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Abstract

We will show the central limit theorem for the general one-dimensional
lattice where the space of symbols is a compact metric space. We consider
the CLT for Lipschitz-Gibbs probabilities and in the proof we use several
properties of the Ruelle operator defined on our setting; this will require
fixing an a priori probability. An important issue in the proof of the CLT
is the existence of a certain second-order derivative, and this will follow
from the analytic properties that will be described in detail throughout the
paper. As additional results of independent interest, we will also describe
some explicit estimates of the first and second directional derivatives of
some dynamical entities like entropy and pressure. For example: given a
fixed potential f , and a variable observable η on the Kernel of the Ruelle
operator Lf , we consider the equilibrium probability µf+t η for f+t η. We

estimate the values d
dt
h(µf+t η)|t=0 and d2

dt2
h(µf+t η)|t=0, where h(µf+t η)

is the entropy of µC+t η. For fixed f we can find conditions that can
indicate the η attaining the maximal possible value of d

dt
h(µf+t η)|t=0 (up

to a natural normalization of η), entirely in terms of elements on the kernel
of Lf . We also consider directional derivatives of the eigenfunction.

Keywords: Asymptotic Variance, Central Limit Theorem, Directional Derivatives, Lipschitz-

Gibbs Probability, RPF Theorem, Ruelle Operator.
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1 Introduction

Our main goal in this paper is to show the central limit theorem on a class
of compact general one-dimensional lattices (see Section 4), which are defined
as symbolic spaces where the set of symbols is a compact metric space M and
the dynamics is played by the shift map T : MN → MN; this kind of models
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is sometimes called in the mathematical literature generalized one-dimensional
XY models (see [2] and [20]). We obtain the CLT for Lipschitz-Gibbs proba-
bilities on Ω := MN from the spectral properties of a Ruelle operator (to be
defined in Section 2). This will require exploring properties of the so-called Ru-
elle operator as presented in [20], where it is necessary to consider an a priori
probability on M .

In the classical case (where M = {1, 2, .., d}), well-known results in this
direction have been obtained by diverse authors on several classes of dynamical
contexts (for instance in [17]). In [19] it was proven a CLT via martingale
differences in the context of a bijective dynamical system satisfying suitable
conditions, even more, it was shown a proof characterizing the CLT through
properties of decay of correlations when the dynamics is surjective (see also
[32] for an interesting approach). In [11] central limit theorems were proven
for a wide class of dynamical systems, among them, geodesic flows, piece-wise
expanding maps on the interval, and irrational rotations. In [12] the authors
proved a CLT using as a main tool the so-called transfer operators defined on a
suitable skew product.

A key element in the proof of the CLT that we present in this paper is
the existence of a certain second-order derivative and this will follow from the
analytic properties of the Ruelle operator that will be properly described later
(see Section 3). As additional results of independent interest, in Theorems 19,
20, Proposition 22 and Theorems 26, 27, 28, we will also describe some explicit
estimates of the first and second derivatives for some dynamical entities which
are somehow related to the problem.

The characterization of the Ruelle operator in the context of the so-called
generalized one-dimensional XY models has been widely studied in different
works. For instance, in [20] questions related to the spectral properties of this
kind of operator were addressed; it was also shown the existence of equilibrium
states, a variational principle, and the existence of calibrated sub-actions. In
[30] the authors studied the mentioned problems on a model where the allowed
sequences are given in terms of a continuous map of admissibility (a kind of
generalization of the classical shifts of finite type). The spectral gap (and the
analyticity following this property) obtained in item (4) in Theorem 1 in [30]
contemplates our setting here as a particular case.

This paper is organized as follows: in Section 2 are presented the main
definitions to be used throughout the paper, among them, the one for the Ruelle
operator which we are interested in this context. In Section 3 we state some
well-known properties about the analyticity of some observables derived from
the Ruelle operator and how it depends on the so-called spectral gap property.
In Section 4 we present the proofs of the main results of the paper, among them
a generalized version of the CLT in the context of the so-called general one-
dimensional lattices. At the end of the paper, in Section 5, we present explicit
calculations for the directional derivatives of entropy and pressure in terms of
elements on the Kernel of the Ruelle operator.

We can take advantage of knowing differentiability in the present setting to
investigate questions related to the first and second-directional derivatives of
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variations on time of dynamical entities related to pressure and entropy. As an
example, considering a fixed potential f and a variable observable g, denote by
µf+tg the Lipschitz-Gibbs probability (which is also equilibrium for the pressure
of f+ tg) for the perturbed potential f+ tg, when t is close to zero. It is natural
to ask about the values

d

dt
h(µf+tg)|t=0 and

d2

dt2
h(µf+tg)|t=0 (1)

where h(µf+tg) is the entropy of µf+tg (see Proposition 23 and Corollary 24).
We can ask about the direction g where the value d

dth(µf+tg)|t=0 is the
highest possible and how to get analytic estimates of such g; all of that in terms
of elements in the Kernel of the Ruelle operator Lf . This can indicate the
direction g of the maximal increasing of entropy. Questions of this nature and
others are the main topics of Section 5. The estimation of d

dth(µf+tg)|t=0 was
already considered in [15], but for other results we consider here it is appropriate
to prove things in a different way.

We also consider directional derivatives associated with the pressure via
expressions based entirely on elements on the kernel of the Ruelle operator (see
Theorem 25). For the explicit expression (67) we take advantage of the existence
of a certain orthogonal family on the Kernel of the Ruelle operator (see [21]).

We also consider directional derivatives of the eigenfunction of the Ruelle
operator (see Theorems 27 and 28).

2 Preliminaries

Consider a compact metric space (M,dM ) satisfying diam(M) = 1 and define
Ω := MN as the set of sequences taking values on M with the shift map given
by T ((xn)∞n=1) := (xn+1)∞n=1 acting on it. It is well-known that Ω equipped
with the product topology results in a compact metric space and, even more, it
is metrizable with d(x, y) :=

∑∞
n=1

1
2n dM (xn, yn).

Throughout the paper, we denote by BΩ, resp. C(Ω), resp. Lip(Ω), resp.
M(Ω) := C(Ω)∗ resp. M1(Ω), resp. MT (Ω); the Borel sigma-algebra on Ω,
resp. the space of continuous functions from Ω into R, resp. Lipschitz continuous
functions from Ω into R, resp. Borel finite measures on Ω, resp. Borel probability
measures on Ω, resp. Borel T -invariant probability measures on Ω.

In this work, we are interested in the statistical behavior of probability
measures obtained as the fixed points of the dual of a Ruelle operator which we
call Lipschitz-Gibbs probabilities. The Ruelle operator for a potential f ∈ C(Ω)
is defined as the linear one assigning to each w ∈ Lip(Ω) the map Lf (w) ∈
Lip(Ω), given by the expression

Lf (w)(x) :=

∫
M

ef(ax)w(ax)dν(a) , (2)

where ν ∈ M1(M) is an a priori measure (with support equal M), and each
sequence ax := (a, x1, x2, ...) ∈ Ω satisfies T (ax) = x.
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By the RPF theorem (see [20], or [23], for details), for each f ∈ Lip(Ω), there
are λf > 0, wf ∈ Lip(Ω)+ and ρf ∈M1(Ω), such that,

Lf (wf ) = λfwf and L∗f (ρf ) = λfρf , (3)

and, even more, for any w ∈ Lip(Ω) the following limit holds

lim
n→∞

∥∥∥Lnf (w)

λnf
− wf

∫
Ω

wdρf

∥∥∥
∞

= 0 . (4)

A straightforward argument shows that the limit in (4) implies the spectral
gap property, i.e., that the main eigenvalue λf is maximal and isolated into the
spectrum of the operator (see for details [30]).

