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Abstract

We consider a Riemannian compact manifold M , the associated Lapla-
cian ∆ and the corresponding Brownian motion Xt, t ≥ 0. Given a Lips-
chitz function V : M → R we consider the operator 1

2
∆ + V , which acts

on differentiable functions f : M → R via the expression

1

2
∆f(x) + V (x)f(x) ,

for all x ∈M .
Denote by PV

t , t ≥ 0, the semigroup acting on functions f : M → R
given by

PV
t (f)(x) := Ex

[
e
∫ t
0 V (Xr) drf(Xt)

]
.

We will derive results that show that this semigroup is a continuous-
time version of the discrete-time Ruelle operator.

Consider the positive differentiable eigenfunction F : M → R associ-
ated with the main eigenvalue λ, for the semigroup PV

t , t ≥ 0. From the
function F , in a procedure similar to the one used in discrete-time Thermo-
dynamic Formalism, we can associate by way of a coboundary procedure,
a certain stationary Markov semigroup. We show that the probability on
the Skorohod space obtained from this new stationary Markov semigroup
meets the requirements to be called stationary Gibbs state associated with
the potential V . We define entropy, pressure, and the continuous-time Ru-
elle operator. Also, we present a variational principle of pressure for such
a setting.
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In the present text, we will work with {Xt; t ≥ 0} the Brownian Motion with
state-space on a Riemannian compact manifold M . One particular example
could be S1, where S1 is the interval [0, 1] with 0 ≡ 1, or a n dimensional torus.
We call M the state space. In order to simplify the notation we will assume
that M = S1, equipped with the Euclidean metric (for the general case similar
results can be obtained, but then we would get more cumbersome expressions).

We will denote by 1
2
∂2

∂x2 the Laplacian on the Riemannian manifold S1. The
Laplacian operator is selfadjoint (see [28]). As mentioned in [5] the associated
stochastic process is reversible and this will play an important role here.

The Brownian Motion has as its infinitesimal generator, the Laplacian, which

is the operator L = 1
2∆ = 1

2
∂2

∂x2 acting on functions f ∈ C2(M). The trajectories
of this process are in C, the space of all continuous functions defined in [0, T ]
taking values in M .

Denote Pµ the probability in C induced by {Xt; t ≥ 0} and the initial prob-
ability µ. If the initial measure is δx (Dirac’s measure), for some x ∈M , we will
denote Pδx only by Px. Note that we can related Pµ, for any initial probability
µ on M , as Px through the next integral over M :

Pµ[A] =

∫
M

Px[A] dµ(x), (0.1)

for all measurable set A in the Skorohod space. Moreover, the expectation
(integral) with respect to Pµ or Px will be denoted by Eµ or Ex, respectively.

The Skorohod space C is the set of paths w : [0,∞) → M which are càdlàg
(see [5] or [6]). We are interested in probabilities on this set. For a fixed T > 0,
sometimes it is natural to consider the restriction of C to the subset of paths of
the form {w : [0, T )→ M }. As we are considering diffusions, with probability
1 the paths in C are continuous (see [2]), and then, from now on we will denote
the set of paths by C, in accord with the above notation.

We define for each fixed s ∈ R+ ∪ {0} the B-measurable transformation
Θs : C → C given by Θs(wt) = wt+s. Θs, s ≥ 0, is called the continuous
time shift. A stationary diffusion process defines a probability on C, which is
invariant for the continuous time flow Θs : C → C, s ≥ 0 (see [24] for instance)

When µ is the volume form on M the associated Markov Process {Xt; t ≥ 0}
is invariant for the flow Θs, s ≥ 0. The probability Pµ, defined in the sense of
(0.1), on the Skorohod space obtained from the process will play the role of the
a priori probability (in a similar way as in [18] and [4]).

General results for continuous-time Markov chains that were specially de-
signed to be used in our setting appear on Section 1 in [26].

