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Abstract

In this work we study a class of stochastic processes {Xt}t∈N, where Xt = (ϕ ◦ T t
s)(X0)

is obtained from the iterations of the transformation Ts, invariant for an ergodic probability

µs on [0, 1] and a certain constant by part function ϕ : [0, 1] → R. We consider here the

family of transformations Ts : [0, 1] → [0, 1], indexed by a parameter s > 0, known as the

Manneville-Pomeau family of transformations. The autocorrelation function of the resulting

process decays hyperbolically (or polynomially) and we obtain efficient methods to estimate

the parameter s from a finite time series. As a consequence, we also estimate the rate of

convergence of the autocorrelation decay of these processes. We compare different estima-

tion methods based on the periodogram function, the smoothed periodogram function, the

variance of the partial sum, and the wavelet theory. To obtain our results we analyzed the

properties of the spectral density function and the associated Fourier Series.
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1 Introduction

The goal of this paper is to estimate the main parameter of some processes obtained

from iterations of Manneville-Pomeau maps.

We consider a class of stochastic processes {Xt}t∈N, where Xt = (ϕ ◦ T ts)(X0)

is obtained from the iterations of the transformation Ts, invariant for an ergodic

1Corresponding author’s E-mail: arturoscar.lopes@gmail.com



probability µs on [0, 1] and a continuous by part function ϕ : [0, 1] → R. The

transformation Ts : [0, 1] → [0, 1], s ∈ (0, 1), is considered here as the Manneville-

Pomeau map. We analyze the rate of decay of the autocorrelation function for the

resulting process. The rate of convergence decays hyperbolically (or polynomially)

not exponentially. We obtain efficient methods to estimate the parameter s from a

finite time series. As a consequence, we also estimate the rate of convergence of the

autocorrelation decay of these processes.

Indeed, given s the decay is known: Young (1999) has shown that the autocor-

relation decay of the Manneville-Pomeau processes has an order smaller than n1−
1
s ,

for 0 < s. Other models which have similar properties to the Manneville-Pomeau

map are the linear by part approximation of the same map (see Fisher and Lopes,

2001) and the Markov Chain with infinite symbols, described in Lopes (1993).

Models of different phenomena in nature present autocorrelation decay of the

form n−β, also called hyperbolic (or polynomial) decay: the use of the Markov Chain

model seems to be appropriate for the analysis of DNA sequences (see Peng et al.,

1992 and 1996 and Guharay et al., 2000); cardiac rhythm fluctuations (see Absil et

al., 1999 and Peng et al., 1996); turbulence (see Schuster, 1984) and economy (see

Mandelbrot, 1997; Lopes et al., 2004 and Lopes, 2007). In most cases, the exact

rate of convergence of the autocorrelation function decay is relevant information in

the model. Here we are interested in comparing different methods for estimating

such β in the case of the Manneville-Pomeau processes.

When 0.5 < s < 1.0 we have the long-range dependence regime. Fractionally

integrated autoregressive moving average (ARFIMA) models also present such be-

havior (see Beran et al., 2013; Geweke and Porter-Hudak, 1983; Reisen and Lopes,

1999, Lopes et al., 2004 and Lopes, 2008). The corresponding parameter for the

ARFIMA model is d = 1 − 1
2s . The ARFIMA process has an explicit formula for

the spectral density function fX(·) (see Reisen et al., 2001; Lopes et al., 2002, Ol-

bermann et al., 2006 and Lopes, 2008) but this is not the case for the processes

considered here.

When 0 < s < 0.5 we have the not so long dependence regime. The so-called

intermediate dependence regime happens when s ∈ (13 ,
1
2).

Recently several interesting papers appear describing the statistics of time series

obtained from dynamical systems: Freitas et al. (2018), Korepanov et al. (2021),

Chazottes et al. (1998), Chazottes et al. (2005), Collet et al. (1995), Collet et al.

(2004) and Collet (2005). We also refer the reader to the last sections of the book

by Collet and Eckmann (2006).
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Here we analyze and compare several estimation procedures based on the peri-

odogram function, on the smoothed periodogram function, on the variance of the

partial sum and on the wavelet theory.

The paper is organized as follows. In Section 2 we define the Manneville-Pomeau

maps and give some definitions, basic properties, and results. Section 3 presents the

Manneville-Pomeau processes that will be the setting of the estimation procedures

we choose in this work. In Section 4 we consider the estimation procedures for the

long dependence case while in Section 6 we present the Monte Carlo simulation

study for this regime. In Section 5 we consider the estimation procedures for the

not-so-long dependence case while Section 7 presents the Monte Carlo simulation

study for this other regime. Section 8 contains a summary of the paper. In appendix

A we consider some general properties of the Fourier series which are necessary for

the paper. Appendix B contains the theoretical reasoning for some of the estimation

procedures proposed in Section 4 of the paper.

2 Manneville-Pomeau Maps

In this section, we present the Manneville-Pomeau maps, some definitions, basic

properties, and results.

We first define the Manneville-Pomeau transformation and we give some of its

properties.

Definition 2.1: Let Ts : [0, 1]→ [0, 1] be the Manneville-Pomeau map given by

Ts(x) = x+ x1+s (mod 1) =

{
x+ x1+s, if x+ x1+s ≤ 1

x+ x1+s − 1, if x+ x1+s > 1,
(2.1)

where s is a positive constant.

As usual, we shall use the following notation

T ts ≡ Ts ◦ · · · ◦ Ts︸ ︷︷ ︸
t−times

.

The map Ts (see Figure 2.1 (a)), given by the expression (2.1) has the following

properties:

� Ts is a piecewise monotone function with two full branches, that is, there exists

p ∈ N − {0} such that Ts|(0,p) and Ts|(p,1) are strictly monotone, continuous

and Ts((0, p)) = (0, 1) = Ts((p, 1)), where p+ p1+s = 1.
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� The branches Ts|(0,p) and Ts|(p,1) are C2.

� T ′s(x) > 1, for all x > 0, and T ′s(x) ≥ λ > 1, for x ∈ (p, 1).

� Ts has a unique indifferent fixed point 0. Therefore, Ts(0) = 0 and |T ′s(0)| = 1.

� There exists an invariant absolutely continuous ergodic measure µs for the

Manneville-Pomeau transformation Ts. Thaler (1980), using the properties of

the Manneville-Pomeau map, shows that dµs(x) ≡ hs(x) dx, where hs(x) ≈
x−s, for x ∈ (0, 1), close to 0.

When s ≥ 1, the measure µs has infinite mass and it is not a probability.

When 0 < s < 1, the probability µs is mixing for Ts : [0, 1]→ [0, 1] (see Young,

1999; and Fisher and Lopes, 2001).

Given a continuous by part function ϕ : [0, 1]→ R, one can consider the random

variables Xt = (ϕ ◦ T ts)(X0), for t ∈ N, where X0 is distributed according to the

probability µs. The stationary stochastic process {Xt}t∈N is called the Manneville-

Pomeau process. We will consider here ϕ as an indicator function of an interval

in [0, 1]. In this case, the time series obtained from the process {Xt}t∈N will be a

binary time series of 0’s and 1’s only.