A potential f ∈ Lip(Ω) is called normalized when Lf (1) = 1, we denote the
set of normalized potentials by N (Ω). It is easy to check that for f ∈ N (Ω) the
operator L∗f preservesM1(Ω) and it is well-known that for arbitrary f ∈ Lip(Ω),
the normalization N(f) := f +log(wf )− log(wf ◦σ)− log(λf ) belongs to N (Ω).

We call here P (f) := log λf the pressure of f : Ω → R (which due to the
classical variational formula, as in [29] or [20], will play a role only in Section
5).

We denote by µf ∈M1(Ω) the Lipschitz-Gibbs probability for f , which is the
unique fixed point for the dual Ruelle operator associated to the normalization
N(f), i.e., L∗N(f)(µf ) = µf . Moreover, it is easy to check that µf ∈ MT (Ω)

and, even more, choosing the eigenfunction and eigenprobability in (3) satisfying∫
Ω
wfdρf = 1, we have

dµf
dρf

= wf (see [20] for details). Besides that, under

suitable assumptions, the identification map f 7→ µf is bijective and analytic
(see [3]). In this way, the set N (Ω) can be also identified as the set of Lipschitz-
Gibbs probabilities associated with all possible Lipschitz potentials, which we
also denote by N (Ω).

In the following sections we elaborate on the analyticity of the pressure map
and later we use that to prove a version of the central limit theorem. For
considering the meaning of equilibrium state for a given Lipschitz continuous
potential, it is necessary the concept of entropy and pressure for T -invariant
probabilities on the XY model (see [20]). Actually, in the mentioned work, it is
shown that the so-called Ruelle operator (taking into account an a priori proba-
bility) has several interesting properties allowing to characterize the dynamical
and statistical behavior of the map T .

For the benefit of the reader, in the first part of the next section we will
state some properties of Thermodynamic Formalism for the generalized XY
model, among them analyticity issues, that we will need later. Our focus is on
Lipschitz-Gibbs probabilities.

3 Analyticity of the Ruelle Operator

Our main goal in the next section is to prove a central limit theorem on the
setting of one-dimensional lattices defined on compact metric spaces, using as
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a main tool the analyticity of the map f 7→ P (f), more specifically, using the
existence of first and second derivatives of the function t 7→ P (f + tg), with
t ∈ R.

In order to do that, first we introduce some important analytic properties
of functions related to the Ruelle operator defined in Section 2 and its corre-
sponding dual, besides their eigenfunctions and eigenprobabilities, the above as
a function of the potential f . We will state some useful properties of the Ruelle
operator given by the expression in (2).

It is known that for any f ∈ Lip(Ω) and each n ∈ N the map f 7→ Lnf is
analytic (see [3, 29] for the classical case, and [30, 31] for the XY model case).
Even more, the expression for the Fréchet derivative of Ln(·) at the point f in
the direction of g is given by

D(Ln(·))f (g) =

n∑
i=1

Lif (gLn−if (g)) . (5)

The former expression also helps to guarantee that both of the maps f 7→ wf
and f 7→ λf = eP (f) are analytic. In order to guarantee the former claim, we
need to introduce a strong result requiring advanced technical tools in Functional
Analysis and the so-called approximation theory (for instance the ones presented
in Chapter VII Sections 3-6 in [10], see also Section 5 in [26] and Section IV in
[24]).

A detailed study of the spectrum of the Ruelle operator appears in [13]
and [1] under the assumption that f ∈ Lip(Ω). In the mentioned works it is
shown that the space of eigenfunctions associated with the main eigenvalue has
dimension 1 and, even more, by a general result in [20] the eigenvalue λf results
isolated. Using the same reasoning, one can take advantage of the following
propositions (see [13], [25] and [26]) to get similar results in our setting.

Proposition 1. [3, 5, 26, 24] Given f ∈ Lip(Ω), not necessarily normalized,
consider a small circle curve γ : [0, 1] → C, γ(t) = ε (e2πit + λf ) around the
eigenvalue λf (by the spectral gap property no other elements of the spectrum of
Lf belong to the interior of the curve). Then, the eigenfunction wg, where the
map g ∈ Lip(Ω) is close by f , can be obtained as the line integral

wg =
1

2π i

(∫
γ

(z I − Lg)−1dz
)

(1) . (6)

From the former expression, it follows that the map g 7→ wg is analytic on
a neighborhood of f contained into the space Lip(Ω).

Note that the eigenfunction wg for Lg described by (6) is not necessarily
normalized (in the sense that

∫
Ω
wgdρg = 1). In fact, the projection operator

π1(Lg) given by the expression

π1(Lg) :=
1

2π i

(∫
γ

(z I − Lg)−1dz
)
, (7)
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is describing the projection of the space Lip(Ω) on the one-dimensional space
of eigenfunctions for the operator Lg (see for instance [10]). Furthermore, the
function g 7→ π1(Lg) is complex analytic and any w ∈ Lip(Ω) satisfies

Lg(π1(Lg)(w)) = λgπ1(Lg)(w).

In the next proposition we use the operator in (7) to guarantee analyticity of
the maps f 7→ λf and f 7→ P (f).

Proposition 2. Let f ∈ Lip(Ω) be a not normalized potential. Then, the map
g 7→ λg is analytic on the variable g varying on a neighborhood of f . By the
above, it follows that also the pressure map g 7→ P (g) = log(λg) is analytic on
the same neighborhood of f .

Proof. Note that π1(Lg)(wf ) is an eigenfunction for the operator Lg associated
to λg, and varies analytically on g. Consider ρ ∈ M1(Ω) supported on Ω, such
that,

∫
Ω
wfdρ 6= 0. Then,

λg =

∫
Ω
Lg(π1(Lg)(wf )) dρ∫
Ω
π1(Lg)(wf ) dρ

. (8)

Note that the denominator is not zero for g close to f , which guarantees
that the former expression is well-defined and a quotient of analytic functions.
Therefore, the function g 7→ λg results in analytic on the variable g.

Consider θ acting on Lip(Ω) given by θ(f) := Lf . It is well-known that the
map θ is analytic on all the space Lip(Ω) (see [6, 25, 31] for details).

More precisely, considering a fixed w ∈ Lip(Ω), we have that the Fréchet
derivative of θ at f in direction of g satisfies the expression

θ(f + g) (w)− θ(f)(w) =

∞∑
j=1

1

j!
θ(f)(w gj)

=

∞∑
j=1

1

j!
Lf (w gj) =

∞∑
j=1

1

j!
Djθ(f) (g, g, ..., g︸ ︷︷ ︸

j

) .

In [31] the authors show analytic properties of the Ruelle operator defined
in the expression (2), even more, from Theorem 3.5 in [31], we have that for
f, g, w ∈ Lip(Ω) the following analytic expression holds

Lf+g(w)(x) =

∞∑
j=1

1

j!

∫
M

ef(ax) w(ax) g(ax)jdν(a) . (9)

In particular, a second-order expression for Taylor’s polynomial in our setting
is given by

Lf+g(w)(x) =

∫
M

ef(ax) w(ax)
(

1 + g(ax) +
g(ax)2

2

)
dν(a) + o3(g) . (10)

6



It is important to point out that the proof of the former expression was
obtained without using the spectral gap property of the Ruelle operator (well-
known in the case where M is a finite set as described in [26] and [29]).