Note that when considering continuous-time Markov chains the paths are
not continuous (in the case of the Brownian motion and diffusions the paths
are continuous). The work [18] presents results somewhat similar to those we
will describe here, but there the authors consider the continuous-time Markov
chains

Let V : M → R a Lipschitz function and consider the operator L+V , which
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Figure 1: In the left top figure, the point x ∈ M is the value at time t = 0 of
the path obtained as the image - by the continuous time shift Θt - of the set of
paths described above on the left figure. In the top right figure the point x ∈M
is the value at time t, and we exhibit a set of paths that are preimages of a path
(which takes the value x at time t) by the shift Θt. The bottom figure describes
our claim in a more precise form.

acts on functions f ∈ C2(M) by the expression

(L+ V )(f)(x) =
1

2
∂2

∂x2 f(x) + V (x)f(x) ,

for all x ∈M .
It is a classical result that there exists a positive differentiable eigenfunction

F : M → R associated with an eigenvalue λV (the smallest) for the above
operator L+ V (see Proposition 2.9 Chapter 8 in [29], [9] or [19]).

For t ≥ 0, consider

PVt (f)(x) := Ex
[
e
∫ t
0
V (Xr) drf(Xt)

]
, (0.2)

for all continuous function f : M → R and x ∈M . By Feynman-Kac, {PVt , t ≥
0} defines a semigroup associated with the infinitesimal operator L + V (see
Chapter 11 in [29]) which is not Markovian (stochastic). The Feynman-Kac
formula is the main inspiration for our reasoning here.
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Given such V we can normalize this semigroup (associated with the infinites-
imal operator L+ V ) to get a new Markov semigroup. This is done via a kind
of coboundary procedure using the positive eigenfunction F and the eigenvalue
(for the analogous discrete-time procedure see [27]). We call the new associated
stationary Markov Process - get in this way - the Gibbs Process associated with
the perturbation V . The shift-invariant probability on the Skorohod space C
obtained from the Gibbs process for V will be called the Gibbs state probability
associated with the potential V (see also [4] and [18]).

By [28] there is a volume form µ on M such that the infinitesimal generator
L is selfadjoint in L2(µ), then we obtain the Brownian motion stochastic process
Xt, t ≥ 0, on M , with stationary initial distribution µ, which induces a invariant
probability Pµ, defined in the sense of (0.1), on the Skorohod space. In Appendix
3 we show that for any continuous functions f : M → R, g : M → R and t > 0

∫
C
e
∫ t
0
V (w(r)) drf(w(t)) 1w(0)=x dPµ(w)

=

∫
C
e
∫ t
0
V (w(r)) drf(w(0)) 1w(t)=x dPµ(w) .

(0.3)

In Figure 1, we show schematically the difference between looking at the
integration of paths by Pµ via the left-hand side or the right-hand side of (0.3);
note that on the right side of (0.3) we take w(t) = x, and not w(0) = x. It
is important to notice that the Laplacian operator is selfadjoint (see [28]). It
means that the continuous-time system is reversible. For an explanation of the
interest in reversibility in Statistical Mechanics (for continuous Markov chains
taking values on a finite set) see Section 4.4 in [31].

The right-hand side of (0.3) is the natural generalization to a continuous-
time setting of the classical discrete-time Ruelle operator (as presented in [1],
[20], and [27]). We elaborate on this claim.

Points in the symbolic space {1, 2, .., d}N are denoted by

x = (x0, x1, x2, .., xn, ...),

xj ∈ {1, 2, ..., d}.
Given a Holder continuous potential A : {1, 2, ..., d}N → R, the discrete time

Ruelle operator LA acts on continuous functions ψ : {1, 2, .., d}N → R via

ϕ(x0, x1, x2, x3, ...) = LA(ψ)(x) =

d∑
a=1

eA(a,x0,x1,x2,x3,...)ψ(a, x0, x1, x2, x3, ...) =
∑

σ(y)=x

eA(y)ψ(y),

where σ is the discrete time shift acting on {1, 2, .., d}N. In this case the a priori
measure is the counting measure on {1, 2, ..., d} (see [20]). Given n ∈ N

LnA(ψ)(x) =
∑

σn(y)=x

eA(y)+A(σ(y)+...+A(σn−1(y))ψ(y). (0.4)
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Comparing the two expressions, it is fair to say that the right-hand side
of (0.3) is a continuous time version of (0.4) in the case the function A(x) =
A(x0, x1, x2, .., xn, ...) depends just on the first coordinate x0.

In Section 1 we present a careful analysis of the main properties of the
continuous-time Ruelle operator, and in Section 2 we consider relative entropy
and a variational principle of pressure. In this way the key elements of the
discrete time Thermodynamic Formalism are also present in our continuous
time setting.

