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Abstract: Let & denote the space of sequences in d symbols. A hard-constrained
channel is determined by a subset IT C 2 such that a message is transmitted without
errors by the chamnel if it belongs to II, and it is not transmitted if it does not
belong to [. The hard constrained channel is used to model the magnetic recording.
Sometimes, it is interesting to add a cost for the usage of an undesirable sequence.
The idea is to accept some of these sequences, but not too much of them. If a cost
is assigned for each sequence, we have the hard-constrained costly channel

The capacity-cost function C(p), p € [Pmin, Pmax], of @ channel represents the
maximum code rate that we can achieve with average cost less than or equal to p.
It is well-known that this function is continuous, strictly crescent and convex in this
interval [Pmin; Pmax]- In this paper we show that, in the case of a hard-constrained
costly channel, C(p) is analytic in the interval { Pmin, Pmax] 2nd strictly convex in
[Omins Pmax|. We prove also that limpp.., %—Q(p) = 400 and %(pmx) = 0. These
are interesting theoretical results about C(p).

The techniques we use are from the thermodynamic formalism. In our view, this
is a main aspect.of this paper. We show how to use deep results from thermodynamic
formalism to obtain nice results in information theory. As a consequence of this
approach, we can deal here with a general hard-constrained channels, not imposing
the finite-state condition. Also, these techniques allow us to obtain estimates for
the variations of the cost of the sequences generated by optimum codes.
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1. Introduction

Let ¥ denote the space of sequences in d symbals,
¥ = {z = (z0, 2y, T2, ... )|2; € {1, ...,d}} .

A channel is a collection of rules that assigns to each sent message z € T the
received message y € £. The rules can be stochastic or deterministic. A hard-
constrained channel has only deterministic rules: It transmits without errors
only certain types of sequences. In other words, there exists a subset [ ¢ T
such that if the sent message is in II, the received message is exactly the same,
and if the sent message is not in I, there is no received message. If a cost is
assigned for each sequence, we have the hard-constrained costly channel.

The hard constrained channel is used to model the magnetic recording. In
this case, the constraints are due to physical limitation of the storage system. It
can also be used in Shannon’s telegraph channel, but in this case the constraints
are dictated by the scheme of transmission used. Sometimes, it is interesting
to add a cost for the usage of an undesirable sequence. The idea is to accept
some of these sequences, but not too much of them. This is done by limiting
the mean cost of the sequences. In [6], some examples of practical applications
of these channels are presented.

A code is a scheme for the transmition of symbols through the channel, and
the code rate is the average number of transmitted symbols per second. The
capacity-cost function C(p) of a channel is defined as the maximum code rate
which is possible to achieve with average cost less than or equal to p. This func-
tion is only meaningful in a certain interval [pmin, fmax) Which are characterized
by pmin = sup{p|C(p} = 0}, and pmax = Inf{p|C(p) = Crax}. The function
C(p) has some well-known properties ([8]). It is continuous, strictly crescent
and convex M in this interval [pmin, Pmax)- The hard-constrained costly channel
has been studied by Khayrallah and Neuhoff in {6], where they show how to
calculate its capacity-cost function, assuming that the channel is finite-state.
They also show methods for constructing optimum codes.

In the present paper we shall prove that the capacity-cost function C(p)
of a hard-constrained costly channel is analytic in the semi-open interval
{Prmins Prmax) and strictly convez in the closed interval [omin, fmax] - Moreover, we
shall also show that %(,Omin) = +00 and %(pmx) = 0. These are interesting
theoretical properties of C(p).

The techniques we use are from the thermodynamic formalism. In our
view, this is a main aspect of this paper. We show how to use deep results
from thermodynamic formalism to obtain nice results in information theory.
As a consequence of this approach, we can deal here with a general hard-
constrained channels, not imposing the finite-state condition and also consider
very general cost functions.
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These techniques allow us also to show two results concerning the cost of
the sequences generated by optimum codes. One of them is that the average
cost satisfies assymptotically a normal law. The variance ¢%(p) of this normal

distribution is given by
ac, \7
2 = u —_—

This parameter can help the choice of a good value of p for a given channel.
If it is important that the average cost have a small variation, then we must
choose an adequate value of p. We also give a formula for 02(p) and calculate
it in a practical situation.

The other result concerns large deviations of the cost of sequences generated
by optimum codes. We show a formula that gives the assymptotic probability
that the average cost of a codified sequence differs from its limit p. This formula,
is also related with the degree of convexity of the capacity-cost function.