It is known that the autocorrelation decay of the Manneville-Pomeau processes,

given by the expression (3.1), have an order smaller than n1−
1
s , for 0 < s < 0.5

(see Young, 1999). In Fisher and Lopes (2001) it is shown, that for the linear

by-part model given by Definition 2.2 below, that these bounds are exact (for the

corresponding values).

We refer the reader to Maes et al. (1999) for more details on the dynamics of

the system given by (2.1).

Other models which have similar properties to the Manneville-Pomeau map is the

linear by-part approximation of the same map (see Definition 2.2 below and Fisher

and Lopes, 2001 and Wang, 1989) and the Markov Chain with infinite symbols

(see Definition 2.3 below) described in Lopes (1993). The use of the Markov Chain

model {Yt}t∈N, defined below, seems to be appropriated for the analysis of DNA

sequences (see Peng et al., 1992 and 1996). The same estimation methods, proposed

for the Manneville-Pomeau processes in Section 4 can be also applied to these other

models.

Definition 2.2: Let ζ(γ) =
∑

n≥1 n
−γ be the Riemann zeta function. Consider the
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partition in intervals of [0, 1] given by

M0 =

(
1− 1

ζ(γ)
, 1

)
andMk =

(
1− 1

ζ(γ)

k−1∑
n=1

n−γ , 1− 1

ζ(γ)

k∑
n=1

n−γ

)
,

for k ≥ 1. For γ > 2, we define the following linear by part transformation Tγ :

[0, 1]→ [0, 1] such that over the interval Mk, for k ≥ 1, Tγ has slope ((k + 1)k−1)γ

and over the interval M0 it has slope ζ(γ). We assume that the branches

Tγ |(0,1− 1
ζ(γ)

) and Tγ |M0

are continuous; under these assumptions the transformation Tγ is uniquely defined

(see Figure 2.1 (b)). The transformation Tγ is called the linear by part approximation

of the Manneville-Pomeau map.

In the same way as before, given a continuous by-part function defined by ϕ :

[0, 1] → R, one can consider the random variables Xt = (ϕ ◦ T tγ)(X0), for t ∈ N,

where X0 is distributed according to a certain probability µγ , invariant for Tγ . The

probability µγ is absolutely continuous with respect to the Lebesgue measure. We

call {Xt}t∈N the linear by part approximation of the Manneville-Pomeau process.

Each value of s for the Manneville-Pomeau map corresponds to a value γ = 1+ 1
s

with the same behavior with respect to the autocorrelation decay.

Figure 2.1: (a) Manneville-Pomeau Ts transformation; (b) its linear by part ap-

proximation Tγ transformation.

The Manneville-Pomeau map has the advantage of being more suitable than the

linear by-part model for computer implementation when one is interested in Monte

Carlo simulations. For this reason, in the simulation sections, we will concentrate

our analysis on such a model.

Below we define a Markov process with state N based on a certain transition

probability matrix P. The time evolution of such a process will also have similarities

with the iteration of Manneville-Pomeau map.
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Definition 2.3: Let P be a Markov chain with infinite transition probability matrix

P=(P(i, j))i,j∈N (see page 153 in Lopes, 1993; Wang, 1989 and Feller, 1949) with

transition probabilities given by

P(n, n− 1) = 1, for all n ∈ N− {0},

P(n, j) = 0, for j 6= n− 1,

and

P(0, n) =
(n+ 1)−γ

ζ(γ)
,

where ζ(γ) is the Riemann zeta function and γ > 2. There exists an explicit formula

for the eigenvector π0 associated with the eigenvalue 1 (see page 154 in Lopes, 1993).

Let {Zt}t∈N be the stationary stochastic Markov process obtained from the tran-

sition matrix P above and from the initial stationary distribution π0. Let I0 be the

indicator function of the set A = {0} on N. Let now {Yt}t∈N be the process 1−I0(Zt).
In this way, we identify paths ω ∈ NN with paths ω̃ ∈ {0, 1}N. Then, {Yt}t∈N is a

stochastic process with random variables assuming only the values 0 and 1. For the

process {Yt}t∈N consider the probability induced by the process {Zt}t∈N by means

of the identification of the paths.

To clarify the ideas in the above Definition 2.3, the following example shows the

identification paths in NN to paths in {0, 1}N.

Example 2.1: Let {Zt}t∈N be the process where a sample path w ∈ NN, for

instance, w = {0765432109876543210543210 · · · }, is associated with another sample

path of the process {Yt}t∈N. The corresponding sample path for the process {Yt}t∈N
is given by

w̃ = {01111111︸ ︷︷ ︸
7

0111111111︸ ︷︷ ︸
9

011111︸ ︷︷ ︸
5

0 · · · }.

Hence, we applied the change of coordinates Zt → Yt associating sequences of

natural numbers to blocks of 1 intercalated by 0, in such a way that the structure

of the process is kept the same.

We say that two different stochastic processes are equivalent when there is a

bijective change of coordinates acting in the set of paths transferring the probability

of one process into the other.

The process {Zt}t∈N is, by definition, equivalent to the process {Yt}t∈N by the

above change of coordinates. One can also show that Yt is also equivalent to Xt =

(ϕ ◦ T tγ)(X0) (see section 4 in Lopes, 1993 with ϕ ≡ IM0).
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The idea of using Markov Chain arguments by linearizing the Manneville-Pomeau

maps has been considered by Gaspard and Wang (1988), Lambert et al. (1993),

and Bahsoun et al. (2015), but it was used for different purposes other than ours.

We are interested in estimating the parameters of this class of maps.

In Gaspard and Wang (1988), the authors were interested in the asymptotic

growth of the Kolmogorov algorithmic complexity of a string of symbols Sn, when

n goes to infinity. They were able to show results on non-Gaussian fluctuations for

the Manneville-Pomeau map based on this linearization.

In Lambert et al. (1993) the purpose was to present a power-law upper bound

for the decay of the correlations for Hölder observables, and rates of mixing, when

the dynamics are given by the Manneville-Pomeau map.

In Bahsoun et al. (2015) it is presented a numerical procedure (using a Ulam-

type discretization scheme) to provide pointwise approximations for the invariant

density of a Manneville-Pomeau map. They were able to show the exact rate of

convergence based on the mesh size of the approximation.

It is also known that the central limit theorem (converging to a Gaussian distri-

bution) is true for the Manneville-Pomeau stochastic process {Xt}t∈N, described in

Section 3, when 0 < s < 0.5 due to the rate of convergence of the autocorrelation

decay (see Young, 1999; Lopes, 1993 and pages 1099-1100 in Fisher and Lopes,

2001).

When 0.5 < s < 1.0 it was conjectured that for the Manneville-Pomeau stochas-

tic process {Xt}t∈N the central limit theorem is true, but it converges to a stable law

with parameter α = s−1. This was proved by Gouëzel (2004). From Feller (1949)

it is known for the corresponding parameter of the Markov Chain model described

above (or for the equivalent process Xt = (ϕ ◦ T tγ)(X0) with ϕ ≡ IM0 (see Wang,

1989 or section 4 in Lopes, 1993, for more details)).

