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e
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Abstract

We show a relation of the KMS state of a certain C∗-Algebra U with
the Gibbs state of Thermodynamic Formalism. More precisely, we consider
here the shift T : X → X acting on the Bernoulli space X = {1, 2, ..., k}N
and µ a Gibbs state defined by a Holder continuous potential p : X → R,
and L2(µ) the associated Hilbert space.

Consider the C∗-Algebra U = U(µ), which is a sub-C∗-Algebra of the
C∗-Algebra of linear operators in L2(µ) which will be precisely defined later.

We call µ the reference measure.
Consider a fixed Holder potential H > 0 and the C∗-dynamical system

defined by the associated homomorphism σt. We are interested in describe
for such system the KMS states φβ for all β ∈ R.

We show a relation of a new Gibbs probability νβ to a KMS state φνβ
=

φβ, in the C∗-Algebra U = U(µ), for every value β ∈ R, where β is the
parameter that defines the time evolution associated to a homomorphism
σt = σβi defined by the potential H. We show that for each real β the KMS
state is unique.

The probability νβ is the Gibbs state for the potential −β log H.
The purpose of the present work is to explain (for an audience which is

more oriented to Dynamical System Theory) part the content of a previous
paper written by the authors.
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Introduction

In this paper we show a relation of the KMS state of a certain C∗-Algebra
U [BR] [P] [EL2] with the Gibbs state of Thermodynamic Formalism [PP]
[Bo] [R3]. The purpose of this work is to explain for an audience which is
more oriented to Dynamical System Theory part the content of the paper
[EL3]. See also [Re1],[Re2] for related material.

R. Bowen, D. Ruelle and Y. Sinai are the founders of what is called in
our days Thermodynamic Formalism Theory (see [PP] [R3]).

We will present initially the precise definitions we are going to consider.
We point out that we show here only the uniqueness part of the results

in [EL3]. The existence is based on the paper [W] which is of Functional
Analysis nature.

We consider here an expanding transformation T : X → X (to simplify
ideas one can consider the particular case where T is the shift acting on the
Bernoulli space X = {1, 2, ..., k}N). Consider µ a Gibbs state defined by a
Holder continuous potential p : X → R, and L2(µ) the associated Hilbert
space.

Consider the C∗-Algebra U = U(µ), which is a sub-C∗-Algebra of the
C∗-Algebra of linear operators in L2(µ) which will be precisely defined later.

We call µ the reference measure.
Consider a fixed Holder potential H > 0 and the C∗-dynamical system

defined by the associated σz. We are interested in describe for such system
the KMS states φβ for all β ∈ R.

We show a relation of a new Gibbs probability νβ to a KMS state φνβ
=

φβ, in the C∗-Algebra U = U(µ), for every value β ∈ R, where β is the
parameter that defines the time evolution associated to a homorphism σt =
σβi defined by the potential H. We show that for each real β the KMS state
is unique in Theorem 2.2.

The probability νβ is the Gibbs state for the potential −β log H.
Given a potential H, we say the potential H̃ is cohomologous to H, if

there is V such that log H̃ = log H − V + V ◦ T .
After we present our main results for Holder potentials in section 2.1,

in section 2.2 we consider a non-Holder potential H and we will make an
analysis of phase transition nature (which do not occur at C∗ Algebra level,
in this case) associated to the KMS problem in a case where H can attain the
value 1 (and where there is phase transition at Thermodynamic Formalism
level).



3

Section 2.1 - KMS and Gibbs states

We denote C(X) the space of continuous functions on X taking values
on the complex numbers where (X, d) is a compact metric space.

Consider the Borel sigma-algebra B over X and a continuous transfor-
mation T : X → X. Denote by M(T ) the set of invariant probabilities for
T . We assume that T is an expanding map.

We refer the reader to [Bo] [R1] [R2] [R3] [L4] for general definitions and
properties of Thermodynamic Formalism and expanding maps.

Tipical examples of such transformations (for which that are a lot of nice
results [R2]) are the shift in the Bernoully space and also C1+α-tranformations
of the circle such that |T ′(x)| > c > 1, where | | is the usual norm (one can
associate the circle to the interval [0, 1) in a standard way) and c is a constan.

The geodesic flow in compact constant negative curvature surfaces in-
duces in the boundary of Poincaré disk a Markov transformation G such
that for some n, we have Gn = T , and where T is continuous expanding and
acts on the circle (see [BS]). Our results can be applied for such T .

We denote by H = Hα the set of α-Holder functions taking complex
values, where α is fixed 0 < α ≤ 1.

For each ν ∈M(T ), h(ν) denotes the the Shanon-Kolmogorov entropy of
ν and h(T ) = sup{h(ν)|ν ∈ M(T )}. h(T ) is called the topological entropy
of T .

We denote by µ a fixed Gibbs state for a real Holder potential log p :
X → R. We suppose log p is already normalized [Bo][R3], in the sense that,
if Lp denotes the Ruelle-Perron-Frobenius operator for log p, that is for any
f : X → C, and all x ∈ X, we have (Lp(f))(x) =

∑
T (z)=x p(z)f(z), then

we assume that Lp(1)(x) =
∑

T (z)=x p(z) = 1 and L∗p(µ) = µ.

We will show later that the index Λ(x) = p(x)−1 for the C∗-algebra
associated to µ.