Above it is considered the strong norm of operators and thatM(Ω) := C(Ω)∗

is the space of continuous linear functionals with domain on C(Ω) (see note on
top page 190 in [18] for an interesting remark).

It follows that if we fix f ∈ Lip(Ω) and consider a family of potentials tf ,
where t ∈ R, then, the maps t 7→ wtf and t 7→ λtf are analytic on the variable
t. For the corresponding result for the map t 7→ ρtf , see Note on top page 190
in [18]. In the next lemma, we present an explicit expression for the Gateaux
derivative for the map f 7→ λf .

Lemma 3. [3, 15] Consider f, g ∈ Lip(Ω), t ∈ R, and assume that f ∈ N (Ω).
Then,

d

dt
λf+tg|t=0 =

d

dt
eP (f+tg)|t=0 =

∫
Ω

g dµf . (11)

If the potential f is not normalized. Then,

d

dt
λf+tg|t=0 =

d

dt
eP (f+tg)|s=0 = λf

∫
Ω

g dµf . (12)

The former lemma implies directly the following result characterizing the
Gateaux derivative for the function f 7→ P (f).

Lemma 4. [3, 15] Given f, g ∈ Lip(Ω) and t ∈ R, denote by p(t) := P (f + tg)
the pressure of the potential f + tg. Then, we have

p′(0) =
d

dt
P (f + tg)|t=0 =

∫
Ω

g dµf . (13)

Remark 5. Note that the possible values of d
dte

p(t)|t=s are on a finite sub-
interval (a, b) ⊂ R. Moreover, we have

p′(s) =
d

dt
p(t)|t=s =

∫
Ω

g dµf+sg . (14)

Actually, it is only necessary to take r := t− s, ψ := f + sg and later calculate
d
drp(r)|r=0 such as appears in Lemma 4.

The next theorem is the main purpose of [15] and provides a structure of
the Riemann manifold for N (Ω).

Theorem 6. [15] The set N (Ω) is an analytic infinite dimensional manifold,
and the tangent space of N (Ω) at f satisfies Tf (N (Ω)) = Ker(Lf ), with Lf act-
ing on the space Lip(Ω). Furthermore, the inner product < v,w >:=

∫
Ω
vwdµf ,

where v, w ∈ Tf (N (Ω)), provides a Riemann structure on the manifold N (Ω).

In particular, the norm of an element η ∈ Ker(Lf ) is given by ‖η‖ =
√∫

Ω
η2dµf .
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We point out that the results of [15] are also applied to the present case,
where we consider the action of the shift on Ω and when the space of symbols M
is a compact metric space. This is so because the main ingredient was the use
of Ruelle operators (in the same way that can be handled here) plus analyticity
(which is true in our setting).

Remark 7. The calculation of the Gauss curvature for v, w ∈ Tf (N (Ω)) ap-
pears in [21] and the existence of geodesics in this context is the topic of [22].

The Riemannian metric described in Theorem 6 is related (but somehow
different) to the so-called Pressure Riemannian metric (see [4] and [27]).

In Section 5 we will be interested, among other topics, in estimating direc-
tional derivatives in the direction η ∈ Ker(Lf ) related to the pressure problem
P (ϕ) for a potential ϕ ∈ Lip(Ω). In this case, it is also natural to consider
variations of the form f + tg, with g ∈ Lip(Ω) not necessarily on the Kernel of
Lf , and the corresponding directional derivative

d

dt

(
h(µf+tg) +

∫
Ω

ϕ dµf+tg

)
|t=0, (15)

where f ∈ N (Ω) and µf+tg is the Lipschitz-Gibbs probability for f + tg, with t
close to zero.

For fixed ϕ, we can ask about the maximal value of (15) for η ∈ Ker(Lf ),
when η satisfies

∫
Ω
η2 = 1.

4 Central Limit Theorem

Throughout this section, we prove the central limit theorem for our setting.
We will show that one can adapt some ideas of the classical case to the XY
model. Given the probability space (Ω,BΩ, P ), i.e., P ∈ M1(Ω), we say that
the measurable function X : Ω → R has a Gaussian distribution with mean α
and variance σ2 > 0, when for any interval (a, b) ⊂ R

P ({x ∈ Ω|X(x) ∈ (a, b)}) =
1√

2π σ2

∫ b

a

e−
1
2

(t−α)2

σ2 dt =:

∫ b

a

dφα,σ2(t) .

The former expression is equivalent to saying that∫
Ω

I(a,b)(X)dP =

∫
Ω

IX−1(a,b)dP =
1√

2π σ2

∫
R
I(a,b)(t) e

− 1
2

(t−α)2

σ2 dt ,

which implies (via approximation by simple functions) that for any ϕ ∈ C(R)
the following expression holds∫

Ω

ϕ(X)dP =
1√

2π σ2

∫
R
ϕ(t) e−

1
2

(t−α)2

σ2 dt =

∫
R
ϕ(t)dφα,σ2(t) .
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Then, in this case, the mean is given by

α :=

∫
Ω

X dP =
1√

2π σ2

∫
R
t e−

1
2

(t−α)2

σ2 dt =

∫
R
tdφα,σ2(t) .

and the variance satisfies the expression

σ2 :=

∫
Ω

(X −
∫

Ω

X dP )2 dP

=
1√

2π σ2

∫
R

(t− α)2 e−
1
2

(t−α)2

σ2 dt =

∫
R

(t− α)2dφα,σ2(t) .

Theorem 8. Denote β(t) := P (f + tg)−P (f), where f and g belong to Lip(Ω)
and t ∈ R. Given c ∈ R, the Central Limit Theorem claims that

lim
n→∞

µf

({
x ∈ Ω | 1√

n

n−1∑
j=0

(g(σj(x))− β′(0)) < c
})

=

∫ c

−∞
dφ0,β′′(0)(t) . (16)

The expression on the first line describes the Gaussian distribution with mean
α = 0 and variance σ2 = β′′ (0).

Below, we will present a general formulation of the above claim, for the
specific proof of the CLT see Theorem 14. Before that, we will present some
technical results that allow us to prove one of the main theorems of this paper:

Lemma 9. Denote by β(t) := P (f + tg) − P (f) = p(t) − p(0), where f, g ∈
Lip(Ω),

∫
Ω
gdµf = 0, and consider s ∈ R. Then,

d2

dt2
p(t)|t=s = β′′(s)

= lim
n→∞

1

n

∫
Ω

( n−1∑
j=0

( g ◦ σj − β′(s) )
)2

dµf+sg =: σ2
f+sg(g).

(17)

The last expression is known as the asymptotic variance σ2
f+sg(g) for the

Lipschitz-Gibbs probability µf+sg.

Proof. In order to simplify the proof we consider the case where f ∈ N (Ω), i.e.,
when Lf (1) = 1. The above implies wf ≡ 1, P (f) = 0 and so β(t) = p(t).
Observe that β′(0) = p′(0) =

∫
Ω
gdµf = 0; we point out that the hypothesis∫

Ω
gdµf = 0 is satisfied by tangent vectors to the infinite-dimensional manifold

of Lipschitz-Gibbs probabilities, at the point µf (see Theorem 6)).
In this case, we have to show that

β′′(0) = lim
n→∞

1

n

∫
Ω

( n−1∑
j=0

g ◦ σj
)2

dµf . (18)

Indeed, in the same way, such as appears in the last result, we assume

Lf+tg(wf+tg) = ep(t) wf+tg, (19)
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and β′(0) = p′(0) =
∫
gdµf = 0.