For the estimation in the long-range dependence case, one has to consider larger

sample sizes for the time series. In this situation, in general, the computation effort

for obtaining good results is very high. This is something that one can not avoid

due to the small rate of convergence of decay. The mixing rate is not as good as it

happens, for instance, when one considers models with exponential autocorrelation

decay. We present here several quite efficient methods to obtain reasonable results.

One method is by using the periodogram function described in Sections 4 and 6.

The method based on wavelet works fine in several cases and surprisingly can also

be applied to estimate s when s ≥ 1.0 (see Sections 4 and 6).

The paper Lopes and Pinheiro (2009) presents a bias correction for the wavelet
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estimation in the long and not so long dependence cases.

3 Manneville-Pomeau Process and Some of its Properties

In this section, we define the Manneville-Pomeau stochastic processes and present

some of their properties.

Let ϕ : [0, 1]→ R be a µs-integrable function and Ts(·) the Manneville-Pomeau

transformation given by the expression (2.1). The Manneville-Pomeau stochastic

process {Xt}t∈N is given by

Xt = (ϕ ◦ T ts)(X0) = ϕ(T ts(X0)) = ϕ(Ts(Xt−1)) = (ϕ ◦ Ts)(Xt−1), (3.1)

for all t ∈ N, where X0 is distributed according to the measure µs. In other words,

the Manneville-Pomeau process {Xt}t∈N is obtained applying ϕ to the iterations of

Ts, that is, Xt = ϕ ◦ T ts , for s fixed and t ∈ N.

We shall consider here only the case where ϕ is the indicator function IA of an

interval A contained in [0, 1] or else ϕ = IA − µs(A). Our simulations, shown in

Sections 5 and 7, will be done for the case where A = [0.1, 0.9].

We shall denote by γX(·) the autocovariance function for the process {Xt}t∈N,

that is,

γX(h) ≡ Eµ(XhX0)−[Eµ(X0)]
2 =

∫
ϕ(T h(x))ϕ(x)dµs(x)−[

∫
ϕ(x)dµs(x)]2, (3.2)

for h ∈ N.

We denote by ρX(·) the autocorrelation function of the process {Xt}t∈N, that is,

ρX(h) =
γX(h)

γX(0)
, for all h ∈ N,

where γX(0) ≡ Eµ(X2
0 )− [Eµ(X0)]

2 = V arµ(X0) is the variance of the process.

The spectral density function of the process {Xt}t∈N is given by

fX(ω) =
1

2π
[γX(0) + 2

∞∑
h=1

γX(h) cos(ωh)], for ω ∈ [−π, π]. (3.3)

Now we shall define the periodogram function associated with a time series

T ts(x0), for 1 ≤ t ≤ N , obtained from a x0 chosen with probability one accord-

ing to the measure µs. The periodogram function is given by

I(ωh) = fN (ωh)fN (ωh), (3.4)
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where

fN (ω) =
1

2π
√
N

N∑
t=1

ϕ(T ts(x0))e
−iωt, ω ∈ (0, 2π],

with fN (·) indicating the complex conjugate of fN (·) and

ωh =
2πh

N
, for h = 0, 1, · · · , N, (3.5)

the h-th discrete Fourier frequency (see Brockwell and Davis, 1991).

Note that the periodogram function depends on x0 and N (large). One can ob-

tain a good approximation of the spectral density function fX(·) by the periodogram

function (see Lopes and Lopes, 2002 for a mathematical proof that can be applied

to the case we analyze here when 0 < s < 0.5).

The periodogram function is an unbiased estimator for the spectral density func-

tion fX(·), even though it is not consistent (see Brockwell and Davis, 1991).

Another procedure for estimating the parameters which produce good results are

by using the wavelet theory. This type of analysis can be also used in the regime

s > 1 where the spectral density function, defined in the expression (3.4), does not

exist since the random process is not associated with a probability.

We shall use the following notation:

� If, for the sequence {an}n∈N, there exists u ∈ R and, for any δ > 0, there exist

positive constants c1 and c2 such that, for all n ∈ N,

c1 n
u−δ ≤ |an| ≤ c2 n−u+δ,

then we denote an ≈ n−u. We also say that an is of order n−u, for n→∞.

� If, for the real function g(·), there exist b ∈ R and ε > 0 such that, for any

δ > 0, there exist positive constants d1 and d2 such that, for all x ∈ (0, ε),

d1 x
b+δ ≤ |g(x)| ≤ d2 xb−δ,

then, we denote g(x) ≈ xb. We also say that g is of order xb around 0.

If there exist c1, c2 > 0 such that

c1 n
−u ≤ |an| ≤ c2 n−u,

then, of course, an ≈ n−u.
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If there exist d1, d2 > 0 such that

d1 x
b ≤ |g(x)| ≤ d2 xb,

then, of course, g(x) ≈ xb. We need however, this more general definition because

of Theorem A.4 in Appendix A of the present work.

Definition 3.1: Let {Xt}t∈N be a stochastic stationary process with autocovariance

function γX(·) given by the expression (3.2). If there exists u ∈ (0, 1) such that

γX(h) ≈ h−u, (3.6)

then we say that {Xt}t∈N is a stochastic process with long dependence.

Definition 3.2: Let {Xt}t∈N be a stochastic stationary process with autocovariance

function γX(·) given by the expression (3.2). If there exists u > 1 such that

γX(h) ≈ h−u, (3.7)

then we say that {Xt}t∈N is a stochastic process with not so long dependence.

For the Manneville-Pomeau process, it is known that

γX(h) ≈ h1−
1
s , (3.8)

(see Young, 1999 for the upper bound and Fisher and Lopes, 2001 for the lower

bound).

When 0.5 < s < 1 the Manneville-Pomeau process, given by the expression

(3.1), has the long dependence property and when 0 < s < 0.5 it has the not so long

dependence property. We shall consider here different methods for estimating the

value of s in both cases.

In the long dependence regime there exists a relationship between the velocity of

the autocorrelation function decay to zero and the regularity of the function fX(·).
This property follows just from a careful analysis of the Fourier series. We refer

the reader to chapter X, section 3 in Bary (1964), pages 1086-1090 in Fisher and

Lopes (2001), and also the Appendix A of the present work for a careful description

of this relationship. This follows basically from the fact that if fX(λ) ≈ λ−b, with

b > 0, then γX(h) ≈ hb−1. In the case when the coefficients γX(h) are monotone

decreasing in h, then fX(λ) ≈ λ−b, if γX(h) ≈ hb−1, for b > 0. Fisher and Lopes

(2001) show that the autocovariance functions γX(h) are a monotone function for

the linear by part approximation of the Manneville-Pomeau map in the case of a
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certain ϕ. These authors also show that γX(h) ≈ hγ−3, when 2 < γ < 3 (see page

1090).

In the case of Manneville-Pomeau maps with long dependence, from the exact

asymptotic given by the expression (3.3), one can obtain (by analogy with the linear

by-part model) the rate of convergence of the autocorrelation decay to zero from

the asymptotic of fX(λ) to infinity when λ→ 0 and vice versa. It follows from the

above considerations and from (3.3) that fX(λ) ≈ λ
1
s
−2.