As an interesting example we mention the case where T has degree k, that
is, for each x ∈ X there exists exactly k different solutions z for T (z) = x.
We call each such z a pre-image of x.

If T has degree k and in the particular case where µ is the maximal
entropy measure (that is, h(µ) = h(T ) = log k), then p = 1/k.

We do not have to assume that the number of preimages of each x is
constant. In order to simplify the arguments in our proofs we will assume
from now on that T has degree k. The reader can easily realize the changes
that have to be done in order to consider the general case.

One can consider alternatively in Thermodynamic Formalism Lp acting
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on C(X) or on Hα. Different spectral properties for Lp ocurr in each one of
these two cases (see[Bo][R2]).

We will consider in the sequel a fixed real Holder-continuous positive po-
tential H : X → R and LH,β, β ∈ R the Ruelle-Perron-Frobenius operator
for −β log H, that is, for each continuous f we have by definition

LH,β(f)(x) =
∑

T (z)=x

H(z)−βf(z).

We denote by λH,β ∈ R the largest eigenvalue of LH,β. We also denote
νH,β the unique probability such that L∗H,β(νH,β) = λH,βνH,β, and hH,β the
unique function h ∈ C(X) such that

∫
hdνH,β = 1 and LH,β(h) = λH,βh.

hH,β is a real positive Holder function.
The hypothesis about H and p being Holder in the Statistical Mechanics

setting means that in the Bernoulli space the interactions between spins in
neighborhoods positions decrease very fast [L2] [L3]. In section 2.3 we will
consider a non-Holder potential H where in this case it will appear a phase-
transition phenomena. This model is known as the Fisher-Felderhof model
[FF], [L2], [L3], [FL]. In this case the interactions do not decrease so fast.

We return now to the Holder case.
It is well known the variational principle for such potential −β log H,

PH(β) = log λH,β = sup{h(ν) +
∫

(−β log H)dν|ν ∈M(T )}.

The probability µH,β = hH,βνH,β ∈M(T ) and satisfies

sup{h(ν) +
∫

(−β log H)dν|ν ∈M(T )} =

h(µH,β) +
∫

(−β log H)dµH,β.

Definition 2.1: The probability µβ = hH,βνH,β is called equilibrium
state for the function −β log H where β and H are fixed.

Definition 2.2: The probability νH,β is called eigenmeasure or Gibbs
state for the function −β log H where β and H are fixed. It satisfies

L∗H,β(νH,β) = λH,βνH,β.

The probability µH,β is unique for the variational problem and νH,β is
unique for the the eigenmeasure problem associated to the value λH,β, if p
and H are Holder. If we do not assume p and H Holder then there exist
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counterexamples for uniqueness in both cases [L2] [L3]. We will return to
this point later.

For some reason the eigen-probabilities have a distinguished role here,
but not the equilibrium states.

PH(β) is called the pressure of −β log H (or sometimes Free-Energy) and
is a convex analytic function of β. If H > 1 then limβ→∞ PH(β) = −∞ and
limβ→−∞ PH(β) = ∞.

Under the hypothesis H > 0 sometimes there is no real β such that
PH(β) = 0.

If T has degree k and in the particular case where µ is the maximal
entropy measure (that is, h(µ) = h(T ) = log k), then p = 1/k.

Definition 2.3: Denote by S : L2(µ) → L2(µ) the Koopman operator
where for η ∈ L2(µ) we define (Sη)(x) = η(T (x)). such S defines a linear
operator in L2(µ).

In Thermodynamic Formalism it is usual to consider the Koopman oper-
ator acting on L2(µ) (the space of complex square integrable functions over
L2(µ)), and it is well known that its adjoint (over L2(µ)) is the operator Lp

acting on L2(µ). As we assume X is compact, any continuous function f is
in L2(µ).

We denote by L(L2(µ)), the set of linear operators over the linear space
L2(µ); an example: S ∈ L(L2(µ)).

Definition 2.4: Another important class of linear operators is Mf :
L2(µ) → L2(µ), for a given fixed f ∈ C(X), and defined by Mf (η)(x) =
f(x)η(x), for any η in L2(µ).

In order to simplify the notation, sometimes we denote by f the linear
operator Mf .

Note that for Mf and Mg, f, g ∈ C(X), the product operation satisfies
Mf ◦Mg = Mf.g, where . means multiplication over the complex field C.

Note that the ∗ operation applied on Mf , f ∈ C(X), is given by M∗
f =

Mf , where z is the complex conjugated of z ∈ C. In this sense, M∗
f is the

adjoint operator of Mf over L2(µ).
The main point for our choice of µ as eigen-probability for L∗p, is that in

L2(µ), the dual of the Koopman operator S is the operator Lp = S∗ acting
on L2(µ). Indeed, for any f, g we have
∫

f (g◦T ) dµ =
∫

f (g◦T ) dL∗p(µ) =
∫
Lp( f (g◦T ) ) dµ =

∫
Lp( f ) g dµ.

L(L2(µ)), the set of linear operators over L2(µ), is a very important C∗-
Algebra. We will analyze here a sub-C∗-Algebra of such C∗-Algebra (defined
with the above operations . and ∗), more precisely the C∗-Algebra U .
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Definition 2.5: We denote by α : C(X) → C(X) the linear operator
such that for any f , we have α(f) = f ◦ T .

