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Abstract

We investigate the large deviations properties for centered stationary AR(1) and MA(1) processes

with independent Gaussian innovations, by giving the explicit bivariate rate functions for the sequence

of two-dimensional random vectors (Sn)n∈N =
(
n−1(

∑n
k=1 Xk,

∑n
k=1 X

2
k)
)
n∈N. Via the Contraction

Principle, we provide the explicit rate functions for the sample mean and the sample second moment.

In the AR(1) case, we also give the explicit rate function for the sequence of two-dimensional random

vectors (Wn)n⩾2 =
(
n−1(

∑n
k=1 X

2
k ,
∑n

k=2 XkXk−1)
)
n⩾2

, but we obtain an analytic rate function

that gives different values for the upper and lower bounds, depending on the evaluated set and its

intersection with the respective set of exposed points. A careful analysis of the properties of a certain

family of Toeplitz matrices is necessary. The large deviations properties of three particular sequences

of one-dimensional random variables will follow after we show how to apply a weaker version of the

Contraction Principle for our setting, providing new proofs for two already known results on the

explicit deviation function for the sample second moment and Yule-Walker estimators. We exhibit

the properties of the large deviations of the first-order empirical autocovariance, its explicit deviation

function and this is also a new result.

Keywords: Autoregressive Processes; Empirical Autocovariance; Large Deviations; Moving Average

Processes; Sample Moments; Toeplitz matrices; Yule-Walker Estimator.
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1 Introduction

Since the first establishment of the Large Deviations theory, there has been a great expansion of the

number of surveys on Large Deviations Principles (LDP). Nowadays, a variety of examples applied to

the time series analysis and stochastic processes are available; for instance, LDPs for stable laws (see,

e.g., Heyde [25], Rozovskii [38, 39], and Zaigraev [43]), stationary Gaussian processes (see, e.g., Bercu et

al. [4, 5], Bryc and Dembo [10], Donsker and Varadhan [18], and Zani [44]), autoregressive and moving

1maiconkarling@gmail.com
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3silviarc.lopes@gmail.com (Corresponding author)
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average processes (see, e.g., Bercu [3], Bryc and Smolenski [11], Burton and Dehling [13], Djellout and

Guillin [17], Macci and Trapani [30], Mas and Menneteau [32], Miao [34], and Wu [42]) and continuous

processes (see, e.g., Bercu and Richou [6, 7]).

When considering the empirical autocovariance function

γ̃n(h) =
1

n

n∑
k=h+1

XkXk−h, for 0 ⩽ h < n,

of a centered process (Xj)j∈N at 0, based on a sample of size n ∈ N, few results on LDP are known.

Regarding Gaussian distributions, one of the first studies in the literature is the one from Bryc and

Smolenski [11], concerning the LDP for the sample second moment

γ̃n(0) =
1

n

n∑
k=1

X2
k . (1.1)

Bryc and Dembo [10] showed that, for a fixed lag l ⩾ 1, the LDP for the vector (γ̃n(0), . . . , γ̃n(l)) is

available when (Xj)j∈N is an independent and identically distributed (i.i.d.) process, with Xj ∼ N (0, 1).

It is well known that most of the relevant stochastic processes are not independent and, as the authors

have claimed, their approach needs some adjustments when trying to show that a similar LDP works, for

instance, when dealing with the classical centered stationary Gaussian AR(1) process (Bryc and Dembo

[10], example 1).

At the same time, Bercu et al. [5] proved the LDP for Toeplitz quadratic forms of centered stationary

Gaussian processes in a univariate setting. Their survey eliminated the need for the variables of (Xj)j∈N

to be independent, extending the result in Bryc and Dembo [10] by including the AR(1) process. However,

it is not clear if the LDP is available even for the bivariate random vector (γ̃n(0), γ̃n(1)), once it has only

been proved for each one of the components separately. More precisely, the results in Bercu et al. [5] only

cover the LDP of the sequence of random variables

Wn =
1

n
X(n)∗Mn X

(n),

where X(n) = (X1, . . . , Xn) is the column vector with components X1, . . . , Xn, (Mn)n∈N is a sequence of

n× n Hermitian matrices, and X(n)∗ denotes the conjugate transpose of X(n).

In a more general setting, Carmona et al. [14] present a level-1 LDP for the empirical autocovariance

function of order h for any innovation processes, that encompasses the AR(d) process with Gaussian

innovations. In this paper, the authors used the level-2 LDP together with the Contraction Principle.

The process itself is obtained from iterations of a continuous uniquely ergodic transformation, preserving

the Lebesgue measure on the circle. In Carmona and Lopes [15], the authors considered a similar problem

where the dynamics are given by an expanding transformation on the circle. In the same line of research,

Wu [42] proved the LDP for (γ̃n(0), . . . , γ̃n(l)) under the assumption that E(exp(λε2n)) is finite, for λ > 0,

where (εj)j∈N is the white noise of an AR(d) process, excluding in turn the Gaussian case.

In this work, we shall consider (Xj)j∈N as the centered stationary Gaussian AR(1) process defined by

the equation

Xj+1 = ϕXj + εj+1, for |ϕ| < 1 and j ∈ N, (1.2)
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with the additional assumptions that:

� (εj)j⩾2 is a sequence of i.i.d. random variables, with εj ∼ N (0, 1), for j ⩾ 2;

� Xk is independent of (εj)j⩾k+1, for any k ∈ N;

� X1 ∼ N (0, 1/(1− ϕ2)).

Thus, (Xj)j∈N has a (positive) spectral density function given by (see Brockwell and Davis [9])

gϕ(ω) =
1

1 + ϕ2 − 2ϕ cos(ω)
, ω ∈ T = [−π, π). (1.3)

Our main goal is to extend the results of Bercu et al. [5] and Bryc and Dembo [10] in the bivariate case.

More specifically, we investigate the large deviations properties associated with (Wn)n⩾2, where

Wn = (γ̃n(0), γ̃n(1)) =
1

n

(
n∑

k=1

X2
k ,

n∑
k=2

XkXk−1

)
, for n ⩾ 2, (1.4)

and its explicit bivariate rate function is presented. The asymptotical behavior of (Wn)n⩾2 is well known,

that is

Wn
n→+∞−−−−−→

(
1

1− ϕ2
,

ϕ

1− ϕ2

)
, almost surely,

By definition of almost sure convergence, as n → +∞, the sequence of probabilities

P
( ∣∣∣∣∣∣∣∣Wn −

(
1

1− ϕ2
,

ϕ

1− ϕ2

)∣∣∣∣∣∣∣∣ > δ

)
(1.5)

converges to zero, for all δ > 0. However, if this convergence is very slow, even for large n, we have a

certain reasonable chance of choosing a bad sample X1, . . . , Xn from (Xj)j∈N, such that Wn is distant

from the true value
(

1
1−ϕ2 ,

ϕ
1−ϕ2

)
.

The Large Deviations theory considers the asymptotic behavior of the probabilities presented in (1.5),

ensuring that they converge to zero approximately at an exponential rate (see Bucklew [12], chapter 1).

The use of LDP is also a natural tool for the study of statistical properties related to risk (see, for

instance, Ferreira et al. [21]). A classical definition of the Large Deviation Principle is given as follows

(see Dembo and Zeitouni [16]).

Extending LDP properties from the univariate to the bivariate case is not simple. We believe this will

be transparent to the reader in what will be done next.

Definition 1.1. A sequence of random vectors (V n)n∈N in Rd, for d ∈ N, satisfies a Large Deviation

Principle (LDP) with speed n and rate function J(·), if J(·) : Rd → [0,+∞] is a lower semi-continuous

function such that,

� Upper bound: for any closed set F ⊂ Rd,

lim sup
n→+∞

1

n
logP (V n ∈ F ) ⩽ − inf

x∈F
J(x); (1.6)
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� Lower bound: for any open set G ⊂ Rd,

− inf
x∈G

J(x) ⩽ lim inf
n→+∞

1

n
logP (V n ∈ G) . (1.7)

Moreover, J(·) is said to be a good rate function if its level sets J−1([0, b]) are compact, for all b ∈ R.

Remark 1. 1. In this work, we only deal with good rate functions, but in short, we sometimes write

rate function instead.

2. The infimum over the empty set is taken to be +∞, while the supremum is taken to be −∞, the

latter being of particular interest when the Fenchel-Legendre transform is considered in Section 2.2.

3. In our setting, the large deviation version as described by Definition 1.1, for the deviation rate

function J(·), is not suitable. In the reasoning that we follow to obtain our main result (see

Theorem 2.1), we will be able to prove a version of the large deviation which is different from the

one described in Definition 1.1. Among other things, we present an explicit expression for the rate

function that depends on two functions J1(·), J2(·), given in (2.17) and (2.18), respectively (see

Proposition 2.2). Besides that, a detailed analysis of when a certain family of Toeplitz matrices is

positive definite will be necessary (see Section 2.1). We will also have to consider in Section 2.3

the concepts of steep function, exposed points, exposed hyperplane, and the Gärtner-Ellis’ theorem

(Dembo and Zeitouni [16], theorem 2.3.6). We show that there are sets such that the upper bound

is different from the lower bound in the LDP estimate (see Example 2.2). More precisely, while

the upper bound holds as in (1.6), the lower bound is given by the infimum over the intersection

of any given open set G under consideration and the set of exposed points defined by (2.23), thus

generating different upper and lower bounds in some cases.

In general, it is not easy to prove that an arbitrary sequence of random vectors satisfies the LDP stated

in Definition 1.1 (see, e.g., Bercu and Richou [7], Bryc and Dembo [10], Dembo and Zeitouni [16], Ellis

[19], Macci and Trapani [30], and Mas and Menneteau [32]). An elegant way of proving such a principle is

to verify the validity of the Gärtner-Ellis’ theorem’s conditions, as little use of the dependency structure

is made and the focus mainly rests on the behavior of the limiting cumulant generating function, defined

by

L(λ) = lim
n→+∞

Ln(λ), for all λ ∈ R2, (1.8)

where Ln(·) : R2 → R ∪ {+∞} denotes the normalized cumulant generating function of Wn,

Ln(λ) =
1

n
logE [exp (n⟨λ,Wn⟩)] .

We shall present an explicit expression for Ln(·) and L(·) in the case λ = (λ1, λ2) depends on two

variables (the bivariate case). Subsequently, we obtain the explicit rate function through the Fenchel-

Legendre transform of L(·) in Section 2.

As a second and distinguished part of our study, we analyze the LDP of the sequence of bivariate

random vectors (Sn)n∈N, where

Sn =
1

n

(
n∑

k=1

Xk,

n∑
k=1

X2
k

)
.
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We call Sn the S2-mean since its first and second components are the sample mean and the sample

second moment. We dedicate our efforts to the particular cases when (Xj)j∈N is an AR(1) or an MA(1)

process. This study is based on a particular result presented in Bryc and Dembo [10] and which has a

very interesting application when the Contraction Principle can be applied.

Our study is organized as follows. Section 2 is dedicated to the analysis of the large deviations

properties and computations of the explicit rate function for the random sequence (Wn)n⩾2, under the

assumption that (Xj)j∈N follows a centered stationary AR(1) process with Gaussian innovations. In

Section 3, we obtain the rate functions for some particular cases, namely, the sample second moment, the

first-order empirical autocovariance, and the Yule-Walker estimator of this process. As an independent

analysis of the studies in Sections 2 and 3, we dedicate Section 4 to show that the LDP for the S2-mean

of the AR(1) process is available. Next, we give the details of the LDP for the sample second moment

of an MA(1) process and, as a consequence, the LDP for its S2-mean. The proofs of some of our main

results are given in Section 5. Section 6 concludes the manuscript.

2 LDP and the centered stationary Gaussian AR(1) process

The purpose of this section is to study the large deviation properties of the sequence (Wn)n⩾2

introduced in (1.4). First, we explicitly express this sequence’s normalized cumulant generating function.

Next, we compute the Fenchel-Legendre transform of the limiting cumulant generating function. Finally,

as an extension of this reasoning, we recall the Gärtner-Ellis’s theorem and show how it can be used to

give a lower and upper bound for the sequence of probabilities in (1.5), with the rate function given by

the Fenchel-Legendre transform of the limiting cumulant generating function associated to (Wn)n⩾2.

2.1 Analysis of the normalized cumulant generating function

Consider λ = (λ1, λ2) ∈ R2. Let Ln(·, ·) : R2 → R represent the normalized cumulant generating

function associated to the sequence (Wn)n⩾2, given by

Ln(λ1, λ2) =
1

n
logE

(
en⟨(λ1,λ2),Wn⟩

)
, for n ⩾ 2, (2.1)

where ⟨(x1, y1), (x2, y2)⟩ := x1x2 + y1y2 denotes the usual inner product in R2. If Xn := (X1, . . . , Xn) ∈
Rn and X⊤

n ∈ R1×n denotes the transpose of Xn, then one can rewrite (1.4) as

Wn =
1

n

(
X⊤

n Tn(φ1)Xn, X⊤
n Tn(φ2)Xn

)
, (2.2)

where φ1 : T → {1} and φ2 : T → [−1, 1] are the real-valued functions given, respectively, by

φ1(ω) = 1 and φ2(ω) = cos(ω).

