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ABSTRACT

The purpose of this paper is to show explicitly the spectral distribution function of
some stationary stochastic processes as

Zy=Xe + & = d(Fo(Xi—1)) + &, for teZ,

where ¢ is a given continuous function, Fy is a deterministic invertible map with parameter
0 € © C R™ and {:}+ez is a noise process.

We present several examples of transformations Fy and ¢ and for each one we analyze
spectral properties for the above process. One of the examples considered here generalizes
the classical harmonic model

Zy = Acos(wot+ ) + &, for te€Z.

The harmonic model is the motivation for this work.
1. INTRODUCTION

We will consider the parametric analysis of several examples of time series determined by
deterministic systems given by chaotic bijective transformations.
When F : [0,1] — [0,1] is given by F(¢) = wo + % (mod 27), then the classical
harmonic model
Zy = Acos(wot+ 1) + &, for te€Z,

can alternatively be given by
Zy = Acos(F'(¢)) + &, for teZ,

where {&;}1cz is a white noise process.
We want to analyze time series obtained from stochastic processes as

Zi = (¢po F)(Xio1) + & = ¢(F*(X0)) + &, for teZ,
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where {&:}1cz is a white noise process, ¢ is a random variable and F is an invertible
transformation on R".

We will consider the noise process {&;}1cz independent of the signal process
{p(F*(Xo))}sez- Therefore, for practical purposes we can omit it. One can obtain the
spectral density function of Z; = ¢(F*(Xp)) + & from the spectral density function of
X = ¢(Ft(X))).

We shall show that of the periodogram is a good estimator for a large class of trans-
formations (see Section 4) and the explicit expression of the spectral density function in
several examples.

The parameter 6 can be estimated by the method of moments and this is analyzed in
Lopes and Lopes (1995).

2. STATIONARY STOCHASTIC PROCESSES

The general setting of chaotic time series we shall analyze is the following. Consider K a
compact subset of R™ with a given Borel o-algebra F, a bijective continuous transformation
F : K — K (or Fy), an invariant probability P on K (that is, P(F~1(A4)) = P(A), for
any set A € F) and ¢ : K — R a continuous function. We will analyze the stationary
stochastic process {Z; }1cz given by

Zt = Xt +§t = (QS o F)(Xt_]_) —+ §t7 fOI' t e Z. (21)

The natural measure on K% is the product measure on K% and it is invariant for the
stationary process { X }tez or {Z: }1ez. The process {&; }1ez is considered to be a Gaussian
white noise process (see Brockwell and Davis (1987)) independent of {(¢po F')(X¢) }tez, with
zero mean and variance o2. One observes that in the model (2.1) the random variables X;
(or Z;) and Xty (or Zi41) are generally not independent.

We shall denote the above system by (K, F,P, ¢, F, 052). Following the terminology
in Tong (1990) we may call the system (2.1), when ag = 0, the skeleton of the system.

Given a certain measurable function ¢ : K — R the autocovariance function at lag
h € Z (see Brockwell and Davis (1987)) of the process { X}tz as in (2.1) is given by

Rcx(h) = B(XXean) — [ECG)E = [ o0 (@)dP (s [/ H(z)dP( w)] (2.2)

The autocovariance function Rxx (h) in (2.2) measures the covariance between two values
of the process {X;}icz separated by lag h. The autocorrelation function at lag h of the
process { X }iez (see Brockwell and Davis (1987)) is given by

Rxx(h)

px(h) = m,

for heZ, (2.3)
where Rxx(0) = E(X}?) — [E(X)]? = Var(X;) is the variance of the process.

The reason to consider F' a bijective map and not just a map is for defining Rx x (h)
also for negative values of h € Z.



From the Herglotz’s theorem (see Brockwell and Davis (1987)) a function px(h) is
non-negative definite if and only if

px(h) :/ eAMdFx(\), forany he€Z, (2.4)

—T

where Fx () is a right-continuous, non-decreasing, bounded function on [—m, 7] with
Fx(—n) = 0. The function Fx(-) is called the spectral distribution function of {X;}icz
and if

A
Fx(\) = fx(w)dw, for —m <A<, (2.5)

then fx(-) is called the spectral density function of the process {X;}icz. When

o0

> lpx(h)] < oo,
h=—o0
then px(h) = [7 e fx(X)dA, for h € Z, where fx(-) is given by

oo

> e px(h). (2.6)

h=—o00

1
o

fx(A)

This function has real values if px (h) = px(—h), for all h € N.
Each particular invertible transformation F' will require a different technique in order
to obtain explicitly the spectral distribution function.