We have to show how the operators S and Mf acting on L2(µ) interact
with the operators Lp and α acting on C(X).

One can easily see that α(Mf ) = Mf◦σ. This is the first relation.
In the simplified notation (we identify Mf with f), one can read last

expression as α(f) = f ◦ T .
Definition 2.6: Consider the C∗-Algebra contained in L(L2(µ)) and

generated by the elements of the form MfSn(S∗)nMg, where n ∈ N and
f, g ∈ C(X). We denote such C∗-Algebra by U = U(µ, T ). We call U the
C∗-Algebra associated to µ.

Each element a in U is the limit of finite sums
∑

i MfiS
ni(S∗)niMgi .

Note that f → Mf defines a linear injective function of C(X) on U .
We have basic relations in such C∗-Algebra U :
a) (S∗)nSn = 1, for all n ∈ N (it follows from S∗S = 1) .
proof: for any η ∈ L2(µ), we have

S∗ S(η)(x) = Lp(η(T (.))(x) =
∑

T (y)=x

p(y) η(T (y)) =
∑

T (y)=x

p(y) η(x) = η(x).

b) (S∗)nMfSn = MLn
p (f), for all n ∈ N, f ∈ C(X) (it follows from

S∗MfS = MLp(f)).
proof: for any η ∈ L2(µ), we have

S∗Mf S (η) (x) = Lp(f η(T (.)))(x) = Lp(f) (x) η(x).

and finally
c) SMf = α(f)S for any continuous f , that is, for any η ∈ L2(µ),

SMf (η) = f ◦ T.η ◦ T = α(f).S(η).

Remark: If we consider the C∗-algebra generated Mf Sm(S∗)n Mg,
where n,m ∈ N and f, g ∈ C(X), we have a different setting (which is
usually called a Vershik C∗-algebra) which was consider in another paper
by R. Exel [E3]. In this case, the KMS state exists only for one value of β.

We now return to our setting.
An extremely important result will be shown in Lemma 2.1 which claims

that there exists functions ui, i ∈ {1, 2, .., k}, such that

k∑

i=1

MuiSS∗Mui = 1.
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We denote by Aut(U) the set of automorphism of the C∗-Algebra U .
Definition 2.7: Given a positive function H we define the group homo-

morphism σt, where for each t ∈ R we have σt ∈ Aut(U) [BP] [P], is defined
by:

a) for each fixed t ∈ R and any Mf , we have σt(Mf ) = Mf ,
b) for each fixed t ∈ R, we have σt(S) = MHit ◦ S, , in the sense that

(σt(S)(η))(x) = H it(x)η(T (x)) ∈ L2(µ), for any η ∈ L2(µ).
The value t above is related to temperature and not time, more precisely

we are going to consider bellow t = βi where β is related to the inverse of
temperature in Thermodynamic Formalism (or Statistical Mechanics).

It can be shown that for each t fixed, we just have to define σt over the
generators of U in order to define σt uniquely on U . In this way a) and b)
above define σt.

We will assume in this section from now on that H is Holder in order we
can use the strong results of Thermodynamic Formalism.

Remark 1: Note that for η ∈ L2(µ), we have

(σt(S2)η)(x) = σt(MHit(η ◦ T ))(x) =

MHitMHit◦T (η ◦ T 2)(x),

therefore σt(S2) = Hti(H ◦ T )tiS2. It follows easily by induction that

σt(Sn) = Πn−1
j=0 (H ◦ T j)tiSn.

Taking dual in both sides of the above expression we get other important
relation

σt((S∗)n) = (S∗)nΠn−1
j=0 (H ◦ T j)−ti.

In terms of the formalism of C∗-dynamical systems, the positive function
H defines the dynamics of the evolution with time t ∈ R of a C∗-dynamical
system. Our purpose is to analyze such system for each pair (H, β).

Definition 2.8: An element a in a C∗-Algebra is positive, if it is of the
form a = bb∗ with b in the C∗-Algebra.

Definition 2.9: By definition a ”C∗-dynamical system state” is a linear
functional φ : U → C such that

a) φ(M1) = 1
b) φ(a) is a positive real number for each positive element a on the

C∗-Algebra U .
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A ”C∗-dynamical system state” φ in C∗-dynamical systems plays the
role of a probability ν in Thermodynamic Formalism. For a fixed H, we
have a dynamic temporal evolution defined by σt where t ∈ R.

Definition 2.10: An element a ∈ U is called analytic for σ if σt(a) has
an analytic extension from t ∈ R to all t ∈ C.

Definition 2.11: For a fixed β ∈ R and H, by definition, φ is a KMS
state associated to H and β in the C∗-Algebra U(µ, T ), if φ is a C∗-
dynamical system state, such that for any b ∈ U and any analytic a ∈ U we
have

φ(a.b) = φ(b.σβi(a)).

For H and β fixed, we denote a KMS state by φH,β and we leave φ for
a general C∗-dynamical system state.

It is easy to see that for H and β fixed, the condition

φ(a.b) = φ(b.σβi(a)),

is equivalent to ∀τ ∈ C,

φ(στ (a).b) = φ(b.στ+βi(a)).

It follows from section 8.12 in [P] that if φ is a KMS state for H, β, then
for any analytic a ∈ U , we have that τ → φ(στ (a)) is a bounded entire
function and therefore constant. In this sense φ is stationary.