A related problem that seems interesting is that of a costly hard-constrained
channel where we fix not only the mean, but also the variance of the cost ([3]).
This situation can occur when it is important that the average cost does not
oscillate too much. The techniques used in this paper can also be applied to
this case.

The organization of the paper is as folows: In Section 2, we define more
precisely the capacity-cost function. In Sections 3 and 4 we prove the results
about C(p) mentioned above. In Section 3, the convergence to normal is stud-
ied and in Section 6 we show the relation between the capacity-cost function
and large deviations of the average cost.

2. The Capacity-Cost Function

In this section, we shall define precisely the capacity-cost function of a hard-
constrained channel and relate some of its properties. Let ¥ denote the space
of sequences in d symbols, and 5 : & — & the shift,

S(I:J,Il,l"z, ) = (3317552; ) .

The hard-constrained channel is given by a closed subset IT of T invariant by S.
We shall assume that II is irredutible and aperiodic ([2],{6]). This is a natural
hypothesis, since if it does not hold we can divide II in several channels with
these properties.

The cost is a Hélder-continuous function & : II = R * . This means that
there exist M > 0 and 0 < <y < 1 such that if £ = (zg,z1,..) and y = (yo, 1, ..)
are such that z; = y;, for 0 < i < N, then |k(z) — k(y)| < M~". In particular,
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all functions which depend only on a finite number of coordinates are Holder-
continuous. The average cost k, is given by

kn(m)=1—r1; > k(S9(z))

§=0
We say that k is homologous to a constant if, for each z € I,

lim ky(z) =K,
n—+00
where the limit K is independent of z € & .
Given p > 0, the capacity C{p) is defined by

pEM(T)

ot = max {HG) [ W <o}

where M(IT) denotes the set of stationary probability measures with support
in I and H(p) is the entropy of this probability p ({8]). In this paper, all of
the logarithms considered are natural logarithms.
Let
Pmin = SUP{piG(p) = 0}
and
pmax = min{p|C(p) = Crmax}

where Cax = maxperqm { H (p)}. Evidently Clp) = 0, if p < prmin and C(p) =
Crnax, if P 2 Pmax. We observe also that if k is homologous to a constant, then
Prmin = Pmax-

In [8], it is proved that the capacity-cost function C{p) is continuous,
strictly increasing and convex N in the interval [Pmin; Pmax]-

Example 1. Take IT to be the full shift X in 2 symbolsand let k: & — RY
be given by k(zg,21,..) = 0if o = 1 and k(zg,x1,..) = 1, if zg = 2. This
channel is memoryless and so we can use i.1.d. source tests to find the capacity-
cost function [8]. We have then

C(p) = max {H(p)l ficdpﬁp, pili.d.} .

PEM(IT)

Every i.i.d. source p is characterized by a number @ in the interval {0,1]
which represents p{z = (zg,%1,...)|To = 2}. It is clear then that [kdp =
and H(p) is given by h(a), where

h(e) = —aloga — (1 — a)log(l — o} .
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H.ence
Cp) = Inax {h(@)] @ < p} ,

and 50 We have pumin = 0, Pmax = & and for a € [0, 3}, C(p) = h(p) (Figure 3).

'3. The Topological Pressure

We shall deal at the problem of maximizing the entropy by using a Lagrange
multiplier p. The corresponding problem is the to maximize the expression

(P)+M/dep,

where p is any stationary probability with support in . Tt turns out that the

function
P{p} = sup {H(p)+ufkdp}
peaM(IT) n

is very well known in thermodynamic formalism and is called topological pres-
sure. We shall use this fact here to derive our results.

The topological pressure has some striking properties that we list below
[9]:

(1) P is an analytic function of .

(2) There exists a unique probability measure p* = p *(u) in T such that

Pp) = H(p") + ufnkdp' :

Mareover, the probability p* is ergodic.
(3) The derivative of the topological pressure P is given by

dP /
2w = | kdp® .
0 (1) kdp

(4) The second derivative of the topological pressure P is given by

Moreover, if & is not homologous to a constant, then 0'2(#) > 0, for any £ € R.
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From now on, we shall assume that ppin < pmax. In this case k is not
homologous to a constant and hence P is a strictly convex U function of iz

Example 1. (Continuation) Returning to Example 1, we have that

Plu) = i%p”{h(a) + pot .

