{i} \rho_{W} W_{i}^{*}\right) S\left(\rho_{i}\right) \tag{82}
\end{equation*}
$$

A Positive Operator-Valued Measurement (POVM) is described by a set of positive operators P_{i} (POVM elements) such that $\sum_{i} P_{i}=I$. If the measurement is performed on a system described by the state vector $|\psi\rangle$, then the probability of obtaining i as the outcome is given by

$$
\begin{equation*}
p_{i}=\langle\psi| F_{i}|\psi\rangle \tag{83}
\end{equation*}
$$

Note that a QIFS \mathcal{F} induced by linear V_{i} and W_{i}, contains a POVM by taking $W_{i}^{*} W_{i}$ as POVM elements. If X is a random variable that takes values $p_{1}, \ldots p_{k}$ then the Shannon entropy is $H(X)=-\sum_{i} p_{i} \log p_{i}$ and the joint entropy of variables X and Y is

$$
\begin{equation*}
H(X, Y):=-\sum_{x, y} p(x, y) \log p(x, y) \tag{84}
\end{equation*}
$$

where $p(x, y)$ is the probability that $X=x$ and $X=y$. The mutual information $I(X: Y)$ is defined by $I(X: Y):=H(X)+H(Y)-H(X, Y)$. Then, considering the QIFS entropy we can state the Holevo bound in the following way: first consider a QIFS \mathcal{F} such that there is a unique attractive measure which is invariant for the Markov operator \mathcal{V} associated to \mathcal{F}. Let ρ_{W} be the barycenter of such measure.

Theorem 4. (Holevo bound for QIFS) Suppose \mathcal{F} is induced by linear operators V_{i} and W_{i} with $\sum_{i} W_{i}^{*} W_{i}=I$ and for each $i=1, \ldots, k$ write $p_{i}=\operatorname{tr}\left(W_{i} \rho_{W} W_{i}^{*}\right)$ and $\rho_{i}=\sum_{j} a_{i j}\left(\rho_{W}\right)|j\rangle\langle j|$, where $a_{i j}$ is given by (79). Suppose Alice prepares a mixed state ρ_{X} chosen from the ensemble $\left\{\rho_{1}, \ldots, \rho_{k}\right\}$ with probabilities $\left\{p_{1}, \ldots, p_{k}\right\}$ (that is, we assume ρ_{X} is a state determined by a random variable X such that it
assumes the value ρ_{i} with probability p_{i}). Suppose Bob performs a POVM measurement on that state with POVM elements $\left\{P_{i}\right\}_{i=1, \ldots, m}$ and measurement outcome described by a random variable Y. Then, by writing $\rho=\sum_{i} p_{i} \rho_{i}$, we have

$$
\begin{equation*}
I(X: Y) \leq S(\rho)-h_{V}(W)\left(\rho_{W}\right)=: \xi(\mathcal{E}) \tag{85}
\end{equation*}
$$

The number $\xi(\mathcal{E})$ is the Holevo information of the ensemble given by $\mathcal{E}=$ $\left\{\rho_{i} ; p_{i}\right\}_{i=1, \ldots, k}$. We see that (85) holds by applying the Holevo bound for the von Neumann entropy (see [17]) together with (80) and (82).

We are also interested in a different class of problems which concern maximization (and not minimization) of entropy plus a given potential (a cost) [9],[11],[12].

Definition 10. Let M_{F} be the set of invariant measures defined in the section 11 and let H be a hermitian operator. For $\mu \in \mathcal{M}_{F}$ let ρ_{μ} be its barycenter. Define the capacity-cost function $C: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$as

$$
\begin{equation*}
C(a):=\max _{\mu \in \mathcal{M}_{F}}\left\{h_{W, V}\left(\rho_{\mu}\right): \operatorname{tr}\left(H \rho_{\mu}\right) \leq a\right\} \tag{86}
\end{equation*}
$$

The following analysis is inspired in [8]. There is a relation between the costcapacity function and the variational problem for pressure. In fact, let $F: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$ be the function given by

$$
\begin{equation*}
F(\lambda):=\sup _{\mu \in \mathcal{M}_{F}}\left\{h_{W, V}\left(\rho_{\mu}\right)-\lambda \operatorname{tr}\left(H \rho_{\mu}\right)\right\} \tag{87}
\end{equation*}
$$

We have the following fact. There is a unique probability measure $\nu_{0} \in \mathcal{M}_{F}$ such that

$$
F(\lambda)=h_{W, V}\left(\rho_{\nu_{0}}\right)-\lambda \operatorname{tr}\left(H \rho_{\nu_{0}}\right)
$$

Also, we have the following lemma:
Lemma 10. Let $\lambda \leq 0$, and $\hat{a}=\operatorname{tr}\left(H \rho_{\nu_{0}}\right)$. Then

$$
\begin{equation*}
C(\hat{a})=h_{W, V}\left(\rho_{\nu_{0}}\right) \tag{88}
\end{equation*}
$$

Proof Let $\nu \in \mathcal{M}_{F}, \nu \neq \nu_{0}$, with $\operatorname{tr}\left(H \rho_{\nu}\right) \leq \hat{a}=\operatorname{tr}\left(H \rho_{\nu_{0}}\right)$. Then

$$
h_{W, V}\left(\rho_{\nu}\right)-\lambda \operatorname{tr}\left(H \rho_{\nu}\right)<h_{W, V}\left(\rho_{\nu_{0}}\right)-\lambda \operatorname{tr}\left(H \rho_{\nu_{0}}\right)
$$

so

$$
h_{W, V}\left(\rho_{\nu}\right)<h_{W, V}\left(\rho_{\nu_{0}}\right)
$$

Hence

$$
h_{W, V}\left(\rho_{\nu_{0}}\right)=\sup _{\mu \in \mathcal{M}_{F}}\left\{h_{W, V}\left(\rho_{\mu}\right): \operatorname{tr}\left(H \rho_{\mu}\right) \leq \hat{a}\right\}=C(\hat{a})
$$

13. Analysis of the pressure problem

Let V_{i}, W_{i}, H_{i} be linear operators, $i=1, \ldots, k$, with $\sum_{i} W_{i}^{*} W_{i}=I$ and let

$$
\begin{equation*}
H \rho:=\sum_{i=1}^{k} H_{i} \rho H_{i}^{*} \tag{89}
\end{equation*}
$$

a hermitian operator. We are interested in obtaining a version of the variational principle of pressure for our context. We will see that the pressure will be a maximum whenever we have a certain relation between the potential H and the probability distribution considered (represented here by the W_{i}). We begin by fixing a dynamics, given by the V_{i}. From the reasoning described below, it will be natural to consider as definition of pressure the maximization among the possible stationary W_{i} of the expression

$$
h_{V}(W)+\sum_{j=1}^{k} \log \left(\operatorname{tr}\left(H_{j} \rho_{\beta} H_{j}^{*}\right) \operatorname{tr}\left(V_{j} \rho_{\beta} V_{j}^{*}\right)\right) \operatorname{tr}\left(W_{j} \rho_{W} W_{j}^{*}\right)
$$

where ρ_{β} is the eigenstate of a certain Ruelle operator, described below. We begin our analysis by using the following elementary lemma.

Lemma 11. [18] If r_{1}, \ldots, r_{k} and q_{1}, \ldots, q_{k} are two probability distributions over $1, \ldots, k$, such that $r_{j}>0, j=1, \ldots, k$, then

$$
\begin{equation*}
-\sum_{j=1}^{k} q_{j} \log q_{j}+\sum_{j=1}^{k} q_{j} \log r_{j} \leq 0 \tag{90}
\end{equation*}
$$

and equality holds if and only if $r_{j}=q_{j}, j=1, \ldots, k$.

