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ON THE DYNAMICS OF REAL POLYNOMIALS ON THE
PLANE
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Abstract—We analyze the dynamics of the map f(z) = z? — sZ where s € C is a constant and z € C is a
variable. For some values of s, we can have invariant measures of density with respect to the two-dimensional
Lebesgue measure. For other values of s we can have fractal repellers or the X-trange attractor. This problem
is related to a Triple Point Phase Transition Model (Potts Model).

1. INTRODUCTION

We will analyze computer experiments and present
several conjectures on the dynamics of real polynomials
on the plane of the form f(x, y) = (x> — y? — ax
— by, 2xy — bx + ay), where a ER and b € R are
constants. In a compact form f'can be written as f(z)
= z? — sz, where zE C and 5 = a + bi. Some strange
attractors appear for some values of the parameter s.
In one of these cases, the attractor has the geometrical
shape of the letter X. For other values of the param-
eters, there exist an invariant measure with density with
respect to the two-dimensional Lebesgue measure. We
use the computer to analyze the bifurcation set of pa-
rameters and the dynamics of these maps.

The physical motivation for analyzing such classes
of maps is related to a dynamical system model recently
introduced for understanding an old problem: triple
point phase transition (Potts Model). In our case the
model applies to a semi-infinite one dimensional spin
lattice N with four spin components in each site-of the
lattice. o

The Yang-Lee zeros are part of a very important
area of study of concrete physical problems related to
sudden magnetization of ferromagnetic systems. In the
dynamical system model we consider here, we will ex-
hibit the locus of points of the set that is the analog of
the set of Yang-Lee zeros. This is relevant for the phe-
nomena of triple point phase transitions where it is
useful to know for each values of s whether the maps
f; are expanding or not.

2. REAL POLYNOMIALS IN THE PLANE
In this note we will consider the family of real poly-
nomials on the plane of the form

flx, )= (x* =y*—ax — by, 2xy — bx + ay),
a€ER, bER.

In complex coordinates such map can be written in
the form

f(z)=2z?>—sz, where s=a-+ bi.
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For the parameter s = 2, the dynamic of this map
is very well understood. This map was first considered
by M. E. Hofman and W. D. Withers in [8] and [15],
and is also known as the Generalized Chebyshev Poly-
nomial on the plane (see also [12]). In this case the
map fhas an invariant measure, absolutely continuous
with respect to the 2-dimensional Lebesgue measure.
This measure is the measure of maximal entropy. The
support of this invariant measure is the interior of the
deltoid curve given by

422+ 23) —(22)> — 1822+ 27 = 0.

The picture of the deltoid region is shown in Fig. 1(a).
The analytical expression of the density is

12(4(23 + 73) — (22)% — 18zz + 27)7'/2,
T

All these results are presented in [8] and [15]. We
refer the reader to these two papers for other interesting
properties of such map. )

The real polynomial on the real line g(x) = x> — 2x
also has an invariant measure absolutely continuous
with respect to the one-dimensional Lebesgue measure.
This map is conjugated with the map 1 — 2x2.

The family of real polynomials g.(x) = 1 — cx? was
analyzed by several authors (see [2] for references).

There exists a value & such that the set 4 of param- °
eters ¢ such that the family g, has an absolutely in-
variant measure, is contained in (d, 2). The value 4
is known as the Feigenbaum point[5].

M. Yakobson showed that the set 4 has positive
Lebesgue measure in the set of real parameters[9].

For values of ¢ larger than 2, the critical point goes
to co under iterations of g,. In this case the map g, is
expanding, and the nonwandering set has a Cantor set
structure (see [2]).

It is conjectured that the set of parameters values c,
where g, is expanding is dense in (d, 2). An important
result about the bifurcation set of the family g, was
obtained by Feigenbaum[5].

The analysis of the family f;(z) = z? — sZ on the
plane is a natural extension of the problem considered
above for the family g. on the real line. Another natural
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1(a) s=2 Deltoid

1(e) s=0.5

1(f)

s=0.5

Fig. 1. Portraits of dynamics. (a) s = 2 Deltoid, (b) Cardioid, (c) s = 0.5, (d) s = 0.5,(e)s = 0.5, (f) s
=0.5.

extension for the plane of the family g, is the family
of maps of the form

v(z)=z*+¢c, cEC.

In this case the bifurcation set is also known as the
Mandelbrot set [13].

