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Abstract
We consider here a dynamic model for a gas in which a variable

number of particles N ∈ N0 := N ∪ {0} can be located at a site.
This point of view leads us to the grand-canonical framework and the
need for a chemical potential. The dynamics is played by the shift
acting on the set of sequences Ω := AN, where the alphabet is A :=
{1, 2, ..., r}. Introducing new variables like the number of particles N
and the chemical potential µ, we adapt the concept of grand-canonical
partition sum of thermodynamics of gases to a symbolic dynamical
setting considering a Lipschitz family of potentials (AN )N∈N0 , AN :
Ω→ R. Our main results will be obtained from adapting well-known
properties of the Thermodynamic Formalism for IFS with weights to
our setting. In this direction, we introduce the grand-canonical-Ruelle
operator: Lβ,µ(f) = g, when, β > 0, µ < 0, and

g(x) = Lβ,µ(f)(x) =
∑

N∈N0
eβ µN

∑
j∈A e

−β AN (jx)f(jx).

We show the existence of the main eigenvalue, an associated eigen-
function, and an eigenprobability for L∗β,µ. We can show the analytic
dependence of the eigenvalue on the grand-canonical potential. Con-
sidering the concept of entropy for holonomic probabilities on Ω×AN0 ,
we relate these items with the variational problem of maximizing
grand-canonical pressure. In another direction, in the appendix, we
briefly digress on a possible interpretation of the concept of topological
pressure as related to the gas pressure of gas thermodynamics.

Keywords: Particles of a gas, symbolic spaces, grand-canonical partition,
IFS Thermodynamic Formalism, Ruelle operator, holonomic probabilities,
entropy, grand-canonical entropy, grand-canonical pressure.
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1 Introduction

The study of the thermodynamics of gases with a non-specified number of
particles is a classical topic in Mathematical Physics (see Section 1.6 in
[Nau11] or Section 11.2.4 in [VL]). Here we will investigate this type of
problem from a dynamic perspective. That is the search for statistical prop-
erties that can be obtained with the help of a generalization of the Ruelle
operator (which corresponds to the transfer operator of Statistical Mechan-
ics) of Thermodynamic Formalism (in the sense of [PP90]). Concepts like
volume, temperature, entropy, and gas pressure arise naturally in thermody-
namics when we introduce the number of particles as a variable (see [Cal14]
or Section 5.6 in [Bena]). The introduction of a negative constant µ, called
the chemical potential, plays an important role in the convergence of the
grand-canonical partition sum (see (1.34) in [Nau11]). We analyze such kinds
of problems from a mathematical perspective and we leave the question of
physical relevance for a posterior investigation. The discussion in Section
3.2.4 in [VL] on the topic of probabilities for particle distributions is quite
enlightening. We would like to emphasize that the postulates of equilibrium
thermodynamics of gases are an issue subject to controversy (see Section 4).

In classical Thermodynamic Formalism, in general, results avoid taking
into account for this variable number of particles.

We are interested in the mathematical formulation of physical problems
in equilibrium from a dynamic perspective. Time does not occur as a variable
in thermodynamic equations. When we allude a mathematical formulation
in a dynamical setting, by this, we mean problems related to the action of
the shift σ on the symbolic space {1, 2, ..., r}N or NN

0 ; this is associated with
translation on the one-dimensional lattice and is not related to time.

We are interested in the statistics of the number of particles: any number
N ∈ N0 particles can be in one site. Therefore, in principle, it is natural to
consider an IFS with a countable number of functions (and with weights),
but it is possible to translate it to the case of a finite one (and then results
from [LO09] can be used). We are interested in equilibrium states. In the
IFS setting instead of shift-invariant probabilities it is natural to consider
holonomic probabilities, as described in [LO09] (see Definition 9). All this
will be carefully described in Section 3.

We introduce what we call the grand-canonical-Ruelle operator (see (1))
and we show a version of the Ruelle Theorem (about eigenfunctions and
eigenvalues), which is presented as our main result in Theorem 12. The main
eigenvalue will be called the grand-canonical eigenvalue. We will assume
some mild conditions for potentials AN , N ∈ N0, which are Assumptions 1,
2 and 3.
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The grand-canonical potential

ψ(y) :=
∑
N∈N0

e−β[AN (y)−µN ] > 0,

will play an important role in our reasoning (in Section 2 we present condi-
tions on the AN).

In Corollary 13 we will show an analytical dependence of the grand-
canonical eigenvalue in ψ.

In Section 2 we recall some classical results in thermodynamic formalism
and we introduce the dynamical canonical ensemble in this context. Later, we
will analyze the main properties of the grand-canonical-Ruelle operator, the
concepts of entropy for holonomic probabilities (see Definition 10) and also
the grand-canonical topological pressure (see (14) and item a) in Theorem
12 and also (16)).

Given a Lipschitz family of potentials AN : Ω = {1, ..., r}N → R, N ∈ N0,
β > 0, and µ < 0, the grand-canonical-Ruelle operator f → Lβ,µ(f) = g, is
given by

g(x) = Lβ,µ(f)(x) =
∑
N∈N0

eβ µN
∑
j∈A

e−β AN (jx)f(jx). (1)

We denote by Φ = (AN)N∈N0 the family of potentials.
Note that the points of the form j x, j ∈ A, describe the set of solutions y

of σ(y) = x. Then, the operator Lβ,µ is dynamically defined; it corresponds
to the classical transfer operator of Statistical Mechanics but for a dynamical
setting.

We will set some assumptions in Section 2 in order to get convergence in
(1), etc. In Assumption 1 we assume the AN are of Lipschitz class. One of
our main results is Theorem 7 where more assumptions are needed in order to
be able to use an IFS Ruelle Theorem with a Dini condition. This highlights
the fact that in our reasoning it is necessary to use the IFS setting (not the
classical one as in [Bowen] which considers just one Ruelle operator and no
Dini condition).

For the benefit of the mathematical reader, we will briefly describe some
basic properties of the thermodynamics of ideal gases in Section 4. Reading
this section is not necessary for understanding the mathematical reasoning
followed in the previous sections. The objective is only to show the motiva-
tion that led us to analyze the problems that were proposed.

In Remark 22 we will investigate a possible interpretation of the termi-
nology topological pressure in a comparison with the concept of gas pressure,
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which originated from the postulates of the theory that analyzes gases con-
fined under certain variable walls and at a certain temperature.

In a related work, the authors consider in [LR22] non-equilibrium and the
second law of thermodynamics in Thermodynamic Formalism. In [LW] it is
presented a brief account of Thermodynamics, Statistical Physics, and their
relation to the Thermodynamic Formalism of Dynamical Systems.

The study of Thermodynamic Formalism for symbolic spaces with an
infinite countable alphabet (the set A = N) is the topic of [Sarig], [BBE] and
[FV]; but a different class of problems is considered there.

Results for IFS using conformal branches appear in [Mih22] but it is a
different setting compared to ours.

Conclusion: The classical study of the grand-canonical partition sum
in the thermodynamics of gases considers an indefinite number of particles
N , a Hamiltonian AN , and the chemical potential µ, which is negative in
order to ensure convergence of the associated sum. But, in this setting there
are no discrete-time dynamics; by this we mean that the associated Gibbs
probability is by no means related to the shift acting on the lattice (N∪{0})N.

We consider the corresponding problems on the symbolic dynamical set-
ting considering a Lipschitz family of potentials (AN)N∈N0 , AN : Ω→ R. We
introduce the grand-canonical-Ruelle operator: Lβ,µ, β > 0, µ < 0 (as de-
fined in (1)), and we can get concepts like discrete-time entropy (and also the
pressure problem associated with such entropy). Our main results will be ob-
tained from adapting well-known properties of the Thermodynamic Formal-
ism for IFS with weights to our dynamical setting. One of our main results is
Theorem 7, which shows the existence of eigenfunctions and eigenprobabili-
ties (a key step for analyzing questions related to maximizing pressure). In
the variational problem of grand-canonical topological pressure (see Theorem
12) the holonomic probabilities play an important (and natural) role due to
the structure of IFS setting; indeed, it is required the concept of entropy
which is described by Definition 10.

Note that in Section 3.1 we get probabilities on Ω × AN0 and in Section
3.2 we get probabilities on Ω.