Note that the KMS state, in principle, could depend of the initially
chossen µ because we are considering L2(µ) when defining U , but in the end
it will be defined by a measure that depends only in β and H

We point out that it can be shown that in order to characterize φ as a
KMS state we just have to check the condition φ(a.b) = φ(b.σβi(a)) for a, b
the linear generators of U , that is, a of the form Mf1S

n(S∗)nMg1 and b of
the form Mf2S

m(S∗)mMg2 .
A natural question is: for a given β and H, when the KMS state φH,β

exist and when it is unique?
We are interested mainly in uniqueness. We will explain this point more

carefully later.
Remark 2: Note that when φ = φH,β is a KMS state, φ(a.g) =

φ(a.σβi(g)) = φ(g.a), for any g ∈ C(X) and a ∈ U .
Our purpose here is to show how to associate in a unique way each KMS

state φH,β to the eigenmeasure νH,β defined before.
Remeber that over L2(µ) the operator Lp is adjoint of the operator

f → f ◦ T .
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We call Λ(x) = p(x)−1 the index and we denote by

Λ[n](x) = (p(x)p(T (x))...p(Tn−1(x)))−1.

Now we define E : U → C(X), a conditional expectation (that is E◦E =
E), such that

a) E(Mf ) = Mf ,
b) E(a) of any positive element a is a positive number in R by:

E(MfSn(S∗)nMg) =
1

Λ[n]
Mfg.

This expression defines E (taking limits) over all U .
Our main theorem says:
Theorem 2.1: If H is Holder positive and µ is a Gibbs state for p

Holder, then for any given β ∈ R, a KMS state in U(µ) φ exists, it is unique
and of the form

φH,β(a) =
∫

E(a)dνH,β, ∀a ∈ U ,

where νH,β is the eigenmeasure for L∗H,β.
Proof of Theorem 2.1:
The existence of the KMS follows imediately from taking en = SnSn∗

and En = αnLn
p in section 1. We want in this section to show precisely how

one can associate a Gibbs measure to such φH,β.
First we outline the main results of the previous section but now in the

particular notation that it is used in the context of Thermodynamic Formal-
ism. We believe that with this procedure we will help the understanding for
the reader familiar with Thermodynamic Formalism but not so much with
C∗-Algebra Theory. Alternatively, the reader can go directly to Theorem
2.5 to find the proof of the main result of this section: uniqueness of the
KMS state for the C∗-Algebra U .

In order to simplify the notation, for H and β fixed we denote νH,β by
νβ, LH,β by Lβ, λH,β by λβ and hH,β by hβ.

We will denote φH,β , the KMS state for H, β, by φβ.
We will leave the therminology φβ for the one associated to the Gibbs

state νβ and use φ for the one associated to the above defined ν
Suppose φ is a KMS state, where H, β are fixed.
First we will show that if φ is a KMS state for H and β, then there exist

a measure ν such that
a) for all n ∈ N

φ(MfSn(S∗)n) =
∫

f

Λ[n]
dν,
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and
b) for all f1, f2, g1, g2 ∈ C(X) and all n,m ∈ N.

φ(Mf1S
n(S∗)nMg1 . σβi(Mf2S

m(S∗)mMg2) =

φ(Mf2S
m(S∗)mMg2 .Mf1S

n(S∗)nMg1).

Given the KMS state φ, then φ(Mf ) = φ(f) defines a continuous posi-
tive linear functional over C(X) such that φ(M1) = 1. Therefore by Riesz
Theorem, there exists a probability ν such that for any f ∈ C(X) we have
φ(f) =

∫
fdν =

∫
fS0(S∗)0dν.

This ν is our candidate to be the one associated to φ. The above defini-
tion takes in account just n = 0 in a) above. Remains the question: what
conditions we should impose on ν (defined from φ as above) in order to make
φ a KMS state for H, β? That is, when ν satisfies a) and b) above?

Now we will show a recurrence relation associated to any KMS state φ
for H, β:

Lemma 2.1: φ(fSn(S∗)n) =
∫

fΛ−[n]dν, for any f ∈ C(X),
Proof:
The lemma will follow from φ(fSn(S∗)n) = φ((Λ ◦ Tn) fSn+1(S∗)n+1).
We need a preliminary estimate before proving the lemma.
For the transformation T , consider a partition A1, ..., Ak of X such that

T is injective in each Ai. Our proof bellow is for the shift in the Bernouilli
space. In the case of the Bernoulli space with k symbols Ai is the cylinder
i with first coordinate i. Now we consider a partition of unity given by k
non-negative functions v1, ..., vk such that each vi(x) = Ii(x) (the indicator
function of the cilinder i) which has support on Ai and

∑k
i=1 vi(x) = 1 for

all x ∈ X. In the case X is the unitary circle and T is expansive, using a
conjugacy with the shift, we obtain similar results.

Denote now the functions ui given by

ui(x) = (vi(x)Λ(x))1/2 = (vi(x)p(x)−1)1/2,

for each i ∈ {1, ..., k}, so,
∑k

i=1 u2
i (x) = Λ(x) = p(x)−1, for any x ∈ X.

An easy computation shows that
∑k

i=1 MuiSS∗Mui = 1. Indeed, if x is
in the cylinder i, then given η, we have

[ MuiSS∗Mui(η) ](x) = ui(x)
∑

{z |σ(z)=σ(x)}
p(z) ui(z) η(z) = η(x).