Here Tn(φ) represents the Toeplitz matrix associated to a function φ : T → R, defined by

Tn(φ) =

[
1

2π

∫
T
ei (j−k)ωφ(ω) dω

]
1⩽j,k⩽n

.
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Remark 2. A vast literature comprehending Toeplitz matrices has emerged in the last century and one

of the most famous and referenced works is given by Grenander and Szegö [24]. A modern treatment of

this subject can be found in the works by Gray [23] and Nikolski [35].

Inserting (2.2) into (2.1) and using the linearity property of Toeplitz matrices we get

Ln(λ1, λ2) =
1

n
logE

(
eX

⊤
n Tn(φλ)Xn

)
, (2.3)

where φλ : T → R is defined by

φλ(ω) = λ1φ1(ω) + λ2φ2(ω) = λ1 + λ2 cos(ω). (2.4)

Observe that φλ(·) depends on the choice of λ = (λ1, λ2) and that

Tn(φλ) =
1

2



2λ1 λ2 0 0 · · · 0

λ2 2λ1 λ2 0
. . .

...

0 λ2 2λ1 λ2
. . . 0

0 0 λ2
. . .

. . . 0
...

. . .
. . .

. . . 2λ1 λ2

0 · · · 0 0 λ2 2λ1


.

The fact that Xn has a multivariate Gaussian distribution gives us some advantage here. A known

result from Probability theory (Bickel and Doksum [8], section B.6) shows that there is always a standard

multivariate Gaussian random vector Y n = (Yn,1, . . . , Yn,n) with independent components, such that

Xn = Tn(gϕ)
1/2 Y n, (2.5)

where gϕ(·) is given in (1.3) and Tn(gϕ)
1/2 is the square root matrix of Tn(gϕ). We also note that

(Tj(gϕ))j∈N is the sequence of autocovariance matrices associated to the process (Xj)j∈N and, since

Tj(gϕ) is a positive definite matrix for each j ∈ N, the sequence of square-root matrices (Tj(gϕ)
1/2)j∈N is

well defined. Additionally, from (2.5) we obtain

X⊤
n Tn(φλ)Xn = Y ⊤

n Tn(gϕ)
1/2 Tn(φλ)Tn(gϕ)

1/2 Y n. (2.6)

Let (αλ
n,k)

n
k=1, with αλ

n,1 ⩽ · · · ⩽ αλ
n,n, denote the eigenvalues of Tn(gϕ)

1/2 Tn(φλ)Tn(gϕ)
1/2. Since

this matrix is real and symmetric, there exists a sequence of orthogonal matrices (Pj)j∈N such that

Tn(gϕ)
1/2 Tn(φλ)Tn(gϕ)

1/2 = Pn Λn P
⊤
n , (2.7)

with Λn denoting the n × n diagonal matrix Diag(αλ
n,1, . . . , α

λ
n,n). Therefore, from (2.6) and (2.7) we

obtain

Y ⊤
n Tn(gϕ)

1/2 Tn(φλ)Tn(gϕ)
1/2 Y n = Y ⊤

n Pn Λn P
⊤
n Y n. (2.8)

As Pn is orthogonal, the product P⊤
n Y n has a multivariate Gaussian distribution with independent

components. Hence, from (2.6) and (2.8) it follows that

X⊤
n Tn(φλ)Xn =

n∑
k=1

αλ
n,kZn,k, (2.9)
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where Zn,1, . . . , Zn,n are i.i.d. random variables, each one having a χ2
1 distribution with moment generating

function given by

MZn,k
(t) = E(etZn,k) =

(1− 2t)−1/2, t < 1
2 ,

+∞, t ⩾ 1
2 ,

(2.10)

for k = 1, . . . , n.

Returning to the analysis of (2.3) and considering (2.9), as Z1,n, . . . , Zn,n are mutually independent,

we conclude that

Ln(λ1, λ2) =
1

n
logE

(
e
∑n

k=1 αλ
n,kZn,k

)
=

1

n
log

(
n∏

k=1

E
(
eα

λ
n,kZn,k

))
. (2.11)

From (2.10), we observe that E
(
eα

λ
n,kZn,k

)
is only defined if each one of the αλ

n,k < 1/2. In other words,

(2.11) is finite if

0 < 1− 2αλ
n,k, for all k such that 1 ⩽ k ⩽ n. (2.12)

Note that, (2.12) is equivalent to requiring that In−2Tn(gϕ)
1/2 Tn(φλ)Tn(gϕ)

1/2 must be positive definite,

where In represents the n× n identity matrix. Since Tn(gϕ) is positive definite and

In − 2Tn(gϕ)
1/2 Tn(φλ)Tn(gϕ)

1/2 = Tn(gϕ)
1/2 (T−1

n (gϕ)− 2Tn(φλ)) Tn(gϕ)
1/2,

it is sufficient to show that (Horn and Johnson [26], section 7)

Dn,λ = T−1
n (gϕ)− 2Tn(φλ) =



r1 q 0 · · · 0

q p
. . .

. . .
...

0
. . .

. . .
. . . 0

...
. . .

. . . p q

0 · · · 0 q r1


(2.13)

is positive definite, where r1 = 1− 2λ1, p = 1 + ϕ2 − 2λ1 and q = −ϕ− λ2. The domain D ⊆ R2, where

Dn,λ (and so In − 2Tn(gϕ)
1/2 Tn(φλ)Tn(gϕ)

1/2) is positive definite, is given in the following lemma.

Lemma 2.1. Given |ϕ| < 1, consider λ = (λ1, λ2), the matrix Dn,λ in (2.13), and the two sets

D1 =

{
(λ1, λ2) ∈ R2

∣∣λ1 <
1− ϕ2

2
, 4(ϕ+ λ2)

2 ⩽ (1 + ϕ2 − 2λ1)
2

}
,

D2 =

{
(λ1, λ2) ∈ R2

∣∣ 1− ϕ2

2
⩽ λ1 <

1

2
, (ϕ+ λ2)

2 < ϕ2(1− 2λ1)

}
.

(2.14)

If λ ∈ D1, then Dn,λ is positive definite for all n ⩾ 2. Additionally, if λ ∈ D2, then there exists N

(dependent on λ1 and λ2) such that Dn,λ is positive definite for all n ⩾ N . Otherwise, Dn,λ has at least

one non-positive eigenvalue for all n ∈ N, so that it is not positive definite.

Proof. See Subsection 5.1.
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λ1 < 1

2
1 -ϕ2

4 (ϕ+ λ2)2 ≤ 1 +ϕ2 -2 λ12

-3 -2 -1 0 1 2 3

-4

-3

-2

-1

0

1

2

3

λ1

λ2

1

2
1 -ϕ2 ≤ λ1 < 1

2

(ϕ+ λ2)2 < ϕ2 (1 -2 λ1)

-3 -2 -1 0 1 2 3

-4

-3

-2

-1

0

1

2

3

λ1

λ2

-3 -2 -1 0 1 2 3

-4

-3

-2

-1

0

1

2

3

λ1

λ2

Figure 2.1: Regions D1 (left-hand side panel), D2 (middle side panel) and D = D1 ∪D2 (right-hand side

panel), for D1 and D2 defined in (2.14) in the particular case when ϕ = 0.5. In the third draw, we plotted

the lines λ2 = −ϕ± (1+ϕ2−2λ1)/2, for λ1 < (1−ϕ2)/2 in thick green color to illustrate that this border

belongs to the set D, whereas the curve (ϕ + λ2)
2 = ϕ2(1 − 2λ1), for

1−ϕ2

2 ⩽ λ1 ⩽ 1
2 , is plotted in red

color to indicate that it does not make part of the set D.

To illustrate the domains presented in (2.14) in a particular case, Figure 2.1 shows the graphs of D1, D2

and D = D1 ∪D2 when ϕ = 0.5. In the left-hand side panel, the rectangular region represents the points

for which λ1 < 1−ϕ2

2 , the triangular region represents the points for which 4(ϕ+ λ2)
2 ⩽ (1 + ϕ2 − 2λ1)

2,

and D1 is, therefore, the intersection between these two regions; a similar representation for D2 is given

on the middle side panel, where this set is represented by the intersection between the interior of the

parabola and the rectangular region. The union D = D1 ∪ D2 is plotted in the right-hand side panel.

Notice that the origin (0, 0) is an interior point of D.

The knowledge of the domain on which the matrix Dn,λ is positive definite allows us to continue our

reasoning in the direction of obtaining the explicit expression of Ln(·, ·) and its limiting function when

n → +∞. We note that on the boundary of D, Dn,λ can be either positive definite or non-negative

definite (in the presence of null eigenvalues, which contradicts (2.12)). As the behavior of the limiting

cumulant generating function over the boundary of D does not affect the large deviations properties, we

shall not go into too much detail, but to whom it may concern, a similar discussion when the centered

stationary Gaussian MA(1) process is under consideration is presented in Karling et al. [28].

Even though representing a particular degenerate case, it is important to note the following: if ϕ = 0,

the process (Xj)j∈N in (1.2) reduces itself to an i.i.d. sequence of random variables with standard Gaussian

distribution, and it is shown in Bryc and Dembo [10] (pg. 330) that

lim
n→+∞

Ln(λ1, λ2) =

− 1
2 log

(
1−2λ1+

√
(1−2λ1)2−4λ2

2

2

)
, if λ1 < 1

2 and 4λ2
2 ⩽ (1− 2λ1)

2,

+∞, otherwise.

We obtain the following lemma when ϕ ̸= 0, which is a more interesting case.
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Lemma 2.2. Given 0 < |ϕ| < 1, let Ln(·, ·) denote the normalized cumulant generating function associ-

ated to (Wn)n⩾2 and D be the set given in Lemma 2.1, then

lim
n→+∞

Ln(λ1, λ2) = L(λ1, λ2),

where L : R2 → R ∪ {+∞} is defined by

L(λ1, λ2) =

−1

2
log(Φ(λ1, λ2, ϕ)), if (λ1, λ2) ∈ D,

+∞, if (λ1, λ2) ∈ R2 \ D,
(2.15)

with

Φ(λ1, λ2, ϕ) =
1 + ϕ2 − 2λ1 +

√
(1 + ϕ2 − 2λ1)2 − 4(ϕ+ λ2)2

2
.

Proof. See Subsection 5.2.

2.2 Rate function associated to the random sequence (Wn)n⩾2

Given 0 < |ϕ| < 1, consider the curve

Cϕ = {(x, y) ∈ R2 : |y| < x , y2ϕ2 = x(xϕ2 − 1)} (2.16)

and the sets

Aϕ = {(x, y) ∈ R2 : |y| < x , y2ϕ2 ⩾ x(xϕ2 − 1)}

and

Bϕ = {(x, y) ∈ R2 : |y| < x , y2ϕ2 ⩽ x(xϕ2 − 1)}.

Then, Cϕ = Aϕ ∩ Bϕ.

Let us define

J1(x, y) =
1

2

[
x(1 + ϕ2)− 1− 2yϕ+ log

(
x

x2 − y2

)]
, for (x, y) ∈ Aϕ, (2.17)

and J2(x, y) =
(ϕy − x)2

2x
+ log |ϕ|, for (x, y) ∈ Bϕ. (2.18)

The values of J1(x, y) converge to +∞ as (x, y) converges to the set {(x, y) ∈ R2 : x ⩾ 0, |y| = x},
which is the external boundary of Aϕ (see Figure 2.2). The next proposition expresses three remarkable

properties of these two functions, showing that they are convex and that they match continuously and in

a differentiable way over the curve Cϕ.

Proposition 2.1. Consider the functions J1(·, ·) and J2(·, ·) given, respectively, by (2.17) and (2.18).

Then,
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1. J1(·, ·) and J2(·, ·) match in a continuous way at Cϕ;

2. the gradients of J1(·, ·) and J2(·, ·) match at Cϕ;

3. J1(·, ·) is a strictly convex function, whereas J2(·, ·) is just a convex function.

Proof. See Subsection 5.3.

Remark 3. Note that, the restriction |y| < x in the next expression (2.19) implies that 0 < x. These

two restrictions are related, respectively, to the almost sure inequalities |
∑n

k=2 XkXk−1| <
∑n

k=1 X
2
k and

0 <
∑n

k=1 X
2
k (see, e.g., McLeod and Jiménez [33]).

Proposition 2.2. Given 0 < |ϕ| < 1, the extended real function J(·, ·) : R2 → R ∪ {+∞}, defined by

J(x, y) =


J1(x, y) =

1
2

[
x(1 + ϕ2)− 1− 2yϕ+ log

(
x

x2−y2

)]
, if (x, y) ∈ Aϕ,

J2(x, y) =
(ϕy − x)2

2x
+ log |ϕ|, if (x, y) ∈ Bϕ,

+∞, otherwise,

(2.19)

is the explicit Fenchel-Legendre transform of L(·, ·), given in expression (2.15).