The potential given by (89), together with the V_{i}, induces an operator given by

$$
\begin{equation*}
\mathcal{L}_{H}(\rho):=\sum_{i=1}^{k} \operatorname{tr}\left(H_{i} \rho H_{i}^{*}\right) V_{i} \rho V_{i}^{*} \tag{91}
\end{equation*}
$$

By proposition 2 we know that such operator admits an eigenvalue β with its associated eigenstate ρ_{β}. Then $\mathcal{L}_{H}\left(\rho_{\beta}\right)=\beta \rho_{\beta}$ implies

$$
\begin{equation*}
\sum_{i=1}^{k} \operatorname{tr}\left(H_{i} \rho_{\beta} H_{i}^{*}\right) V_{i} \rho_{\beta} V_{i}^{*}=\beta \rho_{\beta} \tag{92}
\end{equation*}
$$

In coordinates, (92) can be written as

$$
\begin{equation*}
\sum_{i=1}^{k} \operatorname{tr}\left(H_{i} \rho_{\beta} H_{i}^{*}\right)\left(V_{i} \rho_{\beta} V_{i}^{*}\right)_{j l}=\beta\left(\rho_{\beta}\right)_{j l} \tag{93}
\end{equation*}
$$

Remark Comparing the above calculation with the problem of finding an eigenvalue λ of a matrix $A=\left(a_{i j}\right)$, we have that equation (92) can be seen as the analogous of the expression

$$
\begin{equation*}
l E^{A}=\lambda l \tag{94}
\end{equation*}
$$

Above, the matrix A plays the role of a potential, E^{A} denotes the matrix with entries $e^{a_{i j}}$ and l_{j} denotes the j-th coordinate of the left eigenvector l associated to the eigenvalue λ. In coordinates,

$$
\begin{equation*}
\sum_{i} l_{i} e^{a_{i j}}=\lambda l_{j}, \quad i, j=1, \ldots, k \tag{95}
\end{equation*}
$$

From this point we can perform two calculations. First, considering (92) we will take the trace of such equation in order to obtain a scalar equation. In spite of the fact that taking the trace makes us lose part of the information given by the eigenvector equation, we are still able to obtain a version of what we will call the basic inequality, which can be seen as a QIFS version of the variational principle of pressure. However, there is an algebraic drawback to this approach, namely, that we will not be able to recover the classic variational problem as a particular case of such inequality (such disadvantage is a consequence of taking the trace, clearly). The second calculation begins at equation (93), the coordinate equations associated to the matrix equation for the eigenvectors. In this case we also obtain a basic inequality, but then we will have the classic variational problem of pressure as a particular case.

An important question which is of our interest, regarding both calculations mentioned above, is to ask whether it is possible for a given system to attain its maximum pressure. It is not clear that given any dynamics, we can obtain a measure reaching such a maximum. With respect to our context, we will remark a natural condition on the dynamics which allows us to determine expressions for the measure which maximizes the pressure. Now we perform the calculations mentioned above.

Based on (92), define

$$
\begin{equation*}
r_{j}=\frac{1}{\beta} \operatorname{tr}\left(H_{j} \rho_{\beta} H_{j}^{*}\right) \operatorname{tr}\left(V_{j} \rho_{\beta} V_{j}^{*}\right) \tag{96}
\end{equation*}
$$

So we have $\sum_{j} r_{j}=1$. Let

$$
\begin{equation*}
q_{j}^{i}:=\operatorname{tr}\left(\frac{W_{j} V_{i} \rho_{W} V_{i}^{*} W_{j}^{*}}{\operatorname{tr}\left(V_{i} \rho_{W} V_{i}^{*}\right)}\right) \tag{97}
\end{equation*}
$$

where, as before, ρ_{W} is the fixed point associated to the operator $\Lambda_{\mathcal{F}_{W}}$

$$
\begin{equation*}
\Lambda_{\mathcal{F}_{W}}(\rho):=\sum_{i=1}^{k} p_{i}(\rho) F_{i}(\rho) \tag{98}
\end{equation*}
$$

induced by the QIFS $\left(\mathcal{M}_{N}, F_{i}, p_{i}\right)_{i=1, \ldots, k}$,

$$
F_{i}(\rho)=\frac{V_{i} \rho V_{i}^{*}}{\operatorname{tr}\left(V_{i} \rho V_{i}^{*}\right)}
$$

and

$$
p_{i}(\rho)=\operatorname{tr}\left(W_{i} \rho W_{i}^{*}\right)
$$

Note that we have

$$
\begin{gathered}
\sum_{j=1}^{k} q_{j}^{i}=\frac{1}{\operatorname{tr}\left(V_{i} \rho_{W} V_{i}^{*}\right)} \sum_{j=1}^{k} \operatorname{tr}\left(W_{j}^{*} W_{j} V_{i} \rho_{W} V_{i}^{*}\right) \\
\quad=\frac{1}{\operatorname{tr}\left(V_{i} \rho_{W} V_{i}^{*}\right)} \operatorname{tr}\left(\sum_{j=1}^{k} W_{j}^{*} W_{j} V_{i} \rho_{W} V_{i}^{*}\right)=1
\end{gathered}
$$

Then we can apply lemma 11 for $r_{j}, q_{j}^{i}, j=1, \ldots k$, with i fixed, to obtain

$$
\begin{gathered}
-\sum_{j} \operatorname{tr}\left(\frac{W_{j} V_{i} \rho_{W} V_{i}^{*} W_{j}^{*}}{\operatorname{tr}\left(V_{i} \rho_{W} V_{i}^{*}\right)}\right) \log \operatorname{tr}\left(\frac{W_{j} V_{i} \rho_{W} V_{i}^{*} W_{j}^{*}}{\operatorname{tr}\left(V_{i} \rho_{W} V_{i}^{*}\right)}\right) \\
+\sum_{j} \operatorname{tr}\left(\frac{W_{j} V_{i} \rho_{W} V_{i}^{*} W_{j}^{*}}{\operatorname{tr}\left(V_{i} \rho_{W} V_{i}^{*}\right)}\right) \log \left(\frac{1}{\beta} \operatorname{tr}\left(H_{j} \rho_{\beta} H_{j}^{*}\right) \operatorname{tr}\left(V_{j} \rho_{\beta} V_{j}^{*}\right)\right) \leq 0
\end{gathered}
$$

and equality holds if and only if for all i, j,

$$
\begin{equation*}
\frac{1}{\beta} \operatorname{tr}\left(H_{j} \rho_{\beta} H_{j}^{*}\right) \operatorname{tr}\left(V_{j} \rho_{\beta} V_{j}^{*}\right)=\frac{\operatorname{tr}\left(W_{j} V_{i} \rho_{W} V_{i}^{*} W_{j}^{*}\right)}{\operatorname{tr}\left(V_{i} \rho_{W} V_{i}^{*}\right)} \tag{100}
\end{equation*}
$$

Then

$$
\begin{gathered}
-\sum_{j} \operatorname{tr}\left(\frac{W_{j} V_{i} \rho_{W} V_{i}^{*} W_{j}^{*}}{\operatorname{tr}\left(V_{i} \rho_{W} V_{i}^{*}\right)}\right) \log \operatorname{tr}\left(\frac{W_{j} V_{i} \rho_{W} V_{i}^{*} W_{j}^{*}}{\operatorname{tr}\left(V_{i} \rho_{W} V_{i}^{*}\right)}\right) \\
+\sum_{j} \operatorname{tr}\left(\frac{W_{j} V_{i} \rho_{W} V_{i}^{*} W_{j}^{*}}{\operatorname{tr}\left(V_{i} \rho_{W} V_{i}^{*}\right)}\right) \log \left(\operatorname{tr}\left(H_{j} \rho_{\beta} H_{j}^{*}\right) \operatorname{tr}\left(V_{j} \rho_{\beta} V_{j}^{*}\right)\right) \\
\leq \sum_{j} \operatorname{tr}\left(\frac{W_{j} V_{i} \rho_{W} V_{i}^{*} W_{j}^{*}}{\operatorname{tr}\left(V_{i} \rho_{W} V_{i}^{*}\right)}\right) \log \beta
\end{gathered}
$$

which is equivalent to

$$
\begin{gathered}
\quad-\sum_{j} \operatorname{tr}\left(\frac{W_{j} V_{i} \rho_{W} V_{i}^{*} W_{j}^{*}}{\operatorname{tr}\left(V_{i} \rho_{W} V_{i}^{*}\right)}\right) \log \operatorname{tr}\left(\frac{W_{j} V_{i} \rho_{W} V_{i}^{*} W_{j}^{*}}{\operatorname{tr}\left(V_{i} \rho_{W} V_{i}^{*}\right)}\right) \\
+\sum_{j} \frac{\operatorname{tr}\left(W_{j} V_{i} \rho_{W} V_{i}^{*} W_{j}^{*}\right)}{\operatorname{tr}\left(V_{i} \rho_{W} V_{i}^{*}\right)} \log \left(\operatorname{tr}\left(H_{j} \rho_{\beta} H_{j}^{*}\right) \operatorname{tr}\left(V_{j} \rho_{\beta} V_{j}^{*}\right)\right) \leq \log \beta
\end{gathered}
$$