Now

Sn(S∗)n = Sn1(S∗)n = Sn[
k∑

i=1

(MuiSS∗Mui) ](S∗)n =
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k∑

i=1

(Sn (MuiSS∗Mui) (S∗)n).

Now we use the relations SnMf = Mαn(f)S
n and Mf (S∗)n = (S∗)nMαn(f)

in last expression and we get

Sn(S∗)n =
k∑

i=1

Mαn(ui)S
n SS∗ (S∗)nMαn(ui) =

k∑

i=1

Mαn(ui)S
n+1(S∗)n+1Mαn(ui)

Now we will prove the lemma.
Using last expression and then Remark 2 for g = αn(ui) ∈ C(X) and

a = Sn+1(S∗)n+1 we get

φ(MfSn(S∗)n) = φ(Mf

k∑

i=1

Mαn(ui)S
n+1(S∗)n+1Mαn(ui) ) =

φ(Mf

k∑

i=1

Mαn(ui)Mαn(ui)S
n+1(S∗)n+1 ) =

φ(Mf

k∑

i=1

Mαn(ui)2S
n+1(S∗)n+1 ) =

φ(Mf Mαn(
∑k

i=1(ui)2)S
n+1(S∗)n+1 ). =

φ(Mf (Λ ◦ Tn)Sn+1(S∗)n+1)

This shows the claim of the lemma.

We denote by En the operator αnLn
p acting on C(X). This operator

En acting on C(X) is a conditional expectation En(f) = E(f,Rn), where
Rn = {f ◦ Tn | f ∈ C(X)}. It is well known that En : C(X) → Rn, and
En(fg) = fEn(g), if f ∈ Rn.

It is known that if n > m, then En ◦ Em = En.
Note that for any n, we have En(1) = 1.
Now we will introduce the restriction on ν defined by the time evolution

of σt, that is condition b) above.
Lemma 2.2: The KMS condition

φ(Mf1S
n(S∗)nMg1 . σβi(Mf2S

m(S∗)mMg2) =
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φ(Mf2S
m(S∗)mMg2 .Mf1S

n(S∗)nMg1).

for any n,m ∈ N, f1, f2, g1, g2 ∈ C(X), is equivalent to the condition
∫

f2g1Em(g2f1)dν =
∫

g2f1H
β [m]Λ−[n]Em(f2g1H

−β [m]Λ[n])dν,

for any m ∈ N, f1, f2, g1, g2 ∈ C(X).
Proof:
Suppose, first that n ≥ m (we consider the other case later).
From Remark 1 we have

σβi(Mf2S
m(S∗)mMg2) = Mf2H

−β [m]Sm(S∗)mHβ [m]Mg2 ,

where by definition Hβ [m](x) = Πm−1
i=0 H(T i(x))β.

Therefore, the KMS condition imposed by σ can be written as

φ(Mf2S
m(S∗)mMg2 .Mf1S

n(S∗)nMg1) =

φ(Mf1S
n(S∗)nMg1 .Mf2H

−β [m]Sm(S∗)mHβ [m]Mg2). (∗ ∗ ∗ ∗ ∗)
As we assume n ≥ m, considering the right hand-side of the expression

above we get

φ(Mf1S
n(S∗)nMg1 .Mf2H

−β [m]Sm(S∗)mHβ [m]Mg2) =

φ(Mf1S
n(S∗)n−m(S∗)mMg1 .Mf2H

−β [m]Sm(S∗)mHβ [m]Mg2) =

φ(Mf1S
n(S∗)n−mLm

p (g1f2H
−β [m])(S∗)mHβ [m]Mg2).

As, for any continuous g, we have g(S∗)m = (S∗)mαm(g), then take
g = Lm

p (g1f2H
−β [m]) ∈ C(X), and using also lemma 1

φ(Mf1S
n(S∗)n−mLm

p (g1f2H
−β [m])(S∗)mHβ [m]Mg2) =

φ(Mf1S
n(S∗)n−m(S∗)mαmLm

p (g1f2H
−β [m])Hβ [m]Mg2) =

φ(Mf1S
n(S∗)nαmLm

p (g1f2H
−β [m])Hβ [m]Mg2) =

∫
f1g2H

β [m]Em(g1f2H
−β [m])Λ−[n]dν

Now, from the basic relation αm(g)Sm = Smg, for g = Lm
p (g2f1) ∈ C(X)

and Lemma 1, the left hand side of expression (*****) satisfies satisfies

φ(Mf2S
m(S∗)mMg2 .Mf1S

n(S∗)nMg1) =
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φ(Mf2S
m(S∗)mMg2 . Mf1S

mSn−m(S∗)nMg1) =

φ(Mf2S
mLm

p (g2f1)Sn−m(S∗)nMg1) =

= φ(Mf2α
mLm

p (g2f1)SmSn−m(S∗)nMg1) =

= φ(Mf2α
mLm

p (g2f1)Sn(S∗)nMg1) =
∫

f2g1Em(g2f1)Λ−[n]dν.

