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ABSTRACT. An explicit formula for an ergodic o-finite mea-
sure invariant by the Gauss map associated to a new induction
on the interval exchange maps is given. The techniques de-
veloped allow another proof of Keane’s conjecture which was
first shown to be true by Veech and Mazur.

1. Introduction. In this paper we study the induction defined in [7] for
interval exchange maps from the metrical point of view.

In this induction we take T = T(m,):[0,1) — [0,1) an exchange of m > 1
intervals and n > 0 a critical iterate of T ( this means that T™(0) is closer to
a discontinuity of T than any iterate T*(0), 0 < k < n) and stack the intervals
[T*(0), T¢(0)], 0 < k, | < n, free of T-iterates of 0 up to the order n in its
interior. This stacking is done upward up to the first discontinuity of T and
downward down to the first discontinuity of T~!. In this way we get a finite
number of towers of intervals which are in bijective correspondence with the
points of the Farey cell of order n around T, ¥, = F,(T). F,(T) is the
equivalence class of T under the relation ~=< defined on the space of interval
exchange maps by T ~ S iff the itineraries of 0 under T and S on the respective
permuted intervals are the same up to the n-th iterate. These classes will define
a sequence of partitions of the space of interval exchange maps that get finer and
finer as n grows and for most exchanges T (in the sense of Lebesgue measure)
the sequence of atoms around T converges to T.

To parametrize these towers and the corresponding Farey cells &, we use a
finite set of disjoint polyhedra €. C R*™~2, v € ./ (m), which we call abstract
Farey cells. This parametrization is a dynamically defined projective isomor-
phism. On € = ) €., we have naturally defined a locally projective map
% = G (m), the Gauss map, which takes a given set of towers associated to a
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critical iterate to the next one. Using the dynamics of ¢ it is possible to capture
the set of T-invariant measures and therefore the uniquely ergodic ones, [7].
Now we come to the main results of this paper. We exibit an explicit formula

m—1
1
dyp = ——d)
il_:__‘!] L; + Ry(;,

for an ergodic o-finite ¢ -invariant measure. In this formula f = f(n) is a bijec-
tion {0,1,...,m—1} — {1,2,...,m} depending only on the permutation 7 defin-
ing the space of interval exchange maps, Lo, L1, . . -, Lm—1 and Ry, Ry, ..., Ry
are the dynamically defined variables used to parametrize the cells and dA is the
Lebesgue measure on €.

We close the paper using the techniques developed to construct the measure
dy to give another proof of Keane’s conjecture. This conjecture was first shown
to be true by Veech [9] and Mazur [4]. See also Kerkhoff [3] and Rees [5]

The paper is organized as follows: in the next two sections we recall the
induction introduced in [7]; in Section 2 we give examples and, in order to
ilustrate the main features of our method, consider the cases of two and three
intervals. In Section 3 we recall the general formalism of the induction and show
that dy is %-invariant. In Section 4 we present the procedure used to get dp.
This is the same procedure abstracted from Veech [9] by Arnoux-Nogueira and
used in [2]. This construction will be useful in the next section when we show
that dp is conservative. The technical lemma needed in this section we pospone
to the Appendix. Finally, in Section 6 we give a proof of the egodicity of dy and
another proof of Keane’s conjecture.

2. Examples. We will illustrate the procedure sketched above considering
the cases of interval exchange maps of respectively two and three intervals.

The case of two intervals.

In the case of just two permuted intervals we will denote by 8 = 1 = o the
discontinuity of T. In this case the map is given by just one parameter, namely
B.

Let’s consider the particular example given by the map T described in Fig. 1.
In this case if one follows the orbit of zero by T we see that n = 4 is a critical
iterate. The location of the orbit of zero up to the 4-th iterate is presented in
the x-axis of Figure 1. This order is:

(2.1) 0 < T2(0) < B < T4(0) < T'(0) < T*(0) < 1
Consider the right and left intervals defined by the closest aproach to [ given

by L = [T?(0),) and R = [8,T"(0)], respectively. In this particular example
the value T(0) is in the interval R. In Figure 2 the interval L U R is shown,

;-t\':m‘r'-‘a"’!bm
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and we point out to the reader that the length of the interval [T2(0), ) is equal
to the length interval [T*(0), T*(0)). This fact is important in order to see that
the next critical iterate is T7(0) an that the new set of right and left intervals
is L* U R* where L* = [T2(0),8) and R* = (8, T4(0)]. In the particular case we
are considering here the critical iterate T7(0) is in the interval L*, but it could
also happen that T7(0) be in R*.

To see the truth of these assertions stack the intervals defined by the iterates
of (2.1) as described in the introduction. In the present example the stacks
associated to the critical iterate T*(0) are shown in the two stacks of Figure 3
a). Note that the full dynamical information about the map T is contained in
this picture since each interval is mapped by T on the interval that is placed on
the top of it in the stack and the top intervals the stacks join to form L* U R*
and each of these intervals is mapped to the botton of the opposite stack.

The two stacks associated to the next critical iterate, which is T7(0), is
shown in Figure 3 b). This can be easily understood as follows: move the stack
that do not contain the discontinuity B in its top to the bottom in such way
the property "each interval is mapped into the interval that is on top of it'j is
mantained. In this way we obtain the next stack given in Figure 3 b). The fact
that the new critical iterate is determined by the previous critical iterate and
has the stated properties is now transparent (see Figure 3).

The procedure is always the same, each critical iterate will determine the



1402 A. O. Lopes & L. . C. pA ROCHA
L*
L R R*
/\/k/\\/\jk/\ 1 /}7{)\}/\ /\A/\ 4
T0) e T (0 1%0) o T'0)
B JT‘(O)
2 A A B A
T'0) - T'(0) T°(0)
AT (0) A
T?(0)
0 T2(0) -
T'(0)
1

FIGURE 3(B)

FIGURE 3(A)

next one. The previous critical iterate will be one of the extremals of the new
interval L* U R* containing the next critical iterate.

Note that the stacks of Figure 3 b) also describe the full dynamics of the
same exchange map T, but now with a different height and witdth of the stacks.

Now we want the analytical expression for the lengths of the new left and
right intervals, L* and R*, obtained from the lengths of the preceding intervals,
L and R. The new values for L* and R* will depend on the position of the
critical iterate: if it is in R or in L. The two possibilities are shown in Figure 4.
For example in Figure 4 b) the critical iterate is in R as in the example we
considered in the beginning.

In order to simplify the notation we will denote the size of the intervals
L, R, L* and R* by the same letters L, R, L* and R", respectively. 1f we normalize
these variables by requiring that L+ R = 1, we have in fact just one free variable.
We choose to work with 2z = L. The Gauss map ¥ at z, % (z), will express the
value of the new L* in a normalized form, that is % (z) = L*/(L* + R*). The
Gauss map in the present situation is defined from [0,1] to [0,1]. The abstract
Farey cell in this case has just one piece, namely [0,1]. Note the very important
fact that the critical iterate is always in the larger of the intervals L or R (the
reader should convince himself of this fact by looking at the several possibilities
of the graph of T). If L < R then # < 1/2 and L* = L (the critical iterate was
in R). The interval R* is equal to R — L (see Figure 2). Therefore L* + R* =
L+R—L =1—z. The new normalized L* is ¢ (z) = L*/(L*+R*) = z/(1—z).

In case L > R we have z > 1/2 and thenew L* is L—R = z—(1—z) = 2z-1
(the critical iterate was in L). Then R* = R,and L*+R*=L—R+R=1L ==.
Therefore the normalized L* is given by % (z) = (2z —1)/z.