Multiplying by $\operatorname{tr}\left(W_{i} \rho_{W} W_{i}^{*}\right)$ and summing over the i index, we have

$$
\begin{gather*}
h_{V}(W)+\sum_{j} \log \left(\operatorname{tr}\left(H_{j} \rho_{\beta} H_{j}^{*}\right) \operatorname{tr}\left(V_{j} \rho_{\beta} V_{j}^{*}\right)\right) \sum_{i} \frac{\operatorname{tr}\left(W_{i} \rho_{W} W_{i}^{*}\right)}{\operatorname{tr}\left(V_{i} \rho_{W} V_{i}^{*}\right)} \operatorname{tr}\left(W_{j} V_{i} \rho_{W} V_{i}^{*} W_{j}^{*}\right) \\
\leq \sum_{i} \operatorname{tr}\left(W_{i} \rho_{W} W_{i}^{*}\right) \log \beta=\log \beta \tag{102}
\end{gather*}
$$

and equality holds if and only if for all i, j,

$$
\begin{equation*}
\frac{1}{\beta} \operatorname{tr}\left(H_{j} \rho_{\beta} H_{j}^{*}\right) \operatorname{tr}\left(V_{j} \rho_{\beta} V_{j}^{*}\right)=\frac{\operatorname{tr}\left(W_{j} V_{i} \rho_{W} V_{i}^{*} W_{j}^{*}\right)}{\operatorname{tr}\left(V_{i} \rho_{W} V_{i}^{*}\right)} \tag{103}
\end{equation*}
$$

Let us rewrite inequality (102). First we use the fact that ρ_{W} is a fixed point of $\Lambda_{\mathcal{F}_{W}}$,

$$
\begin{equation*}
\sum_{i=1}^{k} \operatorname{tr}\left(W_{i} \rho_{W} W_{i}^{*}\right) \frac{V_{i} \rho_{W} V_{i}^{*}}{\operatorname{tr}\left(V_{i} \rho_{W} V_{i}^{*}\right)}=\rho_{W} \tag{104}
\end{equation*}
$$

Now we compose both sides of the equality above with the operator

$$
\begin{equation*}
\sum_{j=1}^{k} \log \left(\operatorname{tr}\left(H_{j} \rho_{\beta} H_{j}^{*}\right) \operatorname{tr}\left(V_{j} \rho_{\beta} V_{j}^{*}\right)\right) W_{j}^{*} W_{j} \tag{105}
\end{equation*}
$$

and then we obtain

$$
\begin{gathered}
\sum_{i=1}^{k} \operatorname{tr}\left(W_{i} \rho_{W} W_{i}^{*}\right) \frac{V_{i} \rho_{W} V_{i}^{*}}{\operatorname{tr}\left(V_{i} \rho_{W} V_{i}^{*}\right)} \sum_{j=1}^{k} \log \left(\operatorname{tr}\left(H_{j} \rho_{\beta} H_{j}^{*}\right) \operatorname{tr}\left(V_{j} \rho_{\beta} V_{j}^{*}\right)\right) W_{j}^{*} W_{j} \\
=\rho_{W} \sum_{j=1}^{k} \log \left(\operatorname{tr}\left(H_{j} \rho_{\beta} H_{j}^{*}\right) \operatorname{tr}\left(V_{j} \rho_{\beta} V_{j}^{*}\right)\right) W_{j}^{*} W_{j}
\end{gathered}
$$

Reordering terms we get

$$
\begin{gather*}
\sum_{j=1}^{k} \log \left(\operatorname{tr}\left(H_{j} \rho_{\beta} H_{j}^{*}\right) \operatorname{tr}\left(V_{j} \rho_{\beta} V_{j}^{*}\right)\right) \sum_{i=1}^{k} \frac{\operatorname{tr}\left(W_{i} \rho_{W} W_{i}^{*}\right)}{\operatorname{tr}\left(V_{i} \rho_{W} V_{i}^{*}\right)} V_{i} \rho_{W} V_{i}^{*} W_{j}^{*} W_{j} \\
=\rho_{W} \sum_{j=1}^{k} \log \left(\operatorname{tr}\left(H_{j} \rho_{\beta} H_{j}^{*}\right) \operatorname{tr}\left(V_{j} \rho_{\beta} V_{j}^{*}\right)\right) W_{j}^{*} W_{j} \tag{107}
\end{gather*}
$$

Taking the trace on both sides we get

$$
\begin{gather*}
\sum_{j=1}^{k} \log \left(\operatorname{tr}\left(H_{j} \rho_{\beta} H_{j}^{*}\right) \operatorname{tr}\left(V_{j} \rho_{\beta} V_{j}^{*}\right)\right) \sum_{i=1}^{k} \frac{\operatorname{tr}\left(W_{i} \rho_{W} W_{i}^{*}\right)}{\operatorname{tr}\left(V_{i} \rho_{W} V_{i}^{*}\right)} \operatorname{tr}\left(W_{j} V_{i} \rho_{W} V_{i}^{*} W_{j}^{*}\right) \\
=\sum_{j=1}^{k} \log \left(\operatorname{tr}\left(H_{j} \rho_{\beta} H_{j}^{*}\right) \operatorname{tr}\left(V_{j} \rho_{\beta} V_{j}^{*}\right)\right) \operatorname{tr}\left(\rho_{W} W_{j}^{*} W_{j}\right) \tag{108}
\end{gather*}
$$

Note that the left hand side of (108) is one of the sums appearing in (102). Therefore replacing (108) into (102) gives our main result.

Theorem 5. Let \mathcal{F}_{W} be a QIFS such that there is a unique attractive invariant measure for the associated Markov operator \mathcal{V}. Let ρ_{W} be the barycenter of such measure and let ρ_{β} be an eigenstate of $\mathcal{L}_{H}(\rho)$ with eigenvalue β. Then

$$
\begin{equation*}
h_{V}(W)+\sum_{j=1}^{k} \log \left(\operatorname{tr}\left(H_{j} \rho_{\beta} H_{j}^{*}\right) \operatorname{tr}\left(V_{j} \rho_{\beta} V_{j}^{*}\right)\right) \operatorname{tr}\left(W_{j} \rho_{W} W_{j}^{*}\right) \leq \log \beta \tag{109}
\end{equation*}
$$

and equality holds if and only if for all i, j,

$$
\begin{equation*}
\frac{1}{\beta} \operatorname{tr}\left(H_{j} \rho_{\beta} H_{j}^{*}\right) \operatorname{tr}\left(V_{j} \rho_{\beta} V_{j}^{*}\right)=\frac{\operatorname{tr}\left(W_{j} V_{i} \rho_{W} V_{i}^{*} W_{j}^{*}\right)}{\operatorname{tr}\left(V_{i} \rho_{W} V_{i}^{*}\right)} \tag{110}
\end{equation*}
$$

In section 16 we make some considerations about certain cases in which we can reach an equality in (109).

For the calculations regarding expression (93), define

$$
\begin{equation*}
r_{j l m}=\frac{1}{\beta} \operatorname{tr}\left(H_{j} \rho_{\beta} H_{j}^{*}\right) \frac{\left(V_{j} \rho_{\beta} V_{j}^{*}\right)_{l m}}{\left(\rho_{\beta}\right)_{l m}} \tag{111}
\end{equation*}
$$

Then we have $\sum_{j} r_{j l m}=1$. Let

$$
\begin{equation*}
q_{i j}:=\operatorname{tr}\left(\frac{W_{j} V_{i} \rho_{W} V_{i}^{*} W_{j}^{*}}{\operatorname{tr}\left(V_{i} \rho_{W} V_{i}^{*}\right)}\right) \tag{112}
\end{equation*}
$$