Proof. See Subsection 5.4.

A graph of the function J(·, ·), in (2.19), is shown in Figure 2.2 when ϕ = 0.8. Since L(·, ·) is a convex

function, J(·, ·) must also be a convex function (Ellis [19], section VI.5). In the following subsection, we

show that J(·, ·) is related to the large deviations properties associated to the sequence (Wn)n⩾2, defined

in (1.4), and that it is a good rate function.

2.3 The Gärtner-Ellis’ theorem and LDP for (Wn)n∈N

Two main conditions must be satisfied to apply the general version of the Gärtner-Ellis’ theorem

described by Dembo and Zeitouni [16] on pages 43-44.

� Condition A: for each (λ1, λ2) ∈ R2, the limiting cumulant generating function L(·, ·), defined as

the limit in (1.8), exists as an extended real number. Moreover, if

DL =
{
(λ1, λ2) ∈ R2 |L(λ1, λ2) < +∞

}
denotes the effective domain of L(·, ·), the origin must belong to D◦

L (the interior of DL).

� Condition B: L(·, ·) is lower semicontinuous and an essentially smooth function, that is,

1. D◦
L is non-empty;

2. L(·, ·) is differentiable throughout D◦
L;
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x > y∧y2 ϕ2 ≥ x xϕ2 - 1

x > y∧y2 ϕ2 ≤ x xϕ2 - 1

0 1 2 3 4 5 6

-6

-4

-2

0

2

4

6

x

y

Figure 2.2: The two left-hand side panels show the graph of the function J(x, y), given in (2.19), from

two different points of view, with ϕ = 0.8, x ∈ (0, 6] and y ∈ [−6, 6]. The white line represents the curve

C0.8, defined in (2.16), where the domains of the two functions J1(·, ·) and J2(·, ·) intersect, changing

roles in the definition of J(·, ·). Notice that, J1(·, ·) converges to +∞ as (x, y) approaches the curves

{(x, y) ∈ R2 : x ⩾ 0, |y| = x}; this behavior is inherited by J(·, ·). The right-hand side panel displays the

domains Aϕ (in blue color) and Bϕ (in orange color).

3. L(·, ·) is steep, i.e., limn→+∞ ||∇L(λ1,n, λ2,n)|| = +∞ in the case (λ1,n, λ2,n)n∈N is a sequence

in D◦
L converging to a boundary point of D◦

L, where ||(x, y)|| =
√
x2 + y2 denotes the usual

Euclidean norm in R2.

Let L(·, ·) denote the function in (2.15) and D the domain defined in Lemma 2.1. The effective domain

of L(·, ·) is given by the set D, i.e., DL = D. Furthermore, if (λ1, λ2) = (0, 0), then

0 < (1− ϕ2)2 ⇒ 0 < 1− 2ϕ2 + ϕ4 ⇒ 4ϕ2 < (1 + ϕ2)2

and, since |ϕ| < 1, it follows that 0 < 1−ϕ2

2 . Whence, the origin (0, 0) ∈ R2 belongs to the interior of D1

and, consequently, to D as well, proving that Condition A above is fulfilled.

If ϕ = 0, then L(·, ·) is lower semicontinuous and an essentially smooth function (see section 3.6 of

Bryc and Dembo [10]), so that Condition B is verified and the Gärtner-Ellis’ theorem is fully applicable.

However, when ϕ ̸= 0, the sequence {(λ1,n, λ2,n) = ( 2
n−1
2n+1 ,−ϕ), n ⩾ 1} ⊂ D◦

2 is such that (λ1,n, λ2,n) →
(1/2,−ϕ) /∈ D, but limn→+∞ || ▽ L(λ1,n, λ2,n)|| = ϕ−2 < +∞. Therefore, although Conditions B.1 and

B.2 are true, Condition B.3 is not, implying that L(·, ·) is not essentially smooth. By a similar argument,

L(·, ·) is not lower semicontinuous. Since L(·, ·) does not satisfy the Condition B above when ϕ ̸= 0, we

will be able to show only a weaker LDP version of the Gärtner-Ellis’ theorem.

Definition 2.1. The point (a, b) ∈ R2 is an exposed point of J(·, ·) if, for some z ∈ R2 and all (x, y) ̸=
(a, b),

⟨z, (a− x, b− y)⟩ > J(a, b)− J(x, y). (2.20)

The vector z is called an exposing hyperplane associated to (a, b). Given ϕ, we denote by Fϕ the set of

exposed points whose exposing hyperplane belongs to D◦
L.
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Remark 4. If J(·, ·) is a strictly convex function, then every point is exposed.

The next theorem describes the large deviation properties and is one of our main results. The set of

exposed points Fϕ is explicitly determined in Subsection 5.5.

Theorem 2.1. Let (Wn)n⩾2 be the sequence defined by (1.4) and J(·, ·) the function in (2.19). Then,

J(·, ·) is a good rate function and:

1. for any closed set F ⊂ R2

lim sup
n→+∞

1

n
logP(Wn ∈ F ) ⩽ − inf

(x,y)∈F
J(x, y); (2.21)

2. for any open set G ⊂ R2

lim inf
n→+∞

1

n
logP(Wn ∈ G) ⩾ − inf

(x,y)∈G∩Fϕ

J(x, y), (2.22)

where Fϕ is the set of exposed points of J(·, ·) whose exposing hyperplane belongs to D◦
L, given by

Fϕ = {(x, y) ∈ R2 : |y| < x and y2ϕ2 > x(xϕ2 − 1)}. (2.23)

That is, Fϕ = A◦
ϕ.

Proof. See Subsection 5.5.

Theorem 2.1 does not provide a full LDP in the sense of Definition 1.1 because we have to deal with

exposed points and with the concept of steepness. Anyway, it states the precise lower and upper rates

for the probabilities in (1.5). Note that, the upper bounds in (1.6) and (2.21) are identical, but the lower

bounds in (1.7) and (2.22) are not, the former being much stronger than the latter one. We also observe

that, if G is an open set such that G∩Fϕ = ∅, then, by Remark 1, the lower bound in (2.22) is equal to

−∞ and not of great interest. On the other hand, if G ⊂ Fϕ is open or closed, then the upper and lower

bounds coincide. However, if G ∩ Fϕ ̸= ∅ and G is not entirely contained in Fϕ, then the upper bounds

and lower bounds in (2.21) and (2.22) might be different (see Example 2.2 below).

Let us give two examples to enlighten Theorem 2.1.

Example 2.1. Let us fix ϕ = 0.5. Consider the open set G = (2, 3) × (−1, 1) and the closed set

F = G = [2, 3] × [−1, 1]. As Figure 2.3 shows, G is the interior of the rectangular region with vertices

at the points (2,−1), (2, 1), (3, 1) and (3,−1), while F is the closure of G. Note that, since J(·, ·) is a

continuous function, taking infimum (or supremum) in F or G gives the same value. Moreover, both G

and F lie in the interior of F0.5 and, therefore, in the domain of J1(·, ·). Since

inf
(x,y)∈G∩F0.5

J(x, y) = inf
(x,y)∈G

J(x, y) = inf
(x,y)∈F

J(x, y) = J1(2, 1) =
1

4
+

log(2/3)

2
,

it follows from Theorem 2.1 (particularly from the expressions (2.21) and (2.22)) that

−1

4
− log(2/3)

2
⩽ lim inf

n→+∞

1

n
logP(Wn ∈ G) ⩽ lim sup

n→+∞

1

n
logP(Wn ∈ F ) ⩽ −1

4
− log(2/3)

2
,
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implying that

lim
n→+∞

1

n
logP(Wn ∈ G) = lim

n→+∞

1

n
logP(Wn ∈ F ) = −1

4
− log(2/3)

2
≈ −0.047267.

Here, the upper and lower bounds, given respectively in (2.21) and (2.22), coincide.

♢

x > y∧y2 ϕ2 > x xϕ2 - 1

x > y∧y2 ϕ2 ≤ x xϕ2 - 1

2 ≤ x ≤ 3∧-1 ≤ y ≤ 1

0 2 4 6

-6

-4

-2

0

2

4

6

x

y

Figure 2.3: In the left-hand side panel, a plot of the region F = [2, 3]× [−1, 1] is presented, showing that

it is contained in the set of exposed points F0.5. In the right-hand side panel, a graph of the function

J(x, y), for (x, y) ∈ F .

Example 2.2. Let us consider again ϕ = 0.5. But now, consider the case when G = (5, 6) × (−4,−1)

and F = G = [5, 6]× [−4,−1], so that G and F lie no more entirely in the set of exposed points F0.5 (see

Figure 2.4). In this case, the lower and upper bounds in (2.22) and (2.21) are not equal, as

inf
(x,y)∈F

J(x, y) = J2(5,−1) =
121

40
− log(2) ≈ 2.33185

and

inf
(x,y)∈G∩F0.5

J(x, y) = inf{
5<x<6,−4<y<−

√
x(xϕ2−1)

ϕ2

} J(x, y) = J1(5,−
√
5) ≈ 3.04377.

Hence, from Theorem 2.1 it follows that

−3.04377 ⩽ lim inf
n→+∞

1

n
logP(Wn ∈ G) ⩽ lim sup

n→+∞

1

n
logP(Wn ∈ F ) ⩽ −2.33185.

Here, the upper and lower bounds do not coincide.

♢

When ϕ = 0, if we set F0 = {(x, y) ∈ R2 : |y| < x} then (Wn)n∈N actually satisfies the LDP with

rate function J(x, y) = J1(x, y), for (x, y) ∈ F0 and J(x, y) = +∞, otherwise (see Bryc and Dembo [10]).

In other words, the lower bounds in (1.7) and (2.22) are identical for this particular case. Furthermore,

it is important to remark that the sets of exposed points form a sequence of enclosing sets, in the sense

that, if |ϕ1| < |ϕ2|, then Fϕ2
⊂ Fϕ1

; we also have Fϕ ⊂ F0 and F−ϕ = Fϕ, for any 0 < |ϕ| < 1.
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x > y∧y2 ϕ2 > x xϕ2 - 1

x > y∧y2 ϕ2 ≤ x xϕ2 - 1

5 ≤ x ≤ 6∧-4 ≤ y ≤ -1
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Figure 2.4: In the left-hand side panel, a plot of the region F = [5, 6] × [−4,−1] is presented, showing

that it is not entirely contained in the set of exposed points F0.5. In the right-hand side panel, a graph

of the function J(x, y) for (x, y) ∈ F .

3 LDP for one-dimensional processes via contraction

We dedicate this section to showing three particular examples where the reasoning of the last section

can be applied, via the usage of a weaker version of the Contraction Principle, to get explicit rate functions

for univariate random sequences. The LDP for two of these examples were already known from Bercu

et al. [5] and Bryc and Smolenski [11]. We show that they can be obtained from Theorem 2.1 and two

additional results, namely Theorem 3.1 and Remark 5 stated below. In Subsection 3.2, we demonstrate

a result that we believe is new in the literature.

Since we proved only a weak version of the LPD for Wn, defined in (1.4), the Contraction Principle

as presented in Dembo and Zeitouni [16] is not applicable. However, some versions in the literature make

it possible to show weaker versions of the LDP. For instance, Lewis and Pfister [29] show a variation of

the Contraction Principle for Vague Large Deviation Principles (see their theorem 3.3), and for Narrow

Large Deviation Principles (see their theorem 5.2). Another thorough discussion about transformations

of weak LDPs is provided by Fayolle and de La Fortelle [20].

The reasoning used in the proof of the Contraction Principle (see theorem 4.2.1 in Dembo and Zeitouni

[16]) is not appropriate for our needs. In subsection 5.2 of Robertson and Almost [36], the authors proved

the Contraction Principle first for the lower bound and next for the upper bound, which is more suitable

for our setting. In the proof of the main results in this section, we will need the following theorem.

Theorem 3.1 (Weak Contraction Principle). Consider two sets E ⊆ Rd and E′ ⊆ R, a continuous

function f(·) : E → E′, and a good rate function J(·) : E → [0,+∞].

1. Define for each c ∈ E′ the function

I(c) = inf
x∈E

{
J(x) |with x such that f(x) = c

}
.