In this case @ is also known as the backward continued fraction map, [1],
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and its graph is shown in Figure 5. The map ¢ is not expanding due to the fixed
points 0 and 1 that have eigenvalue 1. This map % leaves invariant a o-finite
invariant measure given by dz/(z(1—x). Measures with infinite mass will appear
in all cases of Gauss maps which we will consider here. One of the purposes of this
paper is to show explicit formulas for infinite measures (equivalent to Lebesgue
measure) which are invariant by the Gauss maps in the case of interval exchange
maps with more than three intervals.

The case of three intervals. We will denote by /51 = «; the first
discontinuity and 3 = a1 + az the second discontinuity of T, where o, o and
ag are the lengths of the intervals permuted by T.

Fix a critical iterate n of T and denote by L;, Ry and Lo, Ry the left and
right intervals around the discontinuities 8; and ;. We get these intervals by
taking the points in the T-orbit of 0 up to the n — 1-th iterate closest to the
left and right of the respective discontinuities. The critical iterate T™(0) can
possibily be in any one of these four intervals.

As we did before we will denote an interval and its length by the same
symbol and consider the normalizing condition Ly + Ry + Lz + Ry = 1. In fact
there is just two independent variables (because there exists always one more
relation among Ly, Ry, La, Ry as we will see in a moment) which we choose to
be R, and Ry;. We will be interested in finding the new R} and Rj using the
procedure of going from one critical iterate to the next critical iterate. This
procedure is analogous to the previous one and is also described by moving the
stacks in such way that the old critical iterate will turn out to be a new extremal
of one of the intervals L] U R} and L3 U R3.

It is not difficult for the reader to convince himself that in the present
situation, the only possibilities for the stacks are the ones schematically shown
in Figures 6 a), 7 a) and 8 a). There are three towers, two of them always coming
together in a discontinuity and the third with its top at the other discontinuity
of T.

To simplify the notation we will denote the intervals T(L1), T(R1), T(Lz)
and T(Rj), which are at the bottom of the stacks by Li, R, Ls and Rz, re-
spectively. Note however that the sizes of these intervals are correspondingly
equal.

In the first case Figure 6 a), (denoted by cell I), the critical iterate can be in
L or in R;. These two cases will have to be considered when we define the Gauss
map. Before doing that, however, we will describe the Farey cells (Figures 6 b),
7 b) and 8 b)). Note that in Figure 6 a) the right tower give us the relation
Li+Ri=Ly+Ry. Asl=L1+Ri+Lr+Ry = 2(Ly +Ry) = 2(L2+R2), then
Ly =1/2— Ry and Ly = 1/2 — Ry. Therefore the possible values of (Ry, Rp) are
in the square [0, 1/2] x [0,1/2] (see Figure 6 b)). The upper triangle of the square
correspond to L; < R (in this case the critical iterate is in R,) and the lower
triangle of the square correspond to Ly > Ry (in this case the critical iterate is
in Ly). The two possibilities are shown in the top towers of Figures 10 and 11.
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Now we consider Figure 7 b). In this case from the left tower of Figure 7 a)
we get the relation Ly = L1 + Ri. As1=L; + Ry + Lo+ Ry =2L1 + 2Ry + Ry,
then L; = 1/2 — (Ry + 1/2R5). The possible values of (R, Ry) are in the right
triangle with height 1 and width 1/2 (see Figure 7 b)). The dotted horizontal
line is at heigth 1/3. The upper triangle is given by the condition Ry > Lo (the
critical iterate is in Rp) and the lower quadrilateral is given by the condition
Ry < Ly (the critical iterate is in Lg). The two possibilities are shown in the
two top towers of Figures 12 and 13. We will denote such cell by II.

Finally we will analyze Figure 8 b). The left tower from Figure 8 a) gives us
the relation Ly = Ro — R;. But as Iy + Ry + Lo+ Ry = 1 we have Lo =1-2Rs.
The values (Rj, Rp) are then in the right isoceles triangle with equal sides of
lenght 1/2 shown in Figure 8 b).The dotted horizontal line is at height 1/3. The
upper quadrangle contained in the triangle is given by the condition Lo < Ra
(the critical point in R ) and the lower triangle is given by the condition Lo > R2
( the critical point in Lg). The two possibilities are shown in the two top towers
of Figures 14 and 15. Denote such cell by IIL

Now that we defined the Farey cells, our next goal is to compute the Gauss
map %. This map is defined from the disjoint union of the three Farey cells to
itself. It will be a two to one map. Note that each Farey cell have two subpieces
described in Figures 6 b) 7 b) and 8 b). Each subtriangle or subquadrilateral
will be mapped to one of the full Farey cells via a projective isomorphism in such
way that triangles will go to triangles and quadrilaterals to the square 1. The
diagram of the Gauss map and its analytical expression is shown in Figure 9.
Our next purpose is to show that the analytical expressions shown in this picture
are correct. In other words, given the values R; and Ra, we want to know the
new normalized values (r1,72) = 9 (R1, R2), 1 = Ri/(L + R + L3 + R3) and
7o = R3/(L} + R} + L + R3), where we denoted the new values of Ly, Lo, Ry
and Ry by L}, L, R} and Rj, respectively. These new values are to be obtained
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(1) Ly > Ry (corresponding to the lower subtriangle of 1) and
(2) L1 < R, (corresponding to the upper subtriangle of I).

IEl) {f Li > Ry, the moving stacks procedure lead us to map (L1, Ry, Lo, Ry)
Fo (L3, Ry, L3, RS) = (L — Ry, R1, Lo, Ry) (sce Figure 10). This is’so‘gecz;usze
in the new towers, only the value of L; change. Note that the new stacks %
cl?ss II. This explains the arrow in the diagram of Figure 9 goin, fr(;m th ?re o
triangle of I to II. From the sum L} + R{ + L3 + R} = (L, — Ry) —ER +L j—};we—r
} — Ry we get the normalized values (ry,r3) = (R;/(1 — Ry), R /1(1 —2R )2 I_t
is not difficult to see that the map taking (Ry, R») to (ry,72) ’is ozne to o d
map the lower triangle of I onto the full triangle II. e e
I(2) If Ly < Ry, then the moving stacks procedure gives (L3, R}, L, RY) =
E}qu ,dl.%l —Ly, Lo, Rz) (see' Figure 11). The new towers are of class III. Thaat7 is 2:Jvhy
e 1a§ram of Figure 9 indicates that the upper subtriangle of I goes to III. We
have L+ R{+ L3+ R3 = Ly+(Ry— Ly)+ Lo+ Ry = 1— Ly — Ry+1/2. The last
equality was obtained using the fact that, from the right top tower in f‘igure 11
Ly + R1.= Ly + Ro, therefore as Li+ Ry + Ly + Ry = 1, then Ly + Ry = 1/2’
From this fact also follows that (L}, Rf, L3, R}) = (L1, Ry + Ry — 1/2 Zz R») .
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After normalization we obtain (r1,73) = ((2R; +2R> —1)/(2R2+1),2R2 /(2R +
1)). It is easy to see that & is one to one and onto from the upper subtriangle
of I to the triangle ITI.

Now we will define the Gauss map for (Ry, Ry) in the triangle II. We have
again two possibilities:

(1) Ry < Ly (corresponding to the subquadrangle of II) and
(2) Ra > Ly (corresponding to the subtriangle of II).