A calculation similar to the one we have made for (109) gives us

$$
\begin{align*}
& h_{V}(W)+\sum_{j=1}^{k} \operatorname{tr}\left(W_{j} \rho_{W} W_{j}^{*}\right) \log \operatorname{tr}\left(H_{j} \rho_{\beta} H_{j}^{*}\right) \\
+ & \sum_{j=1}^{k} \operatorname{tr}\left(W_{j} \rho_{W} W_{j}^{*}\right) \log \left(\frac{\left(V_{j} \rho_{\beta} V_{j}^{*}\right)_{l m}}{\left(\rho_{\beta}\right)_{l m}}\right) \leq \log \beta \tag{113}
\end{align*}
$$

and equality holds if and only if for all i, j, l, m,

$$
\begin{equation*}
\frac{1}{\beta} \operatorname{tr}\left(H_{j} \rho_{\beta} H_{j}^{*}\right) \frac{\left(V_{j} \rho_{\beta} V_{j}^{*}\right)_{l m}}{\left(\rho_{\beta}\right)_{l m}}=\frac{\operatorname{tr}\left(W_{j} V_{i} \rho_{W} V_{i}^{*} W_{j}^{*}\right)}{\operatorname{tr}\left(V_{i} \rho_{W} V_{i}^{*}\right)} \tag{114}
\end{equation*}
$$

14. Revisiting the eigenvalue problem

Consider the operator

$$
\begin{equation*}
\mathcal{L}_{H}(\rho)=\sum_{i=1}^{k} \operatorname{tr}\left(H_{i} \rho H_{i}^{*}\right) V_{i} \rho V_{i}^{*} \tag{115}
\end{equation*}
$$

induced by a fixed dynamics $V_{i} i=1, \ldots, k, V_{i}$ linear, and by $H \rho:=\sum_{i} H_{i} \rho H_{i}^{*}$, H_{i} linear. The eigenvalues equation for \mathcal{L}_{H} written in coordinates gives us the following system, for $k=2$:

$$
\begin{gather*}
\operatorname{tr}\left(H_{1} \rho_{\beta} H_{1}^{*}\right)\left(v_{11}^{2} \rho_{11}+2 v_{11} v_{12} \rho_{12}+v_{12}^{2} \rho_{22}\right) \\
+\operatorname{tr}\left(H_{2} \rho_{\beta} H_{2}^{*}\right)\left(w_{11}^{2} \rho_{11}+2 w_{11} w_{12} \rho_{12}+w_{12}^{2} \rho_{22}\right)=\beta \rho_{11} \tag{116}\\
\operatorname{tr}\left(H_{1} \rho_{\beta} H_{1}^{*}\right)\left(v_{21} v_{11} \rho_{11}+\left(v_{21} v_{12}+v_{22} v_{11}\right) \rho_{12}+v_{22} v_{12} \rho_{22}\right) \\
+\operatorname{tr}\left(H_{2} \rho_{\beta} H_{2}^{*}\right)\left(w_{21} w_{11} \rho_{11}+\left(w_{21} w_{12}+w_{22} w_{11}\right) \rho_{12}+w_{22} w_{12} \rho_{22}\right)=\beta \rho_{12} \tag{117}\\
\operatorname{tr}\left(H_{1} \rho_{\beta} H_{1}^{*}\right)\left(v_{21}^{2} \rho_{11}+2 v_{21} v_{22} \rho_{12}+v_{22}^{2} \rho_{22}\right) \\
+\operatorname{tr}\left(H_{2} \rho_{\beta} H_{2}^{*}\right)\left(w_{21}^{2} \rho_{11}+2 w_{21} w_{22} \rho_{12}+w_{22}^{2} \rho_{22}\right)=\beta \rho_{22} \tag{118}
\end{gather*}
$$

And we can also write, for $i=1,2$,

$$
\begin{equation*}
\operatorname{tr}\left(H_{i} \rho H_{i}^{*}\right)=\left(\left(h_{11}^{i}\right)^{2}+\left(h_{12}^{i}\right)^{2}\right) \rho_{11}+2\left(h_{11}^{i} h_{12}^{i}+h_{12}^{i} h_{22}^{i}\right) \rho_{12}+\left(\left(h_{12}^{i}\right)^{2}+\left(h_{22}^{i}\right)^{2}\right) \rho_{22} \tag{119}
\end{equation*}
$$

Fix H_{1}, H_{2}, let V_{1}, V_{2} be defined by

$$
V_{1}=\left(\begin{array}{cc}
v_{11} & v_{12} \tag{120}\\
0 & 0
\end{array}\right), \quad V_{2}=\left(\begin{array}{cc}
0 & 0 \\
w_{21} & w_{22}
\end{array}\right)
$$

then we have, by (116)-(118) that $\rho_{12}=0$ and

$$
\begin{align*}
& \operatorname{tr}\left(H_{1} \rho_{\beta} H_{1}^{*}\right)\left(v_{11}^{2} \rho_{11}+v_{12}^{2} \rho_{22}\right)=\beta \rho_{11} \tag{121}\\
& \operatorname{tr}\left(H_{2} \rho_{\beta} H_{2}^{*}\right)\left(w_{21}^{2} \rho_{11}+w_{22}^{2} \rho_{22}\right)=\beta \rho_{22} \tag{122}
\end{align*}
$$

that is,

$$
\begin{align*}
& {\left[\left(\left(h_{11}^{1}\right)^{2}+\left(h_{12}^{1}\right)^{2}\right) \rho_{11}+\left(\left(h_{12}^{1}\right)^{2}+\left(h_{22}^{1}\right)^{2}\right) \rho_{22}\right]\left(v_{11}^{2} \rho_{11}+v_{12}^{2} \rho_{22}\right)=\beta \rho_{11}} \tag{123}\\
& {\left[\left(\left(h_{11}^{2}\right)^{2}+\left(h_{12}^{2}\right)^{2}\right) \rho_{11}+\left(\left(h_{12}^{2}\right)^{2}+\left(h_{22}^{2}\right)^{2}\right) \rho_{22}\right]\left(w_{21}^{2} \rho_{11}+w_{22}^{2} \rho_{22}\right)=\beta \rho_{22}} \tag{124}
\end{align*}
$$

Also, suppose that

$$
\begin{equation*}
v_{11}=v_{12}=w_{21}=w_{22}=1 \tag{125}
\end{equation*}
$$

Then we get

$$
\begin{align*}
& \left(\left(h_{11}^{1}\right)^{2}+\left(h_{12}^{1}\right)^{2}\right) \rho_{11}+\left(\left(h_{12}^{1}\right)^{2}+\left(h_{22}^{1}\right)^{2}\right) \rho_{22}=\beta \rho_{11} \tag{126}\\
& \left(\left(h_{11}^{2}\right)^{2}+\left(h_{12}^{2}\right)^{2}\right) \rho_{11}+\left(\left(h_{12}^{2}\right)^{2}+\left(h_{22}^{2}\right)^{2}\right) \rho_{22}=\beta \rho_{22} \tag{127}
\end{align*}
$$

Let $A=\left(a_{i j}\right)$ be a matrix with positive entries and consider the problem of finding its eigenvalues and eigenvectors. Then from

$$
\begin{align*}
& a_{11} v_{1}+a_{12} v_{2}=\beta v_{1} \tag{128}\\
& a_{21} v_{1}+a_{22} v_{2}=\beta v_{2} \tag{129}
\end{align*}
$$

we see that the systems (126)-(127) and (128)-(129) are the same if we choose

$$
\begin{align*}
& a_{11}=\left(h_{11}^{1}\right)^{2}+\left(h_{12}^{1}\right)^{2}, \quad a_{12}=\left(h_{12}^{1}\right)^{2}+\left(h_{22}^{1}\right)^{2} \tag{130}\\
& a_{21}=\left(h_{11}^{2}\right)^{2}+\left(h_{12}^{2}\right)^{2}, \quad a_{22}=\left(h_{12}^{2}\right)^{2}+\left(h_{22}^{2}\right)^{2} \tag{131}
\end{align*}
$$

We conclude that Perron's classic eigenvalue problem is a particular case of the problem associated to \mathcal{L}_{H} acting on matrices. In fact, if we fix

$$
V_{1}=\left(\begin{array}{ll}
1 & 1 \tag{132}\\
0 & 0
\end{array}\right), \quad V_{2}=\left(\begin{array}{ll}
0 & 0 \\
1 & 1
\end{array}\right)
$$

and given A a matrix with positive entries, choose

$$
H_{1}=\left(\begin{array}{cc}
\sqrt{a_{11}} & 0 \tag{133}\\
0 & \sqrt{a_{12}}
\end{array}\right), \quad H_{2}=\left(\begin{array}{cc}
\sqrt{a_{21}} & 0 \\
0 & \sqrt{a_{22}}
\end{array}\right)
$$

Then the operator \mathcal{L}_{H} has a diagonal eigenstate

$$
\rho_{\beta}=\left(\begin{array}{cc}
\rho_{11} & 0 \tag{134}\\
0 & \rho_{22}
\end{array}\right)
$$

associated to the eigenvalue β, and we have that, defining $v=\left(\rho_{11}, \rho_{22}\right)$, we get $A v=\beta v$.