2 A brief review of Classical Thermodynamic

Formalism

Consider a finite alphabet A := {1, ..., r} and the shift map σ((xn)n∈N) :=
(xn+1)n∈N acting on the symbolic space Ω := AN which is equipped with the
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metric (which makes diam(Ω) < 1)

d(x, y) :=

{
2−min{n∈N:xn 6=yn}, x 6= y;
0, x = y.

The dynamical system (Ω, σ) is widely known in the mathematical literature
as the full-shift on the alphabet A. We denote the set of continuous functions
from Ω into R by C(Ω) and we use the notation C+(Ω) for the corresponding
cone of positive continuous functions. We also denote the set of Lipschitz
continuous functions from Ω into R by Lip(Ω) and we use the notation Lip(f)
for the Lipschitz constant of f ∈ Lip(Ω). Besides that, we denote the set of
Borel probability measures on Ω by M1(Ω) and we use the notation Mσ(Ω)
for the set of Borel σ-invariant probability measures on Ω.

Here, we consider a system describing the dynamical behavior of a clas-
sical gas one-dimensional lattice composed of N particles at temperature T ,
which are contained in a region with volume V . It is natural to introduce a
parameter β in such way that satisfies relation

β :=
1

kB T
, (2)

where kB ∼ 1.38066 × 10−23J/K is the so-called Boltzmann’s constant (see
(1.2) in [Nau11] for details).

We assume that the number of particles ranges on the set N0 := N ∪ {0}
and we consider a potential A : Ω × N0 → R which is Lipschitz continuous
w.r.t. the first variable. It is not difficult to check that the potential A
induces a family of potentials Φ = (AN)N∈N0 , where AN := A(·, N) for each
N ∈ N0. In fact, the last assumption guarantees that AN ∈ Lip(Ω).

Assumption 1. We assume that the family Φ = (AN)N∈N0, AN : Ω → R,
is uniformly Lipschitz continuous w.r.t. N . More specifically, there exists
M > 0 such that Lip(AN) = supx 6=y

|AN (x)−AN (y)|
d(x,y)

≤M,for all N ∈ N0.

Assumption 2. We assume that the family Φ = (AN)N∈N0, AN : Ω → R,
satisfy a superlinearity condition

∃K ∈ R, lim inf
N→∞

AN(x)

N
> K, ∀x ∈ Ω. (3)

Our main goal with these assumptions is to guarantee convergence of the
operator defined in Equation (10). These assumptions are very reasonable
and enclose a lot of potentials. For instance the functions A : Ω × N0 → R
which are Lipschitz continuous w.r.t. the first variable. We are requiring the
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Lipschitz constants w.r.t. the first variable to be uniformly bounded w.r.t.
N and that A(x,N) > KN , for large values of N .

A particular example of a family of potentials satisfying Assumptions 1
and 2 is the one given by Φ = ( 1

N+1
·E)N∈N0 where E : Ω→ R is an arbitrary

Hamiltonian (the energy of the system) satisfying Lip(E) ≤ M and K <

minN≥1

[
1

N(N+1)
minX E(x)

]
. This corresponds to the case AN = 1

N+1
· E.

The next assumption will be necessary to guarantee that the weights of
our IFS are Lipschitz continuous allowing us to conclude additional properties
of the spectra of the Ruelle operator (see Corollary 13).

Assumption 3. We assume that the family Φ = (AN)N∈N0, AN : Ω → R,
satisfy a strong superlinearity condition

∃K′ ∈ R, δ ≥ 0 s.t. AN(x) > K′N + δ, ∀x ∈ Ω,∀N ∈ N0. (4)

It is easy to see that Assumption 3 ensures Assumption 2 for any K < K′
because AN(x) > K′N + δ led to lim infN→∞

AN (x)
N
≥ K′ > K. We notice

that the family Φ = ( 1
N+1
· E)N∈N0 , for E(x) > δ = M

2
diam(Ω), satisfy

Assumption 3 for δ and K′ < minN≥1(minX
1

N (N+1)
E(x) − 1

N
δ), because for

N = 0, A0(x) = E(x) > δ = K′ 0 + δ.
We consider first the case where N , the number of particles, is a fixed

natural number. This corresponds to just consider a classical Ruelle operator
(as in [PP90]). Given N ∈ N0 and some β > 0 satisfying the expression in
(2), we consider the Ruelle operator LN,β associated to a Lipschitz potential
AN , as the one given by the equation

LN,β(f)(x) :=
∑
σ(y)=x

e−β AN (y)f(y) =
∑
j∈A

e−β AN (jx)f(jx),∀x ∈ Ω. (5)

It is well known (when AN is Hölder or Lipschitz) that for each pair N, β,
there are a main eigenvalue λN,β > 0 and an eigenfunction fN,β ∈ Lip(Ω) for
the operator LN,β.

In this way, given a continuous potential AN : Ω→ R and β > 0, we can
define the dual operator L∗N,β acting on the space of the Borel finite measures,
as the operator that sends a measure v to the measure L∗N,β(v), defined by∫

ψ dL∗N,β(v) =

∫
LN,β(ψ) dv , (6)

for any continuous function ψ : Ω → R. This is well defined by Riesz
Theorem.

We denote by νN,β ∈M1(Ω) the eigenprobability of the operator L∗N,β as-
sociated to λN,β and by ρN,β ∈Mσ(Ω) the equilibrium state for the potential
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−βAN which, up to a normalization, is of has the form ρN,β = fN,β νN,β (see
[PP90] or [Lop1] for details).

Given x ∈ Ω and N ∈ N0, we define the N-canonical partition for the
iterate n ∈ N calculated at the point x ∈ Ω by

Zn
N(β)(x) := LnN,β(1 )(x) , (7)

where Ln+1
N,β (f) = LN,β(LnN,β(f)) for each n ∈ N.

The pointwise limit limn→∞
1
n

log(Zn
N(β)(x)), which is independent of x

(see next Lemma), plays here the role of the so-called configurational parti-
tion sum appearing at (1.17) on page 7 of [Nau11].

The study of the properties of an individual Transfer operator LN,β, for
N and β fixed, it is not suitable for the case where the number of particles N
ranges in the set of natural numbers (which is the goal of the next section).

The next lemma is well-known in Thermodynamical Formalism and we
will not present a proof (see [PP90]).

Lemma 4. The pointwise limit limn→∞
1
n

log(Zn
N(β)(x)) exists and it is equal

to log(λN,β). In particular, it is independent of the choice of x ∈ Ω.

We call N-Topological Pressure for β to the observable satisfying

PN(β) = P (−βAN) := lim
n→∞

1

n
log(Zn

N(β)) = log(λN,β) .

In this way, by Lemma 4 we obtain that Zn
N(β) ∼ λnN,β. Moreover, one

can show that the following expression holds true

PN(β) = P (−βAN) = sup
ρ∈Mσ(Ω)

{
h(ρ)− β

∫
AN dρ

}
, (8)

where h(ρ) is the Kolmogorov-Sinai entropy of ρ andMσ(Ω) denotes the set
of σ-invariant probabilities (for details see [PP90]).

The above computation implies that lim
N→∞

PN(β) = −∞ and lim
N→∞

λN,β =

0. Furthermore, in [PP90] (see also [GKLM18]), the authors prove that

∂

∂β
log λN,β|β=β0 =

∂

∂β
PN(β)|β=β0

=
∂

∂β
P (−βAN)|β=β0 = −

∫
ANdρN,β0 .

So, by the above formula, we get

1

λN,β0

∂λN,β
∂β
|β=β0 = −

∫
ANdρN,β0 . (9)
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On the other hand (see for instance Section 9 in [CL17]), it is also well
known that for any continuous function A : Ω→ R and each x ∈ Ω, we have

lim
n→∞

LnN,β(A)(x)

LnN,β(1 )(x)
=

∫
AdνN,β,

where νN,β is the eigenprobability for the Ruelle operator of the potential
−βAN (see [PP90]).

Above we described the classical dynamical properties of the individual
transfer operator LN,β. In the next section, we will use properties of IFS
Thermodynamical Formalism to address the analogous issue for the case of
a variable number of particles, where it is necessary to consider a countable
number of classical Ruelle operators (each one indexed by the number N of
particles). We believe the material presented on the present section will help
the reader to understand the reasoning of the next one.