In order to find the maximum of the above expression we look for o satisfying

dh

5(0-’) =—p.
Since dh )

-
E(a) - log( & ) )

we obtain 1

o= .

l+e#

This means that the probability p* that maximizes the expression H(p) +.

i fkdp is the Bernoulli proccess with P {{zo, 1, Hzp = 2} = @, with o
given by the above formula. Therefore

Plu) =log{l +e™*) + p

(Figure 2). We obtain also expressions for

dP 1
dp =~ 1+es
and
d*P e #

du? ~ (1+en)E’

In next lemma, we show that for 1 < 0, the probability measure that leads
to the pressure also leads to the capacity.

Lemma 1. Given u < 0, take p* = p*{u) satisfying property (2) above
and let p = [ kdp* . Then

Proof. If p € M(II), p # p*, then

A(p) + 1 [ kdp < Hp) + 4 o
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Since g < 0, if [, kdp < p, then

H(p) < H(p") -
Therefore
H(") = sup{H(o)| [H kip < p} = C(p) .

Example 1. (Continuation) In Example 1, given p < 0, take @ = 7= .
Then p = « and by the above lemma,

Cp) = hip) .

This is in accordance with our previous calculus of C(p), since for & < 0,
p € (0,1].

Remark 1. For each y, we can obtain the value of P{y) as the logarithm
of the dominant eigenvalue A = A{y) of a linear positive operator L in the
space of continuous functions on II . The operator L is called the Ruelle-
Perron-Frobenius operator. The adjoint operator L* defined on the space of
measures on I1 has also A(y) as its dominant eigenvalue. If we denote by v the
eigenvector of L® associated to A normalized to be a probability and by g the
eigenvector of L associated to A normalized by [ gdv = 1, then the probability
p* is equal to gv . For more details, see [9].

In case of a finite-state channel, the operator L reduces to a positive matrix
B. And the probability p* is determined by a Markov chain in the states (see

[6])-

Example 2. Consider the hard (1,3) constrained channel. It can be
modeled as a 4 state channel, with transitions 1 — 2, 2 = 3, 3 - 4 and
2 - 1,3-—1,4— 1. To the first 3 transitions we associate the symbol 0
and to the other 3 we associate the symbol 1. In the soft (1,3) channel, we
also allow the tramsition 1 -3 1 but with cost 1 (Figure 1). This channel was
studied in [6] and the matrix B in this case is given by

e.“"

b

& O O e
[ I o T e B e |
O OO

In [6}, the value of p = ~1.0885 was chosen as an example. In this case
the dominant eigenvalue is A = 1.5985 and hence P(1.0885) = log(1.5985) =
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1 [1]

1
Figure 1: Graph of the (1,3) soft channel of Example 2.

0.4691. And the probability p* is determined by a stationary Markov chain
with the following distribution: The vector

Q = [0.4273,0.3373,0.1700, 0.0654]
gives the probabilities of the states 1,2,3 and 4, respectively. And the vector
g = [0.2106, 0.7894, 0.4958, 0.5042, 0.6152,0.3848, 1.0000]

gives the probabilities of the transitions 1 — 1,1 = 2,2 =+ 1,2 — 3,3 =
1,3 = 4 and 4 — 1, respectively. Therefore

f kdp* = p*(zg = 1,71 = 1) = Qign = 0.0900 .
I

Hence we have p = 0.0900 and
C(0.0900) = 0.4691 4 0.0900 x 1.0885 = 0.5671 .

4. The Legendre Transform

Tn this section, we show that the capacity-cost C|(p) is the Legendre transform
of the topological pressure P(u). Since we are assuming that g is strictly
smaller than pmax, We know that P(u) is strictly convex U. Hence the limits

dP

p- = Ym a;(u)

and P

pr = lm d—u(.ﬂ)
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are well defined. We denote by pg the derivative of P at p = 0.
Denote by £(P)(p) the Legendre transform of P(y), which is defined by

L(P)(p) = ir;f{P(u) — 10}

for p € (p_,p+). Since P is strictly convex, L(P) is well defined and there
exists a unique p* € R sich that

L(P)(p)=P(u") ~1p-
The value p* is the solution of the equation

dP , .
"&E(#)—P

Lemma 2. Take p € (p_,po] - Then L(P)(p) =Clp) -

Proof. We have
L(P)(p)= P(p") - u'p.,

with %-’E—(p’) = p . By properties (2) and (3) in Section 3, there exists a unique
p* such that