First, note that the derivative at the left side in (19) satisfies

d

dt
Lf+tg(wf+tg)(x)|t=0 =

∫
M

ef(ax) g(ax)dν(a)

+

∫
M

ef(ax)
( d
dt
wf+tg(ax)

)
|t=0dν(a) .

In order to estimate β′′(0), for a fixed x ∈ Ω, we have to take the derivative

d2

dt2
Lf+tg(wf+tg)(x)|t=0 =

d

dt

(∫
M

e(f+tg)(ax) g(ax)wf+tg(ax)dν(a)

+

∫
M

e(f+tg)(ax) d

dt
wf+tg(ax)dν(a)

)
|t=0 .

(20)

We consider initially the first term of (20), for a fixed x ∈ Ω

d

dt

(∫
M

e(f+tg)(ax) g(ax)wf+tg(ax)dν(a)
)
|t=0

=

∫
M

e(f+tg)(ax) g(ax)2 wf+tg(ax)dν(a)|t=0

+

∫
M

e(f+tg)(ax) g(ax)
d

dt
wf+tg(ax)dν(a)|t=0

=

∫
M

ef(ax) g(ax)2 dν(a) +

∫
M

ef(ax) g(ax)
( d
dt
wf+tg(ax)

)
|t=0dν(a)

= Lf (g2)(x) + Lf (g
d

dt
wf+tg|t=0)(x) .

Then, integrating w.r.t. µf , we have∫
Ω

d

dt

(∫
M

e(f+tg)(ax) g(ax)wf+tg(ax)dν(a)
)
|t=0 dµf (x)

=

∫
Ω

Lf (g2)dµf +

∫
Ω

Lf (g
d

dt
wf+tg|t=0) dµf

=

∫
Ω

g2dµf +

∫
Ω

g .
( d
dt
wf+tg

)
|t=0 dµf .

(21)

Now we estimate the second term of (20), also for a fixed x ∈ Ω

d

dt

(∫
M

e(f+tg)(ax) d

dt
wf+tg(ax)dν(a)

)
|t=0

=

∫
M

e(f+tg)(ax) g(ax)
d

dt
wf+tg(ax)dν(a)|t=0

+

∫
M

e(f+tg)(ax) d
2

dt2
wf+tg(ax)dν(a)|t=0

= Lf ( g
d

dt
wf+tg|t=0 )(x) + Lf (

d2

dt2
wf+tg|t=0)(x) .
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Therefore, integrating w.r.t. the measure µf , it follows that∫
Ω

d

dt

(∫
M

e(f+tg)(ax) d

dt
wf+tg(ax)dν(a)

)
|t=0 dµf (x)

=

∫
Ω

Lf ( g
d

dt
wf+tg|t=0 ) dµf +

∫
Ω

Lf (
d2

dt2
wf+tg|t=0) dµf

=

∫
Ω

g .
( d
dt
wf+tg

)
|t=0 dµf +

∫
Ω

d2

dt2
wf+tg|t=0 dµf .

(22)

Therefore, from (21) and (22) we get∫
Ω

d2

dt2
Lf+tg(wf+tg)|t=0dµf =

∫
Ω

g2dµf + 2

∫
Ω

g .
( d
dt
wf+tg

)
|t=0 dµf

+

∫
Ω

d2

dt2
wf+tg|t=0 dµf .

(23)

On the other hand, since we are assuming β′(0) = p′(0) =
∫
gdµf = 0, for

each x the following holds

d2

dt2
(ep(t) wf+tg(x))|t=0 =

d

dt

( d
dt

(ep(t))wf+tg(x) + ep(t)
d

dt
wf+tg(x)

)
|t=0

=
d2

dt2
ep(t)|t=0wf (x) + 2

d

dt
ep(t)|t=0

d

dt
wf+tg(x)|t=0 + ep(0) d

2

dt2
wf+tg(x)|t=0

=
d2

dt2
ep(t)|t=0 + 2

∫
Ω

gdµf
d

dt
wf+tg(x)|t=0 +

d2

dt2
wf+tg(x)|t=0

=
d2

dt2
ep(t)|t=0 +

d2

dt2
wf+tg(x)|t=0 .

Then, ∫
Ω

d2

dt2
(ep(t) wf+tg)|t=0 dµf

=

∫
Ω

d2

dt2
ep(t)|t=0 dµf +

∫
Ω

d2

dt2
wf+tg|t=0 dµf

=
d2

dt2
ep(t)|t=0 +

∫
Ω

d2

dt2
wf+tg|t=0 dµf .

(24)

Besides that, since f ∈ N (Ω), we have

d2

dt2
ep(t)|t=0 = p′′(0) + (p′(0))2 = p′′(0) .

Therefore, from (23), (24), and the assumption β′(0) = p′(0) =
∫

Ω
gdµf = 0,

we get that

p′′(0) =
d2

dt2
ep(t)|t=0 =

∫
Ω

g2dµf + 2

∫
Ω

g .
( d
dt
wf+tg

)
|t=0 dµf . (25)
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Furthermore, given n ∈ N, following the same reasoning as above, but now
for the expression

Lnf+tg(wf+tg) = en p(t) wt+fg ,

we get that

n p′′(0) = n
d2

dt2
ep(t)|t=0

=

∫
Ω

(n−1∑
j=0

g ◦ σj
)2

dµf + 2

∫
Ω

( n−1∑
j=0

g ◦ σj
)
.
( d
dt
wf+tg

)
|t=0 dµf .

(26)

From (26) it follows that for all n ∈ N the following holds

p′′(0) =
d2

dt2
ep(t)|t=0

=
1

n

∫
Ω

(n−1∑
j=0

g ◦ σj
)2

dµf +
2

n

∫
Ω

( n−1∑
j=0

g ◦ σj
)
.
( d
dt
wf+tg

)
|t=0 dµf .

(27)

As
∫

Ω
gdµf = 0 and d

dt wf+tg(·)|t=0 is a bounded function on Ω, it follows
from the Ergodic Theorem (and Dominated Convergence Theorem) that

β′′(0) = p′′(0) =
d2

dt2
ep(t)|t=0 = lim

n→∞

1

n

∫
Ω

(n−1∑
j=0

g ◦ σj
)2

dµf . (28)

Now, taking r := t− s, ψ := f + sg and calculating d2

dr2 e
p(r)|r=0, we obtain

that

β′′(s) = p′′(s) = lim
n→∞

1

n

∫
Ω

( n−1∑
j=0

( g ◦ σj − β′(s) )
)2

dµf+sg

The former Theorem implies the following:

Corollary 10. Consider β(t) := P (f + tg)− P (f), t ∈ R, where f, g ∈ Lip(Ω)
and

∫
Ω
gdµf = 0. Then,

σ2
f (g) := β′′(0) = lim

n→∞

1

n

∫
Ω

(n−1∑
j=0

g ◦ σj
)2

dµf

=

∫
Ω

g2dµf + 2

∫
Ω

g .
( d
dt
wf+tg

)
|t=0 dµf .

(29)

The value β′′(s) stated at Lemma 9 is called the asymptotic variance for
the Lipschitz-Gibbs probability µf+sg. This value is the one to be used as a
variance of the Gaussian distribution obtained in the central limit theorem for
the Lipschitz-Gibbs probability µf (see [29], [8] or [7]). Our proof adapts the
reasoning used in [17] for our setting.
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Remark 11. Note that in the case when g is co-boundary to a constant c ∈ R,
i.e., there exists v ∈ C(Ω) such that g = v − v ◦ σ + c. Then, for any s ∈ R,
we have p′(s) = c and, therefore, for any s ∈ R, it follows that p′′(s) = 0. In
Proposition 4.2 in [29] it was shown the converse, i.e., when, p′′(s) = 0 for all
s ∈ R, then, g is co-boundary to a constant.