3 A grand-canonical Thermodynamic Formal-

ism

Here we consider a variable number of particles. In order to do that, we con-
sider linear operators involving the new variable N (describing the number of
particles), which is defined in the following way: given a family of potentials
Φ = (AN)N∈N0 (which play the role of Hamiltonians), a chemical potential
µ < 0 and a value β > 0 satisfying the expression in (2), the grand-canonical-
Ruelle operator Lβ,µ is defined as the operator assigning to each f ∈ C(Ω)
the function

Lβ,µ(f)(x) :=
∑
N∈N0

eβ µN
∑
a∈A

e−β AN (ax)f(ax) =
∑
N∈N0

eβ µN LN,β(f)(x),

(10)
for any x ∈ Ω.

In order to get convergence in the above sum we need some hypotheses:
for fixed µ we will assume that the family of potentials AN , N ∈ N, is
admissible, that is, we assume that for any x ∈ Ω the sums∑

N∈N0

eβ nµ
∑
a∈A

e−β AN (a x) <∞.

Then, it follows for any f that

||Lβ,µ(f)||∞ ≤ ||f ||∞
∑
N∈N0

eβ nµ
∑
a∈A

e−β AN (a x) <∞.
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Once (10) is well defined, we can ask about the existence of eigenvalues,
eigenfunctions for Lβ,µ, and also holonomic probabilities for the IFS pressure.
Our main goal is to represent the operator Lβ,µ as the transfer operator
of a standard IFS with weights for which the thermodynamic formalism is
already known from the literature. One can follow two different lines of
reasoning, the first one is modeling the problem via a finite IFS with weights
(see Section 3.1). We have to show that our model fits the hypothesis of
[LO09] and [FL99]. Alternatively, one could use an infinitely countable IFS
(see Section 3.2) but it brings technical difficulties and some limitations as
will be explained.

3.1 Transferring the problem to the case of a finite IFS
with weights.

In this section, we introduce an IFS with weights in such a way that its asso-
ciated transfer operator coincides with the grand-canonical-Ruelle operator
Lβ,µ. By showing that the weights satisfy the necessary regularity conditions
we will use Fan’s Theorem (see [FL99], Theorem 1.1) to obtain a positive
eigenfunction for Lβ,µ. Note that the weights are not periodic. Once we have
this positive eigenfunction associated with the spectral radius of Lβ,µ we can
introduce the thermodynamical formalism based on holonomic measures ac-
cording to [LO09] or [CO17]. We recall the ideas of variational entropy and
topological pressure based on holonomic probabilities. Finally, we will show
that is possible to build a variational principle and show the existence of
holonomic equilibrium states.

Given r ≥ 2, consider the IFS R := (Ω, φj)j∈A where A := {1, ..., r},
φj(x) = jx is the mnemonic representation for the sequence (j, x1, x2, ...),
where x = (x1, x2, ...) ∈ Ω = AN. Of course, this IFS is contractive w.r.t.
the distance introduced in Ω. Moreover, Lip(φj) = 1

2
for all j ∈ A.

Given a family of continuous functions qj : Ω → R, j ∈ A we say that
R := (Ω, φj, qj)j∈A is an IFS with weights. In the particular case where
qj(x) ≥ 0 and

∑
j∈A qj(x) = 1, for all x ∈ Ω, it is called an IFS with

probabilities. According to [FL99], an IFS with weights where the maps are
contractions and the weights are non-negative is called a contractive system.

In this setting the transfer operator associated to R = (Ω, φj, qj)j∈A is a
map Bq : C(Ω)→ C(Ω) given by:

Bq(g)(x) :=
∑
j∈A

qj(x)g(φj(x)), ∀x ∈ Ω, (11)

for any g ∈ C(Ω).
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The next lemma shows how to pick the right weights qj in order to obtain
the equality Bq = Lβ,µ.

Lemma 5. Consider the family of potentials Φ = (AN)N∈N0 and the formal
series

qj(x) :=
∑
N∈N0

e−β[AN (jx)−µN ] > 0, j ∈ A.

a) If Φ satisfy the Assumption 2 (for K = µ) then the contractive system
R = (Ω, φj, qj)j∈A is well defined and Bq(g) = Lβ,µ(g), for any g ∈
C(Ω);

b) If Φ satisfy Assumption 1 (for M) and Assumption 3 ( for K′ > µ and
δ = M

2
diam(Ω) > 0) then each weight qj is β M

2
-Lipschitz continuous.

Proof. (a) The proof follows easily from the commutativity of the summation
in the formula for Lβ,µ if we prove that for each j ∈ A the positive series∑

N∈N0
e−β[AN (jx)−µN ] is convergent. Consider the root test:

lim sup
N→∞

N
√
e−β [AN (jx)−µ(N)] = e−β lim infN→∞[ 1

N
AN (jx)−µ] < 1

if and only if lim infN→∞
1
N
AN(x) > µ, which is the Assumption 2 for K =

µ < 0.

(b) For the second part, we notice that Assumption 3 for K′ > µ, that

is, AN(x) > K′N + δ means that lim infN→∞
AN (x)
N
≥ lim infN→∞

AN (x)
N
≥

lim infN→∞K′ + δ
N
≥ K′ > µ. Thus, from (a), qj(x) is well defined.

Consider C(x,N) := −β[AN(jx)− µN ] and compare

|qj(x)− qj(y)| ≤
∑
N∈N0

|eC(x,N) − eC(y,N)| ≤
∑
N∈N0

eξN |C(x,N)− C(y,N)|

where ξN is a point between C(x,N) and C(y,N).
On one hand

|C(x,N)− C(y,N)| ≤ β M
1

2
d(x, y)

and on the other hand

C(y,N) = −β[AN(jy)− µN ] = −β[AN(jx)− µN ]− β[AN(jy)−AN(jx)] =

= C(x,N)− β[AN(jy)− AN(jx)].

We notice that AN(jy)−AN(jx) ≥ −M 1
2
d(x, y) thus−β[AN(jy)−AN(jx)] ≤

βM 1
2
d(x, y) ≤ βM 1

2
diam(Ω). Using this inequality we get

ξN ≤ max(C(x,N), C(y,N)) ≤ C(x,N) + βM
1

2
diam(Ω)
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and
eξN ≤ eC(x,N)+βM 1

2
diam(Ω) = e−β[AN (jx)−µN ]+βM 1

2
diam(Ω) =

= e−β[AN (jx)−µN−M 1
2

diam(Ω)] < 1

because δ = M
2

diam(Ω) and, from Assumption3, AN(x) > K′N + δ > µN + δ
so AN(jx)− µN − δ > 0. We conclude that,

|qj(x)− qj(y)| ≤ β M

2
d(x, y)

that is, Lip(qj) ≤ β M
2

.

Remark 6. We notice that in the above lemma item a) the condition

lim inf
N→∞

1

N
AN(x) > µ

is only sufficient. As a matter of fact, if we assume that (AN)N∈N0, is an
increasing sequence of functions then we can use Dalembert’s convergence
test:

lim sup
N→∞

e−β[AN+1(jx)−µ(N+1)]

e−β[AN (jx)−µN ]
= lim sup

N→∞
e−β[AN+1(jx)−AN (jx)−µ] < 1,

if and only if lim supN→∞AN+1(jx) − AN(jx) − µ > 0, which is the case
because −µ > 0 and AN+1(jx) > AN(jx) by hypothesis.

Now we can state our main result in this section, the existence of a positive
eigenfunction for the grand-canonical-Ruelle operator Lβ,µ and an eigenprob-
ability for (Lβ,µ)∗. We point out that the Dini condition we get below can
be obtained because we assume both Assumption 1 and Assumption 3.

Theorem 7. ConsiderR = (Ω, φj, qj)j∈A the contractive system in Lemma 5.
If the sequence Φ = (AN)N∈N0, satisfies the Assumptions 1 (for M) and 2
(for K = µ), then there exists a unique continuous function h : Ω→ R, h > 0
and a unique probability measure ν on Ω such that

Lβ,µ(h) = λh, (Lβ,µ)∗(ν) = λν and ν(h) = 1

where λ > 0 is the spectral radius of Lβ,µ. Moreover, for any g ∈ C(Ω) the
sequence of functions λ−n(Lβ,µ)n(g) converges uniformly to ν(g)h and for any
probability measure θ the sequence λ−n(L∗β,µ)n(θ) converges weakly to θ(h)ν.
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Proof. From Lemma 5 we get Lβ,µ = Bq, thus we can derive our theorem
directly from Ruelle-Perron-Frobenius theorem for IFS (see [FL99], Theorem
1.1), by showing that log qj is Dini continuous for any j ∈ A, that is,∫ 1

0

ρ(log qj, t)

t
dt <∞, j ∈ A ,

where ρ is the modulus of continuity.
Indeed, the modulus of continuity for a function p : Ω→ R is a function

ρ(p, t) = max
d(x,y)≤t

|p(x)− p(y)|, t > 0 .