For related results and applications to Physics see [16], [17], [9], [22], [13] and
[23]. The notion of relative entropy presented here is very close to the respective
notion in statistical mechanics as described in [12]. A definition of entropy for
continuous time Markov chains taking values on a finite set is presented in [8]
and [11].

1 On the continuous time Gibbs state for the
potential V

General references for basic results on diffusions and semigroups that we use
here appear, for example, in [29], [26], [15], [2], [3] and [14].

Let λV be the biggest eigenvalue of L + V and FV the differentiable eigen-
function associated with λV , then FV > 0 (for the existence theorems see [2],
[10] or [29]). To simplify the notation we will denote FV by F . For t ≥ 0, one
defines

PVt (f)(x) = Ex
[
e
∫ t
0
V (Xr)dr F (Xt)

eλV t F (x)
f(Xt)

]
=
PVt (Ff)(x)

eλV t F (x)
, (1.1)

where F and λV are the eigenfunction and the eigenvalue, respectively; that
is PVt (F ) = eλV tF . Then PVt (1)(x) = 1, ∀x ∈ M . This defines a stochastic
semigroup, which is what we were looking for. From this, we will get a new
continuous-time Markov process, which will help to define the Gibbs state for
V .

Proposition 1.1. Assume V : M → R is a Lipschitz function and we define
the operator LV acting on f ∈ C2(M) as

LV (f)(x) =

1

F (x)
(L+ V )(Ff)(x)− f(x)λV =

1

2
∂2

∂x2 f(x) + ∂
∂x log(F (x)) ∂

∂xf(x) . (1.2)

Then, this operator, LV , is the infinitesimal generator associated with a semi-
group {PVt , t ≥ 0} defined in (1.1).

Notice that a process induced by this kind of infinitesimal generator corre-
sponds to a Brownian Motion with non-homogeneous drift: ∂

∂x log(F (x)).
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Proof. It is easy to see that {PVT , T ≥ 0} is a semigroup. To prove that the in-
finitesimal generator (1.2) is associated with this semigroup, we need to observe
that

PVt (f)(x)− f(x)

t
=

1

eλV tF (x)

(
PVt (Ff)(x)− (Ff)(x)

t

)
+ f(x)

(
e−λV t − 1

t

)
.

Taking the limit as t goes to zero the expression above converges to

1

F (x)
(L+ V )(Ff)(x)− f(x)λV .

In order to find the second expression in the statement of the proposition, we
can rewrite the expression above as

1
F (x)

1

2
∂2

∂x2 (Ff)(x) + (V (x)− λV ) f =

1

2
∂2

∂x2 f(x) +
∂
∂xF (x)

F (x)
∂
∂xf +

(
V (x)− λV +

1

2

∂2

∂x2
F (x)

F (x)

)
f(x) . (1.3)

Using that F is an eigenfunction associated with the eigenvalue λV , we have
that

V (x)− λV = −1

2
∂2

∂x2F (x)/F (x) .

Then the last expression in (1.3) becomes the operator LV (f)(x), defined in
(1.2).

From now on, we will elaborate on the properties of initial invariant proba-
bility µV , for the operator LV . In other words, µV will be a probability in M
such that, for any f ∈ C2(M), we have for any t ≥ 0∫

PVt (f) dµV =

∫
f dµV or equivalently

∫
LV (f) dµV = 0 .

Since LV (f)(x) = 1
2
∂2

∂x2 f(x) + ∂
∂x log(F (x)) ∂

∂xf(x) (see (1.2)), the following
lemma will give us the invariant measure.

Lemma 1.2. Let G ∈ C1(M) and define an operator A : C2(M)→ R as

A(f) =
1

2
∂2

∂x2 f + ∂
∂xG

∂
∂xf,

for all f ∈ C2(M). Then a measure µ such that dµ
dx = e2G satisfies∫

Af dµ = 0,

for all f ∈ C2(M).
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Proof. This proof follows from the Radon-Nikodym Theorem and integration
by parts.

Thus, taking G = logF , we get that µ̃V defined by dµ̃V
dx = F 2 is the invariant

measure for LV . This measure is not necessarily a probability, then we will
consider the normalized measure

dµV (x) =
F 2(x)

γV
dx , (1.4)

where γV =
∫
M
F 2(x) dx.