(1) If Ry < Ly, (L1, Ry, Lo, Ry) goes to (Ly, Ry, Ly — Ry, Rs) as can be
seen in Figure 12. The sum L} + R} + L5 + R3 = 1 — Ry gives the normalizing
condition. Therefore (r1,72) = (R1/(1 — R), R2/(1 — Ry)). In this case II goes
to I bijectively as indicated in Figure 9.

11(2) If Ry > Lo, the moving stacks procedure associates (L1, Ry, Lo, R»)
to (L1. Ry, Lo, Ry — Ly) (see Figure 13). The normalization factor is LI+ R +
L3 + R5 =1 — Ly. After a simple calculation (as Ly = L, + Ry in the left top
tower of Figure 14 and Ly + Ry + Ly + Ry =1, then 2L, + Ry = 1 ) we obtain
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1-Ly=1-(1/2—1/2Ry) = 1/2+1/2R; and therefore the Gauss map is given
by (r1,72) = (2R1/(1+ R2),(3R2 — 1)/(1 + Ry)). In this case II goes to II by
the Gauss map (see Figure 13).

To define the Gauss map in the triangle III we have two possibilities

(1) Ly > Ry (corresponding to the subtriangle of III) and
(2) L2 < Ry (corresponding to the subquadrangle of IIT).

III(1) If Ly > R, the procedure (see Figure 14) associates (L1, Ry, La, Ry)
to (L1, R1, Ly—Ra, Ry). The sum L{+R;+ L4+ R = 1— Ry will give the normal-
izing factor. The Gauss map % (R1, R2) = (r1,72) = (R1/(1—R3)), Ra/(1—Ry))
will map the subtriangle of III onto III.

111(2) If Ls < Ry, (Ll, Ry, Lo, Rg) will be taken to (L, Ry, Lo, Ry — LQ). As
Li+Ri+Ly+Ry =1and Ly + R; = Ry (see the left top tower of Figure 15), we
conclude that Ly = 1 — 2R,. Therefore the sum L} + R + L+ Ry =1 — Ly =
2R, will determine the normalization condition. In this case the Gauss map is
G (R1,Rs) = (r1,72) = (R1/(2R3), (3Ry — 1) /2Ry), and map the subquadrangle
of IIT into the square I.

The diagram and analytical expressions given in Figure 9 are thus justified.

To finish this section let us point out the formulas for a % -invariant mea-
sure in this particular case we are considering of three intervals permuted.
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FIGURE 14
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They are given explicitely by:

(i) (Rz2(1 —2R3))"'dR1dRs in cell I,
(ii) (R2(1 — R2)?)"'dR1dR; in cell IT and
(iii) (2R3(1 —2R3)) 'dR;1dR; in cell IIL

It is a measure absolutely continuous with respect to the Lebesgue reasure which
has infinite mass.

3. The invariant measure. In this section we recall the general formalism
for the induction introduced in [7] and show the %-invariance of dp.
Given 7 a permutation of {1,...,m} irreducible and discontinuous, define:

f=f(m):{0,....,m—1} — {1,..m}
by:

(1) -1, if § =05
f@@) = m,
7 Y (w(j) +1) — 1, otherwise.

if j = 771 (m);

if 1(m) + 1 = 7(1) and

a7 1(1) - 1, if j = 0;
. m, if j =7~} (m(1) = 1);
fay=9 s
Y (x(m)+1) =1, if j=n"1(m);
7 (w(j) +1) — 1, in the remaining cases.
if w(m) + 1 # n(1).
It is easy to see that f is bijective.
Now, using f define the set ./ = & (m) of pairs 7 = (g9, G) where:

g:{0,..,m—1} = {1,..,m— 1}

and
G:{1,..,m} —{1,...,m—1}
satisfy:
(i)
(3.2) g=Gof
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(i1
{34 {9(0),6%(0), -, g™} (0)} = {1,2,..m — 1}
= {Gm),G *(m),..,G "~ (m)} and f(g"H(0) £ G ™ ()

(iii) C,, the convex subset of R*™~1) = {0} x R™~! x R™"! x {0} C R?™
given by the column matrices (Lo, L1, ..., Lm—1, R1, R2, ..., R )? satisfying:

. (a)
(3.4) L;+R; = Z Lj-I—Rf(j); z':l,...,m—l
j€g™1(d)
(b) Li>0and R; >0;i=1,...m—1
(C) m—1
(3:5) Y (Li+ R) =1
3=1

has dimension m — 1.

We call the convex set C, the abstract Farey cell of type ~.

It follows from (3) that g and G are onto and there is precisely one ig €
{1,...,m — 1} such that #g7(io) = #G~1(ip) = 2. We say that iy is the type
of v or, by abuse of language, the type of g (or G).

Note that we can also write (3.4a) as:

Li+Ri= Y Liyag+Re;i=1.,m—1
keG—1(3)

or, more simetrically :

L;+R; = Lg—l(i) +RG*1(1’) ;i=1,...,m—1and+#17

Liy + Ry, = Lyg-1(i5) + Rg-1(ip) + Lgm-1(0) + Rgm-1(m)
Where g~!(G!) is the unique right inverse of g (resp. G) which misses

g™ 1(0) (resp. G™~1(m) ) in its image.
Now we define the Gauss map

G=%(n):€— €

where € = disjoint union of €., vy € ..
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Before doing that, however, we recall that a map
SSPNANY -PNANYN

where 7 and 9/ are m — 1-dimensional subspaces of R1, is said to be projective
if
Mz

(3.6) S@) = 13121

forz € €N/ N ¥ and M an n x n matrix with non-negative entries and whose
restriction to ¥ has determinant 1.

By z > 0 we mean that all entries of the n rows column matrix z are
non-negative, |z |= Yo, 2k, P={z>0|z€ R} and A = {z | | z |= 1}.

It is clear that the inverse and composite of projective maps are projective.
Since we will need the jacobian of a projective map, the following lemma from
p.248 of Veech (8] is handy.

Lemma 3.1. IfS is a projective map as above and we take the Lebesgue
measure on AN ¥ we have forx e PNAN YV that

1
3.7 A(z) = Jacobian of S at x = ————
(37) (@) T

We start by defining two maps & and & : . — </ as follows ¥ () =

where v = (¢, G) and v = (g'(/',Gy’) is given by:

g,‘):{g(j), if #97(g(j)) = L or j = g™ 1(0);

g%(j), otherwise.

and G¥ = g’([ o f~1. As to the definition of & we have R (v) = 'yg?, where
v = (9,G) and ’Y'% = (g'%’,G‘W) is given by:

o) - {G(j), it #G-1(G)) = 1 or § = G™(m);
G?(j), otherwise.

and g% = G% of. It is easily seen that ¥ and % satisfy (3.2) and (3) above.

Now, fix v € -« and consider the hyperplane R;, = Lgm-1(g) + Ry(gm-1(0))
where g is the type of . This hyperplane divides the polyhedron ¢, into two
polyhedra:

€ = {Rig 2 Lym-10) + Rytgr-10n} N €y
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&
€y ={Ri < Lgn-1() + Ry(grn-10p} N €,
with non-empty interiors.

Restricting ourselves to (L, R) € %Vy and defining L;([ snd R;T by

(3.5) RY =Rifori=1,...,m
and:
: 17 L; —(L‘~1~ + Rig-1(io)), if i = ip;
(3.9) =0 ™ 971 (i) T F1f(g=1(i0)))> 03
7
L;, otherwise.

we have that #(v) is in .« and the projective map induced by L(v): (L, R) —
(L?,r? ) is an isomorphism between % and € ). Similarly Z(y) is in
o/ and R(7): (L, R) — (L%, R?%) given by:

(3.10) L =Lifori=1,...,m—1

and:

(3.11) R — {Hd0 = (Lgm-10) + Rp(gm-10p), if i = do;
R;, otherwise.

induces an isomorphism between (6.;/" and € R (7)-
The Gauss map ¥ is defined by ¥ IY/y: L(vy) and 9 |w,%’ = R(vy) for
Dy 2y

Y E L.