Then I : E′ → [0,+∞] is a good rate function.
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2. If J(·) controls the LDP associated to a sequence (Zn)n∈N on E with upper bound

lim sup
n→∞

1

n
logP(Zn ∈ F ) ⩽ − inf

x∈F
J(x), for any closed set F ⊂ E, (3.1)

and lower bound

lim inf
n→∞

1

n
logP(Zn ∈ G) ⩾ − inf

x∈G∩F
J(x), for any open set G ⊂ E, (3.2)

where F is the set of exposed points, then (f(Zn))n∈N, defined on E′, satisfies a weak LDP with

upper bound

lim sup
n→∞

1

n
logP(f(Zn) ∈ F ′) ⩽ − inf

x∈f−1(F ′)
J(x), for any closed set F ′ ⊂ E′, (3.3)

and lower bound

lim inf
n→∞

1

n
logP(f(Zn) ∈ G′) ⩾ − inf

x∈f−1(G′)∩F
J(x), for any open set G′ ⊂ E′. (3.4)

Proof. The proof of Statement 1 is the same as the one given in Dembo and Zeitouni [16], page 127. For

the proof of Statement 2, to show the upper bound, we observe that F ′ being closed in E′, together with

the hypothesis of f(·) being continuous, implies that f−1(F ′) is closed in E. Hence, the upper bound in

(3.3) follows as a consequence of (3.1), i.e.,

lim sup
n→∞

1

n
logP(f(Zn) ∈ F ′) = lim sup

n→∞

1

n
logP(Zn ∈ f−1(F ′)) ⩽ − inf

x∈f−1(F ′)
J(x).

Similarly, G′ being open in E′ implies that f−1(G′) is open in E. Therefore, using (3.2) one obtains

lim inf
n→∞

1

n
logP(f(Zn) ∈ G′) = lim inf

n→∞

1

n
logP(Zn ∈ f−1(G′)) ⩾ − inf

x∈f−1(G′)∩F
J(x).

The above proof was adapted from subsection 5.2 in Robertson and Almost [36].

Remark 5. From the lower bound in (3.4), under particular circumstances, if one can show that

inf
x∈f−1(G′)∩F

J(x) = inf
x∈f−1(G′)

J(x), (3.5)

for any open set G′ ⊂ E′, then a full LDP for (f(Zn))n∈N holds, in the sense of Definition 1.1.

We show here three particular cases in which Theorem 3.1 is applicable, but it just gives us a weak

type of LDP. In despite of that, we can get a full LDP (in the sense of Definition 1.1) by proving that

(3.5) holds in these three cases. Note that, for the lower bound (3.2) it is necessary to consider the set

G ∩ F , and the Theorem 3.1 takes this into account.

Since the sequence of random vectors (Wn)n⩾2 has J(·, ·), given in (2.19), as a good rate function,

Theorem 3.1, statement 1, ensures that any sequence of vectors (f(Wn))n⩾2, for f : R2 → R continuous,

has a good rate function

I(c) = inf
(x,y)∈R2

{
J(x, y) |with (x, y) such that f(x, y) = c

}
, for all c ∈ R. (3.6)
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There is a standard procedure involving Calculus techniques for computing the infimum in (3.6), namely,

checking for the critical points of the derivatives from J(·, ·). In the examples considered below, the

Wolfram Mathematica software (version 11.2.0.0) was used in the calculations.

Note that, f(Wn) = f
(
1
n

(∑n
k=1 X

2
k ,
∑n

k=2 XkXk−1

))
is a continuous function involving only the

components 1
n

∑n
k=1 X

2
k and 1

n

∑n
k=2 XkXk−1. Any statistic that can be written in terms of these com-

ponents, as a continuous transformation of Wn, is suitable for the method presented below. Our focus

will be for the functions fi : R2 → R, for i = 1, 2, 3, respectively defined by

1. f1(x, y) = x,

2. f2(x, y) = y,

3. f3(x, y) =
y
x , for x > 0,

to be considered in Sections 3.1-3.3. Other continuous functions f : R2 → R could also be considered.

However, in the present work, we restrict our attention to these three cases because of the following:

to apply Theorem 3.1 it is necessary to analyze the values of the deviation function only along certain

straight lines on the plane R2; we will show that the exposed points do not interfere in the estimation of

the rate function that we seek.

3.1 LDP for the sample second moment

Consider the sample second moment γ̃n(0) =
1
n

∑n
k=1 X

2
k of a random sample X1, . . . , Xn, extracted

from the process (Xj)j∈N which satisfies (1.2). Bryc and Smolenski [11] proved that the sequence

(γ̃n(0))n∈N satisfies the LDP (Definition 1.1) with rate function given by

I(c) =


1
2

[
c
(
1 + ϕ2

)
−
√
1 + 4ϕ2c2 − log

(
2c

1+
√

1+4ϕ2c2

)]
, if c > 0,

+∞, if c ⩽ 0.

(3.7)

Here we will show how to obtain this rate function as a particular case, by using Proposition 2.2 and

Theorem 3.1.

Note that γ̃n(0) is equal to the first coordinate of the vector Wn, given in (1.4). Consider the

continuous function f1 : R2 → R given by f1(x, y) = x. Then f1(Wn) = γ̃n(0) and, since (Wn)n⩾2

has good rate function J(·, ·), given in (2.19), we use the result of Theorem 3.1 to prove that (γ̃n(0))n∈N

satisfies an upper and lower bound of the types (3.3) and (3.4), respectively. To apply Theorem 3.1 it is

necessary to analyze the values of the deviation function along straight lines parallel to the y axis. Next,

we will show that (3.5) holds, proving that (γ̃n(0))n∈N satisfies the LDP with associated rate function

which we denote by I1 : R → [0,+∞]. Finally, we will conclude that I1 = I.

Take c > 0, then {(x, y) ∈ R2|f1(x, y) = c} is the straight line with equation x = c, parallel to the

y axis. Note that, if 0 < c ⩽ 1/ϕ2, then J(c, y) = J1(c, y) =
1
2

[
c(1 + ϕ2)− 1− 2yϕ+ log

(
c

c2−y2

)]
, for
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|y| < c; whereas if c > 1/ϕ2, then

J(c, y) =

J1(c, y),
√

c(cϕ2−1)
ϕ2 < |y| < c,

J2(c, y), |y| ⩽ αc,

with J2(c, y) =
(ϕy−c)2

2c + log |ϕ| and αc =
√

c(cϕ2−1)
ϕ2 . To simplify the reading, let us assume that ϕ > 0

(if ϕ < 0, we can treat this case by symmetry, considering y 7→ J(c,−y)). Also, let us concentrate on the

case c > 1/ϕ2. The first-order derivatives of J1(·) and J2(·) are

d

dy
J1(c, y) =

y

c2 − y2
− ϕ and

d

dy
J2(c, y) =

ϕ(yϕ− c)

c
. (3.8)

Hence, the derivative of J1(c, ·) is negative in (−c, yc) and positive in (yc, c), where yc =
−1+

√
1+4c2ϕ2

2ϕ .

The global minimum of J1(c, ·) is attained at yc. Moreover, given that ϕ > 0, it follows that αc < yc. On

the other hand, since yϕ− c < 0, J2(c, ·) is a decreasing function in terms of y. Figure 3.1 illustrates the

case when c = 4 and ϕ = 0.8.

In particular, it holds that

inf
(x,y)∈f−1

1 (c)∩Fϕ

J(x, y) = inf
(x,y)∈f−1

1 (c)
J1(x, y) = inf

(x,y)∈f−1
1 (c)

J(x, y), (3.9)

for any c > 0. So the infimum in (3.9) is always attained in the interior of Fϕ and it is independent of

the pre-image set f−1
1 (c), for any given c > 0. Therefore, since f−1

1 (G′) = f−1
1 (∪c∈G′{c}) = ∪c∈G′f−1

1 (c)

for any open set G′ ⊂ (0,∞), the LDP for γ̃n(0) follows from Theorem 3.1 and Remark 5.

J2(c, y)

J1(c, y)

-4 -2 2 4
y

1

2

3

4

5

6

Figure 3.1: Graphs of J1(c, y) and J2(c, y) with ϕ = 0.8 and c = 4. The green and red dots represent the

points −αc and αc, respectively, where J1(c, ·) and J2(c, ·) change roles in the law of J(·, ·). The blue

dot is the point (yc, J(c, yc)). As this graph shows us, given that ϕ > 0, J(c, y) is equal to J1(c, y) if

y ∈ (c,−αc)∪ (αc, c), and equal to J2(c, y) if y ∈ [−αc, αc]. When J(c, y) changes from J2(c, y) to J1(c, y)

on the red dot αc, the derivative of J1(c, y) being negative for y ∈ (αc, yc) shows that this function keeps

decreasing from left to right until it reaches the global minimum at yc (remember from Proposition 2.1

that J1 and J2 are convex), so that every point on its right and its left is greater than J1(c, yc), including

the points in [−αc, αc] where J2(c, y) rules. A similar analysis follows by symmetry for the case ϕ < 0.
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Thus, the rate function we are looking for can be computed via

I1(c) = inf
|y|<x

{J(x, y) | f1(x, y) = c} = inf
|y|<x

{J(x, y) |x = c} = J1(c, yc)

=
1

2

[
c(1 + ϕ2)− 1− 2ycϕ+ log

(
c

c2 − y2c

)]
=

1

2

[
c(1 + ϕ2)−

√
1 + 4c2ϕ2 + log

(
2cϕ2√

1 + 4c2ϕ2 − 1

)]
.

Then, after some algebraic computations, we obtain

log

(
2cϕ2√

1 + 4c2ϕ2 − 1

)
= log

(
2cϕ2(

√
1 + 4c2ϕ2 + 1)

(
√

1 + 4c2ϕ2 − 1)(
√
1 + 4c2ϕ2 + 1)

)

= log

(
2cϕ2(

√
1 + 4c2ϕ2 + 1)

1 + 4c2ϕ2 − 1

)
= log

(√
1 + 4c2ϕ2 + 1

2c

)
= − log

(
2c√

1 + 4c2ϕ2 + 1

)
,

ending up with

I1(c) =
1

2

[
c(1 + ϕ2)−

√
1 + 4c2ϕ2 − log

(
2c√

1 + 4c2ϕ2 + 1

)]
. (3.10)

Considering that I1(c) = +∞, for c ⩽ 0, we conclude that I1(c) = I(c), for all c ∈ R, with I(·) defined in

(3.7). If ϕ = 0, an application of the Contraction Principle shows that I1(c) =
c−1−log(c)

2 , since, in this

case, (Wn)n⩾2 satisfies the full LDP.

To conclude, we get the same rate function as in expression (1.2) in Bryc and Smolenski [11]. The

graphs of I1(·) are illustrated in Figure 3.2 for four different values of ϕ. Notice that I1(·) is symmetric

with respect to the values of ϕ, i.e., I1(·) is the same function for ϕ and −ϕ, given that ϕ ∈ (0, 1).
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f = 0.9   

Figure 3.2: Graphs of I1(c) for ϕ ∈ {0, 0.3, 0.6, 0.9} and c ∈ (0, 10].
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3.2 LDP for the first-order empirical autocovariance

Consider now the first-order empirical autocovariance of X1, . . . , Xn, defined below as

γ̃n(1) =
1

n

n∑
k=2

XkXk−1. (3.11)

Following the same reasoning as the one used for the sample second moment in Subsection 3.1, below we

compute the explicit rate function associated with the sequence (γ̃n(1))n⩾2, under the assumption that

(Xj)j∈N follows an AR(1) process. We believe that this result is new in the literature.

Proposition 3.1. The sequence (γ̃n(1))n⩾2, with γ̃n(1) defined in (3.11) and (Xj)j∈N following an AR(1)

process, as defined in (1.2), satisfies an LDP with good rate function I2 : R → [0,+∞], where

I2(c) =

1 + 3c2(1 + ϕ2)2 +

−2− 6cϕ+ 3 log

 1 + 3c2(1 + ϕ2)2 +A(c, ϕ) +A(c, ϕ)2

3(1+ϕ2)A(c,ϕ)


(
1+3c2(1+ϕ2)2+A(c,ϕ)+A(c,ϕ)2

)2

9(1+ϕ2)2A(c,ϕ)2
−c2




A(c, ϕ) +A(c, ϕ)2

6A(c, ϕ)
,

(3.12)

for any c ∈ R.

Proof. Consider the continuous function f2 : R2 → R, with law f2(x, y) = y. Note that f2(Wn) = γ̃n(1).

So, Theorem 3.1 is applicable and (γ̃n(1))n⩾2 has a good rate function I2 : R → [0,+∞]. To obtain a

sharper lower bound than the one given by (3.4), it is necessary to analyze the values of the deviation

function along straight lines parallel to the x axis. We will show that (γ̃n(1))n⩾2 satisfies (3.5), hence

proving that the LDP is satisfied in the sense of Definition 1.1. To achieve our goal, consider an arbitrary

c ∈ R. The set {(x, y) ∈ R2|f2(x, y) = c} is the straight line with equation y = c, parallel to the x axis.

Then, for |c| < x we have

J1(x, c) =
1

2

[
x(1 + ϕ2)− 1− 2cϕ+ log

(
x

x2 − c2

)]
and J2(x, c) =

(ϕc− x)2

2x
+ log |ϕ|.

The derivatives with respect to x are

d

dx
J1(x, c) =

x2(xϕ2 + x− 1)− c2(xϕ2 + x+ 1)

2(x3 − c2x)
and

d

dx
J2(x, c) =

1

2
− c2ϕ2

2x2
.