Remark 1.3. There is another way to find an invariant measure for LV . One
can find first an eigenprobability νV of L∗ + V associated with eigenvalue λV .
Then consider

µV = FνV ,

where F is be the eigenfunction associated with eigenvalue λV . Since LV (f)(x) =
1

F (x) (L+ V )(Ff)(x)− f(x)λV , we have∫
LV (f) dµV =

∫ (
(L+ V )(Ff)− Ff λV

)
dνV = 0 . (1.5)

Definition 1.4. Given a Lipschitz function V : M → R, we define a continuous-
time Markov process {Y Vt , t ≥ 0} with state-space M whose infinitesimal gen-
erator LV acts on functions f ∈ C2(M) by the expression (1.2) and the initial
stationary probability µV defined in (1.4). We call this process {Y Vt , t ≥ 0} the
continuous time Gibbs state for the potential V . This process induces a proba-
bility PVµV on the space C, which we call the Gibbs probability for the potential
V .

Remark 1.5. Suppose V is of class C∞ and has a finite number of points
with derivative zero. Let λ be the biggest eigenvalue of L + V and F be the
eigenfunction associated with λ. One can show an interesting property relating
oscillations of V and the oscillations of the main eigenfunction F .

Suppose that V : S1 → R has only two points with derivative zero (V has a
unique point of maximum and a unique point of minimum). Then, the eigen-
function F has less than four points with derivative zero.

From the hypothesis on given a value c there exist at most two values x such
that V (x) = c. Suppose F has many values with derivative zero. Then, between
each two of these points there exists another one x1 with F ′′(x1) = 0. From,
F ′′(x1) + V (x1)F (x1) = λF (x1) we get that V (x1) = λ. But, by hypothesis one
can get at most two points with this property.

One can generalize this for V with more oscillations in a similar way. The
analogous property for potentials and eigenfunctions in the setting where the
state space has no differentiable structure is not so clear how to get it.
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2 Relative Entropy, Pressure and the equilib-
rium state for the potential V

One can ask: “Does the Gibbs state (of the last section) satisfy a variational
principle?” We will address this question in the present section.

Given a Lipschitz function V : M → R, we will consider a variational problem
in the continuous-time setting, which is analogous to the pressure problem in
the discrete-time setting (thermodynamic formalism). This requires a meaning
for entropy. A continuous-time stationary Markov process, which maximizes
our variational problem, will be the continuous-time equilibrium state for V .
The different probabilities P̃x on C will describe the possible candidates for
being the stationary equilibrium continuous-time Markov process for V . These
probabilities will be called admissible.

First of all, we will analyze the Radon-Nikodym derivative of PVx (obtained
from the generator LV and the initial probability δx, where x ∈M) with respect
to the measure Px induced by the Brownian Motion and initial probability δx
restricted to Ft, where {Ft, t ≥ 0} is the canonical filtration for the Brownian

Motion {Xt, t ≥ 0}. The Radon-Nikodym derivative will be denoted as
dPVx
dPx

∣∣∣
Ft

,

where δx, for any x ∈ M , is taken as the initial probability in M . In order to

find an expression to
dPVx
dPx

∣∣∣
Ft

, we remember that it must satisfy

∫
C
G(wT1

, wT2
, . . . , , wTk) dPVx (w) =

∫
C
G(wT1

, wT2
, . . . , , wTk)

dPVx
dPx

∣∣∣
Ft
dPx(w),

for all k ∈ N, 0 = T0 < T1 < · · · < Tk = t < T and G : (M)k → R measurable.
For this is enough to consider, for any k ∈ N, functions fi : M → R, i ∈
{1, . . . , k}, a time partition as above and, given x ∈ M , study the following
integral:

∫
C
f1(wT1

)f2(wT2
) . . . fk(wTk

) dPVx (w)

=

∫
M
PT1

(x, x1)f1(x1)

∫
M
PT2−T1 (x1, x2)f2(x2) . . .

∫
M
PTk−Tk−1

(xk−1, xk)fk(xk)dx1...dxk

=

∫
M
PT1

(x, x1)f1(x1) . . .