Example: When the compact subset K is equal to [—m, x|, the transformation F is
given by F(z) = wo + = (mod 27), with wy € (0,7), and ¢(z) = cos(x) (this is the
classical harmonic model), the spectral distribution function of the process {X;}icz =
{(¢ o F)(X¢—1)}tez as in (2.1) is not a function but a generalized spectral distribution
function exists and it is given by

A (N) = 5By +0-00), (27

where 4, is the Dirac delta function concentrated at wy.

Remark: Expanding maps (see Section 3 for the definition) always have an exponential
decay of autocorrelations, for any ¢ Holder continuous function (see Parry and Pollicott
(1990)). Therefore, in this case (see Examples 1, 3 and 4), the spectral density function
always exists and it is an analytic function. The function F' of Example 1 in Section 5 is
an expanding map but the one of Example 2 in Section 6 is not.



3. THE NATURAL EXTENSION Fy OF Tj

It is well known that in general larger the dimension of the set K, more difficult is to
analyze the dynamics of the map Fy.

When K is one-dimensional, that is, when K is a segment, the diffeomorphism
Fy : K — K has a simple dynamics. When Fjp is linear (mod 1) then one obtains the
harmonic model by taking ¢(x) = cos(z).

In general the dynamics of an one-dimensional diffeomorphism is too simple (see Sec-
tion 6 for a more difficult case).

The simplest example in two dimensions, that is, when K is a square [0, 1] x [0, 1], is
obtained when Fy is the natural extension of an one dimensional map Ty. The map Ty is
not an one-to-one map, but Fy is.

When the transformation Tp is an ezpanding map (see Examples 1, 3 and 4), that is,
there exists A > 1 such that [Tj(x)| > A, for all z € [0, 1], then there exists (see Lasota
and Yorke (1973)) a density g(x) such that du(z) = g(z) dz is invariant for Ty (that is,
u(T; M (A)) = p(A), for any Borel set A). The probability p is ergodic (see Parry and
Pollicott (1990) for the definition) for such map Ty. There exists a natural way to obtain
from such Ty a bijective map Fy, called the natural extension of Ty. Denote by (z,y) a
vector in the domain K and by (z',y’) = Fy(x,y) its image by the map Fy. Then, (see
Bogomolny and Carioli (1995))

To(x) =2' and Ty(y' )=y

defines Fy.

The invariant probability u for Ty on [0, 1] has a natural extension to a probability v
on K =[0,1] x [0, 1] invariant for Fy.

When T is an expanding map, the transformation F' is Axiom A (see Robinson (1995)
for definitions).

Consider now the random variable ¢ : K — R of the form ¢(z,y) = ¢(z). Then, the
time series

Xy = ¢(Fg(z,y)) = (Tg(z)), for 1<t <N,

and the probability v define the simplest example of a chaotic time series.

The dynamics comes basically from an one-dimensional map even if the setting is for
a two-dimensional bijective map. As we mentioned before the reason to consider bijective
maps is to obtain Rxx(h), for h € Z.

For a certain class of such maps (see Examples 1,3 and 4) we shall be able to show
explicitly the spectral density function. We call a stochastic process obtained from the
system (Fy, ¢) as above a standard stochastic process obtained from (Ty, ¢).

The spectral density functions of maps T are important for the spectral analysis
of chaotic time series and also because the zeta function associated with the potential
—log T"(z) has poles on the same values of the poles of the spectral density function (see
Ruelle (1987) and Rugh (1992)).



4. THE PERIODOGRAM IS A GOOD ESTIMATOR

We analyze in this section the periodogram for (¢, Ty) (or for (¢, Fy)) when Ty defines
a standard time series. Our purpose here is to show how to obtain an approximation of
the spectral density fx(A) from a time series data X; = ¢(T}(Xo)), for 1 < ¢ < N, (that
is, when ¢(z,y) = ¢(x)), where Xg is chosen at random according to the measure u (or
according to the Lebesgue measure).

One can say from the reasoning below that in this case the periodogram is a good
estimator in the sense of generalized functions (see Rudin (1986)). Suppose, for the sake
of simplicity, that E(X;) = 0. We can alternatively estimate

o0

fx(A)2rVar(Xo) = > E(XoXp) exp(—ih)),

h=—o0

with Xj, = ¢(FJ(z,y)) and from this result estimate the spectral density fx()). By abuse
of the notation we shall also call the above expression as the spectral density function.