The phenomena fX(ω) ≈ ω−b is known as 1
f -noise property (in this case, 1

fb
-

noise would be a more appropriate terminology), where f stands for a frequency

(here denoted by ω).

Definition 3.3: The continuous function g : (−π, π) → R is said to be Hölder of

order a, 0 < a < 1, if there exists a positive constant K such that

|g(x)− g(y)| ≤ K|x− y|a,

for any x, y ∈ (−π, π). We also call a the exponent of g.

Definition 3.4: The continuous function g : (−π, π) → R is said to be exactly a-

Hölder in the point x0, for 0 < a < 1, if for any δ > 0, there exist positive constants

c1 and c2 such that

c1 |x− y|a+δ ≤ |g(x)− g(y)| ≤ c2 |x− y|a−δ,

for any y ∈ (−π, π). We also call a the exact exponent of g at x0.

We will apply this definition for the case x0 = 0.

When one considers the Manneville-Pomeau maps with not so long dependence,

one can say more about the regularity of fX(·) (see chapter II, section 3 and chapter

X, section 9 in Bary, 1964 and Appendix A of this present work): it is exactly β-

Hölder continuous function with exponent β = 1
s−2. We are using here the notation:

a β-Hölder function, with β = n+α, 0 < α < 1, is a function such that it is n times

differentiable and the n-th derivative is α-Hölder.

The periodogram function I(·) is a useful way to obtain an approximation of

fX(·) (see Lopes and Lopes, 2002). One can obtain an estimation of s from the

above considerations and the periodogram function as we will explain in the next

section.
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4 Estimation in the “Long Dependence” Case

The main goal of this section is to estimate the transformation Ts, or equivalently,

to estimate the parameter s, when 0.5 < s < 1. For this purpose, we consider a

finite time series {Xt}N−1t=0 obtained from the process {Xt}t∈N given by (3.1).

By Monte Carlo simulation, which is given in Section 5, we compare some meth-

ods for estimating s with the one presented in Schuster (1984). We are interested

in the performance of this method when compared to the others.

The process {Xt}t∈N, defined by the expression (3.1), is considered here to be

Xt = IA ◦ T ts = I(0.1,0.9) ◦ T ts , (4.1)

which is stationary and ergodic (see Lopes and Lopes, 1998).

For the long dependence case one can express the graph of fX(·) (or of the

periodogram function I(·)) in the logarithm scale and this exhibits linear behavior.

By ordinary least-squares estimation one can obtain an estimate of the value s.

We now explain more carefully this very useful method for the long dependence

case: suppose there exists c such that fX(ω) ≈ ωc, for ω close to zero. Then, for ω

close to zero
ln(fX(ω))

ln(ω)
≈ c.

From the estimated value of c we estimate s since c = 1
s − 2. An estimate of c can

be obtained via the periodogram by

ln(I(ω))

ln(ω)
≈ ĉ,

with ω chosen very close to 0.

We shall now consider six different methods for estimating the parameter s: the

least-squares method proposed in section 4.3 of Schuster (1984); the least-squares

method proposed here using the smoothed periodogram function when the Parzen

or the “cosine bell” lag window is used to consistently estimate the spectral density

function; the one based on the variance of the sample partial sums of the process;

the one based on the logarithm of the variance of the sample mean of the process and

the one based on the wavelet theory. These methods are described in this section

and in Section 5 we present a Monte Carlo simulation study comparing them.

Perio Estimator

This method is based on the periodogram function of a time series {Xt}Nt=1 and

it is largely used by physicists (see Schuster, 1984).
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The estimator of s is obtained from the least squares method based on a linear

regression of y1, y2, · · · , yg(N) on x1, x2, · · · , xg(N), where yj = ln(I(λj)), xj = ln(j)

and g(N) = N0.5. The I(·) is the periodogram function given by the expression (3.4)

and λj is the j-th Fourier frequency given by (3.5). Let c be the slope coefficient of

the linear regression in the logarithm scale. The coefficient c allows the estimation

of s through the equality

s =
1

c+ 2
,

since, for s ∈ (0, 1) we know that

fX(ω) ≈ ω
1
s
−2, for ω close to the zero frequency.

Therefore,

ĉ =
1

ŝ
− 2⇔ ŝ =

1

ĉ+ 2
. (4.2)

We shall denote the estimator in (4.2) by Perio.

Parzen Estimator

This method is also a regression estimator for the parameter s and is obtained

by replacing the periodogram function I(·) in the Perio method by its smoothed

version with the Parzen lag window (see Brockwell and Davis, 1991). It is known

that the use of a spectral lag window consistently estimates the spectral density

function (see Brockwell and Davis, 1991). This estimator has the same expression

as in (4.2), but now yj = ln(fsm(ωj)), where fsm(·) is the smoothed periodogram

function. The value of g(N) is chosen as in the Perio method. The truncation point

in the Parzen lag window is considered to be m = N0.9.

Cos Estimator

This method is similar to the Parzen estimator, where now we use the “cosine

bell” spectral lag window (see Brockwell and Davis, 1991). Its expression is given

by (4.2), where now the smoothed periodogram function fsm(·) is obtained from the

“cosine bell” lag window. Again, by linear regression, we obtain the estimator of

s. In this method we considered different limits for g(N) = Nαi : we used α1 = 0.5

and α2 = 0.7 and we denote this estimator by Cos(i), i = 1, 2.

Remark 4.1: The methods Perio, Parzen and Cos, defined above, are similar

to those proposed by Lopes et al. (2004) and Reisen et al. (2001) to estimate the

differencing parameter in ARFIMA models. They are also similar to the estimators
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proposed by Lopes (2007) for the differencing d or the seasonal differencing D pa-

rameters in seasonal fractionally integrated SARFIMA(p, d, q)× (P,D,Q)s process

with sazonality s. Again, we observe that there is no explicit expression for the

spectral density function fX(·) in the case of the Manneville-Pomeau processes.

Varmp Estimator

This method, denoted by V armp, is different from the other previous three. To

explain this method, we consider a time series of sample size N from the process

(4.1) and let MN be the random variable is given by

MN = total number of 1’s in the time series {Xt}N−1t=0 =
N−1∑
i=0

Xi = SN . (4.3)

One can show (see Lopes, 1993; Olbermann, 2002 or Wang, 1989) that

V ar(MN ) ≈ N4−γ = N3− 1
s . (4.4)

We present a proof of this fact in a quite large generality in Appendix B.

The property (4.3) allows one to obtain another estimator for the parameter s.

In fact, if one applies the logarithm to that expression one gets

V armp =
1

3− ln(V ar(MN ))
ln(N)

= ŝ.

Remark 4.2: As in the ARFIMA process (see Beran et al., 2013 and Olbermann,

2002) we observe that this estimator is also very much biased to estimate s in the

Manneville-Pomeau processes.

Vpmp Estimator

This method is also based on the variance of the random variables MN . It is

proposed by Beran (1994) under the name of variance plot . It is obtained from the

order of the variance of X̄N = SN
N given by

Var(X̄N ) ≈ O(N2d−1), (4.5)

where d is the differencing parameter in ARFIMA models.