On @ take the o-finite measure y which has, on each 9, v € A, a density
with respect to the Lebesgue measure d\ given by

m—1

(3.12)

bt L1 + Rf(z)

Proposition 3.1. dp is G -invariant.
Proof.  All we have to do is check that the Perron-Frobenius equation

dL-1
A

dR™1
dX .

(3.13) A, (L,R)= A, (L} RY)

o L R)’ Ay, (L?, R?)

(5. R)
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-1
holds, where v = (9,G) € #, (L,R) € €\ m = (91,G1) = ‘g} (1) r2 =

(92,G2) = R (1), L(L', B") = (L, R) and R(L?, R?) = (L, R).
By the definition of the Gauss map we have

Lgm-10) + Lg=ttio) + Bemoiom) 65 om-1(g),
14 Lg-13ip) + Rgm-1(m)
Lt =
L 3 otherwise.
1+ Lg-1(io) + Rorm-1(m)
R,
Rl =
© 1+ Lgigio) + Bom-i(m)
and
L? = L
© L4 Lygmoi) + o)
Romrim + Ly ¥ Romttio) 5 _ gme1(m);
1+ Lgm—x(o) =+ RG—!(iu)
R? = |
R otherwise. !
|

1+ Lgm-1(0) + Rg-1ig) '

fori=1,2,...,m—1.
Using (1. ) we have

at e -
o (R = (1+ Lg-1(i0) + Rgm=1(m-1))™
and
R | p -
an b )._ (L+ Lgm-1(0) + Ra-1(io))™

The expressions above give

=1 -1
A (LR
dA

dR
= A’Yz (sz R2)

d\ (L’R)< -

A, (L', RY)

i

#
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m—1
H (L; + Rf(,;))_l
_ i=0,ig™~1(0)
Lgm——l(o) + Lg“(io) + RGm-—l(m) + RG—A(io)
m—1
H (Li + Rpi)) 7!
i=0,i#g 1 (io)
Lg—l(io) + RGm—l(m) + Lgm~l(0) + RG~1(1~0)
m—1
H (Li+Rf(,'))_l
_ 1=0,17#g™~1(0),9~(40)
Lg=2(io) + Bam-1(m) + Lgm-1(0) + Rg-1(in)
e e )
Lg-1(i0) + Bgm-1(m) = Lgm-1(0) + Rg-1(ig)
m—1 1
= ———— =A,(L,R)
it D Ryy 7
which proves the proposition. O

4. The construction. In this section we describe the procedure that lead
us to define the density [3.12] and justify the % -invariance of dy.

Let V' be an m-dimensional vector real space and denote by A= A(V)
the space of exterior r-forms over V, 0 < r < m. Take F1,F,...,F,1<k<m,
a linearly independent set in /\l and 0 # Q € A™. Although there are several
ways in which we can factor 2 as an exterior product Q = Fy AFy A ... A Fi Aw,
w € /\m_k, it is easy to see that w |k is uniquely determined, where K is the
kernel of the linear map F:V — R* with components F;. We call w the volume
induced on K by Q and Fy, Fy, ..., Fy.

Globalizing this result for k = 1 we see that if M™ is a differentiable man-
ifold (here and in what follows manifolds and maps are C®), Q1 is a volume
form on M™ and f: M™ — R is a function then € induces a volume, w, on
S = f~1(r), where r € R is a regular value of f. It is clear that if 9 is a diffeo-
morphism preserving 2 and f then the induced diffeomorphism in S preserves
w.

Now take M™, Q, f, r and S as above, 9 a diffeomorphism and ¢;, t € R, a

- one parameter group of diffeomorphism of M™. Suppose 1 and ¢, comute and
- preserve 2. If each orbit of ¢ intercepts S exactly once we can define a map

¥:S — S, U(s) = s', where s’ is the only point in S in the ¢ orbit of ¢ (s). If X,
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the infinitesimal generator of ¢y, is transversal to S then the following lemma,
whose proof is a simple calculation, holds: v

Lemma 4.1. VU is a diffeomorphism and preserves the m — 1-form 1x§)
restricted to S, where 1x€ is the inner product of X and Q. Moreover, if we
write Q = df Aw as above, with ixw = 0, we have:

x5 = dfp(Xp) Wy, (s

forpeS.

To see how the above construction lead us to the density (3.12) we start by
introducing a new set of variables £y, ¢1,...,lm—1 and 71,72,...,"m which will
play the role of the heights of the stacks associated to the abstract Farey cell
Cy, v = (9,G) € ., in such a way that:

(1) £; is the height that the stack with botton L+ Rbf(i) has above the interval

L and
(2) r; is the height that the stack with botton L'}~1 o T R; has above the

interval R?» -

From these definitions we are led to the relations

(4.14) él = 'I‘f(i)

i=0,1,2,...,m — 1 which shows that we can retain only the r;’s as a set of
independent variables.
Now for each v = (g,G) € - take a copy of

RIm-I_Rm x R x R®
R3™~2, with coordinates (L1, .., Lm—1, Ry, - Rm-1,71,- .- ,7m). and decom-
pose R3™~2 in two open cones, :6_’? and %\?, given, respectively, by
Riy > Lgm-1(0) + Re-1(io)
and

Ly > Lg“l(iu) + RGm.—l(m)

where 7 is the type of 7. On these cones define the maps

1) R=R(y): ¢Z R3™2 R(L,R,7) = (E'%‘,I}'@,Rg?), given by
v

f;;% = L; forg=1..com=1,

i
|
{
|

R Oy i L
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B _ {Riu = (Lg'"—l(o) + Rg-13ip)), if i = 1g;
R;, otherwise.
A~ {TG”“‘” *rigr i1 =G i)
' Tiy otherwise.

~ ~ f ~ -~ ~ ~
(2) L=L(y): %ff — R¥2 L(L,R,r) = (LY ,RY ,R?), given by

RY =Rifori=1,...,m—1,

i

I:'Z) _ { Lio = (Lg—l(io) e RGm—<l(m))7 ifi = i0;

L;, otherwise.

if i = G™1(m):

R,T = {Tcm_l(”” 7 f(i0)>

Ti, otherwise.

It is clear that R is a diffeomorphism onto the cone of Ra%(_ ? given by
R (v

(415) TG-1(ig) > TGm=1(m)

and L is a diffeomorphism onto the cone of R"i(é,"z;f given by

(4.16) T'Gm=1(m) > TG~1(ip)
and that this set of maps define a diffeomophism 1) of the manifold M =
> c.z R3™72. Note that G in (4.15) and (4.16) above refers to & () and Z(7)
respectively. To be precise this diffeomorphism is not well defined on a finite set
of hiperplanes but, since this is a set of zero measure, this little imprecision will
not matter in what follows.

Finally define the flux ¢; on M by

(L, R, ) = (exp(t)L,exp(t) R, exp(—t)r)

whose infinitesimal generator is X(L,R,r) = (L,R,-r). It is clear that ¢
comutes with ).