∫
M
PTk−1−Tk−2

(xk−2, xk−1)fk−1(xk−1)PVTk−Tk−1
(fk)(xk−1)dx1...dxk

= · · ·

= PVT1
(f1 . . . (P

V
Tk−1−Tk−2

(fk−1P
V
Tk−Tk−1

(fk))) . . . )(x)

,

where Pt(x, y) is the transition kernel for PVt (see [2])
To fix ideas consider k = 2, two times T1 < T2, and analyze:

PVT1

(
f1(PVT2−T1

(f2)
)
(x),

where for T1 < T2
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PVT1
(
f1(PVT2−T1

(f2)
)
(x)

= Ex

[
e

∫T1
0 V (Xr)dr

F (XT1
)

eλV T1 F (x0)
f1(XT1

) EXT1

[
e

∫T2−T1
0 V (Xr)dr

F (XT2−T1 )

eλV (T2−T1) F (XT1
)
f2(XT2−T1 )

]]

= Ex

[
e

∫T1
0 V (Xr)dr

1

eλV T2 F (x0)
f1(XT1

) EXT1

[
e

∫T2−T1
0 V (Xr)dr F (XT2−T1 ) f2(XT2−T1 )

]]

=
usingMarkovProperty Ex

[
e

∫T1
0 V (Xr)dr

1

eλV T1 F (x0)
f1(XT1

) e

∫T2
T1

V (Xr)dr
F (XT2

) f2(XT2
)

]

= Ex

[
f1(XT1

) f2(XT2
) e

∫T2
0 V (Xr)dr

F (XT2
)

eλV T2 F (x0)

]
.

In this case,∫
C
f1(wT1

)f2(wT2
) dPVµ (w)

=

∫
C
f1(wT1) f2(wT2) e

∫ T2
0 V (wr)dr F (wT2 )

eλV T2 F (w0)
dPµ(w) .

Remembering that Tk = t, we have that, for all T > t ≥ 0,

dPVx
dPx

∣∣∣
Ft

(w) =

exp
{

logF (wt) − logF (w0) −
∫ t

0

(λV − V (wr)) dr
}
, Px − a.s. (2.1)

or, using another notation,

dPVx
dPx

∣∣∣
Ft

= exp
{

logF (Xt) − logF (X0) −
∫ t

0

(λV − V (Xr)) dr
}
,

where {Xs, s ≥ 0} is the Brownian Motion.

Definition 2.1. The probability P̃µ on C is called admissible, if, for all T ≥ 0,

dP̃x
dPx

∣∣∣
FT

= exp
{
g(XT )− g(X0)− 1

2

∫ T

0

[
∂2

∂x2 g(Xr) + ( ∂
∂xg)2(Xr)

]
dr
}
, (2.2)

for some function g ∈ C2(M).

Notice that according to the above the Gibbs Markov process PVx with the
initial probability δx is admissible, it is enough to take g = logF and observe
that

1

2
[ ∂

2

∂x2 g+( ∂
∂xg)2] =

1

2
[ ∂∂x

( ∂
∂xF

F

)
+
( ∂
∂xF

F

)2
] =

1
2
∂2

∂x2F

F
=
LF

F
= λV −V . (2.3)

The last equality is due to (L + V )F = λV F . And, the unperturbed system
with the initial measure δx is also admissible, just take g = 0.
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Denote by {X̃t, t ≥ 0} which has law in C the probability P̃x. The question
is: who is the process {X̃t, t ≥ 0}? The answer is in [30, Chapter VIII.3] thanks
to Girsanov’s Theorem. More specifically, by Proposition 3.4 in [30, Chapter
VIII.3] the infinitesimal generator of the process {X̃t, t ≥ 0} is L̃ = L+ Γ(g, ·),
where Γ is the opérateur carré du champ defined in C2(M)× C2(M) as

Γ(f, g) = L(fg)− fLg − gLf.

Since L = 1
2
∂2

∂x2 , the opérateur carré du champ is just

Γ(f, g) = ∂
∂xg

∂
∂xf.

Thus the Radom-Nikodym derivative dP̃x
dPx , defined in (2.2), can be rewritten as

dP̃x
dPx

∣∣∣
Ft

= exp
{
g(Xt)− g(X0)−

∫ t

0

[
Lg(Xr) + Γ(g, g)(Xr)

]
dr
}
.

By [30], if the process has a Radon-Nikodym derivative with respect to Px as
above, the generator of this process is L̃ = L+ Γ(g, ·).

The conclusion is that in our model the generator of {X̃t, t ≥ 0} acts on
functions f ∈ C2(M) as

L̃f =
1

2
∂2

∂x2 f + ∂
∂xg

∂
∂xf. (2.4)

Then, the process {X̃t, t ≥ 0} is a Brownian Motion with drift ∂
∂xg, i.e., this

process is in the same class of the Gibbs Markov process PVx as it should be.
Now we will find an invariant measure for L̃, which we will denote by µ̃.