For the Manneville-Pomeau processes we only need to consider the expression

(4.5), the relationship between the random variables MN and SN , given by (4.4)

and the relationship between the parameters s and d, given by d = 1− 1
2s . We shall

denote this estimator by V pmp.
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Wmp Estimator

This method is based on the wavelet estimator proposed by Jensen (1999) to es-

timate the differencing parameter d in ARFIMA models. To consider this a method

to estimate the parameter s in Manneville-Pomeau processes we must consider the

relationship between the parameters s and d, given by d = 1− 1
2s and the estimator

proposed here, denoted by Wmp.

We refer the reader to Percival and Walden (1993) and Lopes and Pinheiro

(2009) for the use of wavelets in several different problems in statistics.

A wavelet is any continuous function ψ(t) that decays fast to zero when |t| →
∞ and oscillates in such a way that

∫∞
−∞ ψ(t) dt = 0. The idea is to use dyadic

translations and dilations of the function ψ(·) such that they generate the whole

L2(R). From this, the wavelets considered are of the form

ψj,k(t) = 2
j
2 ψ(2j t− k), for j, k ∈ Z,

which constitute an orthonormal basis of L2(R) (see Percival and Walden, 1993).

Here we consider only the wavelet bases Haar and Mexican hat, since these bases

have easy analytic expressions given by

ψj,k(t) =


2
j
2 , if 2−j k ≤ t < 2−j (k + 1

2)

−2−j , if 2−j (k + 1
2) ≤ t < 2−j (k + 1)

0, otherwise

and

ψj,k(t) = 2
j
2 [1− (2j t− k)2] exp[−(2j t− k)2/2],

for j = 0, 1, · · · ,m− 1 and k = 0, 1, · · · , 2j − 1, where m ∈ N is such that N = 2m.

Given a time series of the sample size N from the stochastic process (4.1) we

define the wavelet coefficients as the finite wavelet transform for this time series

given by

ωj,k = 2
j
2

N−1∑
t=0

Xt ψ(2j t− k),

for j = 0, 1, · · · ,m− 1 and k = 0, 1, · · · , 2j − 1, where m ∈ N is such that N = 2m.

To obtain the estimator proposed by Jensen (1999) we define the variance of the

wavelet coefficients as

R(j) = E[(ωj,k)
2], for all j = 0, 1, · · · ,m− 1.
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Considering the relationship between s and d given by d = 1− 1
2s , the estimator

based on the wavelets is given by

Wmp =

∑m−1
j=4 x2j

2
(∑m−1

j=4 x2j −
∑m−1

j=4 xj ln(R̂(j))
) ,

where xj is given by

xj = ln(2−2j)− 1

m− 4

m−1∑
j=4

ln(2−2j),

and R̂(j) is the sample variance of the wavelet coefficients defined by

R̂(j) ≡ 1

2j

2j−1∑
k=0

(ωj,k)
2, for all j = 4, 5, · · · ,m− 1,

with m such that N = 2m.

This method will be also considered for the Manneville-Pomeau processes when

s ≥ 1. This corresponds to the case when the invariant measure µs is not a proba-

bility measure (see Table 7.1).

5 Monte Carlo Simulation for the “Long Dependence” Case

In this section, we present the Monte Carlo simulation results comparing the six

different estimation methods given in Section 4 for the long dependence case.

Let {Xt}t∈N be the Manneville-Pomeau process, given by the expression (3.1),

where ϕ = IA with A = (0.1, 0.9) such that Xt = IA ◦ T ts .
One chooses at random a value x0 of the random variable X0 according to a

uniform distribution (this is the same as choosing x0 at random according to the

probability µs). Let {Xt}N−1t=0 be a time series with N observations from the process

{Xt}t∈N obtained from such x0. Hence, this time series is given by

Xt = IA(T ts(x0)) = I(0.1,0.9)(T ts(x0)), for all t = 0, · · · , N − 1. (5.1)

The simulations presented here are based on such time series.

Figures 5.1 (a) and (b) present the sample autocorrelation and the periodogram

functions, respectively, for a time series with a sample size N = 10, 000 obtained

from (5.1) when s = 0.8.
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The following results were obtained from Monte Carlo simulations in Fortran

routines and using the IMSL library. We remark that for the long dependence case,

one needs a large number of sets of data requiring high computational time.

For all tables presented here, we calculated the mean (mean), the standard

deviation (sd), and the mean squared error (mse) values for all estimators of s.

The smallest mean squared error is shown in boldfaced characters in these tables.

All simulations are based in 200 replications unless for Tables 5.3 and 5.4 where we

use 50 replications. For the estimator Cos we used two different values for the limit

g(N) = Nαi : Cos(1) means α1 = 0.5 and Cos(2) means α2 = 0.7.
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Figure 5.1: (a) Sample Autocorrelation Function; (b) Periodogram Function of a

time series with N = 10, 000 from the process {Xt}t∈N given by (5.1), when s = 0.8.

Table 5.1 presents the results for the six estimation methods proposed in Section

4 for the long dependence case when s ∈ {0.60, 0.65} and for three different values

of N ∈ {10, 000; 20, 000; 30, 000}.

From Table 5.1 we observe that the estimators V armp and V pmp are very much

biased: this was also true for the ARFIMA processes (see Olbermann, 2002). It is

natural to state that the best method is the one that minimizes the mean squared

error and the absolute bias values. In our simulation study, this will occur when

the Cos(2) estimator is used, for both values of s and any sample size considered.

In Table 5.2 we present the results for the case when s = 0.80 considering the

same sample size N ∈ {10, 000; 20, 000; 30, 000}. The best result is for the method

Parzen, when N = 10, 000. For the other two values of N , the proposed methods

didn’t reach the value s = 0.8. As s approaches to the value 1, the time series

{Xt}N−1t=0 , given by (5.1), stays a long time in zero, resulting in very poor estimates.

The methods V armp and V pmp are also not recommended in this situation due to

their higher bias values when compared to the others methods.

17



Table 5.1: Estimation results when s ∈ {0.60, 0.65} and N ∈ {10, 000; 20, 000; 30, 000}.
s N Method mean(ŝ) sd(ŝ) mse(ŝ) s Method mean(ŝ) sd(ŝ) mse(ŝ)