Denote by A(c, ϕ) = 3

√
1 + 18c2 (1 + ϕ2)

2
+ 3

√
3

√
−c2 (1 + ϕ2)

2
(
c4 (1 + ϕ2)

4 − 11c2 (1 + ϕ2)
2 − 1

)
and

xc =
1 + 3c2

(
1 + ϕ2

)2
+A(c, ϕ) +A (c, ϕ)

2

3 (1 + ϕ2)A(c, ϕ)
. (3.13)

Then J1(x, c) is decreasing for x ∈ (0, xc) and increasing for x ∈ (xc,+∞), attaining a global minimum

at xc. Although it is not obvious, we have xc > |c|, for all c ∈ R. Similarly, J2(x, c) is decreasing for
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x ∈ (0, cϕ) and increasing for (cϕ,+∞). On the line y = c, we have

J(x, c) =

J1(x, c), |c| < x < βc,

J2(x, c), x ⩾ βc,
(3.14)

where βc =
1+

√
1+4c2ϕ4

2ϕ2 . Note that βc > cϕ, because 0 < |ϕ| < 1 and

βc =
1 +

√
1 + 4c2ϕ4

2ϕ2
⩾

√
4c2ϕ4

2ϕ2
⩾ |c| > |cϕ| ⩾ cϕ.

We plotted the graphs of J1(x, c) and J2(x, c) side-by-side in Figure 3.3 in the particular case when

ϕ = 0.8 and c = 2. Notice that the minimum of J(x, c) is again attained on the domain of J1(x, c). Since

this is verified for every c ∈ R and the domain of J1(x, c) is precisely Fϕ, we conclude that

inf
(x,y)∈f−1

2 (c)∩Fϕ

J(x, y) = inf
(x,y)∈f−1

2 (c)
J1(x, y) = inf

(x,y)∈f−1
2 (c)

J(x, y), for all c ∈ R.

Then, for the same reason as for the sample second moment, (3.5) follows and the LDP is proved. It only

remains to find the explicit rate function, which can be computed as

I2(c) = inf
x>|y|

{J(x, y) | f2(x, y) = c} = J1(xc, c)

=
1

2

[
xc(1 + ϕ2)− 1− 2cϕ+ log

(
xc

x2
c − c2

)]
from where the expression in (3.12) follows.

The graph of I2(·) is illustrated in Figure 3.4 for five different values of ϕ. We believe that this rate

function was never exhibited in the literature and the LDP of (γ̃n(1))n⩾2 likewise, which gives a new and

interesting result that has been derived from the general theory presented in this work.

3.3 LDP for the Yule-Walker estimates

Consider the Yule-Walker estimator

ϕ̃n =

∑n
k=2 XkXk−1∑n

k=1 X
2
k

(3.15)

of the parameter ϕ for the AR(1) processes given in (1.2). The asymptotical behavior of (3.15) is well

known, so that (Brockwell and Davis [9])
√
n(ϕ̃n − ϕ) ⇒ N (0, 1 − ϕ2) and also that (Mann and Wald

[31]) ϕ̃n
n→+∞−−−−−→ ϕ, almost surely.

In Bercu et al. [5] it was proved that the Yule-Walker estimator satisfies the LDP (Definition 1.1)

with the rate function given by

S(c) =


1

2
log

(
1 + ϕ2 − 2ϕc

1− c2

)
, if |c| < 1,

+∞, otherwise.
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J1(x, c)

J2(x, c)

1 2 3 4
x

0.5

1.0

1.5

Figure 3.3: Graphs of J1(x, c) and J2(x, c), with ϕ = 0.8. Here c = 2 is fixed. The red dot represents

the point βc where J1(·, c) and J2(·, c) change roles in the law of J(·, ·). The blue dot is the point

(xc, J(xc, c)). As the graph shows us, J(c, y) is equal to J1(c, y) when x ∈ (|c|, βc), and equal to J2(c, y)

when y ∈ [βc,+∞). When J(c, y) changes from J2(x, c) to J1(x, c) on the red dot βc, the derivative of

J1(c, y) being positive for y ∈ (xc,+∞) shows that this function keeps decreasing from right to left until

it reaches the global minimum at xc (remember from Proposition 2.1 that J1 and J2 are convex), so

that every point on its right and its left is greater than J1(xc, c), including the points in [βc,+∞) where

J2(x, c) rules.
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Figure 3.4: Graphs of I2(c) for ϕ ∈ {−0.99,−0.6, 0, 0.6, 0.99} and c ∈ [−4, 4].

Since the rate function can be related to the sequence of probabilities P
(
ϕ̃n ⩾ c

)
, for |ϕ̃n| < 1 and

n ⩾ 2, note that S(c) is finite, for |c| < 1, and infinite when |c| ⩾ 1. Later on, Bercu et al. [4] provided a

Sharp Large Deviation Principle (SLDP) for Hermitian quadratic forms of stationary Gaussian processes,

obtaining the Yule-Walker’s SLDP as a particular case. In Bercu [3], the study on LDP of the Yule-Walker

estimator in AR(1) processes was extended to the unstable (|ϕ| = 1) and explosive (|ϕ| > 1) cases.

Here we obtain the result from Bercu et al. [5] by using the results of Proposition 2.2, Theorem 3.1,

and Remark 5. From (3.15) note that ϕ̃n = f3(Wn), where Wn is the random vector given in (1.4) and
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Figure 3.5: Graph of Iϕ(c) for ϕ ∈ {−0.5, 0, 0.5} and c ∈ (−1, 1).

f3 : R2 → R is the continuous function defined by

f3(x, y) =
y

x
, for |y| < x. (3.16)

Hence, Theorem 3.1 is applicable and (ϕ̃n)n⩾2 must satisfy an upper and lower bounds of the type (3.3)

and (3.4), respectively. Moreover, by the same reasoning, as shown in Subsections 3.1 and 3.2, we can

prove that the lower bound is a lower bound of the type (1.7). Indeed, consider c ∈ (−1, 1). Then the set

{(x, y) ∈ R2|f3(x, y) = c} is the straight line that passes through the origin and has slope c. Additionally,

on this line we have

J1(x, cx) =
1

2

[
x(1 + ϕ2)− 1− 2cxϕ+ log

(
x

x2 − c2x2

)]
and J2(x, cx) =

1

2x
(ϕcx− x)2 + log |ϕ|,

with derivatives given respectively by

d

dx
J1(x, cx) =

x(1− 2cϕ+ ϕ2)− 1

2x
and

d

dx
J2(x, cx) =

1

2
(cϕ− 1)2.

Since |c| < 1 and |ϕ| < 1, it immediately follows that the derivative of J2(x, cx) is positive, for all c and ϕ,

proving that this function is increasing. On the other hand, the function J1(x, cx) has a global minimum

at xc =
1

1−2cϕ+ϕ2 . By definition,

J(x, cx) =

J1(x, cx), 0 < x < δc,

J2(x, c, x), x ⩾ δc,
(3.17)

where δc = 1
(1−c2)ϕ2 . Since |cϕ| < 1, it is easy to prove that xc < δc for all c ∈ (−1, 1) and any given

θ ∈ (−1, 1). Figure 3.6 illustrates a particular case when ϕ = 0.8 and c = 0.5.

We have that

inf
(x,y)∈f−1

3 (c)∩Fϕ

J(x, y) = inf
(x,y)∈f−1

3 (c)
J1(x, y) = inf

(x,y)∈f−1
3 (c)

J(x, y), for all c ∈ (−1, 1),
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J1(x,c x)
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Figure 3.6: Graphs of J1(x, cx) and J2(x, cx), with ϕ = 0.8. Here c = 0.5 is fixed. The red dot represents

the point δc where J1(x, cx) and J2(x, cx) change roles in the law of J(·, ·). The blue dot is the point

(xc, J(xc, cxc)). Notice that J(x, cx) is equal to J1(x, cx) when x ∈ (0, δc), and equal to J2(x, cx) when

x ∈ [δc,+∞). When J(x, cx) changes from J2(x, cx) to J1(x, cx) on the red dot δc, the derivative of

J1(x, cx) being positive for x ∈ (xc,+∞) shows that this function keeps decreasing from right to left

until it reaches the global minimum at xc (remember from Proposition 2.1 that J1 and J2 are convex)

so that every point on its right and its left is greater than J1(xc, cxc), including the points in [δc,+∞)

where J2(x, cx) rules.

implying that (3.5) is valid and that the LDP for the sequence (ϕ̃n)n⩾2 holds. The associated rate

function Iϕ(·) : R → [0,+∞] can be computed as follows.

Iϕ(c) = inf
|y|<x

{J(x, y) | f3(x, y) = c} = J1(xc, c, xc)

=
1

2

[
xc(1− 2cϕ+ ϕ2)− 1 + log

(
1

xc(1− c2)

)]
=

1

2
log

(
1 + ϕ2 − 2ϕc

1− c2

)
;

Considering that Iϕ(c) = +∞, for |c| ⩾ 1, we obtain Iϕ(c) = S(c),∀c ∈ R. Therefore, we get the same

result as in expression (4.6) in Bercu et al. [5]. The graph of Iϕ(·) is illustrated in Figure 3.5 for three

different values of ϕ.

4 Large deviations for the S2-mean

Given that the rate function for the sample second moment 1
n

∑n
k=1 X

2
k , defined in (1.1), is known

(see the functional in (3.7)), we will show in Subsection 4.1 that there exists a simple approach leading

to the LDP, and also its deviation function, for the sequence of bivariate S2-mean (Sn)n∈N, where

Sn =
1

n

(
n∑

k=1

Xk,

n∑
k=1

X2
k

)
, (4.1)

in the case of an AR(1) process. As the main auxiliary tool, we use a proposition proved in Bryc and

Dembo [10], enunciated below for completeness. In Section 4.2 we follow the same reasoning for getting

similar results for the MA(1) process.
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Proposition 4.1. Let (Xj)j∈N be a real-valued centered stationary Gaussian process whose spectral den-

sity f(·) is differentiable. Then, (Sn)n∈N, for Sn given in (4.1), satisfies the LDP (in R2) with good rate

function

H(x, y) = I(y − x2) +
x2

2f(0)
, (4.2)

where 0/0 := 0 in (4.2) and I(·) is the rate function associated to (n−1
∑n

k=1 X
2
k).

Proof. See section 3.5 in Bryc and Dembo [10].

We dedicate the next two subsections to the particular study of the LDP of the S2-mean when (Xj)j∈N

is an AR(1) process (Subsection 4.1), and when it is an MA(1) process (Subsection 4.2). Since the LDP

for the sample second moment was already established for the AR(1) process, it is straightforward to

show such a property in this case. For the MA(1) process, however, we must first derive the LDP of the

sample second moment to apply Proposition 4.1 and to provide the LDP for the S2-mean, likewise.

4.1 AR(1) process

In this subsection we apply expression (3.7), established by Bryc and Smolenski [11], to obtain an

explicit expression for the rate function of the sample mean of the AR(1) process (Xj)j∈N, defined in

(1.2). Since this process is a real-valued centered stationary Gaussian process, it follows from Proposition

4.1 that (Sn)n∈N satisfies the LDP with rate function

H1(x, y) = I(y − x2) +
x2

2gϕ(0)
,

where I(·) is defined by (3.7) and gϕ(·) denotes the spectral density function given in (1.3). Note that

gϕ(·) is differentiable. The explicit rate function is given by

H1(x, y) =


1
2

[
y(1 + ϕ2)− 2x2ϕ−

√
1 + 4ϕ2(y − x2)2 − log

(
2(y−x2)

1+
√

1+4ϕ2(y−x2)2

)]
, if y > x2,

+∞, if y ⩽ x2.

As a consequence, by an application of the Contraction Principle with the auxiliary continuous func-

tion f1(x, y) = x, we can obtain the rate function for the AR(1) sample mean Xn = n−1
∑n

k=1 Xk.

Following the same steps from Section 3.1, notice that the infimum

IX(c) = inf
y>x2

{H1(x, y) | f1(x, y) = c} = inf
y>c2

H1(c, y)

= inf
y>c2

{
1

2

[
y(1 + ϕ2)− 2c2ϕ−

√
1 + 4ϕ2(y − c2)2 − log

(
2(y − c2)

1 +
√

1 + 4ϕ2(y − c2)2

)]}

is attained at yc =
1+c2(1−ϕ2)

1−ϕ2 . Hence, the sequence (Xn)n∈N satisfies the LDP with the rate function

IX(c) = H1(c, yc) =
c2(1− ϕ)2

2
, for c ∈ R.

The graphs of IX(·) are depicted in Figure 4.1 for three different values of ϕ. Notice that, IX(·) has the
shape of a parabola.
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Figure 4.1: Graph of IX(c) for ϕ ∈ {−0.5, 0, 0.5} and c ∈ [−10, 10].

4.2 MA(1) process

In this subsection, we present an explicit expression for the rate function of the sample second moment

of a random sample following the MA(1) process, defined by the equation

Yj = εj + θ εj−1, with |θ| < 1 and j ∈ N. (4.3)

Throughout this section, we assume that the innovations (εj)j⩾0 are i.i.d., with εj ∼ N (0, 1). Then

Yj ∼ N (0, 1 + θ2), for each j ∈ N, and the spectral density function associated to (Yj)j∈N is given by

hθ(ω) = 1 + θ2 + 2θ cos(ω), for ω ∈ T = [−π, π).