P(p) = H(p®) + u‘fkdp' :
with %(u‘) = [ kdp*. Hence [ kdp" = p and therefore
L(P)(p) = Hp) -

Since p € (p_, oo, p* < 0. Lemma 1 implies then that

Lemma 3. Given p € (p-, po), take = p(p) such that ‘j—i-(u) = p. Then
4 is an analytic function of p and the following formulas are valid:

C(p) = P(u) — p+,

dC
d_p“(p) =-—U,

Cﬁ—pf-(p) =- (%(#))_1 :

and



1174 M. Craizer, A.O. Lopes

Proof. Given p € (Pmin, Pmax), let # = p(p) be defined by the formula

dP
dy

By the implicit function theorem, p(p) is analytic and

L) = (%—25(#))"1

~—(p)=p.

And since
Clp) = Pu(p)) — pulp}
we have
S0 = 5 WL - ule) — () = —ue)
Therefore

C du d*pP
T =2 =~ (55w)

Lemma 4. We have that p. = ppin and go = pmax.

Proof. By Lemma 3, C(p) is strictly convex N in the interval (p_, pol.
Hence C(p) is also strictly positive in this interval . This implies that pms, <
p- . Also Lemma 3 implies that lim,,, %(p) = +oo. The convexity N of
C(p) implies then that in fact p_ = puin .

At p =0, C(p) = P(0) = Crax and therefore pp > pumax. By Lemma 3, if

g < pg then %%(p) = —p > 0. This implies that in fact gp = pmax.

Theorem 5. The capacity-cost function C(p) is analytic in the interval
{Prminy Pmax] and strictly convex N in the interval [pmin, fmax]. Moreover,

ac
E’E(pmax) =0
and
lim E( ) = oo
2N Prvin d,o pr= )

Proof.  Since C(p) = P(u(p)) — pulp), with p(p) analytic, C(p) is also
analytic. And the formula

=5 u))
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implies that % (p) < 0. Therefore C(p) is convex N in the interval (pmin, Pmax)-
By the contmmty of C(p) in {pmins Pmaxl, We conclude that in fact C{p) is convex
ﬂ in the interval [pm,,,, Prmax)- Fmally, the equa.tlon (p) —~p{p) implies that

dp (pmax) - 0 a‘nd hmﬂ\ﬂmm dp (p)

Example 1. (Continuation) In Example 1 we have pnin =p- = 0 and
Prax = po = 3. Also, py =1 (Figure 3).

! rd
I'd
L
7’
7/

Figure 2: The topological pressure P(u) of Example 1.

»
]
1
i

1/2 1 P

Figure 3: The function C(p) and the Legendre transform of P(p} of Example 1.

Example 2. (Continuation) By making g = —co, we obtain pp, = 0
and C(0) = log(1.4656). And by making £ = 0, we obtain gy = 0.2938 and
Crmax = log(1.9276). The graph of C{p) can be found in [6].
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5. Central Limit Theorem

Given p € [Prin; Prax), there exist block codes with rates arbitrarily close to
C(p) and whose average. cost is Jess or equal to p. In [4}, it is shown how
to construct these codes. If we assume that the source is generating symbols
independently and with ‘equal probability, then the codified sequences in II
will be distributed according to p*. We observe that the distribution p” in
general has memory, that is, the stationary stochastic process {k(S"z),p"} is
not independent. In this section we show that the average cost of this process
satisfies a normal law.

The cost k have a mean p and the assymptotic variation is given by ([9])

r—1
o = tim = [ (3 k(S (@) —np)dr” -

n—oo T

This formula can be simplified to ({9])
2 A2
o = [ (kte) - odp
-wzgﬁwuywmmywn—m@ﬂ

This variance corresponds exactly to the second derivative of P(u) at pu* =
—%%(p). In case Pmin < Pmax, then it is strictly positive. We remember also

that, by Lemma 4,
2c, \
2 _ —
o* =0o(p) =~ (d—pg—(P)) .

This fact shows us that the variance of the cost at p determines the degree of
convexity of C(p) at this point.
In [9], it is proved that

n—1
1 :
7 L{o;k(SJ(x)) - ﬂp]
converges in distribution to the normal N'(0, 0} with mean 0 and variance ¢°.