Perio 0.6545 0.1394 0.0223 Perio 0.7539 0.1518 0.0337

Parzen 0.6313 0.1125 0.0136 Parzen 0.7107 0.0107 0.0151

10,000 Cos(1) 0.5531 0.0572 0.0054 Cos(1) 0.6145 0.0614 0.0050

Cos(2) 0.5993 0.0220 0.0005 Cos(2) 0.6129 0.0198 0.0017

V armp 0.5309 0.0396 0.0063 V armp 0.5293 0.0332 0.0156

V pmp 0.5598 0.0718 0.0067 V pmp 0.5461 0.0763 0.0166

Perio 0.6364 0.1094 0.0130 Perio 0.7113 0.0779 0.0098

Parzen 0.6147 0.0086 0.0070 Parzen 0.6927 0.0706 0.0068

20,000 Cos(1) 0.5488 0.0535 0.0054 Cos(1) 0.6035 0.0472 0.0044

0.60 Cos(2) 0.5979 0.0264 0.0007 0.65 Cos(2) 0.6076 0.0181 0.0021

V armp 0.5241 0.0303 0.0067 V armp 0.5251 0.0246 0.0162

V pmp 0.5513 0.0583 0.0057 V pmp 0.5257 0.0630 0.0194

Perio 0.6004 0.1051 0.0110 Perio 0.6806 0.0445 0.0029

Parzen 0.5865 0.0736 0.0056 Parzen 0.6910 0.0392 0.0032

30,000 Cos(1) 0.5275 0.0508 0.0078 Cos(1) 0.6141 0.0552 0.0043

Cos(2) 0.5933 0.0316 0.0010 Cos(2) 0.6090 0.0147 0.0019

V armp 0.5204 0.0264 0.0070 V armp 0.5419 0.0262 0.0123

V pmp 0.5144 0.0608 0.0110 V pmp 0.5451 0.0562 0.0141

Table 5.2: Estimation Results when s = 0.80 and N ∈ {10, 000; 20, 000; 30, 000}.

N Method mean(ŝ) sd(ŝ) mse(ŝ)

Perio 0.7773 0.1648 0.0275

Parzen 0.7607 0.1444 0.0222

10,000 Cos(1) 0.6286 0.2507 0.0919

Cos(2) 0.6626 0.0822 0.0256

V armp 0.5472 0.0426 0.0657

Vpmp 0.5781 0.0806 0.0557

Perio 0.6921 0.1220 0.0264

Parzen 0.6740 0.1127 0.2849

20,000 Cos(1) 0.5731 0.0699 0.0563

Cos(2) 0.6434 0.0437 0.0264

V armp 0.5292 0.0434 0.0752

V pmp 0.5416 0.0848 0.0739

Perio 0.6559 0.1164 0.0342

Parzen 0.6150 0.1044 0.0456

30,000 Cos(1) 0.5335 0.1713 0.1002

Cos(2) 0.6382 0.0337 0.0273

V armp 0.5354 0.0524 0.0727

V pmp 0.5434 0.0861 0.0732
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The simulations presented in Tables 5.3 and 5.4 are based on 50 replications.

Table 5.3 presents the results based only on the wavelet method. We consider both

the Haar and Mexican hat bases. We remark that these estimators require a power

of two for the sample size. Table 5.3 presents the results when s ∈ {0.65, 0.80}
with three different values for N ∈ {8, 192; 16, 384; 32, 768}. We observe that the

Mexican hat basis has advantages over the Haar basis presenting smaller bias and

mean squared error values. We still point out that when N = 8, 192 the method

based on the Haar basis overestimates the mean value when s ∈ {0.65, 0.80}. After

the analysis of the long dependence case we make a few comments about another

regime, that is, when s ≥ 1.

Table 5.3: Estimation results when s ∈ {0.65, 0.80} and

N ∈ {8, 192; 16, 384; 32, 768}.

s N Wavelet Basis mean(ŝ) sd(ŝ) mse(ŝ)

8,192 Haar 0.8531 0.0470 0.0434

Mexican hat 0.8022 0.0480 0.0254

16,384 Haar 0.8311 0.0446 0.0347

0.65 Mexican hat 0.7882 0.0472 0.0213

32,768 Haar 0.8283 0.0619 0.0355

Mexican hat 0.7864 0.0451 0.0206

8,192 Haar 0.9839 0.0619 0.0376

Mexican hat 0.8873 0.0670 0.0120

16,384 Haar 0.9321 0.0659 0.0217

0.80 Mexican hat 0.8237 0.0675 0.0050

32,768 Haar 0.8639 0.0915 0.0120

Mexican hat 0.7747 0.0464 0.0027

In Table 5.4 we present the case when s ≥ 1 meaning that the invariant measure

µs does not correspond to a probability measure for the process {Xt}t∈N, given by

(3.1). This table presents values of s ∈ {1.0, 1.1, 1.2, 1.3} and sample size N =

32, 768. The best results were for the Haar basis. Notice that when s ≥ 1 any

method based on the periodogram function does not make sense (for the process

obtained from the iterations of the Manneville-Pomeau transformation Ts when x0

is chosen at random).
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An interesting question to be investigated: is it true that for any deterministic

(such as Manneville-Pomeau, Infinite Markov Chain, etc. . .) or purely stochastic

processes (such as ARFIMA, etc. . .) depending only on the decay of the rate of

convergence of the autocorrelation function, there exists a better wavelet basis (such

as Haar, Mexican hat, Shannon, etc . . .) to estimate the exponent of decay?

For the “long dependence” case, the Cos(2) estimation method is the best esti-

mator procedure when s ∈ {0.60, 0.65, 0.80} for N larger than 10, 000. Only when

N = 10, 000, the Parzen estimation method overcame the Cos(2) method (see Ta-

bles 5.1 and 5.2). When we consider the Haar and Mexican hat bases for this case,

the best estimation procedure is the one based on the Mexican hat basis when

s ∈ {0.65, 0.80} (see Table 5.3) and the Haar basis when s ≥ 1.0 and N = 32, 768

(see Table 5.4).

Table 5.4: Estimation results when s ∈ {1.0, 1.1, 1.2, 1.3} and N = 32, 768.

s Wavelet Basis mean(ŝ) sd(ŝ) mse(ŝ)

1.0 Haar 0.9461 0,1090 0.0145

Mexican hat 0.8931 0.1148 0.0243

1.1 Haar 1.0924 0.0589 0.0034

Mexican hat 0.9943 0.0461 0.0132

1.2 Haar 1.0825 0.0729 0.0190

Mexican hat 0.9642 0.0939 0.0642

1.3 Haar 1.1422 0.0638 0.0288

Mexican hat 1.0064 0.0703 0.0910

6 Estimation in the “Not So Long Dependence” Case

In the not so long dependence case one can estimate the value s using the exactly

a-Hölder property in the point x0 = 0 (see Bary, 1964 and Fisher and Lopes, 2001).

Suppose

a ≈ ln(|fX(x0)− fX(y)|)
ln(|x0 − y|)

, for y ∈ (−π, π) very close to zero,

where fX(·) is the spectral density function, given in (3.3), of the process {Xt}t∈N
given in (3.1). We then define the estimator

ŝ =
1

a+ 2
where a =

ln(|I(ω0)− I(ωj)|)
ln(|ω0 − ωj |)

, (6.1)
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with I(·) the periodogram function, given by (3.4), with ω0 = 0 and ωj is a Fourier

frequency, given by (3.5), very close to zero.

The main goal of this section is to describe two different estimation methods to

estimate the transformation Ts, or equivalently, to estimate the parameter s, when

s ∈ (0, 12). For this purpose, we consider a finite time series {Xt}N−1t=0 obtained from

the process {Xt}t∈N given by (5.1). The two methods are proposed by (6.1) when

the periodogram or its smoothed version by the Parzen lag window functions are

used.

These methods are described in this section and in Section 7 we present a Monte

Carlo simulation study comparing them.