We will assume from now on that g ∈ Lip(Ω) and not co-boundary to a
constant. In this case, it follows from Remark 11 that the map t 7→ P (f + tg)
is strictly convex.

Before presenting the main theorem of this paper, we will introduce the
following well-known technical result which allows us to prove properties of
convergence of a family of probability distributions using the point-wise conver-
gence of their corresponding moment generation functions (for more details see
Theorem 2 in section XIII in [14]).

Theorem 12. (Continuity Thm [14, 28]) Consider a sequence of Borel proba-
bility densities (ρn)∞n=1 on R and its corresponding moment generation functions
given by ϕn(z) :=

∫
R e

z tdρn(t). If for each value z ∈ R we have

lim
n→∞

ϕn(z) = ϕ(z) :=

∫
R
e z tdφα,σ2(t) = ezα+z2 σ

2

2 .

That is, ϕ is the moment generation function of the Gaussian density φα,σ2 on
R, then, the sequence of probability densities (ρn)∞n=1 converges weakly to the
Gaussian probability φα,σ2 when n→∞.

Remark 13. The former theorem implies that for, either a simple function of
the form u :=

∑k
j=1 aj1Aj or a function u ∈ C(R), we have

lim
n→∞

∫
Ω

u(t)dρn(t) =

∫
Ω

u(t)dφα,σ2(t) .

Now we are able to state the main result of this section, which is a very
generalized version of the CLT.

Theorem 14. Denote by φα,σ2 the Gaussian density on R with mean α and
variance σ2, consider β(t) := P (f + tg)− P (f), so, β′(0) and σ2 = β′′(0). Let

u be, either a simple function u :=
∑k
j=1 aj1Aj or a function u ∈ C(R). Then,

we have

lim
n→∞

∫
Ω

u
( 1√

n

n−1∑
j=0

( g ◦ σj − β′(0) )
)
dµf =

∫
R
u(t) dφ0,β′′(0)(t) . (30)

Proof. It is well-known that the moment generation function for the Gaussian
distribution φ0,β′′(0) with mean 0 and variance β′′(0) is given by the expression

ϕ(z) :=

∫
R
e z tdφ0,β′′(0)(t) = ez

2 β
′′(0)
2 .

13



For each n ∈ N, denote by ρn the Borel probability measure on R, such that,
the interval (a, b) has ρn-measure equal to

ρn(a, b) := µf

({
x ∈ Ω | 1√

n

n−1∑
j=0

( g(σj(x))− β′(0) ) ∈ (a, b)
})

.

Let ϕn be the corresponding moment generation function associated with
the probability distribution ρn, i.e., the one satisfying for each z ∈ R

ϕn(z) =

∫
R
e z tdρn(t) .

We will show that for z fixed, we get that

lim
n→∞

ϕn(z) = ϕ(z) := ez
2 β′′(0)

2 ,

that is, the map ϕ is the moment generation function of φ0,β′′(0).
At the first, consider the Taylor’s polynomial of order 2 at zero for the map

β(t), which is given by

β(t) := β′(0) t+
1

2
β′′(0) t2 + o(t3) , (31)

where β′(0) =
∫

Ω
gdµf and β′′(0) is given by (29).

Besides that, assume that
∫

Ω
wf+tgdρf+tg = 1, for all t ∈ R, where wf+tg

and ρf+tg satisfy the expressions appearing in (3).

Observe that ρn = (γn)∗µf , with γn := 1√
n

∑n−1
j=0 ( g ◦ σj − β′(0) ). Then,

the moment generating function for the Borel probability measure ρn is given
by the expression

ϕn(z) =

∫
R
e ztdρn(t)

=

∫
Ω

e
z 1√

n

∑n−1
j=0 ( g◦σj−β′(0) )

dµf

= e
− z n√

n
β′(0)

∫
Ω

e
z 1√

n

∑n−1
j=0 g◦σj

wf
1

λnf
d( (L∗f )n(ρf ))

= e
− z n√

n
β′(0) 1

λnf

∫
Ω

Lnf+z 1√
n
g (wf ) d ρf

= e
− z n√

n
β′(0) 1

λnf

λn
f+z 1√

n
g

λn
f+z 1√

n
g

∫
Ω

Lnf+z 1√
n
g (wf ) d ρf

= e
− z n√

n
β′(0) +nβ(z 1√

n
) 1

λn
f+z 1√

n
g

∫
Ω

Lnf+z 1√
n
g (wf ) d ρf

= e
n(− z β′(0) 1√

n
+ β(z 1√

n
) )
∫

Ω

Ln
f+z 1√

n
g

(wf )

λn
f+z 1√

n
g

d ρf .

(32)
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On the other hand, by the continuity of the maps f 7→ wf and f 7→ ρf , it
follows immediately that

lim
n→∞

wf+z 1√
n
g = wf and lim

n→∞
ρf+z 1√

n
g = ρf . (33)

In order to estimate (32), observe that taking the potential f+z 1√
n
g instead

of f in (4) and choosing wf instead of w in (4) as well, by the assumption∫
Ω
wf d ρf = 1, it follows that any x ∈ Ω satisfies the limit

lim
n→∞

Ln
f+z 1√

n
g

(wf ) (x)

λn
f+z 1√

n
g

= lim
n→∞

wf+z 1√
n
g(x)

∫
Ω

wf d ρf+z 1√
n
g

= wf (x)

∫
Ω

wf d ρf = wf (x) .

(34)

Besides that, since ‖Ln
f+z 1√

n
g

(wf )‖∞ <∞ for any n ∈ N, we can take into

account the reasoning in (34) for estimating the limit in (32).
Indeed, first note that limn→∞ β(z 1√

n
) = β(0) = 0. Therefore, up to a multi-

plicative constant, from (31), (32), (33), (34) and the assumption
∫
wf d ρf = 1,

it will follow that

lim
n→∞

ϕn(z) = lim
n→∞

∫
Ω

e− ztdρn(t)

= lim
n→∞

e
n(− z β′(0) 1√

n
+ β(z 1√

n
) )
∫

Ω

Ln
f+z 1√

n
g

(wf )

λn
f+z 1√

n
g

d ρf

= ez
2 1

2 β
′′(0) lim

n→∞

∫
Ω

Ln
f+z 1√

n
g

(wf )

λn
f+z 1√

n
g

d ρf

= ez
2 1

2 β
′′(0)

∫
Ω

wfd ρf = ez
2 1

2 β
′′(0) ,

(35)

where ez
2 1

2 β
′′(0) is the moment generation function for the Gaussian probability

distribution φ0,β′′(0).
Finally, from the above, we get that the following limit holds

lim
n→∞

ϕn(z) = ez
2 1

2 β
′′(0) =

∫
R
e z tdφ0,β′′(0)(t) .

f So, our claim holds by Theorem 12.

Remark 15. Theorem 14 implies the following interesting cases: If we take
u(x) := 1(−∞,c) we get that (30) is the same as the expression in (16); when
we take u(x) := x we obtain that the limit in (30) is equal to β′(0) =

∫
Ω
gdµf ;

moreover, choosing u(x) = x2, it follows that the limit in (30) is equal to the

value β′′(0) = limn→∞
1
n

∫
Ω

(
∑n−1
j=0 g ◦ σj)2dµf .
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5 First and Second Derivatives

Given an a priori measure ν ∈M1(M) and a potential f ∈ Lip(Ω), consider as
in (2) the Ruelle operator Lf given by

Lf (w)(x) :=

∫
M

ef(ax)w(ax)dν(a).