In recent years several papers on the dynamics of
polynomials on the plane appeared in the literature,
[1] and [6]. Most of these papers are related to the
Henon map[7].

We became interested in the dynamics and the bi-
furcation set of the family f;(z) = z2 — sz because this
is related to a model associated with a triple point phase

transition and Yang-Lee zeros. In this model the value
s = 2 corresponds to the point of triple point phase
transition. Other values of s should correspond to dif-
ferent external magnetic fields. We will explain more
carefully now the physical problem to which our
mathematical model is related.

It is well known that certain materials present mag-
netic properties at low temperatures. In first order
transition, the transition from nonmagnetic state to
the magnetic state is noncontinuous. In fact, there exist
a certain transition value of the parameter temperature
where suddenly the magnetization occurs. For the
physics literature on this subject, we refer the reader
to [9]. Note that the free energy (or pressure) is con-
tinuous with the temperature . For each ¢ there exist
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an equilibrium state (sometimes more than one) also
known as Gibbs State. Suppose now we decrease the
temperature ¢ of a ferromagnetic material. Until we
reach a certain transition value 7,, equilibrium states
are unique. For this value ¢,, there exist more than
one equilibrium state. This means a discontinuity (in
the set of probabilities) of the equilibrium state with
the variation of ¢. In the Ising Model, two equilibrium
measures can coexist in the transition temperature
(double point transition). In the Potts Model, three
equilibrium measures can coexist in the transition
temperature (triple point transition).

In [11] we present a mathematical model for double
transition and in [12] we show that f(z) = z? — 27
represents a model for triple transition. Suppose now
we also want to change the magnetic field and not only
the temperature around the bifurcation point of triple
transition.

The Yang-Lee zeros appears in the concrete physical
problem as the locus of points where coming from very
large values of a “complex” magnetic field, there exist
transition from one equilibrium state to more than one
equilibrium state[13]. It is well known that for ex-
panding systems equilibrium states are unique[10, 11].

The existence of more than one equilibrium state
in “thermodynamic formalism” terms (see [11]) is re-
lated with nonexpansive maps. This happens, for in-

stance, for f(z) = z? — 2Z where for a certain value of
the external parameter ¢, three equilibrium states co-
exist.

We will explain now in a more rigorous way what
we mean by equilibrium state. Consider a certain fixed
map fand M(f) the set of invariant probabilities for
f. Consider now ¢ an external parameter (¢ plays the
role of temperature ) and for each ¢ we will be interested
in finding the probability u, that attains the supremum
for the following variational problem:

sup {h(v)—tflogldet(Df(z))|a’v(z)}.
vEM(S)

We will call the probabilities that attain such supre-
mum of equilibrium states. The term A(v) is the en-
tropy of v (the kinetic energy term) and the term f log
#det| D(f(z))| dv(z), is the Liapunov number of the
probability v (the potential energy term).

For expanding systems such equilibrium states are
unique for every . Suppose now we decrease the value
tin a continuous fashion. For some nonexpanding sys-
tems as, for example, f(z) = z> — 2z (see [12]), there
exist a unique equilibrium state y,, until we reach a
transition value of parameter ¢ = ¢, where there exist
three equilibrium states. This is the phenomena of tri-
ple point transition.

2(a) s=1.68

2(b) s=1.68

2(c) s=-6

2(d) s=1.68

Fig. 2. (a) s = 1.68, (b) s = 1.68, (c) s = —6, (d) s = 1.68.
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Now we have to analyze the other parameter s € C
and consider the maps f; and the equilibrium proba-
bilities u, associated with each of these maps f;(z) = z>
— sz for s close to 2. In a neighbourhood of 2, some
of the s are such that f; is expanding and for other
values of s the map f; is not expanding. In the first
case, equilibrium states y, are unique for all 7, and in
the second case, perhaps for some values of 7, equilib-
rium states are not unique (see [12]).

The natural question is the following: Is there, in
the parameter space, s € C, an analytical curve rep-
resenting the locus of points where there exist the tran-
sition from one case (one equilibrium state for every
1) to the other case (more than one equilibrium state
for some value of ¢)? In this case we think that different
values of s represent different values of “complex”
magnetic fields.

Using the computer we were able to obtain the car-
dioid curve shown in Fig. 1(b) as the natural candidate
to be the Yang-Lee zeros set related to our model.