P Estimator

This estimation method is based on the expression (6.1) where I(·) is the peri-

odogram function given by the expression (3.4). We denote it by P estimator.

SP Estimator

This estimation method is based on the expression (6.1) where the periodogram

function I(·) is now replaced by the smoothed periodogram function fsm(·) using

the Parzen spectral window. We denote it by SP estimator.

7 Monte Carlo Simulation for the “Not So Long Dependence”

Case

In this section, we present the Monte Carlo simulation results comparing the two

methods given in Section 6 for the not so long dependence case.

Let {Xt}t∈N be the Manneville-Pomeau process, given by the expression (5.1),

where ϕ = IA with A = (0.1, 0.9) such that Xt = IA ◦ T ts .
One chooses at random a value x0 of the random variable X0 according to

a uniform distribution (this is the same as choosing x0 at random according to

the probability µs). Let {Xt}N−1t=0 be a time series with N observations obtained

from (5.1). The simulations presented here are based on such time series and were

obtained by Fortran routines with some help from the IMSL library.

In Table 7.1 we present some simulation results for the not so long depen-

dence case based on the two methods reported in Section 6. We calculated the

mean (mean), the standard deviation (sd) and the mean squared error (mse)

values for each method. The smallest mean squared error is shown in the bold-
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faced character in this table. These simulations are based in 200 replications with

s ∈ {0.35, 0.40, 0.45} and two different sample sizes N ∈ {10, 000; 30, 000}. Notice

that as we have a better mixing rate of convergence for the not so long dependence

case the biases here are smaller than in the case of long dependence. However, we

have an acceptable estimated mean value only when s = 0.40, for both samples

sizes N . However, when s = 0.35 and s = 0.45 both methods overestimate the

mean value for both sample sizes N .

For the “not so long dependence” case, the best estimation procedure is the

SP method, but the P method overcames it when, respectively, s = 0.35 and

N = 30, 000, and when s = 0.45 and N = 10, 000 (see Table 7.1).

Table 7.1: Estimation results, based on 200 replications, when

s ∈ {0.35, 0.40, 0.45} and N ∈ {10, 000; 30, 000}.

s N Statistics P SP

mean(ŝ) 0.4078 0.3970

10,000 sd(ŝ) 0.0374 0.0255

0.35 mse(ŝ) 0.0047 0.0028

mean(ŝ) 0.3870 0.4136

30,000 sd(ŝ) 0.0298 0.0208

mse(ŝ) 0.0022 0.0044

mean(ŝ) 0.4210 0.4024

10,000 sd(ŝ) 0.0378 0.0258

0.40 mse(ŝ) 0.0018 0.0006

mean(ŝ) 0.4397 0.4046

30,000 sd(ŝ) 0.0432 0.0405

mse(ŝ) 0.0034 0.0016

mean(ŝ) 0.4652 0.4359

10,000 sd(ŝ) 0.0312 0.0285

0.45 mse(ŝ) 0.0012 0.0050

mean(ŝ) 0.5218 0.4808

30,000 sd(ŝ) 0.0800 0.0619

mse(ŝ) 0.0115 0.0047
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8 Conclusions

We analyzed the estimation of the parameter s in the Manneville-Pomeau processes

in the long and not so long-range dependence cases.

We described several estimation methods for both situations and we consider

that the best estimation procedure is the one with a smaller mean square error value

and smaller bias in absolute value. In this direction we compare several estimation

procedures with the method called here Perio, presented by Schuster (1984), and

largely used by physicists.

For the “long dependence” case we point out that the Cos(2) estimation method

is the best estimator procedure when s ∈ {0.60, 0.65, 0.80} for N larger than 10, 000.

Only when N = 10, 000, the Parzen estimation method overcomes the Cos(2)

method (see Tables 5.1 and 5.2). When we consider the Haar and Mexican hat

bases for this “long dependence” case, the best estimation procedure is the one

based on the Mexican hat basis when s ∈ {0.65, 0.80} (see Table 5.3) and the one

based on the Haar basis, when s ≥ 1.0 and N = 32, 768 (see Table 5.4).

In Tables 5.1 to 5.3 the wavelet method (Wmp) had a better performance than

the Perio method. One can see this in the case when s = 0.8, in which case the

estimator Wmp from the Mexican hat wavelet basis gave the best results in terms

of smaller mean squared error value and smaller bias in absolute value (see Table

5.3).

The methods V armp and V pmp presented the higher biases while the method

Cos(2) had the best results for the cases when s ∈ {0.60, 0.65}, with the smallest

mean squared error for the considered sample size values.

We studied the performance of the method Wmp based on the wavelet theory for

the Manneville-Pomeau processes when s ≥ 1, which corresponds to the situation

where the invariant measure µs is not a probability measure. In this case, the best

results were obtained when the Haar basis was considered.

Among the estimation methods proposed for the “not so long dependence” case,

the one based on the smoothed periodogram function using the SP Parzen spectral

window had the best results with lower bias and mean squared error values. The

P method overcomes it only in two situations, respectively, when s = 0.35 and

N = 30, 000, and when s = 0.45 and N = 10, 000 (see Table 7.1).
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Appendix A

Let {Xt}t∈N be the Manneville-Pomeau process defined in (3.1). Let ρX(·) and

fX(·) be, respectively, the autocorrelation and the spectral density functions of this

process.

In this appendix, we present some general properties of the Fourier series. In this

way, we will explain why the hyperbolic (or polynomial) decay of the autocorrelation

function, that is,

ρX(h) ≈ h−u, for 0 < µ < 1,

corresponds to

fX(λ) ≈ λu−1,

for the spectral density function of the process {Xt}t∈N given by (3.1).

First, we will explain the not so long dependence case.

If the function g is n-times differentiable and gn(·) is a-Hölder with 0 < a < 1,

we say that g is (n+ a)-Hölder.

The relationship of the hyperbolic decay between the autocorrelation function of

the Manneville-Pomeau process and its spectral density function is only a question

related to the Fourier series (see Bary, 1964).

Theorem A.1: Suppose that bn ≈ n−u, for some u, and that g(θ) =
∑∞

n=1 bn cos(n θ)

converges to zero, for bn ∈ R. If a is positive and g(·) is a Hölder function of order

a, then there exists a positive constant c such that bn < cn−(1+a), for all n ∈ N−{0}.

Theorem A.2: Suppose that bn ≈ n−u, for some u, and that g(θ) =
∑∞

n=1 bn cos(n θ)

decreases monotonously to zero, for bn ∈ R. If a is positive and there exists a pos-

itive constant c such that bn < cn−(1+a), then g(·) is a Hölder function of order

a.

Theorems A.1 e A.2 (see chapter II, section 3 and chapter X, section 9, respec-

tively, in Bary, 1964) apply to the not so long dependence case.

Another interesting result of the Fourier series, that can be applied now for the

long dependence case, is described in the next theorem.

Theorem A.3 (Riesz): Suppose that g(θ) =
∑∞

n=1 bn cos(n θ), for all θ ∈ (−π, π)

and that bn ∈ R is such that the sequence {bn}n∈N decreases monotonously to zero

when n → ∞. Suppose there exists a positive real constant u such that bn ≈ n−u.