Assume that f ∈ N (Ω) and denote by µf the probability such that L∗f (µf ) =
µf . Remember that the set of all µf ’s, obtained when f ∈ N (Ω), is also denoted
by N (Ω) and any element in this set is called a Lipschitz-Gibbs probability.

The entropy of µf ∈ N (Ω), where f = log J (see [20]), is given by the
expression

h(µf ) = −
∫

Ω

log Jdµf = −
∫

Ω

fdµf . (36)

Denote by N : Lip(Ω) → N (Ω) the function sending a f ∈ Lip(Ω) into its
associated normalized potential N(f) =: log Jf ∈ N (Ω), it is well known that
the function f 7→ N(f) is analytic (see Theorem 3.5 in [15]). Denote by C the
set of Lipschitz continuous functions ψ : Ω→ R of the form ψ = w− (w ◦σ) + c,
where c ∈ R and w ∈ Lip(Ω).

Theorem 3.3 in [15] claims that for f ∈ N (Ω), the vector spaces Ker(Lf )
and C intersect trivially and, even more

Lip(Ω) = Ker(Lf )⊕ C .

Therefore, any potential ϕ ∈ Lip(Ω), can be written in the form

ϕ = ξ +
(
w − (w ◦ σ) + c

)
, (37)

with ξ ∈ Ker(Lf ) and w := (I − Lf )−1(c− Lf (ϕ)) ∈ Lip(Ω).
Moreover, if ϕ ∈ N (Ω) is co-boundary to ψ ∈ N (Ω), then, the associated ξ

appearing in (37) is the same for both ϕ and ψ.
For a function η ∈ Ker(Lf ) which satisfies

∫
Ω
ηdµf = 0, a natural normal-

ization is to assume that
∫

Ω
η2dµf = 1.

Remark 16. Given f, g ∈ Lip(Ω) and a function ϕ ∈ Lip(Ω) in the form (37)
note that ∫

Ω

ϕdµf+g −
∫

Ω

ϕdµf =

∫
Ω

ξ dµf+g −
∫

Ω

ξ dµf .

Therefore, for computations like the calculus of the derivatives

d

dt

∫
Ω

ϕdµf+tg

we can assume that ϕ ∈ Ker(Lf ), i.e., to take ϕ = ξ.
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Remark 17. Note that when ρ ∈ Ker(Lf ), we get that

(I − Lf )−1ρ = ρ. (38)

Theorem 18. [Thm 3.5 in [15]] The derivative of the map N at the point f ,
denoted by DNf , is the linear projection of the space Lip(Ω) on Ker(LN(f)) in
the direction of C.

Theorem 19. [15] Consider the map η 7→ µf+η, where f, η ∈ Lip(Ω). Assume
that f ∈ N (Ω), ϕ ∈ Lip(Ω) satisfies

∫
Ω
ϕdµf = 0, and finally that η ∈ Ker(Lf ).

Then, ∫
Ω

ϕdµf+η =

∫
Ω

(I − Lf )−1(ϕ)ηdµf +O(||ϕ|| ||η||2) . (39)

Now, assuming that f, g ∈ Lip(Ω) are general (not necessarily in the kernel
of Lf ), we get from Theorem C (or expression (6)) in [15]

d

dt

∫
Ω

ϕdµf+tg|t=0 =

∫
Ω

(I − Lf )−1(ϕf ) . DNf (g)dµf (40)

where ϕf = ϕ−
∫

Ω
ϕdµf .

Finally, if we consider f ∈ N (Ω), η ∈ Ker(Lf ), and do not assume that∫
Ω
ϕdµf = 0, we get the more general result∫

Ω

ϕdµf+η =

∞∑
j=0

∫
Ω

ϕ (η ◦ σj) dµf +O(||ϕ|| ||η||2) . (41)

Proof. The first claim (39) and the last claim (41) follow from Theorem 4.2 in
[15]. The claim in (40) follows from Theorem 4.1 in [15].

A useful result follows from the above:

Theorem 20. [15] Assume that f, η, ϕ ∈ Lip(Ω), f ∈ N (Ω), and consider the
law t 7→ µf+tη, where η ∈ Ker(Lf ). Then,

d

dt

∫
Ω

ϕdµf+tη|t=0 =

∫
Ω

ϕ η dµf . (42)

Proof. For a proof see (2) in Theorem 5.1 in [15].

Corollary 21. Assume f, g, ϕ ∈ Lip(Ω), with f ∈ N (Ω). Consider the law
t 7→ µf+tg, where g does not necessarily belong to the kernel of Lf . Assume that
there are v, w ∈ C(Ω) such that g = η+ (v− v ◦ σ) and ϕ = ξ+ (w−w ◦ σ) + c,
where η, ξ ∈ Ker(Lf ), and c ∈ R. Then , we have,

d

dt

∫
Ω

ϕdµf+tg|t=0 =

∫
Ω

ξ η dµf . (43)
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Proof. From (37) and Remark 17 we can take

d

dt

∫
Ω

ϕdµf+tg|t=0 =
d

dt

∫
Ω

ξ dµf+tg|t=0.

From (40)

d

dt

∫
Ω

ξ dµf+tg|t=0 =

∫
Ω

(I − Lf )−1(ξ) . DNf (g)dµf

=

∫
Ω

ξ . η dµf .

(44)

A different proof of (45) was presented in [15].
In the following proposition, we study the behavior of the entropy h(µf ) for

a Lipschitz-Gibbs probability µf ∈ N (Ω).

Proposition 22. Consider the path t 7→ µf+tη, where f and η belong to Lip(Ω).
Assume that f = log J ∈ N (Ω) and η ∈ Ker(Lf ). Denoting h(t) := h(µf+tη)
the entropy of the Lipschitz-Gibbs probability µf+tη, we get

d

dt
h(t)|t=0 = −

∫
Ω

f η dµf , (45)

and

d2

dt2
h(t)|t=0 = −

(∫
Ω

η2 dµf +

∫
Ω

f η2 dµf

)
= −

∫
Ω

(log J + 1) η2 dµf . (46)

Proof. First note that it follows from the chain rule and Theorem 20:∫
Ω

η dµf+tη =
d

dt
P (f + tη) =

d

dt

(
h(t) +

∫
Ω

(f + tη) dµf+tη

)
=
d

dt
h(t) +

∫
Ω

η dµf+tη +

∫
Ω

(f + tη) η dµf+tη .

(47)

Since η ∈ Ker(Lf ), we get
∫

Ω
ηdµf = 0. This implies that

d

dt
h(t)|t=0 = −

∫
Ω

f ηdµf .

Furthermore, from (47), it follows that

d2

dt2
h(t)|t=0 = − d

dt

(∫
Ω

(f + tη) η dµf+tη

)
|t=0

= −
(∫

Ω

f η2 dµf +

∫
Ω

η2 dµf

)
= −

∫
Ω

(log J + 1) η2 dµf
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=−
∫

Ω

(log J + log(e)) η2 dµf = −
∫

Ω

log(J e) η2 dµf .

It is natural to assume a normalization condition
∫

Ω
η2 dµf = 1. In this case

−
∫

Ω

log(J e) η2 dµf ≥ −
∫

Ω

log (e) η2 dµf = −1.