We will not present a rigorous proof of the facts we consider in this section, we just
want to explain the procedure to obtain the periodogram. The formal proof of the reasoning
in this section will appear in a forthcoming paper.

Notice that as the random variable ¢(z,y) depends only on z (for positive t,
¢(Fi(z,y)) = ¢(Ti(z)) independently of y) we shall consider the periodogram for Ty
instead of Fy.

Consider the transformation Ty : [0,1] — [0, 1], where § € © C R™, an expanding
map.

We shall assume that ¢ is the random variable ¢(z,y) = ¢(x) and du(z) = g(z)dz is
the unique ergodic and absolutely continuous invariant probability for Tj.

The goal here is to sketch the proof of the smoothed periodogram’s consistency (in the
sense of generalized functions) for the above setting. One denotes X; by (¢ o T¢)(Xo) =
¢ (F}(Xo,Yo)), and {X;}Y, is a time series of N observations where (Xo,Yp) is an initial
point chosen randomly according to p. From the Birkhoff’s Ergodic Theorem (u is ergodic
for Ty), for each subinterval A; = (a;,b;) C [0,1] and for p-almost every zo € [0, 1]

) 1
p(8y) = [ g)ds = Jim L1 <0< N T(o0) € A7),
A N—ooco N
If |b; — aj| = € is small and N is large enough, then

An(0) = S [1 <1< NTHX0) € A} m gle)By = Bu(e),  (41)

for some ¢; = ¢;(N) € A,.
The expression Ayn(€) ~ By(e) means that the quotient Ay (e)/Bn(e) goes to one
when N goes to infinity and e goes to zero.



Consider the discrete Fourier transform of the spatial position of the data obtained
as the sampled time series X; = ¢(T¢(Xy)), for 1 <t < N,

N
1 .
flk)=— ZXt exp(—iwgt),
N3
where wy, = 20kN~Y k = 1,2,--- N, are the so-called Fourier frequencies of the time

series Xy, 1 <t < N. The periodogram value I(wy) at the frequency wyg, for

o
kE{jEZ;O<wj:%§27r},

is defined in terms of the discrete Fourier transform f(k) of a sample X, for 1 <¢ < N,

by
N

N
Hwg)=f Z ¢ exp(—iwgt) ZX exp(iwgs) =

s=1

:%ZZXX exp(—i(t — s)wg),

t=1 s=1

where z denotes the complex conjugate of z.
For each h € Z consider t and s such that ¢t — s = h. Then,

N—1N-h N N
(Z Z X Xoqn exp(—ihwg) + Z Z X Xsih exp(— zhwk)> =

h=0 s=1 h=—1s=—h
N—-1N-h
— Z Z X, p(Fr(X,,Ys)) exp(—ihwy)+
h 0 s=1
] =N N
v D D Xab(FJ(Xe,Ya)) exp(—ihuwy). (4.2)
h=—1s=—h

Now if we take A;, 1 < j < v, as a partition by intervals (of the same size) of the interval
[0,1], with |A;| = € = 1/v small, one observes from (4.1) that

#[X; € Aj]

where c; € A;, 1 <5 <w.
We shall sum up X = ¢(T5(Xo)) = ¢(F;(Xo,Yo)) according to its position in each
Aj;. Hence,
Ajglej )N = #{s |1 <s< N, X, €A}
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Then, from (4.2)

I(wg) = Z Z¢ (¢ y5) B(Fg (s, y;)) (D 9(c;)N) exp(—ihwy) =

|h|<NJ 1

=) Z¢ ci, ) d(Fg(ci,y5)) 9(ci) Ay exp(—ihwg). (4.3)

|h|<N j=1

We shall show that for any Xy chosen at random, then ZkN=1 1 (wk)%éwk converges in
the distribution sense to the spectral density function
1 .
o E(XoXp) exp(—thA),
T hez

where 9, is the Dirac delta function concentrated at the frequency wg, 1 < k < N. Hence,
we will show that for any test function z(\), A € [0, 27),

(s

/0 ’ z(\) (Z E(XoXp) exp(—ihA)) dX

heZ

converges to

when N goes to infinity.
By integrating the smoothed periodogram against a test function z(\), A € [0, 27),
and by using (4.3)

S, Jim wak (%) -
= o J&E%OZ( ST 3 (e un)$(FE (s, 9))9(cs) A exp(— zh@)) ! (%) _
:/0 " [Z ( O ng(x y) p(FF(x, y))g(m)dm) exp(—ih)\)] z(A)d\ =

= /027r (Z E(XoXpn) exp(—ih)\)) z(A)dA. (4.4)

heZ

Therefore, the smoothed periodogram converges in distribution sense to the spectral den-
sity function.