Example 8. Let

$$
V_{1}=\left(\begin{array}{ll}
1 & 1 \tag{135}\\
0 & 0
\end{array}\right), \quad V_{2}=\left(\begin{array}{cc}
0 & 0 \\
1 & 1
\end{array}\right), \quad A=\left(\begin{array}{cc}
1 & 4 \\
3 & \frac{1}{2}
\end{array}\right)
$$

Then $A v=\beta v$ leads us to

$$
\begin{gather*}
v_{1}+4 v_{2}=\beta v_{1} \tag{136}\\
3 v_{1}+\frac{1}{2} v_{2}=\beta v_{2} \tag{137}
\end{gather*}
$$

The eigenvalues are

$$
\frac{3}{4} \pm \frac{1}{4} \sqrt{193}
$$

with eigenvectors

$$
\frac{1}{1 \pm \frac{1}{12}+\frac{1}{12} \sqrt{193}}\left(\frac{1}{12} \pm \frac{1}{12} \sqrt{193}, 1\right)
$$

Then we have $\beta=\frac{3}{4}+\frac{1}{4} \sqrt{193}, v=\frac{1}{1+\frac{1}{12}+\frac{1}{12} \sqrt{193}}\left(\frac{1}{12}+\frac{1}{12} \sqrt{193}, 1\right)$ such that $A v=\beta v$.
Let
$H_{1}=\left(\begin{array}{cc}\sqrt{a_{11}} & 0 \\ 0 & \sqrt{a_{12}}\end{array}\right)=\left(\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right), \quad H_{2}=\left(\begin{array}{cc}\sqrt{a_{21}} & 0 \\ 0 & \sqrt{a_{22}}\end{array}\right)=\left(\begin{array}{cc}\sqrt{3} & 0 \\ 0 & \frac{1}{\sqrt{2}}\end{array}\right)$
Then solving $\mathcal{L}_{H}(\rho)=\beta \rho$ gives us $\rho_{12}=0$ and

$$
\begin{align*}
\rho_{11}+4 \rho_{22} & =\beta \rho_{11} \tag{139}\\
3 \rho_{11}+\frac{1}{2} \rho_{22} & =\beta \rho_{22}
\end{align*}
$$

which is the same system as (136)-(137). So $\beta=\frac{3}{4}+\frac{1}{4} \sqrt{193}$ and the corresponding eigenstate, since $\rho_{12}=0$, is

$$
\rho=\left(\begin{array}{cc}
\frac{\frac{1}{12}+\frac{1}{12} \sqrt{193}}{1+\frac{1}{12}+\frac{1}{12} \sqrt{193}} & 0 \tag{141}\\
0 & \frac{1}{1+\frac{1}{12}+\frac{1}{12} \sqrt{193}}
\end{array}\right)
$$

15. Some classic inequality calculations

A natural question is to ask whether the maximum among normalized $W_{i}, i=$ $1, \ldots, k$, for the pressure problem associated to a given potential is realized as the logarithm of the main eigenvalue of a certain Ruelle operator associated to the potential $H_{i}, i=1, \ldots, k$. This problem will be considered in this section and also in the next one.

We begin by recalling a classic inequality. Consider

$$
\begin{equation*}
-\sum_{j=1}^{k} q_{j} \log q_{j}+\sum_{j=1}^{k} q_{j} \log r_{j} \leq 0 \tag{142}
\end{equation*}
$$

given by lemma 11. Let A be a matrix. If v denotes the left eigenvector of matrix E^{A} (such that each entry is $e^{a_{i j}}$), then $v E^{A}=\beta v$ can be written as

$$
\begin{equation*}
\sum_{i} v_{i} e^{a_{i j}}=\beta v_{j}, \quad \forall j \tag{143}
\end{equation*}
$$

Define

$$
\begin{equation*}
r_{i j}:=\frac{e^{a_{i j}} v_{i}}{\beta v_{j}} \tag{144}
\end{equation*}
$$

So $\sum_{i} r_{i j}=1$. Let $q_{i j}>0$ such that $\sum_{i} q_{i j}=1$. By (142), we have

$$
\begin{equation*}
-\sum_{i=1}^{k} q_{i j} \log q_{i j}+\sum_{i=1}^{k} q_{i j} \log \frac{e^{a_{i j}} v_{i}}{\beta v_{j}} \leq 0 \tag{145}
\end{equation*}
$$

That is,

$$
\begin{equation*}
-\sum_{i=1}^{k} q_{i j} \log q_{i j}+\sum_{i=1}^{k} q_{i j} a_{i j}+\sum_{i=1}^{k} q_{i j}\left(\log v_{i}-\log v_{j}\right) \leq \log \beta \tag{146}
\end{equation*}
$$

Let Q be a matrix with entries $q_{i j}$, let $\pi=\left(\pi_{1}, \ldots, \pi_{k}\right)$ be the stationary vector associated to Q. Since $\sum_{i} q_{i j}=1, Q$ is column-stochastic so we write $Q \pi=\pi$. Multiplying the above inequality by π_{j} and summing the j index, we get

$$
\text { (147) }-\sum_{j} \pi_{j} \sum_{i} q_{i j} \log q_{i j}+\sum_{j} \pi_{j} \sum_{i} q_{i j} a_{i j}+\sum_{j} \pi_{j} \sum_{i} q_{i j}\left(\log v_{i}-\log v_{j}\right) \leq \log \beta
$$

In coordinates, $Q \pi=\pi$ is $\sum_{j} q_{i j} \pi_{j}=\pi_{i}$, for all i. Then

$$
\begin{gather*}
-\sum_{j} \pi_{j} \sum_{i} q_{i j} \log q_{i j}+\sum_{j} \pi_{j} \sum_{i} q_{i j} a_{i j} \\
+\sum_{j} \pi_{j} \sum_{i} q_{i j} \log v_{i}-\sum_{j} \pi_{j} \sum_{i} q_{i j} \log v_{j} \leq \log \beta \tag{148}
\end{gather*}
$$

These calculations are well-known and gives us the following inequality:

$$
\begin{equation*}
-\sum_{j} \pi_{j} \sum_{i} q_{i j} \log q_{i j}+\sum_{j} \pi_{j} \sum_{i} q_{i j} a_{i j} \leq \log \beta \tag{149}
\end{equation*}
$$

Definition 11. We call inequality (149) the classic inequality associated to the matrix A with positive entries, and stochastic matrix Q.

Definition 12. For fixed k, and $l, m=1, \ldots, k$ we call the inequality

$$
\begin{align*}
& h_{V}(W)+\sum_{j=1}^{k} \operatorname{tr}\left(W_{j} \rho_{W} W_{j}^{*}\right) \log \operatorname{tr}\left(H_{j} \rho_{\beta} H_{j}^{*}\right) \\
+ & \sum_{j=1}^{k} \operatorname{tr}\left(W_{j} \rho_{W} W_{j}^{*}\right) \log \left(\frac{\left(V_{j} \rho_{\beta} V_{j}^{*}\right)_{l m}}{\left(\rho_{\beta}\right)_{l m}}\right) \leq \log \beta \tag{150}
\end{align*}
$$

the basic inequality associated to the potential $H \rho=\sum_{i} H_{i} \rho H_{i}^{*}$ and to the QIFS determined by $V_{i}, W_{i}, i=1, \ldots, k$. Equality holds if for all i, j, l, m,

$$
\begin{equation*}
\frac{1}{\beta} \operatorname{tr}\left(H_{j} \rho_{\beta} H_{j}^{*}\right) \frac{\left(V_{j} \rho_{\beta} V_{j}^{*}\right)_{l m}}{\left(\rho_{\beta}\right)_{l m}}=\frac{\operatorname{tr}\left(W_{j} V_{i} \rho_{W} V_{i}^{*} W_{j}^{*}\right)}{\operatorname{tr}\left(V_{i} \rho_{W} V_{i}^{*}\right)} \tag{151}
\end{equation*}
$$

As before, ρ_{β} is an eigenstate of $\mathcal{L}_{H}(\rho)$ and ρ_{W} is the barycenter of the unique attractive, invariant measure for the Markov operator \mathcal{V} associated to the QIFS \mathcal{F}_{W}. Given the classic inequality (149) we want to compare it to the basic inequality (150). More precisely, we would like to obtain operators V_{i} that satisfy the following: given a matrix A with positive entries and a stochastic matrix Q, there are H_{i} and W_{i} such that inequality (150) becomes inequality (149). We have the following proposition.