The process (Yj)j∈N is stationary for any θ ∈ R (Shumway and Stoffer [40], definition 3.4). In addition to

that, the assumption |θ| < 1 in (4.3) ensures that the process is also invertible and that hθ(·) is positive
for all ω ∈ T.

Let us consider γ̃n(0) = 1
n

∑n
k=1 Y

2
k , the sample second moment of a random sample following the

MA(1) process described in (4.3). Since the autocovariance function of (Yj)j∈N is equal to

γY (k) =


1 + θ2, if k = 0,

θ, if |k| = 1,

0, if |k| > 1,

it is known that (Brockwell and Davis [9], section 7.3) γ̃n(0)
n→+∞−−−−−→ γY (0) = 1 + θ2, almost surely. We

show here that the sequence (γ̃n(0))n∈N satisfies the LDP and we exhibit its explicit rate function, as for

this case no explicit rate function has been presented in the literature.

Consider the normalized cumulant generating function Ln(λ) = 1
n logE(enλγ̃n(0)). In this case, the

asymptotic distribution of Ln(·) is known (Grenander and Szegö [24]) and we immediately obtain the
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convergence

lim
n→+∞

Ln(λ) = L(λ) =

− 1
4π

∫
T log[1− 2λhθ(ω)] dω, if λ ∈

(
−∞, 1

2Mhθ

)
,

+∞, otherwise,

where Mhθ
denotes the essential supremum of hθ(·), given by Mhθ

= (1+ |θ|)2. As presented in Bercu et

al. [5] and corollary 1 in Bryc and Dembo [10], (γ̃n(0))n∈N satisfies the LDP whose good rate function is

the Fenchel-Legendre dual of L(·), given by

Kθ(x) =

supλ< 1
2Mhθ

{
xλ+ 1

4π

∫
T log[1− 2λhθ(ω)] dω

}
, for x > 0,

+∞, for x ⩽ 0.
(4.4)

Since ∫
T
log[1− 2λhθ(ω)] dω =

∫
T
log[1− 2λ(1 + θ2)− 4λθ cos(ω)] dω

= 2π log

[
1− 2λ(1 + θ2) +

√
(1− 2λ(1 + θ2))2 − 16λ2θ2

2

]
,

the supremum in (4.4) is attained at

λθ(x) =
Aθ(x) +

Bθ(x)
Cθ(x)

+ Cθ(x)

12x2 (θ2 − 1)
2 , (4.5)

where

Aθ(x) = 4x
(
x
(
θ2 + 1

)
−
(
θ2 − 1

)2)
,

Bθ(x) = 4x2
(
x2
(
θ4 + 14θ2 + 1

)
+ 4x

(
θ2 + 1

) (
θ2 − 1

)2
+
(
θ2 − 1

)4)
,

and

Cθ(x) =− (1 + i
√
3)
[
−x6

(
θ6 − 33θ4 − 33θ2 + 1

)
− 6x5

(
θ2 − 1

)2 (
θ4 − 10θ2 + 1

)
+6x4

(
θ2 − 1

)4 (
θ2 + 1

)
+ x3

(
θ2 − 1

)6
+ 3

√
3
√

cθ(x)
]1/3

,

with

cθ(x) = −x8
(
θ2 − 1

)4 (
4x4θ2 + 32x3

(
θ4 + θ2

)
+ x2

(
θ4 + 46θ2 + 1

) (
θ2 − 1

)2
+6x

(
θ2 + 1

) (
θ2 − 1

)4
+
(
θ2 − 1

)6)
.

Remark 6. Although Cθ(·) appears in a complex form, it can be proved that Bθ(x)/Cθ(x) + Cθ(x) ∈ R,
for any x > 0. In fact, λθ(x) in (4.5) is one of the solutions from the polynomial equation

λ3
(
4x2θ4 − 8x2θ2 + 4x2

)
+ λ2

(
−4x2θ2 − 4x2 + 4xθ4 − 8xθ2 + 4x

)
+ λ

(
x2 − 4xθ2 − 4x+ θ4 − 2θ2 + 1

)
+ x− θ2 − 1 = 0,

which has three real roots if x > 0. Moreover, we have λθ(x) <
1

2Mhθ

.
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Figure 4.2: Graphs of Kθ(x) for θ ∈ {0.2, 0.4, 0.6, 0.8} and x ∈ (0, 5].

We conclude that (γ̃n(0))n∈N satisfies the LDP with rate function given by

Kθ(x) = xλθ(x) +
1

2
log

[
1− 2λθ(x)(1 + θ2) +

√
(1− 2λθ(x)(1 + θ2))2 − 16λθ(x)2θ2

2

]

=
fθ(x)

12x (θ2 − 1)
2 +

1

2
log

1

2
−
(
θ2 + 1

)
fθ(x)

12x2 (θ2 − 1)
2 +

√√√√(1

2
− (θ2 + 1) fθ(x)

12x2 (θ2 − 1)
2

)2

− θ2fθ(x)2

36x4 (θ2 − 1)
4

 , (4.6)

for all x > 0 and Kθ(x) = +∞, for x ⩽ 0, with fθ(x) = Aθ(x) +
Bθ(x)
Cθ(x)

+ Cθ(x). The graph of Kθ(·) is

illustrated in Figure 4.2 for four different values of θ and x ∈ (0, 5].

By Proposition 4.1, we may now conclude that (Sn)n∈N satisfies the LDP with rate function

H2(x, y) =

Kθ(y − x2) + x2

2(1+θ)2 , if y > x2,

+∞, if y ⩽ x2,

where Kθ(·) is given in (4.6). Note that, by the Contraction Principle, the sequence (f1(Sn))n∈N =(
n−1

∑n
k=1 Yk

)
n∈N, where f1(x, y) = x and Sn = n−1

(∑n
k=1 Yk,

∑n
k=1 Y

2
k

)
, must satisfy the LDP with

rate function

IY (c) = inf
y>x2

{H2(x, y) | f1(x, y) = c}

= inf
y>c2

H2(c, y) = inf
y>c2

{
Kθ(y − c2) +

c2

2(1 + θ)2

}
.

(4.7)

However, when trying to compute the infimum in (4.7), we face a non-trivial problem.

Fortunately, the LDP for the sample mean of the moving average process has already been given in

Burton and Dehling [13]. More generally, the authors considered the sequence

Xk =
∑
i∈Z

ai+k ξi, for k ∈ Z, (4.8)



28 Explicit Bivariate Rate Functions for LDP

with (ξi)i∈Z a sequence of i.i.d. random variables. They proved the LDP under the hypotheses that

(ai)i∈Z is an absolutely summable sequence and that the moment generating function E(et ξ1) is finite for
all t ∈ R. A similar approach has been given in Djellout and Guillin [17]. In this paper, the authors proved

an analogous result under the hypotheses that the sequence (ξi)i∈Z is bounded and that
∑

i∈Z a
2
i < +∞.

If we set a0 = 1, a1 = θ, and ai = 0 for i ∈ Z \ {0, 1}, then (4.8) resumes to Xk = ξ−k + θ ξ−k+1. By

setting ξ−j = εj for j ⩾ 0, it is plain that Xj = Yj for j ∈ N, where Yj is the MA(1) process given in

(4.3). Then by theorem 2.1 in Burton and Dehling [13], the Sample Mean (Y n)n∈N =
(
n−1

∑n
k=1 Yk

)
n∈N

satisfies the LDP with rate function

IY (c) = sup
λ∈R

{
c λ

1 + θ
− λ2

2

}
=

c2

2(1 + θ)2
, for c ∈ R. (4.9)

Comparing (4.9) with (4.7), we note that the infimum on (4.7) is attained at a root of the transcendental

equation Kθ(y − c2) = 0. Notice that the graphs that are shown in Figure 4.2 support this claim.

5 Proofs

In this section, we give the proofs of the main results of this work.

5.1 Proof of Lemma 2.1

The proof of Lemma 2.1 is based on the techniques given on page 270 in Jensen [27]. In summary, we

use Sylvester’s Criterion (Horn and Johnson [26], theorem 7.2.5) to check for the positive definiteness of

each leading principal minor of Dn,λ, resorting to the use of an auxiliary function with its corresponding

iterates. By Sylvester’s Criterion, Dn,λ is positive definite if, and only if, the leading principal minors of

Dn,λ are positive. Hence, we analyze each one of the leading principal minors of Dn,λ as follows:

� 1-st Step: since the first leading principal minor of Dn,λ is r1 = 1 − 2λ1, we require that r1 > 0.

As a consequence, since p = r1 + ϕ2, we obtain 0 < r1 < p ⇒ 0 < p.

� 2-nd Step: the second leading principal minor of Dn,λ is defined as the determinant∣∣∣∣∣ r1 q

q p

∣∣∣∣∣ = p r1 − q2 =

(
p− q2

r1

)
r1. (5.1)

Since we already restricted our analysis for r1 > 0, (5.1) requires in addition that r2 := p− q2

r1
> 0.

� 3-rd Step: the third leading principal minor of Dn,λ is the determinant∣∣∣∣∣∣∣
r1 q 0

q p q

0 q p

∣∣∣∣∣∣∣ = p2 r1 − q2 r1 − q2 p =

(
p− q2

p− q2

r1

)(
p− q2

r1

)
r1. (5.2)
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Since we already restricted our analysis for r1 > 0 and p − q2

r1
> 0, (5.2) requires that r3 :=(

p− q2

p− q2

r1

)
> 0.

� k-th Step: by induction, the k-th leading principal minor of Dn,λ, for 1 ⩽ k ⩽ n − 1, is the

determinant ∣∣∣∣∣∣∣∣∣∣∣∣∣∣

r1 q 0 · · · 0

q p
. . .

. . .
...

0 q
. . . q 0

...
. . .

. . . p q

0 · · · 0 q p

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= rk rk−1 · · · r2 r1,

for r2 = p − q2

r1
, r3 =

(
p− q2

p− q2

r1

)
and rk = Gk−1(r1), where Gk denotes the k-th iterate of

G : (0,+∞) → (−∞, p), given by

G(a) = p− q2

a
.

Since n ∈ N is arbitrary, we must require that Gk(r1) > 0, for all k ∈ N. Without loss of generality,

we may assume that q ̸= 0 (if q = 0, then Dn,λ is a diagonal matrix; this happens if, and only if,

λ2 = −ϕ). Note that G(·) is an increasing concave function that has the following two fixed points

R =
1

2

(
p−

√
p2 − 4q2

)
and Q =

1

2

(
p+

√
p2 − 4q2

)
.

If p2 > 4q2, the point named Q is an attractor point and the point named R is a repulsor point.

If p2 = 4q2, then R = Q = p/2 is neither an attractor, nor a repulsor point, but if x > p/2, then

Gk(x) > p/2, for all k ∈ N, and it converges towards p/2 as k → ∞, whereas if x < p/2, Gk(x)

converges towards the region (0,−∞). If p2 < 4q2, then the entire graph of G(·) lies below the

graph of the identity function in the R2 plane, so that Gk(x) enters the region (0,+∞), for large

k. For these reasons, let us consider henceforth p2 ⩾ 4q2.

The problem of knowing when Gk(r1) > 0, for all k ∈ N, then reduces to knowing whenever r1 ⩾ R.

Indeed, if r1 > R, note that every point greater than R converges towards Q and, since R > 0, it

holds that Gk(r1) > R > 0, for all k ∈ N. If r1 = R, then Gk(r1) = R > 0, for all k ∈ N. However,

if r1 < R, then there exist n0 ∈ N such that Gn0(r1) < 0. Since r1 = 1− 2λ1 = p− ϕ2, we get

r1 ⩾ R ⇔ r1 ⩾
p−

√
p2 − 4q2

2
⇔
√
p2 − 4q2 ⩾ p− 2r1 = p− 2(p− ϕ2) = 2ϕ2 − p. (5.3)

If p > 2ϕ2, then the right-hand side of (5.3) is negative, implying that r1 ⩾ R. But if p ⩽ 2ϕ2,

r1 ⩾ R ⇔ p2 − 4q2 ⩾
(
2ϕ2 − p

)2 ⇔ p2 − 4q2 ⩾ 4ϕ4 − 4ϕ2p+ p2 ⇔ ϕ2(p− ϕ2) ⩾ q2.