The property considered above in (4.4) describes a method for obtaining a good ap-
proximation to the spectral density function. This method will be explained below.

Consider z(A) = Ijz_c z1(A) for a fixed z and a small fixed e.

From the reasoning described before, for such z()), (2¢)~! Zi\;l I(wg)%2(2nk/N) is
approximately equal to

N-1
1 .
gy h_El_N E(XoX}y) exp(—ih)),

if N is large and e small enough.
There will approximately exist 2eN/27 elements of the form 27k/N in the interval
[x —€,x+ €] C [0,27) if N is large. Therefore,

N
1
(2€) 12 —I(wg)z(27k/N)
k:l

is approximately the mean value of (27)~1I(wy) in the interval [z — €,z + €].

One can alternatively obtain the approximated value of Z,]:[;ll_ N E(XoX}p) exp(—ihx)
by taking directly the mean value of I(wg) in a small interval around z.

Considering now several z;(A) = Ijz,—c ., +¢(A), where z; are equally spaced,

1 —€,x1+€)U[z2 —€, 20+ €)U....U[xy — €Ty + €]

is a partition of [0,27) and applying the same reasoning to each z;(\), we obtain the
approximated shape of the graph of

N-1
> E(XoXy) exp(—ih)) , A€ [0,2m),
=1—

h N

as a function of .

From the above expression, one can derive (see the expression (7.6)) the approximated
graph of the spectral density fx(A) or fz(A).

The proceeding just described above is called smoothing the periodogram (see Brock-
well and Davis (1987)). For instance, if one takes a large sample T§ (), for 1 < ¢ < 10, 000,
the periodogram is given by

N N
I(wy) = N1 ZX,: exp(—iwgt) ZXS exp(iwgs) =

t=1 s=1
N N
=N ) X, X, exp(—i(t — s)wi)
t=1 s=1

and one can plot this real function in the interval [0, 27) as a function of wg. This graph
will show a sparse amount of data, but if one takes a partition of the interval in small
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intervals and takes means of this data in each small interval (also called smoothing the
periodogram), then the graph of a well defined spectral density function

oo

Y E(XoXn) exp(—ih)),
h=—00
as described in this section, will be obtained.

5. EXAMPLE 1

Sakai and Tokumaru (1980) (see also Grossmann and Thomae (1977)) introduce the
following model of chaotic time series. For a given constant a € (0,1), consider the
transformation Ty, : [0, 1] — [0, 1] given by

E, if 0<z<a
To(@) =14 1 _ . (5.1)
, if a<zx<l1
1—a

The Lebesgue measure dx is invariant and ergodic for the transformation T, (see Lasota
and Yorke (1973)). In the notation of Section 2, P(A) is the length of A, for any interval
A.

We now consider the stochastic process

Zy =X+ & =To(Xp—1) +&, for teZ, (5.2)

where ¢(x) = z according to the notation of Section 2.
The autocovariance function at lag h of the process {X;}icz in (5.2) (see Sakai and
Tokumaru (1980)) is given by

Rxx(h) = /01 eT"(z)dx — [E(X,)]? = 1—12(2(1 — 1", for h>0, (5.3)

where E(X;) = 3 and Rxx(0) = Var(X;) = .

The main obstacle to proceed in the spectral analysis of Example 1 is that the map T,
is not invertible. Therefore, the autocovariance function Rx x (h) of the process {X;}iez,
given by expression (5.2), for negative lag h does not have a precise meaning.

We shall analyze the natural extension F, of T,, instead of T, itself.

As a particular example, we mention that the Baker map is the natural extension of
the tent map (with inclination 2).

In Example 1, the natural extension of T, is the map Fy, : [0,1] x [0,1] — [0,1] x [0, 1]
defined by

Fo(z,y) = (Ty(x),Go(z,y)), forany (z,y) € [0,1] x [0,1], (5.4)
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where
ya, if 0<zr<a

(a—1)y+1, if a<z<l.

Ga(z,y) = {

The map Fj, is invertible and it is easy to see that the Lebesgue measure dzdy is invariant
and ergodic for Fj,.