The function η may enhance points x where the value (J(x) e) is close to zero

(producing large values for d2

dt2h(t)|t=0)) or points x where the value (J(x) e) is

close to e (producing values d2

dt2h(t)|t=0) close to −1).

Proposition 23. Assume, f, g ∈ Lip(Ω), with g not necessarily on Ker(Lf ).
Then,

d

dt
h(µf+tg) = −

∫
Ω

ζ η dµf , (48)

where f = ζ + (u− u ◦ σ) + c and g = η + (v − v ◦ σ), with ζ, η ∈ Ker(Lf ) and
c ∈ R.

Proof. If g is not necessarily on the kernel of Lf , we get from (40) that∫
Ω

g dµf =
d

dt
P (f + tg)|t=0

=
d

dt

(
h(µf+tg) +

∫
Ω

(f + tg) dµf+tg

)
|t=0

=
d

dt
h(µf+tg)|t=0 +

∫
Ω

gdµf

+

∫
Ω

(I − Lf )−1
(
f −

∫
Ω

fdµf

)
. DNf (g)dµf .

(49)

where we used the derivative of the product in the last line.
Using expression (37) for f = ζ + (u− u ◦ σ) + c, with ζ ∈ Ker(Lf ), we get

for the derivative the equivalent expression

d

dt

∫
Ω

f dµf+tg|t=0 =
d

dt

∫
Ω

ζ dµf+tg|t=0 .

Now in (40), taking ϕ = ζ, from remark 17, we get

d

dt
h(µf+tg)|t=0 = −

∫
Ω

(I − Lf )−1(ζ)DNf (g) dµf

= −
∫

Ω

ζ DNf (g) dµf .

(50)

We assumed that g = η + (v − v ◦ σ), where η ∈ Ker(Lf ), then,

d

dt
h(µf+tg) = −

∫
Ω

ζ DNf (g) dµf = −
∫

Ω

ζ η dµf . (51)
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Corollary 24. Given f, g ∈ Lip(Ω), assume that f = ζ + (u − u ◦ σ) + c and
g = η + (v − v ◦ σ), with ζ, η ∈ Ker(Lf ) and

∫
Ω
η2dµf = 1. Then, the maximal

value of
d

dt
h(µf+tg) = −

∫
Ω

ζ η dµf , (52)

among all the η’s on the kernel of the operator Lf , indicates the direction of the
larger increasing of entropy for h(µf+tg), when t is close to zero.

Given ϕ ∈ Lip(Ω), the Pressure problem about find the value P (ϕ) (see
the expression in (53)) for T -invariant probabilities µ is one of the main issues
in Termodynamic Formalism (see [29] and [20]). For analyzing this problem
a concept of entropy is required and this topic was addressed via (36). It is
known the existence of a unique maximizing solution µB ∈ N (Ω), for P (ϕ),
where B ∈ N (Ω), and µB is called the equilibrium probability for ϕ (and also
for B). Even more, the functions B and ϕ are co-boundary.

In the next theorem, we are interested in the directional derivatives associ-
ated with such a problem.

Theorem 25. Given ϕ ∈ Lip(Ω), we are interested in estimating directional
derivatives of the pressure of ϕ given by

P (ϕ) = sup
µ∈MT (Ω)

{
h(µ) +

∫
Ω

ϕdµ
}
. (53)

Denote by µB ∈ N (Ω), where B ∈ N (Ω) the unique maximizing solution for
P (ϕ) (see [20] for details). Consider another normalized potential f and the
associated equilibrium probability µf ∈ N (Ω), where µf 6= µB.

Assume that f = ζ+(u−u◦σ)+c, g = η+(v−v◦σ) and ϕ = ξ+(w−w◦σ)+k,
where ζ, η, ξ ∈ Ker(Lf ) and c, k ∈ R. In this case, we do not assume that g
is in the Kernel of Lf , but we assume for simplification that it has integral∫
gdµf = 0.

It is natural to consider variations of the law t 7→ f + tg and the directional
derivative

d

dt

(
h(µf+tg) +

∫
Ω

ϕ dµf+tg

)
|t=0. (54)

For fixed ϕ, we can ask about the maximal value of (15) for η ∈ Lf , when η
satisfies

∫
Ω
η2 = 1.

We show that an equivalent condition to get (15) for a given g (and therefore
for the associated η ∈ Ker(Lf )) is:∫

Ω

(ξ − ζ) η dµf . (55)

Then, in the case (54) is critical for all variations η on the kernel (that is,
(54) = 0), it will also be critical for all variations g not in the kernel (but with
µf mean zero).
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Proof. From Corollary 21 and Proposition 23, we have

d

dt
h(µf+tg)|t=0 +

d

dt

∫
Ω

ϕdµf+tg|t=0 = −
∫

Ω

ζ η dµf +

∫
Ω

ξ η dµf

=

∫
Ω

(ξ − ζ) η dµf .

(56)

Note that when µf , which is Lipschitz-Gibbs probability for the normalized
potential f , maximizes (53), the functions f and ϕ are co-boundaries. In this
case ξ − ζ = 0 and (15) is equal to zero in any direction η. Therefore, the
probability µB is a critical point for the directional derivatives of the law t 7→
h(µf+tg) +

∫
Ω
ϕ dµf+tg.

In Subsection 5.1 we show for some particular examples of µf a more explicit
expression for (??)).

Another expression for the second derivative of pressure can be obtained in
the following way.

Theorem 26. Given f, g ∈ Lip(Ω) and t ∈ R, assume f ∈ N (Ω) and denote
by p(t) := P (f + tg). Then,

p′′(0) =
d2

dt2
P (f+tg)|t=0 =

∫
Ω

(
g−
∫

Ω

gdµf +
d

dt
(ϕt−ϕt◦σ)|t=0

)2

dµf , (57)

where wf+tg = eϕt is the eigenfunction for f + tg.

Proof. We assume that for all t (small and close to 0) and any x

∫
M

Jt(ax)dν(a) =

∫
M

e(f(ax)+tg(ax))+[ϕt(ax)−ϕt(x)]−p(t)dν(a) = 1 .

where Jt := ef+tg+ϕt−ϕt◦σ−p(t). We know that

p′(0) =
d

dt
P (f + tg)|t=0 =

∫
Ω

gdµf , (58)

d

dt

∫
Ω

(ϕt − ϕt ◦ σ)dµf |t=0 = 0 , (59)

and
d2

dt2

∫
Ω

(ϕt − ϕt ◦ σ)dµf |t=0 = 0 .

Moreover,

0 =
d2

dt2

∫
Ω

∫
M

e(f(ax)+tg(ax))+[ϕt(ax)−ϕt(x)]−p(t)dν(a)dµf (x)
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=
d

dt

∫
Ω

∫
M

Jt(ax)
(
g(ax) +

d

dt
(ϕt(ax)− ϕt(x))− d

dt
p(t)

)
dν(a)dµf (x)

=

∫
Ω

∫
M

Jt(ax)
(
g(ax) +

d

dt
(ϕt(ax)− ϕt(x))− d

dt
p(t)

)2

+ Jt(ax)
( d2

dt2
(ϕt(ax)− ϕt(x))− d2

dt2
p(t)

)
dν(a)dµf (x) .