On M take the volume element given, on each R?Ym“z, by Q=dL; A... A
ALy 1 ANAR1 A ... NdRyy, 1 Adry A ... ANdrp,.
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Given v = (g,G) € Z define the subspa;c.e of R3™~2 K, = N,' KerF;
where F; = Li + Ri — -1y Li + Rf(j.) fori=1,...,m— 1~ and on K., take
the volume w induced by €2 and the functionals F;. We can write

Each orbit of ¢, intercepts the hypersurface N, =1 exactly once and the hy-
pothesis of lemma 1. are met thus showing that we have a diffeomorphism
¥:K' — K, where K’ = KN {N, = 1}, preserving the volume

+1

W= dLgm—l(o) ANdRy A ... NdRpm—1 Adri A ... ANdrp, =
S Lgm-1(0) + Rg-1(io)

dLgn-1(0) NdRy A+ AdRGm—1(my A -+~ AdRyy_,

dLy A ...ANdLp—1 /\dRGm—l(m)/\dTl/\.../\dTm A dry A oo A dTG_l(io) & n e
It is clear that ¢; and % go down to Y K, preserve (.:h.is voll.lme a;n(}i1 permute » 2 A
the positive cones of the spaces K. We denote the disjoint union of these cones ; - L ERE dL;_I_\l(D) e
by K. 9=1(ip) T Gm=1(m)

cks associated to 7, s
For each 7 € . take the total area of the sa A BB o iy Ny - A b gy A~ Al

m—1 m—1
(4.17) Ay = z GLiL; + Z i R; : It is easy to see that ¥ covers & in the sense that o ¥ — % om where 7 is the
: = F=1 : projection 7(L, R,r) = (L, R). If we push the measure of K’ by this projection
we get, integrating in the fibers, that the volume form
Using [4.14] we have

m 1 e
el m = <H ﬁ(-)j_?')d[/gmq(o) A dR1 VAR dRGm—l(m) VARER 4 dRm_l
Ay =Y i Lit Ryw) = Y_ri(Lg-ro) + Bs) ; IR
i=0 =1 i sy 1 P
) X ! = :‘:( ‘)dlq A "'/\dLgm—l(O) Ncvs AdLi /\dRGm—l(m)
On the hypersurface A, = 1, w induces a volume element which we still call w. ot Li+R £(0)

This volume can be written as :
| isinvariant by ¥ (Each fiber is a simplex with volume a fraction depending only
L dLgm-1(0) ARy A+ dRpm 1 Adri A=+ i on m of the volume of the spanned paralelepiped.) This form induces a measure

{ on each C, which, up to a constant, has the density (3.12) with respect to the
' Lebesgue measure.

Lgm-1(0) + Ra-1(ip)

A er“(io) A ANdrm

+1 dLy A+ dLm_1 A dRgm-1(m) B 5. du is conservative. In this section we show that & is conservative.

= I ~1(i0) + Rgm-1(m) ! i i This means that there is no wandering set of positive measure or, what is the

g T e d'r/\ A drm same, that ¥ induces a first return map on each subset of positive measure of
LA Gm=1(m

%. It is here that we will use that the construction of the preceding section
gives the measure du which, as we know from the beginning, is %-invariant.

et 5. . d
where the superscript ~ indicates omission and g is the. type of . Slgce P :rl‘lle
(¢ preserve w it is clear that ¥ and ¢ induce diffeomorphisms on A and pres

the induced volume form. . - P
Consider now the normalizing map N given on each C., v = (9, G) € ¢,

Proposition 5.1. §:(@,u) — (€, ) is conservative.

Proof. To get a contradiction, suppose that there is a % -wandering subset

by .~ of positive measure of €. Taking the pull-back of this set by m: K’ — € we
- . get a U-wandering subset of positive measure of K’ , % . Since % has positive
o N, = 'f i By = Z Lo Bois ¢ measure, the positive ¢, saturated of this set, 4, has infinite measure in K. On

£ = the other hand, since % is W-wandering and 1 and ; comute, we can write 4"
B =

R aa
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as a disjoint union
xX= U Y™ (D N {p; saturated of ¥~"(%)})
n=1

where @ is the fundamental domain of the action of 9 on K given by

D = {p(s) | N(s) =1 and 0 <t < 7(s)}
and 7(s) is the time needed to flow back to {N = 1} from ¢(s), s € {N =
1}. Now, since 9 preserves measure, we get the contradiction that finishes the

proof of the proposition if we show that % has finite volume since the sets
9 N {p; saturated of U~"(%/)} are disjoint. O

Lemma 5.1. 9 has finite measure.

Proof. It is enough to show that, for each v = (g,G) € 7 , the measure of
the set & ., which is the intersection of & with the positive cone of F is finite.

o .
In fact we will show that @;l , the intersection.of % ., with the cone
TGm=1(m) > TG~ (io)
has finite measure. The proof that % f , the intersection of & . with the cone

TG~1(ip) > rgm-1 (m)

has finite volume is similar and will be left to the reader. O

@r(l;

5 s the set of 2m — 1-column row matrices

rGm—1(s
(le...mLm_l SRem1(m) %G_xﬁ%ﬂ)

with entries satisfying

L;, R; >0, i=1,...
71 30, 550m, 2 0
L;+R; = Z Lj-}-Rf(j) 3= lyeymi=—1,

JEGT1(4)

1m—1$
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TGm-1(m) > TG~1(4p)
= T (LitRew) = Y 7j(Lp-10+R;), 1= %
=5 J; (L1 +Ry), ;L,+& = ;; Li+R; ),

and

1>z> 1
1+ Lg“(io) =+ RGm-l(m) .

]f we elll]lllla(e I 1 th ab p. E
@ L .
€ Ove expressions we gel that ~ 18 the set Of matrices

(Ly++ Lyp_y RGm-i(m) 71+ T Gmi(my -+ )

with entries satisfying

Li, B; >0,i=1,.... m—1,
T 205 e e > O,

Li+ R; = Z Li+Rs;y; i=1,..,m—1
JEGT(4)

S

er—l(m) > TG‘I(io) ,

m—1 m
= ZO rra)(Li+ Bypy) = ) (L) + Ry),
1= 7=1
m
123 Lyagy+ Ry,

Jj=1
and

m
Lo=rti0) + Rames(m) + 3 Ly-15 + Ry > 1.
Jj=1

We have to show that the integral

/ ) ALy - ALm_1dRgm-1 (mydry -~ drgor(my - - drpm
P 3 Lg-1(i0) + Rgm-1(m)

is finite. Integrating in the r’s we get that the

equal to above integral is, up to a constant,

dLy Ly 1dRgm-1(m,
Lom=10) + RBe-1i0)) T2t 46120y L1 + By

/ (Lg“(io) + Rem-1(m) +
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over the set of matrices
(L1 Lm-1 Rgm-1(m)
with entries satisfying
L Ri>0, i=1,...,m—1

Li+R; = Z Lj+ Ry 5 i=1,...,m—1
J€g=1 (i)

m
1> Ly + Ry
j=1
and

m
Lg-1(ig) + Rom-1(my + Y Lg-1( + Rj > 1
=1

Pull-back the above integral to the cone with vertex the origin and spanned by
4 @1 (y)» USing the linear map that induces 9, L(¥ “!(v)). We get the integral

dLy - dLm-1dRgm=1(m)
[lie: Ly + R

over the set of matrices
(L] AINIA Lm—l RG"‘"(m))
with entries satisfying

Li,Ri>0,i=1,...,m—1

Li+ R = Z Li+Rpy i=1,.,m—1
JEGTI(3)

m
1+ Ly-1(ig) + Rgm-1(my) 2 D Ly-105) + Bj
j=1

m
D Ly +Rs 21
i=1

and

Srerseny

p———
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Lis 2 Lg1(io) + Rgm-1(m)

where now (g,G) = 7' ().
In this integral we make the change of variables given by the formulae