Proposition 9. Define

$$
V_{1}=\left(\begin{array}{ll}
1 & 0 \tag{152}\\
0 & 0
\end{array}\right), \quad V_{2}=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), \quad V_{3}=\left(\begin{array}{cc}
0 & 0 \\
1 & 0
\end{array}\right), \quad V_{4}=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)
$$

Let $A=\left(a_{i j}\right)$ be a matrix with positive entries and $Q=\left(q_{i j}\right)$ a two-dimensional column-stochastic matrix. Define

$$
\begin{align*}
& H_{11}=\left(\begin{array}{cc}
\sqrt{e^{a_{11}}} & \sqrt{e^{a_{11}}} \\
0 & 0
\end{array}\right), H_{12}=\left(\begin{array}{cc}
\sqrt{e^{a_{12}}} & \sqrt{e^{a_{12}}} \\
0 & 0
\end{array}\right) \tag{153}\\
& H_{21}=\left(\begin{array}{cc}
0 & 0 \\
\sqrt{e^{a_{21}}} & \sqrt{e^{a_{21}}}
\end{array}\right), H_{22}=\left(\begin{array}{cc}
0 & 0 \\
\sqrt{e^{a_{22}}} & \sqrt{e^{a_{22}}}
\end{array}\right) \tag{154}
\end{align*}
$$

and also

$$
\begin{align*}
& W_{1}=\left(\begin{array}{cc}
\sqrt{q_{11}} & 0 \\
0 & 0
\end{array}\right), \quad W_{2}=\left(\begin{array}{cc}
0 & \sqrt{q_{12}} \\
0 & 0
\end{array}\right) \tag{155}\\
& W_{3}=\left(\begin{array}{cc}
0 & 0 \\
\sqrt{q_{21}} & 0
\end{array}\right), \quad W_{4}=\left(\begin{array}{cc}
0 & 0 \\
0 & \sqrt{q_{22}}
\end{array}\right) \tag{156}
\end{align*}
$$

Then the basic inequality associated to $W_{i}, V_{i}, H_{i}, i=1, \ldots, 4, l=m=1$ or $l=m=2$, is equivalent to the classic inequality associated to A and Q.

We use the following lemma.

Lemma 12. For V_{i} given by

$$
\begin{align*}
& V_{1}=\left(\begin{array}{cc}
\sqrt{v_{11}} & 0 \\
0 & 0
\end{array}\right), \quad V_{2}=\left(\begin{array}{cc}
0 & \sqrt{v_{12}} \\
0 & 0
\end{array}\right) \tag{157}\\
& V_{3}=\left(\begin{array}{cc}
0 & 0 \\
\sqrt{v_{21}} & 0
\end{array}\right), \quad V_{4}=\left(\begin{array}{cc}
0 & 0 \\
0 & \sqrt{v_{22}}
\end{array}\right) \tag{158}
\end{align*}
$$

where $v_{i j}>0$, we have that the associated QIFS is such that ρ_{W} and ρ_{β} are diagonal density operators, for any choice of W_{i} and $H_{i}, i=1, \ldots, 4$.

Proof of Lemma 12 We have that ρ_{W} is a fixed point of

$$
\Lambda(\rho)=\sum_{i} \operatorname{tr}\left(W_{i} \rho W_{i}^{*}\right) \frac{V_{i} \rho V_{i}^{*}}{\operatorname{tr}\left(V_{i} \rho V_{i}^{*}\right)}
$$

Writing

$$
\rho=\left(\begin{array}{ll}
\rho_{11} & \rho_{12} \\
\rho_{12} & \rho_{22}
\end{array}\right)
$$

we have that $\Lambda(\rho)=\rho$ leads us to

$$
\begin{gathered}
\frac{\operatorname{tr}\left(W_{1} \rho W_{1}^{*}\right)}{\operatorname{tr}\left(V_{i} \rho V_{i}^{*}\right)}\left(\begin{array}{cc}
v_{11} \rho_{11} & 0 \\
0 & 0
\end{array}\right)+\frac{\operatorname{tr}\left(W_{2} \rho W_{2}^{*}\right)}{\operatorname{tr}\left(V_{2} \rho V_{2}^{*}\right)}\left(\begin{array}{cc}
v_{12} \rho_{22} & 0 \\
0 & 0
\end{array}\right) \\
+\frac{\operatorname{tr}\left(W_{3} \rho W_{3}^{*}\right)}{\operatorname{tr}\left(V_{3} \rho V_{3}^{*}\right)}\left(\begin{array}{cc}
0 & 0 \\
0 & v_{21} \rho_{11}
\end{array}\right)+\frac{\operatorname{tr}\left(W_{4} \rho W_{4}^{*}\right)}{\operatorname{tr}\left(V_{4} \rho V_{4}^{*}\right)}\left(\begin{array}{cc}
0 & 0 \\
0 & v_{22} \rho_{22}
\end{array}\right)=\left(\begin{array}{ll}
\rho_{11} & \rho_{12} \\
\rho_{12} & \rho_{22}
\end{array}\right)
\end{gathered}
$$

Then $\rho_{12}=0$ and so ρ_{W} is diagonal. In a similar way we prove ρ_{β} is diagonal.

Proof of Proposition 9 Let $V_{i}, W_{i}, i=1, \ldots, 4$ and $H_{i j}, i, j=1,2$ as in the statement of the proposition. A simple calculation shows that

$$
\begin{equation*}
\operatorname{tr}\left(H_{i j} \rho_{\beta} H_{i j}^{*}\right)=e^{a_{i j}} \tag{159}
\end{equation*}
$$

(since ρ_{β} is diagonal, by lemma 12). By example 5 , the choice of V_{i} and W_{i} we made is such that the entropy $h_{V}(W)$ reduces to the Markov chain entropy. Then a calculation yields

$$
\begin{equation*}
\frac{\left(V_{i} \rho_{\beta} V_{i}^{*}\right)_{11}}{\left(\rho_{\beta}\right)_{11}}=\frac{\left(\rho_{\beta}\right)_{11}}{\left(\rho_{\beta}\right)_{11}}=1 \tag{160}
\end{equation*}
$$

In a similar way,

$$
\begin{equation*}
\frac{\left(V_{i} \rho_{\beta} V_{i}^{*}\right)_{22}}{\left(\rho_{\beta}\right)_{22}}=\frac{\left(\rho_{\beta}\right)_{22}}{\left(\rho_{\beta}\right)_{22}}=1 \tag{161}
\end{equation*}
$$

Then from the basic inequality with $l=m=1$ or $l=m=2$ we get
(162) $h_{V}(W)+\sum_{j} \operatorname{tr}\left(W_{j} \rho_{W} W_{j}^{*}\right) \sum_{i} \frac{\operatorname{tr}\left(W_{i} V_{j} \rho_{W} V_{j}^{*} W_{i}^{*}\right)}{\operatorname{tr}\left(V_{j} \rho_{W} V_{j}^{*}\right)} \log \operatorname{tr}\left(H_{i} \rho_{\beta} H_{i}^{*}\right) \leq \log \beta$

Finally, since $\operatorname{tr}\left(H_{i j} \rho_{\beta} H_{i j}^{*}\right)=e^{a_{i j}}$ and $Q \pi=\pi$, we conclude that (162) becomes (149).