By Lemma 1.2, the invariant measure µ̃ for L̃ is such that dµ̃(x) = e2g(x)/γ̃ dx,
where γ̃ =

∫
M
e2g(x) dx.

Now, we want to give a meaning for the relative entropy of any admissible
probability P̃µ̃ with respect to Pµ̃, where P̃µ̃[A] =

∫
M

P̃x[A] dµ̃(x) and Pµ̃[A] =∫
M

Px[A] dµ̃(x), for all mensurable set A in the Skorohod space. Observe that,
if we choose the initial measure µ̃ on M as δx0

(the Dirac measure at the point
x0 ∈ M , then we have Pδx0 = Px0 what totally agrees with we introduced in
the beginning of the Section 2.

The reason why we use the same initial measure for both processes is that we
need that the associated probabilities, P̃µ̃ and Pµ̃, on C are absolutely continuous
with respect to each other. Anyway, the final numerical result for the value of
entropy will not depend on the common µ̃ we chose as the initial probability.

For a fixed T ≥ 0, we consider the relative entropy of the P̃µ̃, with respect
to Pµ̃ up to time T ≥ 0 as

HT (P̃µ̃|Pµ̃) = −
∫
M

∫
C

log

(
dP̃x
dPx

∣∣∣
FT

)
(ω) dP̃x(ω) dµ̃(x) . (2.5)
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Using the property that the logarithm is a concave function and Jensen’s
inequality, we obtain that for any g we have

∫
log g dµ ≤ log

∫
g dµ. Then

HT (P̃µ̃|Pµ̃) ≤ 0. Negative entropies appear naturally when one analyzes a
dynamical system with the property that each point has an uncountable number
of preimages (see [20] and [25]).

Using the expression (2.2), we can rewrite the entropy HT (P̃µ̃|Pµ̃) as

−
∫
C

[
g(wT )− g(w0)− 1

2

∫ T

0

[
∂2

∂x2 g(wr) + ( ∂
∂xg)2(wr)

]
dr
]
dP̃µ̃(w)

=

∫
M

{
P̃0g(x)− P̃T g(x) +

1

2

∫ T

0

P̃r[
∂2

∂x2 g + ( ∂
∂xg)2](x) dr

}
dµ̃(x) ,

(2.6)

where P̃t is the semigroup associated with L̃.
From the previous expression and ergodicity, we get that there exists the

limit limT→∞
1
THT (P̃µ̃|Pµ̃).

Definition 2.2. For a fixed initial probability µ̃ on M , we will denote the limit

lim
T→∞

1
THT (P̃µ̃|Pµ̃)

as H(P̃µ̃|Pµ̃). Moreover, we will call H(P̃µ̃|Pµ̃) as the relative entropy of the

measure P̃µ̃ with respect to the measure Pµ̃.

By the Definition 2.2, the expression (2.6) and the Ergodic Theorem (see
Theorem 1.14 in [24]), the relative entropy

H(P̃µ̃|Pµ̃) =
1

2

∫
M

[
∂2

∂x2 g + ( ∂
∂xg)2

]
dµ̃ .

Definition 2.3. For a given Lipschitz potential V , we denote the Pressure (or,
Free Energy) of V as the value

P(V ) := sup
P̃µ̃

admissible

{
H(P̃µ̃|Pµ̃) +

∫
M

V dµ̃
}
,

where µ̃ is the initial stationary probability for the infinitesimal generator L̃,
defined in (2.4). Moreover, any admissible element that maximizes P(V ) is
called a continuous-time equilibrium state for V .

Finally, we can state the main result of this section:

Proposition 2.4. The pressure of the potential V is given by

P(V ) = H(PVµV |PµV ) +

∫
M

V dµV = λV .

Therefore, the equilibrium state for V is the Gibbs state for V .
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Proof. The second equality in the statement of the theorem comes from

H(PVµV |PµV ) +

∫
M

V dµV =

∫
M

1

2

[
∂2

∂2
x

logF + ( ∂∂x logF )2] + V
]

dµV =

∫
M

LF
F + V dµV = λV ,

by (2.3) and (L+ V )F = λV F .
To finish the proof, we need to analyze

H(P̃µ̃|Pµ̃) +

∫
M

V dµ̃, (2.7)

which is equal to

1

γ̃

1

2

∫
M

[
∂2

∂x2 g + ( ∂
∂xg)2

]
e2g dx +

1

γ̃

∫
M

V e2g dx

=
1

γ̃

∫
M

[
V − 1

2
( ∂
∂xg)2

]
e2g dx.