Li=tL}, Ri=tR,; i=1,...m~—1
and
m
= ! /
1=2 L+ R
j=1

If we trade the variable Rlc'm~1 - for the variable ¢ in the integral thus obtained
and integrate with respect to ¢ we finally get, up to a constant, the integral

/ ln(l 2 Lgfl(io) e RGm—l(m))dLl «++dLp—1
IGZ Liriy + By

where for simplicity we dropped the primes. This integral is over the set of
matrices

(L1 L)

with entries satisfying

L;, R; >0, = 1u: smm —1

L;+R; = Z L_,-+Rf(j);2'=1,...,m—1
J€a~1()

m
ZL,_W, +R; =1
=1

and
Lio 2 Lg-1(io) + Rgm-1(m)

This integral, in its turn, is finite or infinite with the integral

/ dLy - -dLpy_1
ITis1 2em-1(my Li-1() + Rj
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over the same set. This set is a polyhedron and can be decomposed as a union
of simplexes. Using theorem 1. in the Appendix we see that the proof of lemma
1. is complete once we prove the next lemma.

Lemma 5.2. Given v = (g,G) € o with type ig and a point
P=(Li- Lym_1)
in the polyhedron given as above by

Li,RiZO, i:I,...,m—l

(5.19) Li+Ri= Y. Li+Rys;i=1..,m-1
i€g=1(0)
> Ly +Rj=1
F=1
and
(520) Lio Z Lg_l(io) =+ RGm—l(m)

the number of factors of the product

m m—1
(5.21) [I Lio+Ri= I Li+Re
j=1,#G"~1(m) 1=0,7#g 1 (40)

which are zero at P is less than the mazimal number of linearly independent
equations of the set

5 =0,R; =0; 1 =1y.0o,m—1

which are satisfied by P

Proof. Since
L; + R; :Li-i—Rf(i); i=1,....,m—1i#1
the factors of (5.21) are Li+R; fori =1,...,m—1,1 # i and Lgm-1(0)+Rc-1(i0)-

We have several cases to consider depending on which factors of (5.21) are
zero at P.
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(1) If Lym-1(0) + Rg-1(ip) = 0 at P then Lym-1() = Rg-13ip) = 0 and R;, =
.0 at P since (5.20) implies Lgm-1(0) + Rg-13ig) > Rip. If Lgm-1(0) +
Rym-1) > 0 at P the lemma follows since each factor L; + R; which
vanishes gives one equation L; = 0 and the factor Lgm-1(0) + Rg-1(55) = 0
the two equations Lym-1(0y = Ri, = 0. If Lgm-1(g) + Rym-19y = 0 we

consider two cases

(a) g™ 1(0) = ip and

(b) g™=1(0) # do.

" In the first case Lgm-1() + Rym-1(g) is not a factor of (5.21) and the ar-
gument just made holds. In the second case take k > ¢, for £ such that
g%(0) = 1o, the last iterate of g, starting from above, g™ 1(0), and going
down, for which we have the equality Lgr ) + Rgr(0) = 0. In this case each
factor L; + R; which vanishes at P gives one equation L; = 0 and we have
one extra equation, L; = 0, satisfied besides R;, = 0, since either k = [ +1
and then L;, = 0 for Ly;y) + Ry(ip) = Liy + Ryf(ip) or k> £+ 1 and then
using 0 = Lgk(0)+ng(0) = Lgk~l(0) +Rf(gk-1(0)) we get Lgk—l(o) = 0 which
is again an extra equation since Lgk-1(0) + Rgr-1(0) # 0. This finishes the
case Lgm-l(o) + RG“l(z’q) =0,

(2) If Lgm-1¢0) + Rg-1(s9) > 0 at P. take k, k € {1,...,m — 1}, the greatest
iterate of g for which we have the equality L« gy + Rgroy = 0 at P. If
k > £, where g*(0) = 49, the lemma follows by repeating the argument we
just made. We suppose then that & < £ and Lyr0)+Rgr) > 0forr > k. If
Lgs 0y +Rgs (o) > 0 for some s < k we can still get an extra equation L; = 0
by the same argument. The only possibility left is Lys 0y + Rgs(0y = 0 for
s < k. We can write the equations (5.19) as:

Lgo) + Rg0) = Ry(o)
Lg20) + Rg20) = Lg(0) + Rp(g(0))
Lgs0) + Rgso) = Lg2(0) + Ry(g2(0))
Lgm-1(0) + Rgm-10) = Lgm-2(0) + Rf(gm-2(0))

where the /-th equation, corresponding to g?(0) = g, is missing. This
equation,

Lio + Rio = Lg—l(iu) + RGm—l(m) + Lgm—1(0) —+ RG"(io)

is a linear combination of [5.22]. If some of the R’s appearing at the right
side of these equations do not show up in the left side we have k+1 vanishing
R’s and, as these equations are linearly independent, we are done. On the
other hand, it is not possible that any R appearing at the right side of
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these equations appear also at the left side. In fact, suming the first k
equations of [5.22], we have Lgk oy = 0, which contradicts the fact that €,
has dimension m — 1.

The proof of the lemma, is now complete. ]

6. Ergodicity and Keane’s conjecture. In this section we show that du
is ergodic under the action of % and give another proof to Keane’s conjecture.

We start by recalling some results of Rényi’s [6] which we will need. Let
(8%, #B,v).be a measure space and let #:Q — Q be a measurable non-singular
map. We say & admits a Markov partition (C(i))iez, if C(i) is a measurable
partition of Q, I is countable or finite and

=Y C() for 1)) C 1
JEIG)

Define the transition matrix & = (), jer associated to this Markov par-
tition by

pu 1, if #(C()2CG);
Ty =
7o, i F(OE)NOG) =
for i, j e I.
A sequence of indices 41,13, . .. ,in, 7 > 1, is called admissible if Tiig: =1
for k =1,2,...,n—1. In the cases we will be considering J is irreducible, which
means that given indices i and j there is an admissible sequence 4y, i, ...,%n

starting at ¢ = 4; and ending at j = i,.
We suppose that for each 4 € I there is a measurable and non-singular map

H(i): F(C()) — CG)

which is the inverse to Z| () In other words F o H(i) = Id gy and
]//(1) o 8’17 — Idc(i).
Given iy, 19, .. .,%, an admissible sequence define

'7[(7:17 7:27 v 72'17'): g(c(zn)) = C('Ll)
inductively as

J{)(il,iQ, cee ,in) = xy{)(il, i2, . ,in~l) o :/f(ln)
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and define

Clir,i,---yin) = H(i1,i2,....0n—1)(C(in))
= C(i1) N F 1 (Cliz)) N F*(Cli))--- N F " H(Clin))
C(i1,12,...,1n) is called the atom of depth n associated to the admissible se-

quence 1y, 1g,...,i,. The set of these atoms, #", is a partition of  and it is
clear that #™"" refines 2.

Let
o ) dH (i1, ia,. - . ,in
Alin iz, in) () = ST Tn)
v
denote the jacobian of &#(iy,%s,...,1,) with respect to the measure v at the

point z € ¥ (C(in))-
We say that the atom C(i1, 12, ... ,1,) satisfies Rényi’s condition for K > 1

if
(6.22) ess sup{A(i1,io....,,)(z) | ¢ € F(C(in))}
< K essinf{A(i;.4a,...,in)(2) |z € F(C(in))}
Rényi’s condition means that the distortion #(i1,%2,...,in) produces on the

measure of any subset of % (C(i,)) is essentially the distortion it produces in
the measure of F(C(in)).
We are ready to state Rényi’s result [6] we shall need.