Example 9. Let

$$
H_{1}=\left(\begin{array}{cc}
2 i & 2 i \\
0 & 0
\end{array}\right), \quad H_{2}=I, \quad H_{3}=\left(\begin{array}{cc}
i \sqrt{2} & i \sqrt{2} \\
0 & 0
\end{array}\right), \quad H_{4}=I
$$

Then

$$
H_{1}^{*}=\left(\begin{array}{cc}
-2 i & 0 \\
-2 i & 0
\end{array}\right), \quad H_{2}^{*}=I, \quad H_{3}^{*}=\left(\begin{array}{cc}
-i \sqrt{2} & 0 \\
-i \sqrt{2} & 0
\end{array}\right), \quad H_{4}^{*}=I
$$

If we suppose the V_{i} are the same as from proposition 9 , we have that ρ_{β} is diagonal, so

$$
\operatorname{tr}\left(H_{1} \rho_{\beta} H_{1}^{*}\right)=4, \quad \operatorname{tr}\left(H_{2} \rho_{\beta} H_{2}^{*}\right)=1, \quad \operatorname{tr}\left(H_{3} \rho_{\beta} H_{3}^{*}\right)=2, \quad \operatorname{tr}\left(H_{4} \rho_{\beta} H_{4}^{*}\right)=1
$$

Then $\mathcal{L}_{H}(\rho)=\beta \rho$ leads us to

$$
\begin{aligned}
& 4 \rho_{11}+\rho_{22}=\beta \rho_{11} \\
& 2 \rho_{11}+\rho_{22}=\beta \rho_{22}
\end{aligned}
$$

A simple calculation gives

$$
\beta=\frac{5+\sqrt{17}}{2}
$$

with eigenstate

$$
\rho_{\beta}=\frac{4}{7+\sqrt{17}}\left(\begin{array}{cc}
\frac{3+\sqrt{17}}{4} & 0 \\
0 & 1
\end{array}\right)
$$

We want to calculate the W_{i} which maximize the basic inequality (150). Recall that from proposition 9 , the choice of V_{i} we made is such that

$$
\frac{\left(V_{j} \rho_{\beta} V_{j}^{*}\right)_{l m}}{\left(\rho_{\beta}\right)_{l m}}=1,
$$

So

$$
\begin{equation*}
h_{V}(W)+\sum_{j=1}^{k} \operatorname{tr}\left(W_{j} \rho_{W} W_{j}^{*}\right) \log \operatorname{tr}\left(H_{j} \rho_{\beta} H_{j}^{*}\right) \leq \log \beta \tag{163}
\end{equation*}
$$

and equality holds if and only if, for all i, j, l, m,

$$
\begin{equation*}
\frac{1}{\beta} \operatorname{tr}\left(H_{j} \rho_{\beta} H_{j}^{*}\right) \frac{\left(V_{j} \rho_{\beta} V_{j}^{*}\right)_{l m}}{\left(\rho_{\beta}\right)_{l m}}=\frac{\operatorname{tr}\left(W_{j} V_{i} \rho_{W} V_{i}^{*} W_{j}^{*}\right)}{\operatorname{tr}\left(V_{i} \rho_{W} V_{i}^{*}\right)} \tag{164}
\end{equation*}
$$

Choose, for instance, $l=m=1$. Then condition (164) becomes

$$
\begin{equation*}
\frac{1}{\beta} \operatorname{tr}\left(H_{j} \rho_{\beta} H_{j}^{*}\right)=\frac{\operatorname{tr}\left(W_{j} V_{i} \rho_{W} V_{i}^{*} W_{j}^{*}\right)}{\operatorname{tr}\left(V_{i} \rho_{W} V_{i}^{*}\right)} \tag{165}
\end{equation*}
$$

To simplify calculations, write $\widehat{W}_{i}=W_{i}^{*} W_{i}$ and $\widehat{W}_{i}=\left(w_{i j}^{i}\right)$. Then we get

$$
\begin{equation*}
\frac{\operatorname{tr}\left(H_{i} \rho_{\beta} H_{i}^{*}\right)}{\beta}=w_{11}^{i}=w_{22}^{i}, \quad i=1, \ldots, 4 \tag{166}
\end{equation*}
$$

So we conclude

$$
W_{i}=\frac{1}{\sqrt{\beta}}\left(\begin{array}{cc}
\sqrt{\operatorname{tr}\left(H_{i} \rho_{\beta} H_{i}^{*}\right)} & 0 \tag{167}\\
0 & \sqrt{\operatorname{tr}\left(H_{i} \rho_{\beta} H_{i}^{*}\right)}
\end{array}\right), i=1, \ldots, 4
$$

That is,

$$
\begin{equation*}
W_{1}=\frac{2}{\sqrt{\beta}} I, \quad W_{2}=\frac{1}{\sqrt{\beta}} I, \quad W_{3}=\frac{\sqrt{2}}{\sqrt{\beta}} I, \quad W_{4}=\frac{1}{\sqrt{\beta}} I \tag{168}
\end{equation*}
$$

Note that

$$
\sum_{i} W_{i}^{*} W_{i}=\frac{4+\sqrt{2}}{\sqrt{\beta}} I \neq I
$$

To solve that, we renormalize the potential. Define

$$
\begin{equation*}
\tilde{H}_{i}:=\sqrt{\alpha} H_{i}, \quad \alpha:=\frac{\sqrt{\beta}}{4+\sqrt{2}} \tag{169}
\end{equation*}
$$

Then a calculation shows that $\mathcal{L}_{\tilde{H}}(\rho)=\tilde{\beta} \rho$ gives us the same eigenstate as before, that is $\rho_{\tilde{\beta}}=\rho_{\beta}$. But note that the associated eigenvalue becomes $\tilde{\beta}=\alpha \beta$. Now, note that it is possible to renormalize the W_{i} in such a way that we obtain \tilde{W}_{i} with $\sum_{i} \tilde{W}_{i}^{*} \tilde{W}_{i}=I$, and that these maximize the basic inequality for the H_{i} initially fixed. In fact, given the renormalized \tilde{H}_{i}, define

$$
\begin{equation*}
\tilde{W}_{i}=\sqrt{\alpha} W_{i}, \quad i=1, \ldots, 4 \tag{170}
\end{equation*}
$$

Note that $\sum_{i} \tilde{W}_{i}^{*} \tilde{W}_{i}=I$. Also we obtain

$$
\begin{equation*}
h_{V}(\tilde{W})+\sum_{j=1}^{k} \operatorname{tr}\left(\tilde{W}_{j} \rho_{\tilde{W}} \tilde{W}_{j}^{*}\right) \log \operatorname{tr}\left(\sqrt{\alpha} H_{j} \rho_{\beta} \sqrt{\alpha} H_{j}^{*}\right) \leq \log \alpha \beta \tag{171}
\end{equation*}
$$

which is equivalent to

$$
\begin{equation*}
h_{V}(\tilde{W})+\sum_{j=1}^{k} \operatorname{tr}\left(\tilde{W}_{j} \rho_{\tilde{W}} \tilde{W}_{j}^{*}\right) \log \left(\alpha \operatorname{tr}\left(H_{j} \rho_{\beta} H_{j}^{*}\right)\right) \leq \log \alpha+\log \beta \tag{172}
\end{equation*}
$$

That is

$$
\begin{gather*}
h_{V}(\tilde{W})+\sum_{j=1}^{k} \operatorname{tr}\left(\tilde{W}_{j} \rho_{\tilde{W}} \tilde{W}_{j}^{*}\right) \log \alpha \\
+\sum_{j=1}^{k} \operatorname{tr}\left(\tilde{W}_{j} \rho_{\tilde{W}} \tilde{W}_{j}^{*}\right) \log \operatorname{tr}\left(H_{j} \rho_{\beta} H_{j}^{*}\right) \leq \log \alpha+\log \beta \tag{173}
\end{gather*}
$$

and if we cancel $\log \alpha$ on both sides, we get the same inequality as for the nonrenormalized H_{i}. As we have seen before, such \tilde{W}_{i} gives us equality. Hence

$$
\begin{equation*}
h_{V}(\tilde{W})+\sum_{j=1}^{k} \operatorname{tr}\left(\tilde{W}_{j} \rho_{\tilde{W}} \tilde{W}_{j}^{*}\right) \log \operatorname{tr}\left(H_{j} \rho_{\beta} H_{j}^{*}\right)=\log \beta \tag{174}
\end{equation*}
$$