Therefore, we shall consider the dynamical system (K, Fy,,P) where K = [0, 1] x [0, 1]
and P is the Lebesgue measure dzdy on [0, 1] x [0, 1]. Instead of ¢(z) = z, one can consider
¢(z,y) =1l(z,y) = z for any (x,y) € [0,1] x [0,1] as a random variable. In the setting of
Section 2, we shall analyze in this section the system (K, Fy, P,II, F, 052). Now, if h > 0
then

/01 xT(f(x)da: = /01 /01 :I:H(F:(df,y))dxdy = /01 /01 H(x,y)H(Ff(m,y))dxdy

and we obtain, from the expression (5.3), Rxx (h) for positive h when X; = ITo F!. As
the map Fj, is invertible, it makes sense to estimate, for h > 0, the integral

1 1
| G pne; . )dsdy,
0o Jo
Now, as dxdy is invariant for F, one obtains the following

/01 /01 H(x,y)H(F(;h(fﬁ,y))da:dy = /01 /01 H(F;L(:c,y))l_[(x,y)dxdy = /01 T;L(g;)xdx.

The example considered above defines a standard time series. After these results one
can have the spectral density function associated with the stochastic process { X; }1cz. The
last term in the above equalities has already been calculated (see (5.3)).

Theorem 5.1: The spectral density function of the stochastic process
Zy=Xe+ &= (Lo Fy)(Xi—1) + &, forteZ,
where Fy, is defined by the expression (5.4), is given by

_ 2a(1 — a)
71 —2(2a — 1) cos(\) + (2a — 1)?]

2
fz(\) + 28 jraclo2n). (5.5
2T

Proof: Since Rxx (h) is given by the expression (5.3) and goes to zero exponentially when
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h — 400, the spectral density function (see (2.6)) does exist and it is given by

fx(A) = % c e"A e (h) = % i e~ (24 — 1)l =
= (e ne Y (2 1)«%'1} -
h>0 h=—00
17 1 (2a— 1) ]
T 21 [1-(2a—1)e~ ™ 1—(2a—1)ei/\] -
2a(1 —a)

7[1 — 2(2a — 1) cos(A) + (2a — 1)2]’

for all A € [0,27), since |(2a — 1)eT?| < 1 when a € (0,1). The spectral density function
of the process {Z;}icz follows from this.

The spectral density function of the signal process { X; };cz is continuous and its graph
is shown in Figure 1 (a), (b) and (c). Notice that if a is small then the function fx () has
a maximum on 7 and if a is large it has a maximum on zero.

We refer the reader to Lopes and Lopes (1995) for more details in the example con-
sidered in this section.

6. EXAMPLE 2

Consider the two parameters mapping family {Fg 3 : [0,1] — [0,1]; a,b € R} where
Fyp is given by

a+ 1_Taa:, if 0<z<b
Fop(z) = a ' (6.1)
1_b(:c—b), if b<z<1,

with a and b constants. This map is not an expanding one. Let a be the derivative of F, ;
on [0,b) and g its derivative on [b, 1]. Then,

a= ;’b(x):%a, if 0<z<b and B=F,,(z)= , if b<z<1. (6.2)

The ergodic properties of the family {F,; : [0,1] — [0,1]; a,b € R} are analyzed in
Coelho et al. (1995). This map does not define a standard time series.

In Example 2 we want to consider the spectral analysis of the process { X;}+ecz defined
n (6.3) below.

Notice that when b = 1 — a, the transformation Fj 3 of Example 2 is F(z) = a +
(mod 1), which corresponds to the harmonic model analyzed by Lopes and Kedem (1994).
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Figure 1: The spectral density function fx(A), 0 < A <, for Example 1 as in (5.4)
when o7 = 0 and

(a) a = 0.15240; (b) a = 0.36570; (c) a = 0.93459.

(a)

(b)

Therefore, the presented analysis of Example 2 is a generalization of that work when there
exists only one frequency.

By using the notation introduced in Section 2, for a given transformation Fy; and
¢(x) = = one considers the signal process {X;}icz given by

X = Fa,,b(Xt—l)7 for te Z. (63)
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In the present example the spectral density function does not exist and the spectral
density distribution has a quite different behavior compared to the Examples 1 and 3.

To consider the constants a and b is the same as to consider « and [, since one has
the following identities

l1—-a _a Bla—1) 1-
and 'B_l—b a-—p a— [

=

(6.4)

Therefore, for the sake of simplicity, we shall consider the parameters o and 3 in our
analysis.

The invariant measure P, g = P (see Coelho et al. (1995)) for the process {X;}iez,
in terms of « and f, is given by the density

«

(a=Bz+p’

1 1 1
Cx-l-g(l—a:) c

1 B o) p
c= 7 a log (5) = ? log (E) : (6.6)

For a set A C [0,1] x [0, 1], with Lebesgue measure equal to 1, for all («, 3) € A, the map
Ty p is ergodic for P, g = P. We will assume (e, ) € A in the sequel.