Theorem 6.1. Let ¥:Q — Q and C(i) be as above and suppose that v is
finite, F(C(in)) = Q for Vi, that there is K > 1 such that every atom of any
depth satisfies Rényi’s condition and that | Jow, P™ generates B. Then F is
ergodic.

We return now to consider the Gauss map %: € — €. Denote by I the
set of pairs i = (%,) where & € {R,L} and 7 € «#, and define C(i) = %;j]
and

H() =97 G(C>I) — C)

It is clear that (C(4))ier is a finite Markov partition for &. Note that the set

{9 (C(7)) | i € I'} is the set of Farey cells and

H(i): G (C(5)) — C(d)

which is the inverse to ¢

cy is a projective isomorphism.

For each i € I fix M(i) an n x n-matrix inducing #(¢) as in the definition
of projective maps (3.6).
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Since projective maps take straight line segments to straight line segments
and therefore convex sets to convex sets it is clear that the atoms are convex.

To show the ergodicity of ¥ we start by proving that the first return map
induced by ¢ on C(i1,...,1,) is ergodic for certain good admissible sequences
i1,...,1n. Observe that there is a first return map since % is conservative. Then
we make use of the identification of X = T via the stacks associated with the
interval exchange maps and prove that if T satisfies Keane’s infinite and distinct
orbit condition, i.d.o.c., we can get a good admissible sequence iy, ...,4, such
that T € C(i1,...,%,). Since the set of i.d.o.c.’s is a set of full measure a well
known argument using the transitivity of & shows the ergodicity of % . )

Lemma 6.1. There is a subset of full Lebesque measure in € =3 €.,
such that for every point (L, R) in this set, say (£, R) € €., there is an admis-
sible sequence iy, ...,i, such that (L,R) € C(i1,...,i,) C int(€,)

Proof. To prove the lemma recall the interpretation of the Gauss map %
as the change the stacks associated to an interval exchange map T suffer as we
move from one critical iterate to the next one. Given y € ./ we can identify
each element (L, R) of this abstract Farey cell with the stacks of an interval
exchange map T in a conveniently fixed convex subset of the simplex of interval
exchange maps. This procedure was described in detail in the last section of [7].
Using this identification, the set of full measure we need to establish our lemma
is the set of interval exchange maps satisfying the infinite and distinct orbit
condition which, as we know, is made of minimal maps. To see the truth of that
assertion, fix T € €., i.d.o.c. and denote by f4i,...,Bm—1 its discontinuities.
Since for each i = 1,...,m — 1, T~%(8;), k > 0, is dense we can fix k; such that
T~%(B;) 0 < k < k; crosses at least twice the interior of each slice of each stack
of T € ¥.; once in the interior of the intervals L' and the other in the interior
of intervals R!. Now denote by s; the segment of vertical separatrix conecting
B; to T~F(B;) in the vertical foliation of w(T), the quadratic form associated
to T, [7]. Each of the segments s; has possibly several connected components
on each stack of T € &.,. Now, as we iterate T under %, the number of these
components decrease to one since they start being separated by the T-orbit of
0. Let n+ 1 be the first time each segment s; is entirely contained in one stack
of the corresponding Farey cell. This stack must necessarily be the one with 3;
in its top. Take €., the Farey cell containing %" (T) with coordinates (L', R').

The itinerary of & k(T), 0 < k < n, on the atoms C(i) define C(iy,...,i,) and it
is clear that C(i1, ... ,14,) is contained in the interior of €., since each each stack
of €., contributes with at least one slice to compose the intervals Lf and R
of €. In fact, if one of the equations defining the boundary of ¢, is satisfied,
say L1 = 0, this whould imply that L’ = R’ = 0 which is an absurd. The lemma
follows. a
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o

Lemma 6.2, Let 4y, .

i of the preceding lemmg.: e

b oy
€ an admissible sequence satisfying the thesis

C(ila Py zn) C lnt( %7)

Zhen lhe ﬁrst retum map anuc@d by @ on 7 7 18 er Ddi:
C( 1y, 11) 9 *

f' Ssly
£roo I X 21’ in an a‘dnnSSlble se ence as mn the h.’ OthGSIS alld ta‘ke
J = the set Of adlnlsnslble S equenCeS

-y Je, £ > n, such that

(1) j1,..5 i
3 »Je starts with the Sequence 7;,... 4  ;
. R »+++y0n, In other words, 7; — Jk for
(3)) il; -+»Je ends with the sequence 4, )
Te are A
iy no (?ther ocurrences of the sequence ; in In
I the two just considered. e S B de ol

It is clear that > Cl,.

Cla, -~y Je) is the domain of the map G

-+, %, ) and therefore a4 o

(lly‘“’Zn) - Zc(jli"->je)
J

mod dy since the first return

o map is defined g.e..

s -,j{), J € J,is an irreducible
on C(5), we ‘have that

It is also clear that C’( 7) =

DI k Y f [(4 2
arKkov paltltl()ll or rg and, Since (-g =

0, ™S9 _ H(§):(CG) — E4) is g Z

15 Ji-n) on C(5). To prove th ¢ il v o ) =

i S;{ne 7 ? S s il Z lemn;d we check first Rényi’s condigion
x GG, 5%). We have to boun:i o

ess sup{{X(jl, oo ,jk)(x)}
ess inf{A(51, ... 7%)(y)}

for 2,y € G(C()). s
: J")). Since the ar
that the Supremun and j s g g

X polyhedra we have b
% Y lemma 1.
€ (C(3*)) thus we have to

infimun are taken at i
7 th i
o it € vertices of the polihedron
3 l o s ~
0= A6 e
AGY,. L 5k ()

for ©.% vertices of G (C‘(]k)) Now
k]

W 51 ke Ol &
6 )= AR =
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H(GY) ... H(Gp,_a)H(GE) . .. H (g, _n) HGE) ... HGF, )
and
CG* = CGt.--»d8,)

Ot —niins- - vdb) =Cliis - -+ )
H(ir) ... H(in)(G (C(in)))

|
—
(o))
—~
<.
ol
~—
~
|

therefore & = H(i1) ... H(in)(v) and @ = H(i1)... Jf(zn)(w) where v and w
are vertices of % (C(i,)). Using the chain rule we can write

Jac(HGL) ... HGE ) H @) ... H (i) () Tac(H i) . .. H(in)) (w)
17 Jac(HGY) - . HGE ) H(ir) - . H (i) (w)Jac(Hin) . .. H(in))(v)

where Jac denotes the Jacobian with respect to the Lebesgue measure. We have
then to get a bound for

 Jac(H() - - H(GE, ) H (i) - . Hin)) (V)
~ Jac(H(5)) ... HGE ) H (i) .. H(in))(w)

q

using Lemma 1. we see that we have to get a bound for

_uM(j}). . M(jg, ) M(i1) . .. M(in)w
a uM(g)... M(jéc,c..n)M(h) o M(i)v

where u is the n-columns row matrix with all entries 1. Since the vertices of
C(i1,i2, .. .,in) are in the interior of €. we can fix a matrix A = A(7) all of
whose entries are positive such that WA = M(iy)--- M(i,)V where V is the
matrix with columns the vertices of €., and W is the matrix with columns the
vertices of the Farey cell containing C(i1).