Therefore, we obtain the domain D̃ = D1 ∪ D̃2, where

D1 = {r1 > 0, p2 ⩾ 4q2, p > 2ϕ2} and

D̃2 = {r1 > 0, p2 ⩾ 4q2, p ⩽ 2ϕ2, q2 ⩽ ϕ2(p− ϕ2)}.
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Note that r1 > 0 is equivalent to p > ϕ2. Moreover, from

0 ⩾ −
(
ϕ2 − p

2

)2
= −ϕ4 + 2ϕ2 p

2
− p2

4
= −ϕ4 + ϕ2p− p2

4
= ϕ2(p− ϕ2)− p2

4
,

we conclude that ϕ2(p− ϕ2) ⩽ p2

4 . Hence, if q2 ⩽ ϕ2(p− ϕ2), it follows that 4q2 ⩽ p2. Therefore, if

p and q belong to

D1 = {p > 2ϕ2, p2 ⩾ 4q2} or D̃2 = {ϕ2 < p ⩽ 2ϕ2, q2 ⩽ ϕ2(p− ϕ2)},

then Gk(r1) > 0, for all k ∈ N.

� n-th Step: last but not least, the n-th leading principal minor (the determinant) of Dn,λ is

|Dn,λ| =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

r1 q 0 · · · 0

q p
. . .

. . .
...

0 q
. . . q 0

...
. . .

. . . p q

0 · · · 0 q r1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= r1(rn−1 rn−2 · · · r2 r1)− q2(rn−2 · · · r2 r1)

=

(
r1 −

q2

rn−1

)
(rn−1 rn−2 · · · r2 r1) = (Gn−1(r1)− ϕ2)(rn−1 rn−2 · · · r2 r1).

On the one hand, if (λ1, λ2) ∈ D1, then p > 2ϕ2 ⇒ r1 = p − ϕ2 > ϕ2, and two cases are possible:

the first is when R ⩽ r1 ⩽ Q, and since G(x) ⩾ x, for any point x ∈ [R,Q], it immediately follows

that G(r1) ⩾ r1 > ϕ2; the second case is when r1 > Q, but then Q ⩾ p/2 > ϕ2 and, since G(·)
is an increasing function, it follows that G(r1) > G(Q) = Q > ϕ2. Moreover, in the former case,

it follows that G(r1) ∈ [r1, Q], whereas in the latter case, G(r1) ∈ (Q, r1). Hence, by induction, it

follows that Gn(r1) > ϕ2, for all n ∈ N.

On the other hand, if (λ1, λ2) ∈ D̃2, it is not always true that G
n−1(r1) > ϕ2 for every n ∈ N (take,

for instance, λ1 = 1/3, λ2 = −1/2 and θ = 99/100). Additionally, if q2 = ϕ2(p− ϕ2) and p ⩽ 2ϕ2,

we have

R =
p− |p− 2ϕ2|

2
= r1 = p− ϕ2 ⩽ 2ϕ2 − ϕ2 = ϕ2,

showing that Gn(r1) = Gn(R) = R = r1 ⩽ ϕ2, for all n ∈ N. However, it can be shown that, for

n large enough, we eventually obtain Gn−1(r1) > ϕ2, for (λ1, λ2) ∈ D2, where D2 is the set D̃2

minus the curve {(λ1, λ2) ∈ R2 | q2 = ϕ2(p − ϕ2), ϕ2 < p ⩽ 2ϕ2}, i.e, the set in (2.14). Indeed, if

(λ1, λ2) ∈ D2, since ϕ2 < p ⩽ 2ϕ2, we obtain

q2 < ϕ2(p− ϕ2) ⇔ p2 − 4q2 > p2 − 4ϕ2p+ 4ϕ4 = (2ϕ2 − p)2

⇒
√
p2 − 4q2 > |2ϕ2 − p| = 2ϕ2 − p

⇔ Q =
p+

√
p2 − 4q2

2
>

p+ 2ϕ2 − p

2
= ϕ2 ⇒ lim

n→+∞
Gn(r1) = Q > ϕ2,

so that ∃N ∈ N;n ⩾ N ⇒ Gn(r1) > ϕ2.
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Thus, the set D1 ∪ D2 is, therefore, the domain where all leading principal minors of Dn,λ are positive

for all n ⩾ N , and, consequently, where the matrix Dn,λ is positive definite. Converting the domains D1

and D2 to the (λ1, λ2) notation, we obtain the desired expressions given in (2.14).

5.2 Proof of Lemma 2.2

For this proof, consider the measure space L∞(T) := L∞(T,B(T), ν) equipped with the usual norm

(Bartle [2], chapter 6)

||f ||∞ = inf{Sf (N) |N ∈ B(T), ν(N) = 0}, where Sf (N) = sup{|h(x)| : x /∈ N},

for any f ∈ L∞(T), and ν(·) denotes the Lebesgue measure acting on the Borel σ-algebra B(T) over T.
Let mf and Mf also denote, respectively, the essential infimum and essential supremum of the function

f(·). We recall that the essential supremum of a real-valued function f(·) is defined as the smallest

number a for which f(x) ⩽ a except on a set of total length or measure 0; a similar definition holds for

the essential infimum (Gray [23], pg. 193).

Let (αλ
n,k)

n
k=1 represent the sequence of eigenvalues of Tn(gϕ)

1/2 Tn(φλ)Tn(gϕ)
1/2, with gϕ(·) denoting

the spectral density function defined in (1.3), and φλ(·) the function given in (2.4). If (λ1, λ2) ∈ D, then

Lemma 2.1 guarantees that αλ
n,k < 1/2, for all 1 ⩽ k ⩽ n and n ⩾ N , for some N ∈ N. Hence, from

(2.10) and (2.11) it follows that

Ln(λ1, λ2) = − 1

2n

n∑
k=1

log
(
1− 2αλ

n,k

)
, for (λ1, λ2) ∈ D and n large enough. (5.4)

If (λ1, λ2) /∈ D, we have immediately Ln(λ1, λ2) = +∞. Therefore, we only need to consider the case

when (λ1, λ2) belongs to D, because then Ln(λ1, λ2) is finite for n large enough and it is given by (5.4).

Let φλ gϕ : T → R be the function defined by

(φλ gϕ)(ω) = φλ(ω) gϕ(ω) =
λ1 + λ2 cos(ω)

1 + ϕ2 − 2ϕ cos(ω)
. (5.5)

Since (φλ gϕ)(·) is continuous and bounded in T, it attains a maximum and a minimum in that interval,

and by this reason, it follows that mφλ gϕ = minω∈T{(φλ gϕ)(ω)} and Mφλ gϕ = maxω∈T{(φλ gϕ)(ω)}.
Furthermore, as φλ, gϕ ∈ L∞(T), it holds that (see Avram [1])

|αλ
n,k| ⩽ ||φλ||∞||gϕ||∞, for all 1 ⩽ k ⩽ n and n ∈ N. (5.6)

As d
dω (φλ gϕ)(ω) = − λ2 sin(ω)

1+ϕ2−2ϕ cos(ω)−
2ϕ(λ1+λ2 cos(ω)) sin(ω)

(1+ϕ2−2ϕ cos(ω))2 , we note that (φλ gϕ)(ω) has two critical points,

one at ω = −π, and another at ω = 0. Moreover,

� if λ2 < −2ϕλ1/(1 + ϕ2), then d2

dω2 (φλ gϕ)(−π) < 0 and d2

dω2 (φλ gϕ)(0) > 0;

� if λ2 > −2ϕλ1/(1 + ϕ2), then d2

dω2 (φλ gϕ)(−π) > 0 and d2

dω2 (φλ gϕ)(0) < 0;

� if λ2 = −2ϕλ1/(1 + ϕ2), then (φλ gϕ)(ω) = λ1/(1 + ϕ2) is constant.
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Therefore, since (φλ gϕ)(−π) = λ1−λ2

1+ϕ2+2ϕ and (φλ gϕ)(0) =
λ1+λ2

1+ϕ2−2ϕ , we conclude that

mφλ gϕ =

 λ1+λ2

1+ϕ2−2ϕ , if λ2 < − 2ϕλ1

1+ϕ2 ,

λ1−λ2

1+ϕ2+2ϕ , if λ2 ⩾ − 2ϕλ1

1+ϕ2 ,
and Mφλ gϕ =

 λ1−λ2

1+ϕ2+2ϕ , if λ2 < − 2ϕλ1

1+ϕ2 ,

λ1+λ2

1+ϕ2−2ϕ , if λ2 ⩾ − 2ϕλ1

1+ϕ2 .

Let us separate the rest of this proof in two cases: when (λ1, λ2) ∈ D◦ and when (λ1, λ2) ∈ D1 ∩ ∂D.

� Case 1: considering first the case in which (λ1, λ2) ∈ D◦, it follows that 2|ϕ+ λ2| < 1 + ϕ2 − 2λ1,

whence

−
(
1 + ϕ2 − 2λ1

2

)
< ϕ+ λ2 <

1 + ϕ2 − 2λ1

2
. (5.7)

From the left-hand side of (5.7), we get λ1−λ2

1+ϕ2+2ϕ < 1
2 , while from the right-hand side of (5.7) we

obtain λ1+λ2

1+ϕ2−2ϕ < 1
2 . Hence, we conclude that Mφλ gϕ < 1/2. At the same time, from

||φλ||∞||gϕ||∞ ⩾ ||φλ gϕ||∞ = max{|Mφλ gϕ |, |mφλ gϕ |} ⩾ −mφλ gϕ ,

we conclude that mφλ gϕ ⩾ −||φλ||∞||gϕ||∞. Therefore, we just proved that

[mφλ gϕ ,Mφλ gϕ ] ⊆ [−||φλ||∞||gϕ||∞, 1/2). (5.8)

The denominator in the left-hand side of (5.5) satisfies

inf
ω∈T

|1 + ϕ2 − 2ϕ cos(ω)| = min{1 + ϕ2 − 2ϕ, 1 + ϕ2 + 2ϕ} > 0, for all ϕ ∈ (−1, 1).

Then, by theorem 5.1 in Tyrtyshnikov [41], if F is any arbitrary continuous function with bounded

support (i.e., the set of those x ∈ R for which F (x) ̸= 0 is bounded), it follows that

lim
n→+∞

1

n

n∑
k=1

F (αλ
n,k) =

1

2π

∫
T
(F ◦ (φλ gϕ))(ω) dω. (5.9)

In particular, the latter convergence applies itself when considering the continuous function

F : [−||φλ||∞||gϕ||∞, 1/2) → R defined by

F (x) = − log(1− 2x)

2
.

Indeed, from (5.6) and (5.8), combined with the result of Lemma 2.1, we conclude that F (·) has

bounded support and that F (αλ
n,k) are finite, for every 1 ⩽ k ⩽ n and n large enough. Besides

that, (F ◦ (φλ gϕ))(ω) = log[1− 2 (φλ gϕ)(ω)] is finite, for every ω ∈ T, due to (5.8). Therefore, the

two sides of (5.9) are well defined and such convergence holds, giving

lim
n→+∞

Ln(λ1, λ2) = lim
n→+∞

− 1

2n

n∑
k=1

log(1− 2αλ
n,k) = lim

n→+∞

1

n

n∑
k=1

F (αλ
n,k)

=
1

2π

∫
T
(F ◦ (φλ gϕ))(ω) dω = − 1

4π

∫
T
log(1− 2 (φλ gϕ)(ω)) dω

= −1

2
log

(
1 + ϕ2 − 2λ1 +

√
(1 + ϕ2 − 2λ1)2 − 4(ϕ+ λ2)2

2

)

= −1

2
log Φ(λ1, λ2, ϕ),
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where the penultimate equality was achieved using equation 4.224(9) in Gradshteyn and Ryzhik

[22].

� Case 2: note that, for any (λ1, λ2) ∈ D it holds that

Ln(λ1, λ2) = − 1

2n

n∑
k=1

log(1− 2αλ
n,k) = − 1

2n
log

[
n∏

k=1

(1− 2αλ
n,k)

]

= − 1

2n
log det(In − 2Tn(gϕ)

1/2 Tn(φλ)Tn(gϕ)
1/2) = − 1

2n
log[det(Dn,λ) det(Tn(gϕ))].

Since the inverse matrix of Tn(gϕ) is the tridiagonal matrix

Tn(gϕ)
−1 =



1 −ϕ 0 · · · 0

−ϕ 1 + ϕ2 . . .
. . .

...

0 −ϕ
. . . −ϕ 0

...
. . .

. . . 1 + ϕ2 −ϕ

0 · · · 0 −ϕ 1


,

from theorem 3.6 in Karling et al. [28], we obtain det(Tn(gϕ)) = det(Tn(gϕ)
−1)−1 = (1 − ϕ2)−1,

which is independent of n. Moreover, if (λ1, λ2) ∈ D1 ∩ ∂D, then using the notation from (2.13)

and the lemmas 3.1 and 3.5 by Karling et al. [28], we have p2 = 4q2 and

det(Dn,λ) = r1

[
1 + (n− 1)

(
2r1 − p

p

)](p
2

)n−1

− q2
[
1 + (n− 2)

(
2r1 − p

p

)](p
2

)n−2

= r1

[
1 + (n− 1)

(
2r1 − p

p

)](p
2

)n−1

− p

2

[
1 + (n− 2)

(
2r1 − p

p

)](p
2

)n−1

=

[
(2r1 − p)(2r1 + p)

2p
+ (n− 2)

(2r1 − p)2

2p

](p
2

)n−1

= ρn−2

(
1 + ϕ2 − 2λ1

2

)n−2

,

where

ρn =
(1− ϕ2 − 2λ1)(3 + ϕ2 − 6λ1)

4
+

(1− ϕ2 − 2λ1)
2

4
n ∼ O(n).