Pap(r) = p(z) =

where

In other words, in this case P given by
P(A) = / o(x)dzr, forall A€ F,
A

where now F is the Borel o-algebra in [0, 1], defines an invariant ergodic probability mea-
sure for F, g.

From the expressions (6.1) and (6.4) the transformation F, g is given by

%—i—aw, if 0<z< ;:g
Fa’ﬁ(a:) = 1—ﬂ ” 1—,8 - - (67)
ﬁ<x_a—ﬁ)’ Y

The list of integrals below are useful to understand the spectral analysis that we shall
present in the sequel.
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y log(i(a_ﬂﬁ)y"’ﬂ)
1. / p(r)dz = p—
0 Og(g)

2. E(Zy) = E(Xy) :/0 zp(z)dx

_ 1 P
log() a-—p

1 2 _
3. E(Z})=EX})+d :/0 m2g0(x)d:c+cr£2 = (afﬁ> + 2(afﬁ)?fg(9) +07.
B
B )2 1+af—48
a—f3 2(a— B) log(g)
(6.8)

4. E(ZtZt+1) = E(XtXt+1) = /(; .’EFa,Ig(.’E)QD(.’E)d.’E = <

Some of these integrals are obtain after long calculations.

For a given F' = F,, g and the corresponding invariant density ¢ = ¢, g we consider
the signal process {X;}iez = {(¢ 0 Fug)(Xi—1) hez.

From the expressions (6.5) and (6.6) one observes that the density function ¢, g(x)
depends only on the quotient A = % Consider now the transformation F'*, for any h € Z,
where F' = F,, g is given by the expression (6.7). From Coelho et al. (1995) it is known
that

bn _ap
1—ah and ﬁh_l—bh

F"(z) = F,, g,(r) where o =

with ap, = F"(0) and by, = F~"(0). From Coelho et al. (1995) it is also known that

(073 (6]
— =—, forany h €N,
Bn O
and hence
Pap.Bn = Pa,8, forany heN.

The conclusion is that, for any continuous function ¢ and h € N,
E(X Xpsn) = / D) (F" () () s = / D)6 (Far 3, (2)) 900 () =
— [ $@)6(Fay 0 ) () (6:9)

As we know [ ¢(2)P(Fu g())¢pa,p(z)ds (see integral 4. in (6.8)), for any « and S, one can
calculate [ ¢(z)P(Fu, g, (x))Pay,s, (x)dz, for any h € N.

Notice that E(X;X;1p) = E(X: X _p), for all h € N.

Therefore, we are able to obtain the exact values of Rxx(h), for all h € Z, from the
positive and negative orbit of zero by F' (since oy, and (3, depend only on aj and by,).

We now consider ¢(z) = z. It is known (see Lopes and Lopes (1995)) that, for fixed
a and [, there exists A such that ap = Afp, for all h € Z. From integral 4. in (6.8), a
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simple calculation shows that (see Lopes and Lopes (1995)) there exist ¢1(A) and co(A)
such that

1
/ TP @)p(2)dz = c1(A) + ca(A) (i + ah) .
0 Bh

As ap and ih wander around the interval [0,1], then the above integral does not
converge to zero as h — oco. Therefore, the spectral density function is not a function, but
there exists the spectral distribution function also called the generalized spectral density
function.

First one observes that the process {X:}iez = {Fa p(Xi—1)}itez has mathematical
expectation given by the integral 2. in expression (6.8), that is,

1 g
a a—p3
log ( ,8)
We want to derive the spectral distribution function of the process {Z;}+cz. We first con-

sider the autocorrelation px(h) at lag h of the process {X;}iez = {Fa g(Xi-1)}tez and
then use the Herglotz’s theorem (see (2.4)) for the process {X;}iez-

for all teZ.

E(X) =

Remark: The Fourier coefficients of the spectral distribution function in the case where
F(x) = wy +  are given by px(h) = cos(hwpy) = cos(F"(0)), for h € Z, that is, they are
determined by the iterates F* of zero. The next theorem claims a similar property for the
transformation F, g and ¢(z) = .