16. Remarks on the problem of pressure and quantum mechanics

One of the questions we are interested in is to understand how to formulate a variational principle for pressure in the context of quantum information theory. An appropriate combination of such theories could have as a starting point a relation between the inequality for positive numbers

$$
-\sum_{i} q_{i} \log q_{i}+\sum_{i} q_{i} \log p_{i} \leq 0
$$

(lemma 11, seen in certain proofs of the variational principle of pressure), and the QIFS entropy. We have carried out such a plan and then we have obtained the basic inequality, which can be written as

$$
\begin{equation*}
h_{V}(W)+\sum_{j=1}^{k} \log \left(\operatorname{tr}\left(H_{j} \rho_{\beta} H_{j}^{*}\right) \operatorname{tr}\left(V_{j} \rho_{\beta} V_{j}^{*}\right)\right) \operatorname{tr}\left(W_{j} \rho_{W} W_{j}^{*}\right) \leq \log \beta \tag{175}
\end{equation*}
$$

where equality holds if and only if for all i, j,

$$
\begin{equation*}
\frac{1}{\beta} \operatorname{tr}\left(H_{j} \rho_{\beta} H_{j}^{*}\right) \operatorname{tr}\left(V_{j} \rho_{\beta} V_{j}^{*}\right)=\frac{\operatorname{tr}\left(W_{j} V_{i} \rho_{W} V_{i}^{*} W_{j}^{*}\right)}{\operatorname{tr}\left(V_{i} \rho_{W} V_{i}^{*}\right)} \tag{176}
\end{equation*}
$$

As we have discussed before, it is not clear that given any dynamics, we can obtain a measure such that we can reach the maximum value $\log \beta$. Considering particular cases we can suppose, for instance, that the V_{i} are unitary. In this way we combine in a natural way a problem of classic thermodynamics, with an evolution which has a quantum character. In this particular setting, we have for each i that $V_{i} V_{i}^{*}=$ $V_{i}^{*} V_{i}=I$ and then the basic inequality becomes

$$
\begin{equation*}
h_{V}(W)+\sum_{j=1}^{k} \operatorname{tr}\left(W_{j} \rho_{W} W_{j}^{*}\right) \log \operatorname{tr}\left(H_{j} \rho_{\beta} H_{j}^{*}\right) \leq \log \beta \tag{177}
\end{equation*}
$$

and equality holds if and only if for all i, j,

$$
\begin{equation*}
\frac{1}{\beta} \operatorname{tr}\left(H_{j} \rho_{\beta} H_{j}^{*}\right)=\operatorname{tr}\left(W_{j} V_{i} \rho_{W} V_{i}^{*} W_{j}^{*}\right) \tag{178}
\end{equation*}
$$

We have the following:
Lemma 13. Given a QIFS with a unitary dynamics (i.e., V_{i} is unitary for each i), there are \hat{W}_{i} which maximize (175), i.e., such that

$$
\begin{equation*}
h_{V}(\hat{W})+\sum_{j=1}^{k} \operatorname{tr}\left(\hat{W}_{j} \rho_{\hat{W}} \hat{W}_{j}^{*}\right) \log \operatorname{tr}\left(H_{j} \rho_{\beta} H_{j}^{*}\right)=\log \beta \tag{179}
\end{equation*}
$$

Proof Define, for each j,

$$
\begin{equation*}
\hat{W}_{j}:=\sqrt{\frac{1}{\beta} \operatorname{tr}\left(H_{j} \rho_{\beta} H_{j}^{*}\right) I} \tag{180}
\end{equation*}
$$

where I is the identity. The equality condition (178) is satisfied by such \hat{W}_{j}, so the lemma follows.

Remark The above lemma also holds for the basic inequality in coordinates, given by (150). Also, it is immediate to obtain a similar version of the above lemma for any QIFS such that the V_{i} are multiples of the identity, and also for QIFS such that ρ_{W} fixes each branch of the QIFS, that is, satisfying, for each i,

$$
\frac{V_{i} \rho_{W} V_{i}^{*}}{\operatorname{tr}\left(V_{i} \rho_{W} V_{i}^{*}\right)}=\rho_{W}
$$

17. Concluding remarks

Considering the QIFS setting, we defined a concept of entropy and a Ruelle operator in such a way that we are able to get some analogous results to the classical Thermodynamic Formalism. Such Ruelle operator admits a positive eigenvalue, which gives us an upper bound for the pressure (entropy plus a potential) associated to the QIFS. Our configuration space is the set of density matrices. We did not consider the usual space of symbols or a shift operator, as it is assumed in the Ruelle-Perron-Frobenius theory. We have replaced the dynamics given by the shift with the one given by the inverse branches of the iterated functions (which are defined by a set of operators).

The references [16] and [21] are of fundamental importance in our investigation.
A starting point for further investigation could be to study more properties of the QIFS entropy, such as convexity and subadditivity. Also, a natural question is to ask whether it is possible to consider a QIFS acting in an infinite tensor product of finite Hilbert spaces which would be the analogous of considering the full Bernoulli space.

In a forthcoming paper we are going to consider relative entropies and quantum conditional expectations.

References

[^1][10] Hastings, M. B. A counterexample to additivity of minimum output entropy. arXiv:0809.3972v3 [quant-ph], 2008.
[11] Hayashi, M. Capacity with energy constraint in coherent state channel. arXiv:0904.0307v1 [quant-ph], 2009.
[12] Hayashi, M., Nagaoka, H. General formulas for capacity of classical-quantum channels. IEEE Transactions on Information Theory, 7, v. 49, 2003.
[13] Jadczyk, A. On Quantum Iterated Function Systems, CEJP 2, 492-503 (2004).
[14] Lopes, A., Oliveira, E. Entropy and variational principles for holonomic probabilities of IFS. Discrete and Continuous Dynamical Systems Vol. 23, N, 3, 937-955 (2009) Series A.
[15] Fisher, A., Lopes, A. O. Exact bounds for the polynomial decay of correlation, $1 / \mathrm{f}$ noise and the central limit theorem for a non-Holder Potential. Nonlinearity, Vol 14, Number 5, pp 1071-1104 (2001).
[16] Lozinski, A., Życzkowski, K., Słomczyński, W. Quantum iterated function systems, Physical Review E, Volume 68, 04610, 2003.
[17] Nielsen, M., Chuang, I. Quantum computation and quantum information. Cambridge University Press, 2000.
[18] Parry, W., Pollicott, M. Zeta Functions and the Periodic Orbit Structure of Hyperbolic Dynamics. Société Mathématique de France. 187-188, Astérisque, 1990.
[19] Shor, P. W. Equivalence of additivity question in quantum information theory. Comm. Math. Phys. 246, 453-472 (2004).
[20] Słomczyński, W., Życzkowski, K. Quantum Chaos: an entropy approach. J. Math. Physics, 32 (1), 1994, p. 5674-5700.
[21] Słomczyński, W., Dynamical Entropy, Markov Operators and Iterated Function Systems. Jagiellonian University Press, 2003.
[22] Winkler, G., Choquet Order and Simplices. Lecture notes in Mathematics 1145. SpringerVerlag, Berlin, 1985.
[23] Young, L-S. Recurrence times and rates of mixing. Israel J. Math. 110 pp 153-188, 1999.

[^0]: Supported in part by CAPES and CNPq.

[^1]: [1] Baraviera, A., Lardizabal, C. F., A. Lopes, A. O., Terra Cunha, M. A dynamical point of view of Quantum Information: entropy, pressure and Wigner measures. arXiv:0911.0193. To appear on "Dynamics, Games and Science in honour of Mauricio Peixoto and David Rand".
 [2] Baraviera, A., Lardizabal, C. F., Lopes, A. O., Terra Cunha, M. Quantum Stochastic Processes, Quantum Iterated Function Systems and Entropy. arXiv:0911.0182. To appear on São Paulo Journal of Mathematical Sciences.
 [3] Bengtsson, I., Życzkowski, K. Geometry of Quantum States. Cambridge University Press, 2006.
 [4] Benatti, F. Dynamics, Information and Complexity in Quantum Systems. Springer Verlag, 2009
 [5] Benenti, G., Casati, G. Strini, G. Principles of Quantum Computation and Information, Vol I and II, World scientific, 2007.
 [6] Bruzda W., Cappellini, V., Sommers, H.-J., Życzkowski, K. Random Quantum Operations. Phys. Lett. A 373, 320-324 (2009).
 [7] Busch, P., Ruch, E. The measure cone: irreversibility as a geometrical phenomenon, Int. J. Quantum Chemistry. 41, 163-185, 1992.
 [8] Craizer, M, Lopes, A. O. The capacity-cost function of a hard-constrained channel. Int. Journal of Appl. Math. Vol 2, N 10 pp 1165-1180 (2000).
 [9] Gray, R. M. Entropy and information theory. Springer-Verlag, New York, 1990.