Example 1. (Continuation) In Example 1, it is clear that, for any i> 1
k(Si(z)) is independent of k(z). Therefore,

[ - kS @) = iy =0
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and
[ @) = Py = alt =+ (L= )0 = 5

Since o = p*, we have
a®=p(l—p) .
Example 2.  (Continuation) We return to the (1,3) soft channel to
calculate the value of o2 = o(p) for p = 0.0900. In a Markov chain, given the

symbol in coordinate 2, the ocurrence of symbols in coordinates 0 and 1 are
independent of the ocurrence of symbols in coordinates 3, 4,..... Therefore

fn (k(s) — p)(k(S'z) — p)dp" =0,

for any ¢ > 3. So we have to calculate this correlation only for i = 0,1 and 2.
Observe first that

p* ({20, 71) = (1,1)) = Qrgqu = 0.0900
and hence
[ k) - prap =
Quaun(l — p)* + (1 — Ququ}0— p)* = 0.0819.
Also
pi(zo,z1) = (L1)(z1,32) = (1,1))

= Qu¢gqun = 0.0190,

P'((ﬂ?o,ﬂh) = (1,1),(:1:1,1‘2) ?é (1:1))
= Ghiquaqe = 0.0710,
p*({ze, 1) # (1,1), (z1,32) = (1,1))

4
= ZQ:‘QiiQII =0.0710,

=2

p‘(($0,$1) # (1: 1): (31:3"2) :Ié (111))
£.9390 ,

and therefore
f (k(z) — p)(k(Sz) — p)dp" = 0.0117 .
111



*

1178 M. Craizer, A.O. Lopes

Finally

' ((zo, 7)) = (1,1), (%2, 23} = (1, 1))
= Qiqugugn = 0.0040,

p((on ) = (1,1),(@22) # (1,1)
= Q1q11(1 — Q11Q11) = (}.0B60 y
p'(($0,$1) 7)"" (1:1)1(32)1"3) :(111))

4
= > Qigagu(l+qu) = 0.0860,
i=2
7 ((zo, 7)) # (1,1),(z223) # (L, 1))
= 0.8240,

and hence
f (k(z) — p) (k(S%3) — p)dp" = —0.0041 .
i

Summing these terms we obtain

o =0.0895.

6. Large Deviations

As in last section, assume that the source is generating symbols independently
and with equal probability. If we consider an optimum code with average cost
p, the codified sequences in II will be distributed according to p*. Since p* is
ergodic, we know that

n-1
lim =% k(T(z)) = f kdp' = p.
n—oe I

In this section, we shall estimate the probability of deviations of * Y0 k(T ()
from its limit p. We call this deviation a large deviation ([2],[3],[4],[7]). Let

P = 2= S KT € ).

i
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It is clear that
lim p;{(A)=1ifpe A

n—cQ

and
Ime;(A)=0ifp§§A.

In this section we shall study the velocity of convergence of p(A) to 0, in the
case where p ¢ A.
Define

I(p,é) = lim lim ——logpn((é —-£,6+¢g)).

e—+0n—ro0

In order to simplify the notation, we shall drop the symbol p and denote I(p, §)
simply by I(8). The following facts are true {7}:
(1) For any interval A C [Pmins Pmax]s
Jim —— " logp} (4) = inf(1(6)) -
(2) We can calculate /() by the formula
I(6) = —L{P(p+p") — P(u7)}

where p* = m%(p) is fixed and the Legendre transform is calculated with
respect to the variable p.

Lemma 6. For any 8 € [min, Pmax]
118) = Clo) + (6 - )T (0) — C16).

Proof. We know by (2) above that

I(6) = —imf{P(u+p") — P(u') — pd} .

So
1(d) = —inf{P(u+p') — (p + u7)8} + P(u7) — '8

The first parcel in the second member corresponds to the Legendre tranform
of P, which is equal to the capacity. Hence

I(8) = =C(@) + {P(u"} ~ p'p} — (6 — p)1*

Now the second parcel corresponds to C(g). Hence

1(8) = ~C(d) + Clp) - (6 — p)p”
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And since u* = —%Z(p} , we conclude that

1(8) = Cp) + (6 — p)%p) NOR

We observe from the last lemma that the deviate function I (6} is obtained
from the capacity-cost function in a very simple way. Observe also that I{g) =
2(p) = 0and %:;ﬁ(p) = —f;c (p). Therefore the deviation function near p is
directly related to the degree of convexity of C(p). If C(p) is more convex N
at p, the deviation function becomes greater, which implies less deviations. If
it is less convex M, the deviate function becomes smaller, which implies more
deviations. This is in accordance with Section 5.
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