We notice that log qj(x) = log
(∑

N∈N0
e−β[AN (jx)−µN ]

)
. From Assump-

tion 1 we get supN∈N0
Lip(AN) ≤M , in particular Lip(AN(φj)) ≤ M

2
. So, we

get
[AN(jx)− µN ] = [AN(jx)− AN(jy) + AN(jy)− µN ] ≥

−M d(x, y)

2
+ [AN(jy)− µN ],

−β[AN(jx)− µN ] ≤ β
M d(x, y)

2
− β[AN(jy)− µN ],

and using the fact that the exponential is increasing, we obtain

qj(x) =
∑
N∈N0

e−β[AN (jx)−µN ] ≤ e
βM d(x,y)

2 qj(y),

log qj(x) ≤ βM d(x, y)

2
+ log qj(y),

log qj(x)− log qj(y) ≤ βM d(x, y)

2
.

Reverting the role of x and y we get

| log qj(x)− log qj(y)| ≤ βM

2
d(x, y).

Using this formula we can estimate the modulus of continuity

ρ(log qj, t) = max
d(x,y)≤t

| log qj(x)− log qj(y)| ≤ max
d(x,y)≤t

βM

2
d(x, y) ≤ βM

2
t.

Thus ∫ 1

0

ρ(log qj, t)

t
dt ≤

∫ 1

0

βM
2
t

t
dt =

βM

2
<∞.
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We recall that a contractive IFS always has attractors, that is, a unique
compact set K ⊆ Ω such that K =

⋃
j∈A φj(K). Although due to the very

particular structure of our maps φj, we obtain Ω =
⋃
j∈A φj(Ω), thus we will

ignore this feature when applying Fan’s theorem.

Now we can translate all the results from the thermodynamical formalism
for an IFS with weights R = (Ω, φj, qj)j∈A following [LO09] and its improve-
ment given in [CO17] (a different approach is given by [Mih22] considering
measures invariant w.r.t. a skew product).

The next lemma generalizes the result obtained in Lemma 4 for the setting
of grand-canonical-Ruelle operators.

Lemma 8. If the family of potentials Φ = (AN)N∈N0, satisfy the Assumptions
1 (for M) and 2 (for K = µ), then, the following limit exists

lim
n→∞

1

n
log ((Lβ,µ)n(1)(x)) = log λ , (12)

the convergence is uniform in x ∈ Ω and λ is the spectral radius of Lβ,µ
acting on C(Ω). We call (12) the log of the grand-canonical eigenvalue λ.

The expression (12) also represents the dynamical partition function and
is the dynamical analogous of the microcanonical partition function (18).

Proof. Consider R = (Ω, φj, qj)j∈A the contractive system in Lemma 5. So,
we get Lβ,µ = Bq and, thus, we can derive our theorem directly from [CO17],
Lemma 1, and from Theorem 7 who gives us a positive eigenfunction for Bq,
fwith eigenvalue λ.

Definition 9. A holonomic probability ν̂ with respect to R on Ω×AN
0 , is a

probability such that∫
Ω×AN

0

g (φw1(x)) dν̂(x,w) =

∫
Ω

g(x)dν(x),

for all g : Ω → R continuous, where ν is the projection on the first coor-
dinate of ν̂ (i.e.,

∫
g(x)dν(x) :=

∫
g(x)dν̂(x,w)). The set of all holonomic

probability measures with respect to R is denoted H(R).

Definition 10 ([LO09, CO17]). Let R = (Ω, φj)j∈A be an IFS and ν̂ ∈
H(R). The variational entropy of ν̂ is defined by

hv(ν̂) ≡ inf
g∈C+(Ω)

{∫
Ω

log
B1(g)(x)

g(x)
dν(x)

}
(13)

where B1(g)(x) =
∑

j∈A g(φj(x)).
Call such variational entropy as the grand-canonical entropy when applied

to the case we consider here.
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From [LO09], Proposition 19 (see also [CO17], Theorem 10), we know
that 0 ≤ hv(ν̂) ≤ r = ](A) for any ν̂ ∈ H(R).

Inspired by [CO17], Definition 11, we can now introduce the concept of
grand-canonical topological pressure.

Definition 11. Consider the IFS with weights R = (Ω, φj, qj)j∈A. The
grand-canonical topological pressure of Q = (qj)j∈A, is defined by the fol-
lowing expression

P (Q) := sup
ν̂∈H(R)

inf
g∈C+(Ω)

{∫
Ω

log
Lβ,µ(g)

g
dν

}
, (14)

assuming Lβ,µ = Bq.

Theorem 12. Consider (Ω, φj, qj)j∈A the contractive system in Lemma 5.
Assume that the family of potentials Φ = (AN)N∈N0, satisfy the Assumptions
1 (for M) and 2 (for K = µ) and Lβ,µ = Bq.

Denote by ψ(y) :=
∑

N∈N0
e−β[AN (y)−µN ], y ∈ Ω, the grand-canonical po-

tential. Then:

a) P (Q) = P (ψ) := sup
ν̂∈H(R)

{
hv(ν̂) +

∫
Ω

log

[∑
N∈N0

e−β[AN (y)−µN ]

]
dν(y)

}
.

b) The set of equilibrium states, that is, holonomic measures µ̂ satisfying
P (ψ) = hv(µ̂) +

∫
Ω

log(ψ) dµ, is not empty;

c) P (Q) = log(λ), where λ is the grand-canonical eigenvalue given by
Theorem 7.

Proof. a) In the general setting presented in [CO17], Definition 11, one can
consider the homogeneous case, that is, when ψ : Ω → R is a positive
continuous function and R = (Ω, φj, qj)j∈A, with qj = ψ ◦ φj for each j ∈ A.
In this case, the topological pressure of ψ is alternatively given by

P (ψ) = sup
ν̂∈H(R)

{
hv(ν̂) +

∫
Ω

logψ dν

}
.

Actually, this is the case for the weights qj obtained for a family Φ =

(AN)N∈N0 as in Lemma 5. Indeed, given qj(x) :=
∑
N∈N0

e−β[AN (jx)−µN ] > 0,

j ∈ A we can choose the function

ψ(y) :=
∑
N∈N0

e−β[AN (y)−µN ] > 0, (15)

14



which is well defined from Assumption 2. It follows immediately that qj =
(ψ ◦ φj), j ∈ A. b) We say that the holonomic measure µ̂ is an equilibrium
state for ψ if hv(µ̂) +

∫
Ω

log(ψ(x)) dµ(x) = P (ψ). From [CO17], Theorem 13,
we know that for such IFS and ψ : Ω → R a positive continuous function,
the set of equilibrium states for ψ is not empty.
c) Is a direct consequence of [LO09], Theorem 22, and Theorem 7.

The next corollary highlights the importance of the results about the
existence of an eigenfunction in our version of Ruelle’s Theorem. Under the
validity of Assumptions 1 and 3 we will show the analytic dependence of the
eigenfunction λ as a function of ψ in (15).

Corollary 13. If the family Φ = (AN)N∈N0, satisfies the Assumption 1 (for
M) and Assumption 3 (for K′ > µ and δ = M

2
diam(Ω) > 0), then, the

eigenfunction varies analytically on the grand-canonical potential ψ given
by (15). From this follows the analyticity of the pressure (and also of the
eigenvalue λ) as a function of ψ.

Proof. First note that Assumption 3, for K′ > µ and δ = M
2

diam(Ω) > 0,
implies Assumption 2 for K = µ. Then, all three assumptions are on place.

As seen in [BCLMS23, Remark 2], whose reasoning is similar to [PP90],
the positiveness of the transfer operator (and the fact that the attractor is
Ω) means that the dimension of the eigenspace associated to the spectral
radius λ is one. Also, since the weights are Lipschitz continuous according to
Lemma 5, we know from [PP90] that the essential spectrum of the operator
is contained in a disc of radius strictly smaller than λ. For a general version
of this result (which contemplates the case of the Grand-canonical potential
ψ considered by us) we refer the reader to [Henion] and [Ye]. This implies
that the main eigenvalue is isolated. Using a standard argument of complex
analysis (Cauchy’s integral formula for bounded operators on Banach spaces)
we get the analyticity (see for instance Theorem 5.1 in [Mane] or Proposition
35 and 36 in [Lop1]); the reasoning here should follow exactly the same
procedures: take a circle path around the eigenvalue on the complex plane,
etc, and we leave the details for the reader.