From (*****) we finally get the expression
∫

f2g1Em(g2f1)Λ−[n]dν =
∫

g2f1H
β [m]Em(f2g1H

−β [m])Λ−[n]dν,

which is equivalent to
∫

f2g1Em(g2f1)dν =
∫

g2f1H
β [m]Λ−[n]Em(f2g1H

−β [m]Λ[n])dν, (∗ ∗ ∗∗)

and this shows lemma 2 for the case n ≥ m.
Suppose now that n ≤ m.
From the KMS condition

φ(Mf2S
m(S∗)mMg2 .Mf1S

n(S∗)nMg1) =

φ(Mf1S
n(S∗)nMg1 . Mf2H

−β [m]Sm(S∗)mHβ [m]Mg2).

We point out that in the case n ≤ m, if en = SnS∗n, then enem = em =
emen

and enfen = En(f)en, because SnS∗nfSnS∗n = SnLn
p (f)S∗n = αn(Ln

p )(f)en.
Therefore, from the above and lemma 1 we get for right hand-side of the

KMS condition above

φ(Mf1S
n(S∗)nMg1 .Mf2H

−β [m]Sm(S∗)mHβ [m]Mg2) =

φ(Mf1enMg1 .Mf2H
−β [m](en em)Hβ [m]Mg2) =

φ(Mf1En(g1 . f2H
−β [m])emHβ [m]Mg2) =

∫
f1En(g1 . f2H

−β [m])Λ−[m)Hβ [m]g2dν.

Note that for m ≥ n, we have for any g1, f2 ∈ C(X)

En(g1 . f2H
−β [m])Hβ [m] =
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En(g1 . f2H
−β [n](H−β [m−n] ◦ Tn))Hβ [n] (Hβ [m−n] ◦ Tn) =

En(g1 . f2H
−β [n])(H−β [m−n] ◦ Tn) Hβ [n] (Hβ [m−n] ◦ Tn) =

En(g1 . f2H
−β [n])Hβ [n],

because H−β [m−n] ◦ Tn ∈ Rn.
Therefore,

φ(Mf1S
n(S∗)nMg1 .Mf2H

−β [m]Sm(S∗)mHβ [m]Mg2) =
∫

f1En(g1 . f2H
−β [n])Λ−[m]Hβ [n]g2dν.

Now we consider the left hand side of main equality.
In the same way as before, using g(S∗)n = (S∗)nαn(g),
for g = Ln

p (g2f1) and lemma 2.1 we get

φ(Mf2S
m(S∗)mMg2 .Mf1S

n(S∗)nMg1) =

φ(Mf2S
m(S∗)m−n(S∗)nMg2 .Mf1S

n(S∗)nMg1) =

φ(Mf2S
m(S∗)m−nLn

p (g2f1)(S∗)nMg1) =

φ(Mf2S
m(S∗)m−n(S∗)nαn(Ln

p )(g2f1)Mg1) =

φ(Mf2S
m(S∗)mαn(Ln

p )(g2f1)Mg1) =
∫

f2g1En(g2f1)emdν

∫
f2g1En(g2f1)Λ−[m]dν.

Therefore, the KMS condition implies in the case n ≤ m

∫
f2g1En(g2f1)Λ−[m]dν =

∫
f1En(g1 . f2H

−β [n])Λ−[m]Hβ [n]g2dν.

This shows that the KMS condition implies the equality
∫

f2g1En(g2f1)dν =
∫

g2f1H
β [n]Λ−[m]En(f2g1H

−β [n]Λ[m])dν.

Reversing the argument one can show the implication in the other direc-
tion.

Therefore, we get equivalence of both conditions and lemma 2.2 is proved.
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The following Lemma gives a more simple condition for the ν defined
above by the KMS condition for φ:

Lemma 2.3: The measure ν defined as above by the KMS state φ is
characterized by ∫

fdν =
∫

Em(fλ−1
m )λmdν,

for any m ∈ N, f ∈ C(X), where λm = Hβ [m]

Λ[m] .
Proof: The lemma follows from the expression

∫
bEm(a)λmdν =

∫
Em(b)aλmdν, (∗∗)

for any a, b ∈ C(X).
We just have to consider a = 1 and b = f

λm
in the above expression in

order to obtain one from the other.
Expression (**) follows from taking (****) with g2 = 1, f1 = a, g1 =

1, f2 = bλm.
¤
Now we show the existence of ν, and then later we will show by uniquenes

that ν has to be νβ.
Remark 3: Note that

Em(fλ−1
m )(x) = αn(Lm

H,β(f))(x).

We will show that there exist a probability ν such that for any m
∫

fdν =
∫

Em(fλ−1
m )λmdν.

Proposition 2.1: Consider a fixed m ∈ N. Suppose ν is such that for
any continuous f

∫
fdν =

∫
Em+1(fλ−1

m+1)λm+1dν,

then, ν also satisfies the condition: for any continuous f
∫

fdν =
∫

Em(fλ−1
m )λmdν.

Proof: Consider f ∈ C(X).
Under the hypothesis condition for m+1 we take g = Em(fλ−1

m )λm, and
we get

∫
Em(gλ−1

m )λmdν =
∫

Em+1( (Em(fλ−1
m )λm) λ−1

m+1 )λm+1dν =
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∫
Em+1(g λ−1

m+1)λm+1dν =
∫

gdν

As Em is a projection operator over Rm, then, for any continuous g we
have Em(g H(Tm(x))−β)) = Em(g)H(Tm(x))−β.