Hence, it follows that

lim
n→∞

Ln(λ1, λ2) = −1

2
log

(
1 + ϕ2 − 2λ1

2

)
= −1

2
log Φ(λ1, λ2, ϕ).

5.3 Proof of Proposition 2.1

Consider the functions J1(·, ·) and J2(·, ·) given, respectively, by (2.17) and (2.18).

1. If (x, y) is in Cϕ, it holds that y =
±
√

x(xϕ2−1)

|ϕ| . Hence, the first statement of Proposition 2.1 follows

by making this substitution in (2.17) and (2.18) to check that the functions match at Cϕ.
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2. The gradients of J1(·, ·) and J2(·, ·) are respectively given by

▽J1(x, y) =

(
x3
(
ϕ2 + 1

)
− x2 − xy2

(
ϕ2 + 1

)
− y2

2 (x3 − xy2)
,

y

x2 − y2
− ϕ

)
and

▽J2(x, y) =

(
1

2
− y2ϕ2

2x2
,
ϕ(yϕ− x)

x

)
.

Thus, if (x, y) is in Cϕ, after some computations we end up with

▽J1

(
x,

±
√

x(xϕ2 − 1)

|ϕ|

)
= ▽J2

(
x,

±
√
x(xϕ2 − 1)

|ϕ|

)
=

(
1 + x(1− ϕ2)

2x
,
±
√

x(xϕ2 − 1)

|ϕ|

)
.

3. Let H1(·, ·) and H2(·, ·) represent the Hessian matrices associated to J1(·, ·) and J2(·, ·), respectively.
Then, for a generic point (x, y) in the domain of these functions, we have

H1(x, y) =

[
x4+4x2y2−y4

2(x3−xy2)2 − 2xy
(x2−y2)2

− 2xy
(x2−y2)2

x2+y2

(x2−y2)2

]
and H2(x, y) =

[
y2ϕ2

x3 −yϕ2

x2

−yϕ2

x2
ϕ2

x

]
.

The eigenvalues of H1(x, y) are given by

3x4 + 6x2y2 − y4 ±
√
x8 + 60x6y2 + 6x4y4 − 4x2y6 + y8

4 (x3 − xy2)
2 , (5.10)

whereas, the eigenvalues of H2(x, y) are 0 and
ϕ2(x2+y2)

x3 . On the one hand, (5.10) is positive for

all (x, y) ∈ R2 such that |y| < x. Hence, J1(·, ·) is a strictly convex function. On the other hand,

since one of the eigenvalues of H2(x, y) is equal to zero, only convexity is guaranteed for J2(x, y),

provided that |y| < x.

5.4 Proof of Proposition 2.2

Let J : R2 → R denote the Fenchel-Legendre dual of L(·, ·), defined by the supremum

J(x, y) = sup
(λ1,λ2)∈R2

{
xλ1 + yλ2 − L(λ1, λ2)

}
=

sup
(λ1,λ2)∈D

{
xλ1 + yλ2 +

1

2
log

(
1 + ϕ2 − 2λ1 +

√
(1 + ϕ2 − 2λ1)2 − 4(ϕ+ λ2)2

2

)}
. (5.11)

To explicitly compute J(·, ·), consider the auxiliary function K : D → R, defined by

K(λ1, λ2) = xλ1 + yλ2 − L(λ1, λ2), with (x, y) ∈ R2.

We first note that K(·, ·) is a concave function, as it is the sum of concave functions. Therefore, the

supremum in (5.11) is attained at the boundary of D or an interior point of this set. The partial

derivatives of K(·, ·) are

Kλ1
(λ1, λ2) = x− 1√

1− 4λ1 + 4λ2
1 − 4λ2

2 − 8ϕλ2 − 2ϕ2(2λ1 + 1) + ϕ4
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and

Kλ2
(λ1, λ2) = y − 2(ϕ+ λ2)

ℓ(λ1, λ2, ϕ)
,

where

ℓ(λ1, λ2, ϕ) =

(
1 + ϕ2 − 2λ1 +

√
(1 + ϕ2 − 2λ1)

2 − 4(ϕ+ λ2)2
)√

(1 + ϕ2 − 2λ1)
2 − 4(ϕ+ λ2)2.

Provided that x > |y|, the only solution to the system of equationsKλ1
(λ1, λ2) = 0,

Kλ2
(λ1, λ2) = 0,

is given by λ∗
1 = 1+ϕ2

2 − x2+y2

2x(x2−y2) and λ∗
2 = y

x2−y2 −ϕ. Let us divide the computation of J(·, ·) into three

cases:

� Case 1: if (x, y) ∈ A◦
ϕ, then two subcases are possible since A◦

ϕ = A1
ϕ ∪ A2

ϕ, where

A1
ϕ :=

{
(x, y) ∈ R2 :

x2(2xϕ2 − 1)

1 + 2xϕ2
< y2 < x2

}
and

A2
ϕ :=

{
(x, y) ∈ R2 :

x(xϕ2 − 1)

ϕ2
< y2 ⩽

x2(2xϕ2 − 1)

(1 + 2xϕ2)

}
.

If (x, y) ∈ A1
ϕ, then (λ∗

1, λ
∗
2) ∈ D1, whereas if (x, y) ∈ A2

ϕ, then (λ∗
1, λ

∗
2) ∈ D2. In either of these

cases,

J(x, y) = K(λ∗
1, λ

∗
2) =

1

2

[
x(1 + ϕ2)− 1− 2yϕ+ log

(
x

x2 − y2

)]
.

� Case 2: if (x, y) ∈ Bϕ, note that |y| < x together with

y2ϕ2 ⩽ x(xϕ2 − 1) ⇔ y2 − x2 ⩽ − x

ϕ2
⇒ 1

x2 − y2
⩽

ϕ2

x
⇒ x2 + y2

x(x2 − y2)
⩽

ϕ2(x2 + y2)

x2

implies that

λ∗
1 =

1 + ϕ2

2
− x2 + y2

2x(x2 − y2)
⩾

1 + ϕ2

2
− ϕ2(x2 + y2)

2x2
⩾

1 + ϕ2

2
− ϕ2 =

1− ϕ2

2
. (5.12)

In particular, (λ∗
1, λ

∗
2) cannot belong to D1. Then note that

(ϕ+ λ∗
2)

2 − ϕ2(1− 2λ∗
1) =

(ϕ2 + xϕ4)y4 + (x− 2x3ϕ4)y2 + x5ϕ4 − x4ϕ2

x (x2 − y2)
2 . (5.13)

The denominator in (5.13) is positive in Bϕ and the numerator is a quadratic polynomial function

in terms of y2. Provided that x ⩾ 1/ϕ2, this polynomial has four real roots, namely, the solutions

of

y2 =
x3ϕ2

1 + xϕ2
and y2 = x

(
x− 1

ϕ2

)
.
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The software Wolfram Mathematica can handle such analytical expressions, assuring that indeed

(5.13) is positive when y2 ⩽ x(x − 1/ϕ2), i.e., when (x, y) ∈ Bϕ. This proves that (ϕ + λ∗
2)

2 ⩾

ϕ2(1 − 2λ∗
1), excluding the possibility of (λ∗

1, λ
∗
2) to belong to D2. In view of that, the supremum

in (5.11) is attained at a point over the curve ∂D ∩ ∂D2. Since for any λ = (λ1, λ2) ∈ ∂D ∩ ∂D2 it

holds that (ϕ+ λ2)
2 = ϕ2(1− 2λ1) and (1− ϕ2)/2 ⩽ λ1 ⩽ 1/2, we have

1

2
log

(
1 + ϕ2 − 2λ1 +

√
(1 + ϕ2 − 2λ1)2 − 4(ϕ+ λ2)2

2

)
= log |ϕ|,

so that (5.11) is equal to

sup
(λ1,λ2)∈D

K(λ1, λ2) = sup
(λ1,λ2)∈∂D∩∂D2

{xλ1 + yλ2 + log |ϕ|}

= sup
λ2∈[−ϕ−ϕ2,−ϕ+ϕ2]

{
λ2

(
y − x

ϕ

)
− x

λ2
2

2ϕ2

}
+ log |ϕ|.

Then we note that λ2

(
y − x

ϕ

)
− x

λ2
2

2ϕ2 is a quadratic function with respect to λ2 and its maximum

is attained when λ∗∗
2 = yϕ2

x − ϕ. Since |y| < x, it follows that λ∗∗
2 ∈ [−ϕ− ϕ2,−ϕ+ ϕ2]. Hence,

J(x, y) = λ∗∗
2

(
y − x

ϕ

)
− x

λ∗∗
2

2

2ϕ2
+ log |ϕ| =

ϕ2(y − x
ϕ )

2

2x
+ log |ϕ| = (ϕy − x)2

x
+ log |ϕ|.

� Case 3: If |y| ⩾ x, since K(λ1, λ2) is unbounded, we have J(x, y) = +∞.

5.5 Proof of Theorem 2.1

Since Condition A is valid for any ϕ ∈ (−1, 1), the upper and lower bounds given in (2.21) and (2.22),

respectively, are a direct consequence from the Gärtner-Ellis’ theorem (items (a) and (b) from theorem

2.3.6 in Dembo and Zeitouni [16]). The statement that J(·, ·) is a good rate function follows from lemma

2.3.9 in Dembo and Zeitouni [16].

Since J1(·, ·) is strictly convex, every point in its domain is exposed. However, the convexity of J2(·, ·)
is not sufficient for a similar conclusion. In fact, consider a fixed point (a, b) ∈ Bϕ, then theorem 25.1 in

Rockafellar [37] ensures that

⟨▽J2(a, b), (a− x, b− y)⟩ ⩾ J2(a, b)− J2(x, y), ∀ (x, y),

the gradient of J2(·, ·) is the only possible exposing hyperplane associated to (a, b). But, as

⟨▽J2(a, b), (a− x, b− y)⟩ − (J2(a, b)− J2(x, y)) =
ϕ2(bx− ay)2

2a2x

vanishes for y =
bx

a
, the strict inequality in (2.20) does not hold, implying that (a, b) cannot be an

exposed point. Geometrically, the above shows that for each point (a, b) ∈ Bϕ, there exists a line passing

through (a, b) such that (2.20) fails. This proves that the only exposed points of J(·, ·) are the ones

defined by (2.23).
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6 Conclusion

In this work, we have shown a weaker version of the LDP for the sequence (Wn)n⩾2, given in (1.4),

for the bivariate case (see Theorem 2.1). We also have presented the explicit rate function for the upper

and lower bounds (see Proposition 2.2). The same technique to find such properties is not restricted

to the AR(1) process. There may exist other classes of processes that can be explored as well. If we

take another process (Zj)j∈N which still has a multivariate Gaussian distribution, equipped with another

spectral density function, other than the one given in (1.3), the proposed technique may remain valid.

As for the AR(1) case, the LDP is, however, not always guaranteed and in most cases, the rate function

is hard to compute. This difficulty mainly arises when trying to compute a closed form for the Fenchel-

Legendre transform. Besides that, obtaining a similar convergence result, as given in Lemma 2.2, for

another class of Gaussian processes remains an intriguing problem. A remarkable class of processes that

requires a more sophisticated approach is the class of MA(1) processes, which was not covered in this

work when evaluating the LDP for the random vectors (Wn)n⩾2 (see Karling et al. [28]).

In Section 3, we have presented three important particular examples by using the previous reasoning

from Section 2, together with a weak version of the Contraction Principle (see Theorem 3.1). Two of these

examples were already known from Bercu et al. [5] and Bryc and Smolenski [11] for univariate sequences.

Here we have obtained them as a continuous transformation of the random vector Wn, given in (1.4).

In Subsection 3.2, we have presented a result that we believe is new in the literature. In Subsection

3.3, the LDP for the Yule-Walker estimator was obtained, via Theorem 3.1 and Remark 5, returning the

same result as in Bercu et al. [5]. The approach that was used here, first proving the large deviations

properties for bivariate random vectors and then particularizing to univariate random sequences, has

recently been used with continuous stochastic processes by Bercu and Richou [6], where the authors

investigated the LDP of the maximum likelihood estimates for the Ornstein-Uhlenbeck process with a

shift. A similar approach was subsequently used by the same authors in Bercu and Richou [7], allowing

them to circumvent the classical difficulty of non-steepness.

In Section 4, we have provided the LDP for the sequence of bivariate S2-mean, for both AR(1) and

MA(1) processes. For the AR(1) process, the computations were simple and the previous technique of

proving the LDP for the bivariate random vector Wn was extremely helpful. Nevertheless, we found

some issues when dealing with the MA(1) process due to the complexity of the computations involved.

The same technique explored above may perhaps be available for general AR(d) processes with Gaussian

innovations. This is an important issue that remains to be explored in the future.
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