3.2 An alternative setting via an infinite countable IFS
with weights.

The idea in this section is to choose an infinite countable IFS with weights
whose transfer operator matches the grand-canonical-Ruelle operator Lβ,µ
(that appears in (10)), so that the thermodynamical formalism for Lβ,µ can
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be derived from the well-known thermodynamical formalism for that kind of
system, for details see [HMU02]. We have to show that our model fits the
hypothesis of [HMU02].

In this section, the emphasis will be on results for the grand-canonical-
dual-Ruelle operator L∗β,µ and not so much for the grand-canonical-Ruelle
operator Lβ,µ. We will be able to obtain the same claims as presented in
Theorem 12 but without the need to show the existence of an eigenfunction
for the operator Lβ,µ.

We start by setting up the appropriate IFS and choosing maps and
weights. After showing that the transfer operator for that IFS coincides
with Lβ,µ we prove that the IFS satisfies the regularity requirements from
[HMU02]. Finally, we introduce results on partition functions and topolog-
ical pressure characterizing the topological pressure through the eigenvalue
of the dual operator L∗β,µ. In this framework, we do not provide a version of
the Ruelle theorem for Lβ,µ because it is not known of any result about the
existence of eigenfunctions in the IFS literature, to the best of our knowledge.

To simplify the notation, we consider now the alphabet A := {0, ..., r−1}
instead of A := {1, ..., r}. In particular, Ω := AN = {0, ..., r − 1}N is our
symbolic metric space endowed with the metric

d(x, y) :=

{
2−min{n∈N:xn 6=yn}, x 6= y;
0, x = y.

Consider the countable IFS R := (Ω, φj)j∈I on I := N0, where φj(x) = (j
mod r)x is the mnemonic representation for (j mod r, x1, x2, ...) and x =
(x1, x2, ...) ∈ Ω. This IFS is obviously contractive w.r.t. the distance intro-
duced in Ω, that is, Lip(φj) = 1

2
for all j ∈ N0. Note that the sequence of

maps is formed by repetitions, φ0(x) = 0x, φ1(x) = 1x, ..., φr−1(x) = (r−1)x,
φr(x) = (r mod r)x = 0x, φr+1(x) = (r+1 mod r)x = 1x, φr+2(x) = (r+2
mod r)x = 2x, and so on.

Here we follow [HMU02], where only positive weights are allowed in the
Ruelle operator. This is achieved by considering a countable IFS with weights
R := (Ω, φj, qj)j∈N0 , whereQ := {qj : Ω→ R, j ∈ N0} is family of continuous
functions. The new transfer operator Bq : C(Ω)→ C(Ω) is given by

Bq(g)(x) =
∑
j∈N0

eqj(x)g(φj(x)),

for any g ∈ C(Ω).

Lemma 14. Suppose that Φ = (AN)N∈N0 is an admissible sequence of poten-
tials satisfying Assumption 1 (for M). Consider the function ξ : N0 → N0
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defined by

ξ(j) =
j − (j mod r)

r
.

If we choose the weights qj(x) := − β (Aξ(j)(φj(x)) − ξ(j)µ), j ∈ N0 and
construct the IFS with weights R := (Ω, φj, qj)j∈N0 then

Bq(g)(x) = Lβ,µ(g)(x)

for any g ∈ C(Ω). In particular (qj)j∈N0 is a sequence of uniformly Lipschitz
continuous functions with supj∈N0

Lip(qj) ≤ βM
2
.

Proof. The proof follows easily from a computation. In order to obtain a
representation of the operator Lβ,µ as the transfer operator of an IFS we
must find a suitable family of weights. To do that we observe that

Lβ,µ(f)(x) :=
∑
N∈N0

eβ µN
∑
j∈A

e−β AN (jx)f(jx) =

= eβ µ 0[e−β A0(0x)f(0x) + e−β A0(1x)f(1x) + · · ·+ e−β A0((r−1)x)f((r − 1)x)]+

+eβ µ 1[e−β A1(0x)f(0x)+e−β A1(1x)f(1x)+· · ·+e−β A1((r−1)x)f((r−1)x)]+· · · =

= e−β (A0(0x)−µ 0)f(0x)+e−β (A0(1x)−µ 0)f(1x)+· · ·+e−β (A0((r−1)x)−µ 0)f((r−1)x)+

+e−β (A1(0x)−µ 1)f(0x)+e−β (A1(1x)−µ 1)f(1x)+· · ·+e−β (A1((r−1)x)−µ 1)f((r−1)x)+· · · .

In the first line we replace 0x = φ0(x), 1x = φ1(x), ..., (r − 1)x = φ(r−1)(x)
and after, in the second line, we replace 0x = φr(x), 1x = φr+1(x), ...,
(r − 1)x = φ(2r−1)(x), and so on.

From this choice for the coefficients we get:

q0(x) := − β (A0(0x)− µ 0), q1(x) := − β (A0(1x)− µ 0), ...,

qr−1(x) := − β (A0((r − 1)x)− µ 0),

qr(x) := − β (A1(0x)− µ 1), qr+1(x) := − β (A1(1x)− µ 1), ...,

q2r−1(x) := − β (A1((r − 1)x)− µ 1),

q2r(x) := − β (A2(0x)− µ 2), q2r+1(x) := − β (A2(1x)− µ 2), ...,

q3r−1(x) := − β (A2((r − 1)x)− µ 2), ...

which obviously satisfy qj(x) := − β (Aξ(j)(φj(x))− ξ(j)µ), j ∈ N0, proving
our claim.
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Despite the fact that the maps φj, j ∈ N, repeat themselves periodically,
the weights do not. Thus, R = (Ω, φj, qj) is a genuine countable IFS with
weights.

To further developments we need to introduce some notation on countable
IFSs taken from [HMU02].

A word of length n in IN is an element w := (w1, ..., wn) of In := In and
σ(w) := (w2, ..., wn) ∈ In−1. Given x ∈ Ω the iterate φw(x) is the point

y := φw1(· · · (φwn(x)) ∈ Ω.

A family of continuous functions Q := {qj : Ω→ R, j ∈ I} is α-Hölder if

Vα(Q) := sup
n≥1

Vn(Q) <∞

where

Vn(Q) := sup
w∈In

sup
x 6=y
|qw1(φσ(w)(x))− qw1(φσ(w)(y))|eα(n−1).

Additionally, if Bq(1) ∈ C(Ω) then we say that the family Q is strongly
α-Hölder or, according to [ARU18], summable.

Lemma 15. Suppose that Φ = (AN)N∈N0 is a family of potentials satisfying

Assumption 1 (for M) and 3 (for K′ := log(r)
β

+ µ and δ = 0). Then, the

family Q is α-Hölder for α := log(2) and summable, that is Lβ,µ(1 ) ∈ C(Ω).

Proof. Consider w ∈ In then

|qw1(φσ(w)(x))− qw1(φσ(w)(y))| ≤ Lip(qw1)
1

2n−1
d(x, y) ≤

≤ 1

2n−1

βM

2
d(x, y) =

βM

2n
d(x, y),

because we get from Lemma 14 that sup
j∈N0

Lip(qj) ≤
βM

2
. Thus,

Vn(Q) ≤ sup
w∈In

sup
x 6=y

βM

2n
d(x, y)eα(n−1) ≤

≤ β
M

2
diam(Ω)

eα(n−1)

elog(2)(n−1)
≤ β

M

2
diam(Ω),

for α = log(2).
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To see the second part we recall that from Lemma 14 we get

Lβ,µ(1 )(x) = Bq(1 )(x) =
∑
N∈N0

∑
j∈A

e−β (AN (jx)−µN ).

Thus Lβ,µ(1 ) ∈ C(Ω) if and only if the positive series above is convergent.
The root test claims that it is sufficient to prove that

lim sup
N→∞

N

√∑
j∈A

e−β (AN (jx)−µN ) < 1.