The last equality follows from integration by parts and the expression of µ̃.
Using that V = λV − LF

F , we can rewrite the last integral above as

λV +
1

γ̃

1

2

∫
M

[
−

∂2

∂x2F

F
− ( ∂

∂xg)2
]
e2g dx.

Applying integration by parts, the integral above becomes

1

2
[

∫
M

∂
∂xF

∂
∂x

(e2g
F

)
dx −

∫
M

( ∂
∂xg)2 e2g dx ].

The expression above can be rewritten as

−1

2

∫
M

(
∂
∂x (logF )− ∂

∂xg
)2
e2g dx.

Therefore, the expression in (2.7) is less than or equal to λV .

3 Appendix

Lemma 3.1. Let µ a measure on M such that the infinitesimal generator L is
selfadjoint in L2(µ), that is,∫

M

(Lf)(x)g(x) dµ(x) =

∫
M

f(x)(Lg)(x) dµ(x), (3.1)

12



for all continuous functions f, g : M → R. Consider Pµ the a priori probability,
which is induced by the initial measure µ and the infinitesimal generator L.
And. denote by Eµ the expectation concerning to the Pµ. Then, we have∫

C
e
∫ t
0
V (w(r)) drf(w(t)) g(w(0)) dPµ(w)

=

∫
C
e
∫ t
0
V (w(r)) drf(w(0)) g(w(t)) dPµ(w) ,

(3.2)

for all continuous functions f, g : M → R.

Proof. We start this proof by observing that the equality (3.2) can be rewritten
as

Eµ
[
e
∫ t
0
V (Xr) drf(Xt) g(X0)

]
= Eµ

[
e
∫ t
0
V (Xr) drf(X0) g(Xt)

]
. (3.3)

Then our goal is to prove (3.3), in order to do this we use (0.1) in the left-hand
side of (3.3), and we obtain

Eµ
[
e
∫ t
0
V (Xr) drf(Xt) g(X0)

]
=

∫
M

Ex
[
e
∫ t
0
V (Xr) drf(Xt) g(X0)

]
dµ(x)

=

∫
M

Ex
[
e
∫ t
0
V (Xr) drf(Xt)

]
g(x) dµ(x)

=

∫
M

(PVt f)(x) g(x) dµ(x) ,

(3.4)

where the last equality is due to the expression (0.2) for the semigroup PVt ,
which is associated to the infinitesimal generator L+V . By (3.1), we have that
L+ V is selfadjoint, that is,∫
M

(L+ V )(f)(x) g(x) dµ(x) =

∫
M

(Lf)(x)g(x) dµ(x) +

∫
M

V (x)f(x)g(x) dµ(x)

=

∫
M

f(x) (L+ V )(g)(x) dµ(x).

Then the semigroup PVt , which is associated with L + V , is selfadjoint too.
Thus, ∫

M

(PVt f)(x) g(x) dµ(x) =

∫
M

f(x) (PVt g)(x) dµ(x) , (3.5)

for all continuous functions f, g : M → R. Writing the semigroup PVt with the
expression (0.2) and using (0.1), we get∫

M

f(x) (PVt g)(x) dµ(x) =

∫
M

f(x)Ex
[
e
∫ t
0
V (Xr) drg(Xt)

]
dµ(x)

=

∫
M

Ex
[
e
∫ t
0
V (Xr) drg(Xt) f(X0)

]
dµ(x)

= Eµ
[
e
∫ t
0
V (Xr) drg(Xt) f(X0)

]
.

(3.6)

Putting (3.4), (3.5), and (3.6) together we obtain (3.3).
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Corollary 3.2. For all continuous function f : M → R, we have∫
C
e
∫ t
0
V (w(r)) drf(w(t))1w(0)=x dPµ(w)

=

∫
C
e
∫ t
0
V (w(r)) drf(w(0))1w(t)=x dPµ(w) .

Proof. Using the expression (3.2) with a smooth function gn and taking gn(y)→
1x(y), we get the intended result.
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