Theorem 6.1: The spectral distribution function of the process

Zy = Fctu,ﬂ(') +&=Fop(Xi—1)+ &, fortel,

where F,, g is defined by the erpression (6.7), is given by

1 i o¢
dFz(\) = 5 h__ooe px(h)+ 5 for X € [0,2m), (6.10)
where px (h) is given by % (see the expression (2.3)) with
1+ apfh 1
Rxx(h) = S (6.11)
2o — ) 108(5) " Jiog(gn)]”
h
and
o+ 1
Rxx(0) = B — (6.12)

-~ 2(a—p) log(3) [10g(%)]2’
where a and (3 are given by the expression (6.2) and
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1—ah
br

a —
B, = 1_hbh, an = F™"(0) and b, = F~"(0).

ap =

Now we consider ¢(z) = cos(2mz). One wants to calculate the spectral distribution of
the process
Zy =Xy + & = cos(2mFo g(Xi—1)) + &, for te€Z.

For this purpose we need the following integral:

! 1
E(XiXt41) = /0 cos(2mx) cos(2mF (x))p(z)dx = m x k, (6.13)
where
k = cos(2dp)[ci(d(a + 1)) + ci(da(B + 1)) — ci(dB(a+ 1)) — ci(d(B + 1))]+
+ sin(2dB)[si(d(a + 1)) + si(da(B + 1)) — si(dB(a+ 1)) — si(d(B + 1)) ]+
+ ci(d(a — 1)) + ci(da(B — 1)) — ci(d(B — 1)) — ci(dB(a — 1)),
with d = WB’ ci(x) is the cosine integral and si(xz) is the sine integral (see Gradshteyn

and Ryzhlk (1965), page 928). The integral (6.13) comes after a long calculation.

In order to calculate the spectral distribution function, one should obtain the Fourier
coefficients of such distribution by substituting in (6.13) the values of o and 8 by «j and
Br (see expression (6.9)).

Theorem 6.2: The spectral distribution function of the process

Zt = Fott,ﬂ() + £t = COS(27T Fa,ﬂ(Xt—l)) + §t; fO?" t e Z,
where F,, g is defined by the expression (6.7), is given by

2
dFz (A Z e Mpy i for A € ]0,2n), (6.14)

h_—oo

where px (h) is given by RXXEIS; (see the expression (2.3)) with

o
[log(52)]?

RXx(h) = kh— th

1
—— X
2log(32)
where

kp = COS(th,Bh)[Ci(dh(ah + 1)) + ci(dhah(ﬂh + 1)) — ci(dhﬂh(ah + 1)) — C’i(dh(ﬂh + 1))]
+ SiD(thﬂh)[Si(dh(ah + 1)) + si(dhah(ﬂh + 1)) — si(dhﬂh(ah + 1)) — Si(dh(ﬂh + 1))]
+ ci(dn(an — 1)) + ci(dran(Br — 1)) — ci(dn(Br — 1)) — ci(dnBr(an — 1)),
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and
lh = {COS(dh,@h)[C’i(dhah) — Ci(dh,@h)] + sin(dhﬂh)[sz’(dhah) — Si(dhﬂh)]}2

with
d 2 1-— Qap,
h=———0 Qp = ;
ap — B br,

Br =

ap, = F™(0) and by, = F~"(0). The variance of X; is given by

Rxx(0) = ﬁ(g){cos@dﬂ) [ci(2da) — ci(2dB)] + sin(2dS3)[si(2de) — s1(2dB3)]} + %—
B8
B SN
[log(3)1>
where

I = {cos(dp)|ci(da) — ci(dB)] + sin(dB)[si(da) — si(dB)]}>

with 9 )
T —a a
2 and (= T3

In Figure 2 we plot the graph of the Fourier series o= >y 100 e **px(h) when

a = 2.41809 and B = 0.22052. Therefore, we are considering here an approximation of the
generalized spectral density function fx () up to an order of 100.

Figure 2: The generalized spectral density function fx (), 0 < A < 7, for Example 2 as
in (6.14) when o7 = 0, o = 2.41809 and § = 0.22052.
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Remark: The rotation number (see Devaney (1989)) of F, g is

_ log(e)

0. —
"t log(%)
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. -1 .
and the rotation number of Fa, 5= Fa, 518

log(3)
0, = .
log(£)

One observes that 6; + 0 = 1. We denote by ( the smallest value between #; and 60-.
Therefore, ( < 0.5. We call { the rotation number of the stochastic process.

It is extremely interesting the fact that, for any « and [, the spectral measure is
not a Dirac delta function concentrated on the rotation number of F, g (we checked the
coefficients px (h)) but it has a very strong peak on the value 27w( where ( is the rotation
number of the process. In other words, the spectral distribution is very close to

1 1
5(5%@* +0_or¢) = 5(5% 0. +0_2r0,),

where 6; < 0.5 < 69 were defined above.