Recall that for nonnegative real numbers t1, ...., tk we have n

√∑k
i=1 ti ≤∑k

i=1
n
√
ti, thus

lim sup
N→∞

N

√∑
j∈A

e−β (AN (jx)−µN ) ≤ lim sup
N→∞

∑
j∈A

N
√
e−β (AN (jx)−µN ) ≤

≤
∑
j∈A

elim supN→∞ (−β)( 1
N
AN (jx)−µ) <

∑
j∈A

elim supN→∞ (−β) ([
log(r)
β

+µ]−µ) = 1,

because AN(y) > N

(
log(r)

β
+ µ

)
, for any y ∈ Ω.

It follows from the above that we can apply the results from [HMU02]
regarding entropy and topological pressure for IFS.

Lemma 16. Suppose that Φ = (AN)N∈N0 is a family of potentials satisfying

Assumption 1 (for M) and Assumption 3 (for K′ := log(r)
β

+µ and δ = 0). The

number λ := L∗β,µ(νq)(1 ) is an eigenvalue of the dual operator L∗β,µ associated
to an eigenmeasure νq, that is L∗β,µ(νq) = λνq.

Proof. As Lβ,µ = Bq from Lemma 14, the result goes as follows. First we
notice that B∗q : C(Ω)∗ → C(Ω)∗ is well defined because the family Q is

summable (B∗q (ν)(1 ) <∞) and the operator ν → B∗q (ν)

B∗q (ν)(1 )
has a fixed point by

Schauder-Tychonoff’s Theorem (see [HMU02] for details). Lets say that the

probability measure νq is that fixed point, then
B∗q (νq)

B∗q (νq)(1 )
= νq or equivalently

B∗q (νq) = λνq, where λ := B∗q (νq)(1 ) ∈ R.

Remark 17. As we pointed out before a contractive countable IFS has an
attractor K ⊆ Ω satisfying K =

⋃
j∈I(K) which is not necessarily compact,

unless I is a finite set. However in our case φj(x) = (j mod r)x, j ∈ N0 is
actually a finite family and K = Ω which is compact, by construction. Thus
Lemma 2.5 from [HMU02], claiming that νq(K) = 1, says only that νq has
full support in Ω.
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Then, we define the partition function associated with the family Q, pre-
viously defined

Zn(Q) :=
∑
w∈In

‖e
∑n
j=1 qwj (φ

σj(w)
)‖0 =

∑
w∈In

esupx∈Ω

∑n
j=1 qwj (φ

σj(w)
(x)).

Since the function, log(Zn(Q)) is subadditive the topological pressure of
a α-Hölder summable family Q can be defined analogously to the classical
theory

P (Q) := lim
n→∞

1

n
log(Zn(Q)) = inf

n≥1

1

n
log(Zn(Q)). (16)

A useful result from [HMU02] is the following one.

Proposition 18 ([HMU02], Proposition 2.3). The function Q → P (Q) is
lower semicontinuous on the space of all α-Hölder summable families w.r.t.
the topology of the uniform convergence.

We also have the fundamental characterization of the eigenvalue λ =
(Lβ,µ)∗(νq)(1 ) in terms of the pressure:

Lemma 19. Suppose that Φ = (AN)N∈N0 is a family of potentials satisfying

Assumption 1 (for M) and Assumption 3 (for K′ := log(r)
β

+ µ and δ = 0).

The eigenvalue λ of the dual operator (Lβ,µ)∗ is given by

λ = eP (Q).

Proof. From [HMU02], Lemma 2.4, the eigenvalue λ of the dual operator B∗q
is given by λ = eP (Q). As Bq = Lβ,µ, from Lemma 16, the result follows.

4 Appendix - A brief account on Thermody-

namics of ideal gases

This section does not primarily have a dynamical system content; our goal
is to present a brief description of concepts and phenomena occurring in
the physical world, aimed at an audience of readers who are mathematically
oriented. Here, we are interested in physical systems which are in thermo-
dynamical equilibrium. For simplicity, we mainly consider the case of ideal
gases (i.e., systems of non-interacting point-like particles). Thermodynam-
ics is the branch of physics that organizes systematically the empirical laws
referring to the thermal behavior of the macroscopic world. It is one of our
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intentions to explain the meaning of this statement. For the mathematical
reader who tries to understand the content of some texts in Physics, an initial
difficulty is the jargon used there; all this will be translated here into a more
formal context. At the end of this Appendix, we will mention a possible
interpretation of topological pressure as related to gas pressure (see Remark
22).

Our goal is to draw a parallel between concepts of thermodynamics of
gases with similar ones in the mathematical theory of Thermodynamic For-
malism in the sense of [PP90]. We believe that this can provide an enrichment
of the class of questions that can be raised and proposed in Thermodynamic
Formalism.

4.1 The case of a definite number of particles

Consider a classical gas with N particles (initially N is fixed) at temperature
T in a region with volume V . Actually, we assume that T > 0 satisfies (2).
Denote by p the gas pressure of the system, by S the entropy, and by µ the
chemical potential. The total energy U is a function U = U(S, V,N), of the
variables S, V,N . It is important to point out that we are assuming that the
macroscopic variables T, V,N, p can be measured. In fact, the values of these
variables S, V,N , are not so important in themselves, but their variations
δS, δV, δN are.

For the benefit of the reader, we will briefly describe below some ba-
sic properties of the thermodynamics of gases (intertwined with Statistical
Mechanics). For more details see [Nau11], [Sal01], [Sch89], [Cal14], [Zu] or
Section 6 in [LR22]. In this way, we think that some of the future (and also
past) definitions that we will present here will look natural.

The fundamental relations concerning the above-described variables can
be found in (3.6) on page 42 on [Sal01]:

T =
∂U

∂S
;

p = −∂U
∂V

;

µ =
∂U

∂N
.

Another fundamental relation in thermal physics (of ideal gases) is the
following

p V = kB N T . (17)
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Recall that kB denotes the Boltzmann constant. The above equation is called
the equation of state of the ideal gas. Other kinds of systems (like interacting
gases, liquids, solids, etc.) have their own equations of state.

The above can be understood in several different ways from a physical
point of view. For instance, consider a piston at temperature T , where the
piston chamber has volume V and contains N particles. When the volume
V and the temperature T are fixed, the pressure p becomes a linear function
of the number of particles N . On the other hand, when the volume V and
the number of particles N are fixed, it follows that the pressure p is linear
with respect to the temperature T . Later, we will be interested in the case
where the number N of particles is an unknown value ranging on N0 (the
grand canonical case).

We point out that the relation (17) is valid under the quasi-static regime
(this means that the thermodynamic processes we consider are such that the
changes are slow enough for the system to remain in equilibrium).

A variable is called extensive (intensive), if it is proportional (not propor-
tional) to the volume V , like energy and number of particles (energy and par-
ticle densities). More precisely, it is important to recall that the definitions
of extensive and intensive variables make sense only in the thermodynamic
limit, i.e., extensive (intensive) variables are proportional (not proportional)
to the volume V , when V tends to infinity. For instance, if the ratio N/V
tends to some constant %, then the particle density, which is precisely %, is
an intensive quantity, whereas the number of particles N is the associated
extensive quantity. In a similar way as for intensive quantities, one also de-
fines so-called molar quantities, which are, by definition, quantities that are
proportional to the number of particles N . For instance, the total energy
per particle is a molar quantity if the ratio E/N has a limit, as N → ∞.
Frequently, the ratio N/V is set to be constant, that is, the particle density
is fixed. In this particular situation, molar and intensive quantities are, of
course, equivalent notions.

We point out that the mathematical formalism for Gas Thermodynam-
ics and Statistical Mechanics is not exactly the same, but certain general
principles are common in both theories. Particles of a gas are displayed in a
random way, as well as spins on a lattice. The randomness of the particles of
gas (for instance each position and velocity) should be described by a prob-
ability. Note that a probability (a law that is assigned to Borel sets values
in [0, 1]) is not a physical entity; it is a tool to predict (or to explain) - val-
ues that are measured in the Physics of the real world - in circumstances of
lack of complete knowledge (for a discussion relating Physics to Information
Theory see for instance [Cat08] and [Bri22]).

For practical purposes (aiming the reader familiar with probability) one
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can identify microstates with points in {1, 2, .., d}N, ensembles with prob-
abilities in {1, 2, .., d}N, and finally macrostates with continuous functions
A : {1, 2, .., d}N → R. Given a probability (an ensemble) ρ in {1, 2, .., d}N,
the value

< A >ρ=

∫
Adρ,

is considered a macroscopical quantity. Macroscopic variables are easier to
measure.