Therefore, ∫
Em+1(Em(fλ−1

m )λm λ−1
m+1)λm+1dν

=
∫

Em+1(Em(fλ−1
m )

H(Tm(x))−β

Λ−1(x)
)λm+1dν =

∫
Em+1(Em(fλ−1

m

H(Tm(x))−β

Λ−1(x)
))λm+1dν.

As Em+1 ◦Em = Em+1, then
∫

Em+1(Em(fλ−1
m )λm λ−1

m+1)λm+1dν =
∫

Em+1(fλ−1
m

H(Tm(x))−β

Λ−1(x)
)λm+1dν =

∫
Em+1(fλ−1

m+1)λm+1dν =
∫

fdν,

where we use the m + 1 condition for ν and f in last equality.
Therefore, ∫

fdν =
∫

gdν =
∫

Em(fλ−1
m )λmdν.

¤
The next result is a particular case of the existence of KMS states pre-

sented in section 1.
Proposition 2.2: Given φ there exist ν such that:
a) for all n ∈ N

φ(MfSn(S∗)n) =
∫

f

Λ[n]
dν,

and
b) for all f1, f2, g1, g2 ∈ C(X) and all n,m ∈ N.

φ(Mf1S
n(S∗)nMg1 . σβi(Mf2S

m(S∗)mMg2) =

φ(Mf2S
m(S∗)mMg2 .Mf1S

n(S∗)nMg1).

Proof:
Consider the compact set Mn = {ν is a probability such that for any

continuous f ,
∫

fdν =
∫

Em(fλ−1
m )λmdν}.
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From the above Proposition, we get Mn+1 ⊂Mn. Therefore, as the set
of all probabilities is compact, there exist ν ∈ ∩∞n=0Mn, and therefore, by
lemma 2.3 we obtain that such ν satisfies the KMS condition.

This shows the existence of ν and the first part of Theorem 2.1.

The conclusion is that any φ is associated with a certain ν.
Now we will show the uniqueness of the KMS state:
Theorem 2.2: Given any KMS φ, then φ = φβ where φβ is the KMS

state associated to the Gibbs probability νβ.
Proof:
In order to do that we will show that any possible ν given by Proposition

2.2 is equal to νβ.
Remember that λn = Hβ[n]Λ−[n].
Take ν a probability associated to φ, then for each n, and f ∈ C(X) we

have ∫
fdν =

∫
En(fλ−1

n )λndν =
∫

αn(Ln
β(f))λndν. (∗ ∗ ∗)

We claim that

lim
n→∞

∫
En(fλ−1

n )λndν =
∫

fdνβ,

and this shows that ν = νβ, and therefore φ = φβ.
Now we show the claim. Note that

∫
fdν =

∫
En(fλ−1

n )λndν =
∫

αn(Ln
β(f))λndν =

∫
αn(

Ln
β(f)
λn

β

)λnλn
βdν,

where λβ is the eigenvalue associated to Lβ.
Applying the above expression to f = hβ (we can assume hβ is such that∫

hβdνβ = 1) and using the fact that Ln
β(hβ) = λn

βhβ we get

0 < d =
∫

hβdν =
∫

αn(hβ)λnλn
βdν.

As hβ is continuous and positive, there exists c > 0 such for all x ∈ X
we have hβ(x) > c.

From this follow that

d =
∫

αn(hβ)λnλn
βdν > c

∫
λn

βλndν.

Therefore, ∫
λn

βλndν < d/c
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Denote I =
∫

fdνβ.
It is known (see [Bo]) that uniformly in z ∈ X, we have

lim
n→∞

Ln
β(f)(z)

λn
β

= hβ(z)I = hβ(z)
∫

fdνβ.

Therefore, given ε > 0, we can find N > 0 such that for all n > N we
have for all z ∈ X

|L
n
β(f)(z)

λn
β

− Ihβ(z)| ≤ ε.

Then, for n > N

|
∫

αn(Ln
β(f))

λn
β

λnλn
βdν −

∫
Iαn(hβ)λnλn

βdν | ≤

∫
|α

n(Ln
β(f))

λn
β

(y)− Iαn(hβ)(y)|λn(y)λn
β(y)dν =

∫
|L

n
β(f)
λn

β

(Tn(y))− Ihβ(Tn(y))|λn(y)λn
β(y)dν ≤ εd

c

The conclusion from (***) is that for any f ∈ C(X)

lim
n→∞ I

∫
αn(hβ)λnλn

βdν =
∫

fdν.

Consider now f = 1 and we get

lim
n→∞

∫
αn(hβ)λnλn

βdν = 1.

From this we conclude that
∫

fdν = I =
∫

fdνβ for all f ∈ C(X).
This shows the uniqueness and that ν = νβ.
¤
The final conclusion is that any KMS φ for H,β is equal to the φβ

associated to νβ.

Section 2.2 - phase transitions

We consider here an interesting example of a KMS state associated with
the reference measure µ given by the maximal entropy measure for the shift
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in 2 symbols {0, 1}. In this case p = 1/2 is contant. We will define a special
potential H and we will consider specifically the special value β = 1

We refer the reader to [H] [L2] [L3] [FL] [Y] [L] for references and results
about the topics discussed in this section.

We are going to introduce the Fisher-Fedenhorf model of Statistical Me-
chanics in the therminology of Bernoulii spaces and Thermodynamic For-
malism [H].