Setting X = u.M(j}) ... M(j§, __,)W we have

_(Xa\"
1= Xa'

where a and @’ are columns of A. But then, for Xy, = max{X; |0 <k < n},

we have.
n X m
n m =k ap
g = [Ze=mXear) Lik=1 Xog %
- n ; - n Xk
> k=1 Xkay, b Bl Ky
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anzl Qg " Zil:] Qp "
( hy ) : (min{A(i)})
(n.max{A(i)})m

min{A(7)}

IA

where max{A(i)} and min{A(i)} are, respectively, the maximun and minimum
of the entries of A(7) We have then shown that Rényi’s condition holds for

() 1)

To finish the proof of the lemma using Theorem 1. we have to exhibit a subset
 of full measure of C(i1,is,...,i,) such that the diameter of the atom of
P" around z € 7, An(z), goes to 0 as n — oo. Now, the set of points in
C(i1,%2,-..,in) which, under the action of ¥, recur infinitely often to this set
has this property. This follows from Lemma 3.28, p. 240 of [8] on account of
the infinitely repeated matrix product M (i1).M (iz). - - - .M (i) occurring in the
definition of A, (z). This product, as we know from lemma 1. , has all entries
positive. This finishes the proof of the lemma. ]

Theorem 6.2. Given 7 an irreducible and discontinuous permutation, the
set of interval exchange maps T = T(m, ), o € &, which are uniquely ergodic
is a set of full Lebesgue measure on & p,.

Proof. Using the notation and results of the last section of [7] we have to
show that the set of uniquely ergodic interval exchange maps of an arbitrary but
fixed integral type v € .« form a set of full measure. But, as remarked above,
the set of these interval exchange maps can be identified with the points in the
Farey cell €., T being uniquely ergodic iff, in our present notation, B

(6.23) 8(Clir,in, - .., in)) — 0

where ¢ denotes diameter and C(i1,1,...,%,) is the depth n atom containing
T. Now, we just saw in the proof of the preceding lemma a set of full measure
with this property. The theorem follows.

Theorem 6.3. G:(€,pn) — (€,p) is ergodic.

Proof. Let E be a measurable %-invariant set with pu(E) > 0. It is
enough to show that for any admissible sequence iy, . . ., %, such that C(iy, ..., i)
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satisfies the condition of lemma 1. we have
[A(E N C(i1,12,. .. ,’in)) = [.L(C(ihiz, wete i)

As ENC(iy,...,i,) i$invariant by ‘G the map induced by ¥ on Cldg, - - 50n)
all we have to do is show that u(E N C(i1,%2,...,i,)) > 0 since by lemma 2.

@ is ergodic. Now, by lemma 1. , as u(E) > 0, there is #};...,%, an admissible
sequence such that u(E N C(i,...,7,)) > 0 and since J is irreducible there is
an admissible sequence 71, ja, - - ., jx Which starts with #;,...,%, and ends with
i1,%92,...,in. But the maps S are non-singular and as F is % -invariant it follows
that u(E N C(i1,12,...,in)) > 0 thus proving the theorem. O

7. Appendix. In this appendix we establish necessary conditions for an
integral of the type we dealt with in Section 5 to be finite.

Let s be the n dimensional simplex with vertices eg = 0 and ey,...,e, the
canonical basis of R", i.e.,

n n
s = {Zziei|2xi=1,0§$i}
i=0 i=0
n n
{ZzieiIZJIiSl, OS.’I'I}
i=1 =1

{(ml,...,zn) | iu <1, Oga:i}
i=1

Il

I

and L(z) = c1z; + -+ + ¢aTp + b an affine functional. Suppose L(z) > 0 for
z € s°, the interior of s. Then L(z) > 0 for = € s and, taking z = eg, €1, .- -, €n,
wegetcog+b>0, c1+b>0,...,cp +b2>0, where ¢y = 0.

If {L = 0}Ns # @ there are z9,%1,...,T, such that > > jz; =1, 0 < x;
with e1zy + -+ cpn +b =0, or (co +b)zo + - - - + (¢n + b)z5 = 0. This shows
that there are indices i such that ¢; +b = 0. Let 0 < ¢ < g < ... < i < 1,
1 < k < n, be this set of indices. It is easy to see that {L = 0} N's is the simplex
generated by e;,,...,e;,. In other words, {L = 0} cuts s in a subsimplex.

A simple consequence of these remarks is that if L vanishes in a point in
the interior of a face f of s, then it vanishes in the entire face f .

Given P = HZALI L;, where Li(z) = cijz1 +  + Cin®pn + b; for i =1,.., N,
and s a simplex as above, define the degree of a face f of s, degree(f) as the
number of factors of P, counting multiplicities, which vanish on the entire
face f .

rIEeEeY

B

Gauss Maps Associated with Interval Exchange Maps 1437

Theorem 7.1. Let P and s be as above satisfying Li(z) > 0 for i =
1,...,nand z €s°. If

(7.24) dimension(f) + degree(f) < n

for every face £ of s we have

-
s P

where dz is the Lebesque measure on R™.

Proof. Take # = {t} the baricentric subdivision of s. We have to prove

that
dz
\ P < 00

for each t € B. Fix t € & and let vy, v1,. .., v, be its vertices ordered in such
a way that v; is the baricenter of a j-th dimensional face of s, j = 0,1,...,n.
Take f a face of t with vertices vjg,...,vj, 0 < jo < ... <jr <M, and L; a
factor of P such that L;(f) = 0. Using the remark just preceding the statement
of this theorem we conclude that L;(f;,) = O where fj, is the face of s with
baricenter vj,, £ = 0,...,k. This shows that our hypothesis (7.24) holds for
t (since {L; | Li(f) = 0} C {L; | Li(f;,) = 0} and this set has cardinality
< n—jr <n—k). After an affine change of coordinates we can suppose that
vo = 0 and vy, . .., vy is the canonical basis of R™. Using the same remark again
we see that every factor of P that vanishes at a point of t must vanish at a
vertex of t and therefore at all previous vertices of this simplex. In particular
this factor must be homogeneous. Thus, since L;(z) > 0fori=1,...,n—1 and
2 € s° we can write L; = ¢j1Z1+- -+ CinTp fori=1,...,n—1 and non-negative
¢;;’s such that if ¢;; = 0 for some j, c;x = 0 for k < j. Since (7.24) hold for
f = t, at most n — 1 factors of P vanish at a point of t. Factors which are finite
on t won’t matter for our thesis so we will ignore them and suppose we have
at most n — 1 factors. In fact, to simplify the notation, we suppose that P has
exactly n — 1 factors by multiplying P by a convenient number of factors equal
to 1+ - - +,. Reordering the L;’s if necessary we can assume that the number
of vanishing c;; does not decrease with i. We claim that the j-th column of the
matrix ¢;; has at least j positive entries. In fact if n — j entries of this column
are zero n — j factors of P vanish at e; and therefore at the face generated by
eo,€1,- - -,e; contradicting our hypothesis. Thus ¢;; > 0 at least for 1 <i < j
and then

n—1 n

n—1 n—1
P= H Zcijl‘i > H CiiTi + CinTn 2 C H Ti+ Tn
i=1 i=1

i=1 j=1
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where c is.the minimum of the positive ¢;;. Denoting by c the cube [0,1]" D t

we h

whic

(1]

(6]

(7]
(8]
(9]

ave
dzx
L /
t P ) |
S / n 1
Hl_l Ti + Tp
1 d+z
= —/ [ln( ")] d:cn < 00
c Jo Tn
h finishes the proof of the theorem. O
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