What are the probabilities (ensembles) ρ which are relevant when an iso-
lated system is governed by a certain Hamiltonian (a macrostate) A and it is
at temperature T = 1

kB β
? Typically one is interested in a minimization (or

maximization) problem-related to free energy - where an illustration of this
problem is given in (25) - (or the MaxEnt method, where an exemplification
is given in (23)), and this requires the addition of the concept of entropy (to
be introduced soon in the comments to the Second Postulate of Thermody-
namics). Equilibrium in isolated systems occur according to the principle of
entropy maximization (the Second Law of Thermodynamics).

Related to the above-mentioned variational problems, it is worthwhile to
consider the concept of canonical distribution. Given β > 0, a macrostate
A, and an a priori measure ρ on {1, 2, .., d}N, the microcanonical partition
function is

Z(β) =

∫
e−βA(x)dρ(x) <∞, (18)

and the canonical distribution µA,ρ,β is given by the law

B → µA,ρ,β(B) =

∫
B
e−βA(x)dρ(x)

Z(β)
. (19)

We call µA,ρ,β the microcanonical distribution (or else, microcanonical
ensemble) for A, β and the a priori measure ρ.

The importance of this class of probabilities is due to the fact that they
are the solutions to certain kinds of variational problems (see Remark 20)
which are related to the Second Law of Thermodynamics. Therefore, µA,ρ,β
describes an equilibrium ensemble (state).

When ρ is fixed, all these probabilities µA,ρ,β are absolutely continuous
with respect to each other.

When ρ is the counting measure on {1, 2, ..., d} and A : {1, 2, ..., d} → R,
the microcanonical partition function is

Z(β) =
∑
j

e−βA(j),
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and the canonical distribution µ = µA,β is the probability such that∫
fdµA,β =

∑
j f(j)e−βA(j)

Z(β)
. (20)

The µA,β-probability of j0 is

e−βA(j0)∑
j e
−βA(j)

. (21)

All the above does not have a dynamical content. Entering in a dynami-
cally context we can say that an equilibrium ensemble can be seen as a shift-
invariant probability on {1, 2, .., d}N. In Statistical Mechanics the dynamics
of the shift describe translation on the one-dimensional lattice.

Note that ergodic probabilities are singular with respect to each other;
therefore, the dynamical point of view presents some conceptual differences
when compared with the above.

Energy, volume and the number of particles N are called the macro-
scopic extensive parameters. The microscopical variables refer to probabili-
ties (states), and the main issue (see Remark 21) is to establish a connection
between them and the visible variables of the macroscopic world (that is,
with thermodynamics).

We observe, from a historical perspective, that initially the thermodynam-
ics of gases was developed without the knowledge that gas was constituted
by a large number of particles.

Now we will describe the postulates of equilibrium thermodynamics in a
simplified way (for more details see pages 40-41 in [Sal01] or Section 14.4
in [Bai12]). These laws describe the interplay between microscopical and
macroscopical variables. They are rules of Nature, and their validity derives
from the fact that when assuming them, the consequences that are inferred
are in accordance with the observed reality.

First Postulate: The macroscopic state is completely characterized by
the internal energy U , the volume V , and the number of particles N . The
total energy of an isolated system (for which energy and matter transfer
through the system boundary are not possible) is conserved.

Comment: In Thermodynamic Formalism, the potential A = −H, where
H plays the role of the Hamiltonian and corresponds to the concept of internal
energy. From [Cal14]: “Energy U is transferred between systems in two
forms: energy in the form of work W , and disordered energy in the form of
heat Q... Note that heat Q and work W are not themselves functions of the
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state of a system; they are measures of the amount of energy δU = δW + δQ
that is transferred between systems in different forms.”

Relations between heat Q, work W and energy U in a dynamical setting
are described in Section 7 on [LR22].

Second Postulate: There is a function of the extensive parameters
U, V,N called entropy, denoted by S = S(U, V,N), that is defined for all
states of equilibrium. If we remove an internal constraint, in the new state of
equilibrium the extensive parameters of the system assume a set of values that
maximize the entropy. The entropy, as a function of the extensive parameters,
is a fundamental equation of the system. It contains all the thermodynamic
information about this system. For isolated systems, entropy never decreases.

Comment: When considering probabilities p = (p1, p2, ..., pd) on the set
{1, 2, ..., d}, the entropy h(p) = −

∑d
j=1 log pj pj ≥ 0. The above postulate is

one of the forms of the second law of thermodynamics (see [Sch89] or Section
6 in [LR22] either), a topic which is discussed in the dynamical setting in
Sections 3 and 4 in [LR22]. This is related to the principle of maximization
of entropy when the mean energy (or other variables) is fixed (see (23) for a
particular case). Expression (87) in Section 7 in [LR22] illustrates the Max-
Ent principle in Thermodynamic Formalism. Entropy plays a fundamental
role in the search for equilibrium via the variational problem associated with
the Second Law. This makes the theoretical model in consonance with what
is physically observed.

The probability with maximal entropy can be seen as the one that contains
the maximum amount of uncertainty, or, else, contains the minimum amount
of information.

Entropy S, temperature T , and internal energy U are related via

dS

dU
=

1

T
. (22)

The corresponding expression in Thermodynamic Formalism is Proposi-
tion 42 in [LR22].

Another related version of the Second Law can be described in the following
way according to [Cal14]:

“Time does not occur as a variable in thermodynamic equations... How-
ever, we are crucially interested in the direction of time, in the sense of the
distinction between the past and the future. The second law of thermodynam-
ics says that other variables being held constant heat always flow from an
object of higher temperature to an object of lower temperature, and never the
other way around.”
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There is a discussion in the physics community if the Boltzmann’s entropy
and the Gibbs’ entropy are in fact the same (see the interesting discussion of
the subject presented in the recent book [Bri22]).

The meaning of equilibrium can be tricky: in the case of glass, recently,
researchers contradicted the flowing glass window claim, by determining that
the glass in medieval windows only succumbs to gravity, after very long geo-
logical time scales. Glass can be seen as in equilibrium, or not, depending on
the scale of time (see [Bri22] for more details).

An expression of the relation of temperature with the variation of entropy
in Thermodynamic Formalism is described in Proposition 42 in [LR22].

Third Postulate: The entropy of a composite system is additive over
each one of the individual components; the so-called extensive property of
entropy. Entropy is a continuous and monotonically increasing function of
energy.

Comment: From a dynamical point of view, the notion of entropy in
the above postulate is aimed at a system with discrete time shift-invariance
(stationary in N)). However, in Statistical Mechanics, this shift represents
rather a shift in space, typically the shift of spins in a chain. Thus, physi-
cally, entropy usually refers to translation invariant states. Hence, we can
also talk about the entropy of states out of equilibrium, which, in particular,
may depend on time t ∈ R. By contrast, usually, the Shannon-Kolmogorov
entropy is defined for invariant probabilities (stationary in N) and is a con-
cept independent on time t ∈ R. The claim about additivity over a composite
system is in the sense that the entropy associated with a system described by
two independent systems is the sum of the entropy of each component; and
this is true for such kind of entropy. The so-called non-extensive point of
view of Statistical Mechanics considers other concepts of entropy that are
not additive.

Fourth Postulate: (Nernst law) The entropy vanishes when there is
only one equilibrium state at the absolute zero of temperature.

Comment: this postulate corresponds in some sense to thermodynamic
formalism to the property that for a generic Holder potential A, the ground
state (a maximizing probability) is realized by a unique probability with sup-
port in a periodic orbit, which, of course, has zero entropy (see [Con16],
[CLT01] and [ILM18]). The Nernst Law is sometimes called the Third Law.

After the above, we believe it is appropriate now to briefly describe the
point of view of the MaxEnt Method.