We define Σ+ to be the shift space Σ+ = Π∞0 {0, 1} and denote by T :
Σ+ → Σ+ the left shift map. We write z = (z0z1 . . . ) for a point in Σ+ and
[w0w1 . . . wk] = {z : z0 = w0, z1 = w1, . . . zk = wk} for a cylinder set of Σ+.

We denote by Mk ⊂ Σ+, for k > 1, the cylinder set [111 . . . 11︸ ︷︷ ︸
k

0] and

by M0 the cylinder set [0]. The ordered collection (Mk)∞k=0 is a partition of
Σ+; in other words these sets are disjoint and their union is the whole space
(minus the point (11 . . . )). Note that T maps Mk bijectively onto Mk−1 for
k ≥ 1, and onto Σ+ for k = 0.

The point (1111...) is fixed for T .
For γ > 1 a fixed real constant, we consider the potential g(x) such that

g(111111 . . . .) = 0,

g(x) = ak = −γ log
(

k + 1
k

)
,

for x ∈ Mk, for k 6= 0, and

a0 = − log(ζ(γ)),

for x ∈ M0, where ζ is the Riemann zeta function.
By definition,

ζ(γ) = (1−γ + 2−γ + . . . )

and so the reason for defining a0 in such way is that, if we define sk =
a0 + a1 + · · ·+ ak, then Σesk = 1.

From now on we assume γ > 2, otherwise we have to consider sigma-
finite measures and not probabilities in our problem.

The potential 1 < (k+1
k )γ = H(x) = e−g(x), for x ∈ Mk, is not Hölder

and in fact is not of summable variation. Note that H(1111...) = 1, The
pressure P (− log H) = P (g) = P (log p + log 2 − 1 log H) = 0 and one can
show that there exist two equilibrium states for such a potential g (in the
sense of minimizing measures for the variational problem): a point mass
(the Dirac delta δ(111...)) at (1111 . . . ), and a second measure which we
shall denote by µ̃ (see [H])
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The existence of two probabilities µ̃ and δ(1111...) for the variational prob-
lem of pressure defines what is called a phase transition in the sense of
Statistical Mechanics [H] [L3].

We will describe bellow how to define this measure µ̃.
Consider as in [H] L∗g, the dual of the Ruelle-Perron-Frobenius operator

Lg associated to g, where the action of Lg on continuous functions is given
by

Lβ=1(φ)(y) =
∑

T (x)=y

eg(x)φ(x).

The function P (−β log H) = P (βg) is strictly monotone for β < 1 and
constant equal zero for β > 1 [H].

We claim that there is a unique probability measure ν on Σ+ which
satisfies L∗gν = ν [FL] [H]. To prove this, note first that ν cannot have any
mass at (11 . . . ); it follows that M0 has positive mass, and the stipulation
that ν be an eigenmeasure then gives a recurrence relation for the masses of
Mk. Since T (Mk) = Mk−1 for k ≥ 1, we have that the masses of the sets in
this partition are

ν(k) = ν(Mk) = esk =
(k + 1)−γ

ζ(γ)
, k ≥ 0;

in particular,

ν(0) = ν(M0) = es0 = ea0 =
1

ζ(γ)
.

By the same reasoning, ν is determined on all higher cylinder sets for the
partition (Mk)∞k=0. Hence ν exists and is unique.

The measure ν defined above is the unique eigenmeasure for L∗β=1 and
denoted by ν1.

The measure defined by the delta-Dirac on (111...) is invariant but is not
a fixed eigenmeasure for L∗g.

This measure ν1 defines a KMS state φν1 for such H, β = 1 and U(µ).
We conjecture that there is another KMS state φ different from φν1 but

not associated to a measure. Note that such H assumes the value 1 in just
one point.

We define h̃(x) for x ∈ Mt by

h̃t = h̃(x) = ν(t)−1
∞∑

i=t

ν(i).

The function h̃ satisfies Lg(h̃) = h̃.
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The integral
∫

h̃(x)dν1(x) is finite if and only if γ > 2. One can normalize
h̃, multiplying by a constant u to get h = uh̃ with

∫
hdν1 = 1.

This constant is

u =
1∑∞

t=1 tν(t− 1)
=

ζ(γ)∑∞
t=1 t1−γ

=
ζ(γ)

ζ(γ − 1)
.

The probability µ̃ has positive entropy and its support is all Σ+ (see [H]
or [L3] [FL]).

Consider now the invariant probability measure µ̃ = hν1. It is known
that µ̃ is an equilibrium state for − log H in the variational sense (β = 1)
[H]. It is easy to see (because − log H(11111..) = − log 1 = 0) that the
Dirac-delta measure δ(11111...) is also an equilibrium state for − log H in the
variational sense (β = 1).

The probability µ̃ has positive entropy and its support is all Σ+ (see [H]
or [L3] [FL]).

We can conclude from the above considerations that not always an equi-
librium probability ρ for the pressure is associated to a KMS state φρ whitout
the hypothesis of H and p been Holder. In the present example, this happen
because ρ = δ(1111...) is not an eigenmeasure of the dual of the Ruelle-Perron-
Frobenius operator Lβ but it is an equlibrium measure for β = 1.

In [L2] and [L3] the lack of differentiability of the Free energy is analyzed
and in [L3] [Fl] [Y] it is shown that such systems present polynomial decay of
correlation. In [L1] it is presented a dynamical model with three equilirium
states.
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