Suppose there exists also a positive real constant b ∈ (−1, 0) such that

|g(θ)| ≈ |θ|b.
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(a) If there exist a ∈ (−1, 0), ε > 0 and a positive real constant k such that∣∣∣∣g(θ)

θa

∣∣∣∣ ≤ k, for all 0 < θ < ε,

then u ≥ 1 + a. That is, the decreasing velocity of |bn| is at least of order

n−(1+a), when n→∞.

(b) If there exist a ∈ (−1, 0) and a positive real constant v such that |bn| <
v n−(1+a), then b ≤ a. That is, g(θ) is at least of order of |θ|a, when θ → 0.

Hence, from (a) and (b) above one concludes that u = 1 + b.

Remark A.1: In the general cases, we point out that there exist sequences {bn}n∈N
(not monotonous) such that c1n

−u < |bn| < c2n
−u, for some positive constants c1

and c2 and u such that 0 < u < 1, but g(θ) does not satisfy c3|θ|b ≤ |g(θ)| ≤ c4|θ|b

for any fixed positive constants c3, c4 and b.

Theorem A.3 is a consequence of the following result.

Theorem A.4 (Riesz): Suppose that g(θ) =
∑∞

n=1 bn cos(n θ), for all θ ∈ (−π, π),

and that {bn}n∈N ∈ R decreases monotonously to zero. Let p > 1 and q > 1 be such

that 1
p + 1

q = 1.

(a) If g ∈ Lp, then
∑∞

n=1 |bn|q <∞.

(b) If
∑∞

n=1 |bn|q <∞, then g ∈ Lp.

Remark A.2: Theorem A.3 follows from Theorem A.4 making use of

(a) for any continuous function f , on (0, π), of order xα (x close to zero), then

f ∈ L1 ⇔ α > −1 and

(b) for any sequence cn of order n−β (n close to infinity) then
∑∞

n=1 |cn| < ∞ ⇔
β > 1.

Theorem A.4 follows easily from the first theorem of chapter X, section 9 of Bary

(1964).

The above results justify the ideas used in the estimation methods Perio, Parzen,

Cos(1) and Cos(2), given in Section 4.

Appendix B

Considering the rate of convergence to zero of the autocorrelation function one

can also get an estimate of the order of magnitude of the variance for the partial
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sums SN =
∑N−1

i=0 Xi from a time-series · · ·X−3, X−2, X−1, X0, X1, · · · , XN−1. In

Proposition B.1 below we present a proof of the estimated value for the variance of

the random variable SN . In Proposition B.2 we give a precise estimate of the order

of growth for the variance of this random process.

We point out that the stationary process stated above and given by

Xt = (ϕ ◦ T ts)(X0), for t ∈ N,

can be considered defined for all t ∈ Z, via the natural extension transformation

(see section 5.3 in Lopes and Lopes, 1998).

Proposition B.1: Let {Xt}t∈Z be any stationary stochastic process. Let SN =∑N−1
i=0 Xi be the partial sum of a time series X0, X1, · · · , XN−1 from this process.

Then,

V ar(SN ) = 2N

γX(0)

2
+

1

N

N−1∑
j=1

(N − j) γX(j)

 ,

where γX(·) is the autocovariance function of the process {Xt}t∈Z.

Proof: Since the process {Xt}t∈Z is stationary, we observe that

V ar(SN ) = V ar

(
N−1∑
i=0

Xi

)
=

N−1∑
i=0

V ar(Xi) +
N−1∑
j=0

N−1∑
`=0

cov(Xj , X`)

= NV ar(X0) +

N−1∑
j=0

N−1∑
`=0

(
E(XjX`)− [E(X0)]

2
)

= N γX(0) + 2
N−1∑
j,l=0

j<`

γX(j − `). (B.1)

It follows from the expression (B.1) that

26



V ar(SN ) = N γX(0) + 2
N−1∑
j,l=0

j<`

γX(j − `)

= N γX(0) + 2

γX(−1) + γX(−2) + γX(−3) + · · ·+ γX(−N + 1)︸ ︷︷ ︸
j=0

+ γX(−1) + γX(−2) + · · ·+ γX(1− (N − 1))︸ ︷︷ ︸
j=1

+ γX(−1) + γX(−2) + · · ·+ γX(2− (N − 1))︸ ︷︷ ︸
j=2

+ γX(−1) + γX(−2) + · · ·+ γX(3− (N − 1))︸ ︷︷ ︸
j=3

+ · · ·+ γX(−1)︸ ︷︷ ︸
j=N−2


= N γX(0) + 2 [(N − 1)γX(−1) + (N − 2)γX(−2) + (N − 3)γX(−3)

+ · · ·+ 3γX(−(N − 3)) + 2γX(−(N − 2)) + γX(−(N − 1))]

= N γX(0) + 2
N−1∑
j=1

(N − j) γX(−j) = N γX(0) + 2
N−1∑
j=1

(N − j) γX(j).

(B.2)

The last equality (B.2) follows from the fact that the process is stationary. This

implies that γX(j) = γX(−j).
Therefore,

V ar(SN ) = N γX(0) + 2
N−1∑
j=1

(N − j) γX(j),

and this completes the proof of Proposition B.1.

In the next proposition, we show the order of V ar(SN ), with respect to N , for

a quite general class of stationary stochastic processes.

Proposition B.2: Let {Xt}t∈Z be any stationary stochastic process. Let SN =∑N−1
i=0 Xi be the partial sum of a time series X0, X1, · · · , XN−1 from the process

{Xt}t∈Z. If there exists u ∈ (0, 1) such that γX(h) ≈ h−u, then

V ar(SN ) ≈ N2−u.
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Proof: For u ∈ (0, 1), the integral

I =

∫ 1

0
(1− x)x−udx

is finite. Then, for any N ∈ N, one can consider the Riemann sums associated with

the partition {
0,

1

N
,

2

N
, · · · , N − 1

N
, 1

}
,

obtaining the approximation

N∑
j=1

(
1− j

N

)(
j

N

)−u 1

N
,

that converges to I, when N →∞.

Similar arguments proposed in lemma 8.1 of Fisher and Lopes (2001), consider

cN =

N∑
j=1

(
1− j

N

)(
j

N

)−u
=

N∑
j=1

(
N − j
N

)(
j

N

)−u

=
N∑
j=1

(N − j) j−u
(

1

N

)1−u
. (B.3)

Given ε > 0, for N sufficiently large, one has that

I − ε ≤ 1

N
cN ≤ I + ε.

Using the expression (B.3), the above inequality is given by

(I − ε)N1−u ≤ 1

N

N∑
j=1

(N − j) j−u ≤ (I + ε)N1−u, (B.4)

for N sufficiently large.

Therefore,

1

N

N∑
j=1

(N − j) j−u is of order N1−u.
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From the expressions (B.2) and (B.4) one has

V ar(SN ) = 2N

γX(0)

2
+

1

N

N−1∑
j=1

(N − j) γX(j)

 ≈ N−u,
and this completes the proof of Proposition B.2.

The above results justify the ideas used in the estimation methods V armp and

V pmp, given in Section 4.
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