Then, from the above and (59), it follows that

0 =
d2

dt2

∫
Ω

∫
M

e(f(ax)+tg(ax))+[ϕt(ax)−ϕt(x)]−p(t)dν(a)dµf (x)|t=0

=

∫
Ω

∫
M

(
g(ax) +

d

dt
(ϕt(ax)− ϕt(x))|t=0 −

d

dt
p(t)|t=0

)2

+
( d2

dt2
(ϕt(ax)− ϕt(x))|t=0 −

d2

dt2
p(t)|t=0

)
dν(a)dµf (x)

=

∫
Ω

∫
M

(
g(ax) +

d

dt
(ϕt(ax)− ϕt(x))|t=0 −

d

dt
p(t)|t=0

)2

− d2

dt2
p(t)|t=0dν(a)dµf (x) .

Finally, since we have µf ∈MT (Ω), it follows that

d2

dt2
p(t)|t=0 =

∫
Ω

(
g −

∫
Ω

gdµf +
d

dt
(ϕt − ϕt ◦ σ)|t=0

)2

dµf .

Theorem 27. Suppose f ∈ N (Ω), we are going to take derivative on the di-
rection g ∈ Lip(Ω). Denote by w(t, x) := wf+tg(x) the eigenfunction for Lf+tg

associated to the eigenvalue λf+tg. Then, the function x 7→ ∂
∂tw(t, x)|t=0 satis-

fies the following expression for all x ∈ Ω

(Lf − I)(
∂

∂t
w(t, .))|t=0 =

∫
Ω

gdµf − Lf (g) . (60)

Or, equivalently,

∂

∂t
w(t, .)|t=0 = (Lf − I)−1(

∫
Ω

gdµf − Lf (g) ) . (61)

Proof. We will estimate for each t ∈ R the partial derivative of the eigenfunction
∂
∂tw(t, x)|t=0. Indeed, taking derivative on t, we obtain

∂

∂t
Lf+tg(w(t, .))(x) = Lf+tg(g w(t, .))(x) + Lf+tg(

∂

∂t
w(t, .))(x).

On the other hand, for all x ∈ Ω we have

∂

∂t
(λf+tg w(t, x) ) = w(t, x)

d

dt
λf+tg + λf+tg

∂

∂t
w(t, x) .
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Then,

Lf+tg(g w(t, .))(x) + Lf+tg(
∂

∂t
w(t, .))(x) = w(t, x)

d

dt
λf+tg + λf+tg

∂

∂t
w(t, x) .

(62)
Therefore, when t = 0 we get

Lf (g)(x) + Lf (
∂

∂t
w(t, .)|t=0)(x) =

∫
Ω

gdµf +
∂

∂t
w(t, x)|t=0 .

Finally,

(Lf − I)(
∂

∂t
w(t, .)|t=0) =

∫
Ω

gdµf − Lf (g) . (63)

The next result was relevant in [21].

Theorem 28. Under the former hypothesis, if η ∈ Ker(Lf ) and w(t, x) :=
wf+t η(x). Then, ∂

∂tw(t, x)|t=0 is a constant function independent of x.

Proof. Since we assume η ∈ Ker(Lf ), it follows that
∫

Ω
η dµf = 0. Therefore,

from (63) we get that

(Lf − I)(
∂

∂t
w(t, .)|t=0) = 0 .

The above, in particular implies that ( ∂∂tw(t, x)|t=0) is constant.

5.1 Examples with explicit computation

We consider in this section the symbolic space Ω := {0, 1}N and the shift T
acting on it; this corresponds to take the space of symbols M = {0, 1}.

In this subsection, we want to show that for some particular examples of
µ one can get more explicit expressions which are helpful in applications of
Theorem 25 (see expression (67)). In order to do that we take advantage of the
existence of an orthonormal basis in the Kernel of a certain Ruelle operator (see
[21] and [9]).

We denote by P the line stochastic matrix (with all entries positive)

P =

(
P0,0 P0,1

P1,0 P1,1

)
. (64)

Consider the invariant Markov probability µ obtained from the stochastic
matrix (Pi,j)i,j=0,1 and the unique initial left invariant vector of probability
π = (π0, π1) ∈ [0, 1]2.

The associated normalized potential B = log J satisfies: J : {0, 1}N → (0, 1)
is constant equal

Ji,j =
πi Pi,j
πj
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on the cylinder [ij] := {x ∈ Ω|x1 = i;x2 = j}, i, j = 0, 1.
Let ω := (ω1, ω2, ..., ωn) ∈ {0, 1}n be a finite word on the symbols {0, 1}.

Denote by [ω] the cylinder set [ω] := {x ∈ Ω|x1 = ω1, ..., xn = ωn}. The empty
word, denoted by ∅, is also considered a finite word.

Given µ as above, consider the Hilbert space L2(µ) equipped with the inner
product < f, g >=

∫
Ω
f g dµ.

The family of Hölder functions

eω :=
1√
µ([ω])

√
Pωn,1
Pωn,0

1[ω0] −
1√
µ([ω])

√
Pωn,0
Pωn,1

1[ω1], (65)

ω := (ω1, ω2, ..., ωn) ∈ {0, 1}n, is an orthonormal set for L2(µ) (see [16] for a
general expression and [21] for (65); see also [9]). In order to get a (Haar) basis
we have to add e∅ := 1√

µ([0])
1[0] − 1√

µ([1])
1[1] to this family.

Given a finite word ω := (ω1, ω2, ..., ωn) ∈ {0, 1}n, we denote

aω :=

√
πω1√

π0

√
P0,ω1

e0ω −
√
πω1√

π1

√
P1,ω1

e1ω,

Finally, we set

âω :=
1

‖aω‖
aω . (66)

the normalization of aω.

In order to get a complete orthonomal set for the kernel of the Ruelle operator
Llog J acting on L2(µ), we will have to add to the functions of the form (66)
two more functions: â0

∅ and â1
∅ , which are properly described in Definition 6.8

in [21].
Denote by {0, 1}∗ the set of all the finite words on {0, 1}, i.e., {0, 1}∗ :=

∅ ∪
⋃∞
n=1{0, 1}n. One of the main results in [21] is

Theorem 29. The family (âω)ω∈{0,1}∗ , plus the two functions â0
∅ and â1

∅, de-
termine an orthonormal set on the kernel of the Ruelle operator Llog J acting
on L2(µ).

The set of elements in this orthonormal family will be generically described
by (âω)ω (we allow ω to be the empty word ∅.)

An item of major interest here is to express the Lipschitz function η ∈ Llog J

on the form
η =

∑
ω∈{0,1}∗

ηωâω,

where ηω :=< η, âω > .
An important issue in expression (56) in Theorem 25 was to express f =

ζ + (u − u ◦ σ) + c, g = η + (v − v ◦ σ) and ϕ = ξ + (w − w ◦ σ) + k, where
ζ, η, ξ ∈ Ker(Lf ) and c, k ∈ R. Here we take g = η, and f = log J , where J was
defined above.
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Therefore, given ϕ we set

ζ =
∑

ω∈{0,1}∗
fωâω ,

and
ξ =

∑
ω∈{0,1}∗

ϕωâω .

Since the family (âω)ω is orthonormal on Ker(Llog J), it follows that

∫
Ω

(ξ − ζ) η dµ =

∫
Ω

( ∑
ω∈{0,1}∗

(ϕω − fω)âω
∑

ω∈{0,1}∗
ηωâω

)
dµ

=
∑

ω∈{0,1}∗
(ϕω − fω) ηω.

(67)
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sional manifold of Hölder equilibrium probabilities. Proc. Edinburgh Math.
Soc. (2024) to appear.

[22] Lopes, A. O.; Ruggiero, R., Geodesics and dynamical information projec-
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