Remark 20. Given A : {1, 2, ..., d} → R, and α ∈ R, the (A,α)-MaxEnt
solution is the the vector of probability p̄ = (p̄1, p̄2, ..., p̄d) maximizing
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max
p=(p1,p2,...,pd)

{−
d∑
j=1

log pj pj |
d∑
j=1

pjA(j) = α} =

max
p=(p1,p2,...,pd)

{h(p) |
d∑
j=1

pjA(j) = α}. (23)

Via Legendre transform one can show that there exists β ∈ R, such that,
p̄ = (p̄1, p̄2, ..., p̄d) also maximizes the variational problem

max
p=(p1,p2,...,pd)

{−
d∑
j=1

log pj pj + β

d∑
j=1

pjA(j)} =

max
p=(p1,p2,...,pd)

{h(p) + β
d∑
j=1

pjA(j)}.. (24)

The above is equivalent to considering the variational problem (minimiz-
ing free energy)

min
p=(p1,p2,...,pd)

{ 1

β

d∑
j=1

pj log pj +
d∑
j=1

pjA(j)} =

min
p=(p1,p2,...,pd)

{
d∑
j=1

pjA(j) − 1

β
h(p) }. (25)

Taking ρ as the counting measure in {1, 2, ..., d}, one can show (see for
instance Proposition 7.5 in [Bri22]) that the (A,α)-MaxEnt solution proba-
bility µA,α in {1, 2, ..., d} (the p̄ maximal solution of (23)) can be written on
the canonical distribution form

B ⊂ {1, 2, ..., d} → µA,α(B) =

∫
B
e−βA(x)dρ(x)∫

B
e−βA(x)dρ(x)

=

∑
j∈B e

−βA(j)pj∑d
j=1 e

−βA(j)pj
. (26)

For dynamical counterparts of the above see [LR22], [Lal87] and [CL00].

The postulates of equilibrium thermodynamics are an issue subject to
controversy. Indeed, we quote G. Gour in [Gou22].

“Thermodynamics is one of the most prevailing theories in physics with
vast applications spreading from its early days focused on steam engines to
modern applications in biochemistry, nanotechnology, and black hole physics,
just to name a few. Despite the success of this field, the foundations of
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thermodynamics remain controversial even today. Not only is there persistent
confusion over the relation between the macroscopic and microscopic laws, in
particular their reversibility and time-symmetry, there is not even a consensus
on how best to formulate the second law. Indeed, as the Nobel laureate Percy
Bridgman remarked in 1941 “there are almost as many formulations of the
Second Law as there have been discussions of it” and the situation hasn’t
improved much since then.”

Remark 21. The natural variational problem in thermodynamics corresponds
to find the state (ensemble) ρU minimizing the Helmholtz free energy (see
(3.51) page 51 in [Sal01])

F (T, V,N) := U − T S . (27)

The equilibrium probability (ensemble) ρU for the Hamiltonian U at tem-
perature T is the one minimizing the integral∫

(U − T S) dρ. (28)

For an illustration of this kind of variational problem see (25).
For T fixed (or, equivalently for β fixed), this corresponds to find ρ max-

imizing the integral of

− F
T

= −kB β F = −kB βU + S . (29)

For an illustration of this kind of variational problem see (24).

The rule of Nature determining a minimization of the expression (28) can
be seen as the connection of the microscopical variables with the macroscopic
variables. Actually, when U is the Hamiltonian, to maximize expression (29)
corresponds in Thermodynamic Formalism to maximize topological pressure
for the potential −kB βU among σ-invariant probabilities.

From the physical point of view, it is natural to introduce the chemical
potential µ and the macrostate variable N , which describes the number of
particles. The number of particles N can range in the set of natural numbers
N.

The grand-canonical thermodynamic potential (see (3.55) page 52 in [Sal01]),
is given by the expression

U(T, µ) := U − TS − µN , (30)

where µ is the chemical potential.
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In this case, the rule of Nature determines equilibrium via the minimiza-
tion of ∫

(U − TS − µN) dρ, (31)

among probabilities ρ.
Physical experiments in the laboratory indicate that in several cases the

probability that the number of particles N is large is very small; the term
−µN in the above equation is in consonance with this claim.

4.2 Grand-canonical systems - indefinite number of
particles

Now, we will outline a simplified version (suitable for us) of the main issues
on the topic of the grand-canonical partition as presented in chapter 1.6 in
[Nau11] (see also Section 8 in [Tsch]); here we consider a certain number of
indistinguishable particles N ranging in N0 = {0, 1, 2, ..., N, ...}. In dealing
with particle densities, it makes sense to consider the number of particles
(per unit volume) as being] a real non-negative number but we will avoid
this issue here (see [LW] for a more detailed account).

Given β > 0, and a sequence AN > 0, N ∈ N0, we denote

ZN(β) := e−βAN .

So, for µ < 0, the grand-canonical partition sum associated to the family
Φ = (AN)N∈N0 is

Z(β, µ) :=
∑
N∈N0

eβ N µZN(β) =
∑
N∈N0

eβ N µe−βAN . (32)

Moreover, given N ∈ N0, the probability PN,β,µ of the number of particles
to be N at temperature T = 1

kBβ
, is given by the value

PN,β,µ :=
eβ N µe−βAN

Z(β, µ)
. (33)

Compare (33) with (21).

Besides that, important information is given by the partial derivatives

∂

∂β
log(Z(β, µ))|β=β0 = µ

∑
N∈N0

N
eβ0 N µe−β0AN

Z(β0, µ)
−
∑
N∈N0

AN
eβ0 N µe−β0AN

Z(β0, µ)
=
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µ
∑
N∈N0

< N >PN,β0,µ
−
∑
N∈N0

< AN >PN,β0,µ
. (34)

and

∂

∂µ
log(Z(β, µ))|µ=µ0 = β

∑
N∈N0

N
eβ N µ0e−βAN

Z(β, µ0)
= β

∑
N∈N0

< N >PN,β,µ0
.

(35)
The two above expressions are analogous to the ones appearing in equa-

tions (1.37) and (1.38) in [Nau11].

Now, we want to trace a parallel with the case of finite particles (com-
paring with (20) etc,...)

Given β,A : {1, 2, ..., d} → R, the microcanonical partition function (see
(20)) is

Z(β) =
d∑
j=1

e−βA(j). (36)

As we mentioned before, the canonical distribution µcan = µcanA,β is the
probability Q such that

j0 → Q(j0) = µcan(j0) =
e−βA(j0)∑d
j=1 e

−βA(j)
=
e−βA(j0)

Z(β)
. (37)

Now we present the dynamical version of (20) and (37): given a Lipschitz
function f : Ω→ R, and x0 ∈ Ω, denote

λ = eP (−βA).

It is known (see [PP90]) that

lim
n→∞

Ln−βA(f)(x0)

λn
= ϕ(x0)

∫
fdν,

where ϕ is the eigenfunction and ν the eigenprobability of the Ruelle operator
L−βA.

Then, the Z(β) in expression (20) correspond here to λ = eP (−βA).
In our setting it is natural to denote Z(β) := eP (−βA).
Then, P (β) := logZ(β) (see also(42)) ⇔ Topological Pressure P (−βA).
We believe we made more clear to the reader the relationship between

the corresponding concepts under the two possible settings (more details in
Remark 22).
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In the case of the statistics of a countable number of particles, it is a dif-
ferent setting: we consider a number of indistinguishable particles N ranging
in N0.

Remember that µ < 0 is called the chemical potential. Therefore, it is
natural in our dynamical setting to adapt the reasoning which derived (20).

Given β > 0, µ < 0 and a sequence AN ≥ 0, N ∈ N0, the grand-canonical
partition sum (compare with (36)) is

Z(β, µ) :=
∑
N∈N0

eβ N µe−βAN . (38)

An example: if each particle has energy E > 0, then, take AN = N E.

Moreover, given N ∈ N0, the probability PN,β,µ of the number of particles
to be N at temperature T = 1

kBβ
, is (see (33))

PN,β,µ :=
eβ N µe−βAN

Z(β, µ)
(compare with (37)µcan(j0) =

e−βA(j0)

Z(β)
). (39)

In consonance with (12) and (20) we call

P (β, µ) = logZ(β, µ)) (40)

grand-canonical asymptotic pressure.

Remark 22. Fixing the volume V , the chemical potential µ, the temperature
T , and the grand-canonical pressure, we get that the grand-canonical gas
pressure p satisfies (see page 12 in [Nau11]).

p :=
kB T P (β, µ)

V
(compare with (17) p =

kB T N

V
). (41)

If V and T are fixed, then p is linear on P (β, µ), or considering the case
of the statistics of just one particle, µ = 0, V = 1 and T = 1, we get

p ∼ kBP (β, µ) ∼ kBP (β). (42)

In this way, the origin of the terminology topological pressure can be seen
as related in some way to the pressure of a gas.
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