For values of s close to 2 and outside the cardioid

curve, the system seems to be expanding. The reason
is that the critical set goes to infinity (and also geo-
metrical aspects observed in the pictures). We refer
the reader to [10-12] for references related to the Ising
and Potts model of statistical mechanics.

Another justification for the study of polynomial
and rational maps on the variable z and Z is related to
convergent algorithms of the Newton type[14].

We will present here several pictures obtained in the
computer that we believe are worthwhile for a better
understanding of the topological dynamics of such
maps. We hope these pictures can stimulate other peo-
ple for a rigorous mathematical analysis of the problem.
We will present several open questions. The family of
such maps presents a very rich dynamics and a certain
analogy with real quadratic polynomials in the line.

The critical set of f; is, by definition, the set of points
of the plane where the determinant Jacobian of f; is
zero. This set is the circle of center zero and radius
Il

> - For values of s such that ||s|| < 1, the point (0,
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Fig. 3. (a) s=—14,(b)s=—1.3,(c)s = —1,(d)s = —0.9, (e) s = 0.2, (f) s = 0.4.
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0) is attracting. For all other values of s, the point (0,
0) is repelling. For values of s with large modulus, the
critical set goes to co under iterations of f;.

The nonwandering set in this case has a Cantor set
structure as shown in Fig. 4(g) and 4(h).

The set of bifurcation points in the s-parameter space
(coming from oo ) is the cardioid with extremes in —6
an 2, shown in Fig. 1(b). For values of s outside the
interior of the cardioid the critical set goes to co. For
values of s inside the cardioid, some critical points may
not go to oo under iterations of f;.

In Fig. 2(c) we show the picture for s = —6 of the
critical set (a small circle), the image of the critical set
(a deltoid shape figure) and part of the second image
of the critical set (the three curves that are outside the
deltoid). This situation is a limit one, for s < —6 the

image of the critical set will not intersect the second
image, and for s > —6 the opposite will happen.

The filled-in set of f; is, by definition, the set of points
z that does not go to co under iterations of f;. In the
pictures presented here the filled-in set is always shown
with a uniform pattern of dots. The evolution of the
filled-in set is shown in the sequence of pictures shown
in Fig. 3. For values of s larger than 0.3, the filled-in
set looks like a delta-wing airplane (see Fig. 1(c)). The
boundary of the filled-in set seems to have a fractal
nature, but for the value s = 0.5, a closer and closer
look shows that this property perhaps is not true. The
pictures 1(d) to 1(f) show closer and closer views of
part of the left side of the “wing.”

Open-Problem. Is the boundary of the filled-in set
a fractal for values of s € R different from 0 and 2?
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Fig. 4. (a)s = 1.5,(b)s = 1.6, (c) s = 1.61, (d) s = 1.64, (e)s=168 (f)s=193,(g)s=22,n=3,(h)
s=22,n=4
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For small values of s (close to zero), the filled-in set
is a topological disk. All points in the filled-in set seems
to converge to zero. This situation looks similar to the
one presented for the complex polynomial family £,(z)
=z2 — sz [3].

In Fig. 3, we show the evolution of the filled-in set
with the changing of the parameter s. For values of s
with modulus larger than one, a nontrivial attractor
appears in the filled-in set. For values of s close to 2,
it seems to exist an open region attracting all points of
the filled-in set. For s = 2, the attractor is equal to the
filled-in set.

In Fig. 2(a), we show that for s = 1.68, the attracting
region is strictly contained in the filled-in set. Attractors
here will be shown with a random pattern of dots. Fig-
ure 2(b) shows a closer look of the upper-left side of
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Fig. 2(a). In Fig. 2(d), we show the critical set, the
first and second images of the critical set, and also the
filled-in set.

Conjecture. For a set of positive measure of real val-
ues of s close to 2, there exist an invariant-measure
absolutely continuous with respect to the two-dimen-
sional Lebesgue measure.

For values of s between 1 and 1.641, it seems to
exist nontrivial attractors with two-dimensional Le-
besgue measure zero.

Conjecture. For values of s between 1.4 and 1.61,
the attractor set has dimension 1.

The evolution of the attractor with the changing of
the parameter s is shown in Fig. 4(a) to 4(f). The
evolution of part of the attractor for values of s between
1.4 and 1.6 is shown in Fig. 6.
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5(e) s=1.3 +0.178 i 5(f) s =1.6

Fig. 5.(a) s =1+ 0.178i,(b) s =1 + 0.178i, (¢) s = 1.7 + 0.178i,(d) s = 1 + i, (e) s = 1.3 + 0.178i,
(f)s = 1.6.
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First the attractor can be a point, but around s = 1.5
looks like a curve that turns out in a distorted hypotro-
coid. For larger value of s ~ 1.6, it seems to exist dis-
torted circles that attract the points of the filled-in set.

The pictures of Fig. 6 are produced by magnifying
part of the attractor. In fact, some of these curves are
in an orbit of period 2 (see Fig. 5(f)).

For values of s larger than two, the nonwandering
set seems to have a fractal nature and a Cantor-set
structure. For s = 2.2 the nonwandering set has an
appolonian packing shape (see [4]).

In Fig. 4(g) and 4(h) the shaded areas show the
points that remain in a square centered in (0, 0) with
size 8 after 3 and 4 iterates, respectively.

Conjecture. For values of s close to 2 and outside
the cardioid shown in Fig. 1(b) the nonwandering set
is expanding. Note that Fig. 4(g) and 4(h) seems to
indicate the existence of a Cantor set with expanding
dynamics. The above question is related with the triple

point phase transition and Yang-Lee zeros problem
mentioned in [12].

Suppose now that s = a + bi with b different from
zero. For small values of b a similar pattern of the case
b = 0 seems to happen.

We followed the evolution of a, with a fixed value
of b = 0.178. For values of a around 1, it seems to
exist three points that attract the all filled-in set. It seems
to exist invariant curves connecting such points. The
attracting periodic points are shown in the points of
accumulation of dots in Fig. 5(b). The curves con-
necting these points are shown in the accumulation of
dots in Fig. 5(a). We believe there exist three other
saddle periodic points such that the unstable manifolds
of such points are the curves mentioned above.

For larger values of a, a similar situation like the
one shown in Fig. 6 happens. For values of a around
1.7 the attractor has dimension two. The heavy dot-
line areas in Fig. 5(c) show a much larger frequency

- ~en
/ e
/ ety e R
6(a) s =1.4 6(b) s=1.5
EE) e - 5 PR - TS
i\
% R o T : o
[ = ~ ~
B Y
6(c) s=1.55 6(d) s=1.58
AN ~r ¥ 3 2 T
g S
o -, "\-.:: \\\ (:.b.: =
R ~ SN,
\\ \ )
Ned
6(e) s=1.59 6( f) s=1.6

Fig. 6. (a) s =1.4,(b)S = 1.5,(c)S = 1.55,(d) S = 1.58, (¢) S = 1.59, (f) S = 1.6.
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of iterates in some parts of the attractor of the initial
point chosen in the filled-in set.

We also show the attractor for s = 1 + iin Fig. 5(d).
The area without dots is probably related with stable
manifolds of saddle periodic points mentioned before.

It seems to exist a relation of the attractors with the
position of the iterates of the critical set. In Fig. 7(b),
we show the critical set, the first and second iterates of
the critical set, the filled-in set, and some attractors (of
the kind in Fig. 6(c)) presented for the value s = 1.5
+ 0.178i.

Figure 7(a) shows the filled-in set, the critical set,
the image of the critical set, the attractor, and the po-
sition of the four periodic fixed points centered in small

ellipses. Figure 7(d) shows the attractor and the second
iterate of the critical set. Figure 7(e) shows the attractor,
the critical set, and the first and second iterates of the
critical set.

3. AN X-TRANGE ATTRACTOR

In Fig. 8(d) we show the attractor set for f; when s
= 1 + 1.05i. The attractor has the shape of the letter
X. We also show in Fig. 8 other kind of attractors for
values of s very close to s = 1 + i. This value is a
bifurcation parameter for the family, as it is shown in
Fig. 8(b), 8(c), and &(d).

In Fig. 8(a), the two line segments are in an orbit
of period 2. The other X-trange attractor has period 1.

7(b) s= 1.5 + 0.178 i

*,

7(d) s= 1.55 + 0.178 i

I 7(e) s=1.7 +0.1718 i

Fig. 7. (a) S = 1.68, (b) s = 1.5 + 0.178i, (c) s = 1.55 + 0.178i, (d) s = 1.55 + 0.178i, (e) s = 1.7 + 0.178i.
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Fig. 8. (a)s=1+1i,(b)s=1+0.95i,(c)s = 1.07 + i,(d)s=1+ 1.05i.
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