In conclusion, if one applies the Fourier transform to the data it will appear a strong
peak in the rotation number.

This property requires, in the future, a deeper analysis in order to understand the
spectral distribution function given by (6.14). Notice in Figure 2 the strong peak in the
value 27 ( = 2.31671, where ( is the rotation number of the process when o = 2.41809 and
B = 0.22052 (corresponding to the values of a = 0.1423 and b = 0.3547).

We remind the reader that if a = 1 — b then the rotation number of F, g is equal
to a and, in fact, in this case, the spectral distribution function is a Dirac delta function
5(0na + 0_ra), When ¢(z) = cos(2m ).

Notice that for Fi, g(z) = a + = (mod 1), the inverse map Fy é = Fj 5 is such that
Fy 5(z) = —a (mod 1). In this case, ( = lal.

We refer the reader to Lopes and Lopes (1995) for more details about the example
considered in this section.

7. EXAMPLE 3

We shall present a complete spectral analysis of the stationary stochastic process
Zy=Xi+& = p(FL(X0,Y0)) + & = ¢(Fo(Xp—1,Yi—1) + &, for teZ, (7.1)

where ¢(z,y) = z is a random variable, {{;}:cz is a Gaussian white noise process, Fy, is a
transformation defined below and (X, Yp) is an initial point chosen at random according
to the measure v also defined below.

The map F, is defined from K = ([0, 1] x (0, &))U([0, ] X [, 1]) to itself and it is given
by Fo(z,y) = (Ta(z), Ga(z,y)) where the transformation Ty, : [0, 1] — [0, 1] has definition

x .
, if 0<zr<a

To(z) =

3)‘ (7.2)

Adr—a) oy ca<n,
1—«
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with « € (0,1) as a constant, and

vy, if 0<zr<a

Golz,y) = — 7.3
() a—}—(l a) Y, if a<z<l. (7-3)
o}

The graph of the map T, is shown in Figure 3. The action of the piecewise diffeomor-
phism F|, is presented in Figure 4. The transformation F, is a modification of the well
known Baker transformation. It defines a standard time series.

The map T, describes a model for a particle that moves around in the interval [0,1].
If the particle is at position x, then after a unit of time it jumps to T, (z) and so on.
According to the model considered here suppose the spatial position of the particle is
Tt (xz) = Xy, t € N, in the interval [0,1]. If the particle X; is in the interval [0, ), it
has a uniformly spread possibility to jump to any point X;4; in [0,1]. However, if it is in
the interval [, 1) it has a uniformly spread possibility to jump to any point X;41 in the
interval [0, c).

We are primarily interested in the expanding map 7, but for defining the spectral
density we need a bijective map. Therefore, we have to consider F|,, the natural extension
of Ty (as mentioned in Section 3).

The piecewise diffeomorphism F, leaves invariant (see Lasota and Yorke (1973)) an
ergodic probability v on K C R?2, absolutely continuous with respect to the Lebesgue
measure, that will be described later.

Choosing a point (xg, yo) at random, according to the Lebesgue measure (or according
to v), the spectral properties of the process Z; will be analyzed.

One observes that Fy, is a piecewise homeomorphism of K and F}} is of the form

Fy(z,y) = (T (2), Gan(z,y)),

that is, the action of F, in the first variable is just the action of Tj,.

Now we shall define the Fj-invariant measure v on K, absolutely continuous with
respect to the Lebesgue measure dzdy.

From Lopes, Lopes and Souza (1996) the transformation T, has an invariant absolutely
continuous measure dy = g(z) dr where

1
@ ), if 0<zr<a
a(2 —a
, if a<zr<l
2—-—«
Consider in the sequel the following notation
1 1
= d d= . 7.5
¢ a2 — a) o 2—a (7:5)

Now we shall define v on subsets of K by using the u above.
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For sets of the form A; x As, where A; C (0,«) and A2 C (o, 1) or A; C (o, 1) and
As C (0, ), we define v(A; x A2) = (2 — ) u(A1) u(A2).

For sets of the form A; x A2, where A; C (0, @) and Ay C (0, &), we define v(A; X Ay) =
(2 - a) o p(Ar) (o).

It is not difficult to see that v is invariant for F,, and is absolutely continuous with
respect to the Lebesgue measure. The measure v satisfies v(A x (0,1)) = u(A), when
A C (0,a) and v(A x (0,)) = u(A), when A C (o, 1).

The next theorem gives the spectral density function for the process (7.1) and the
proof can be found in Lopes, Lopes and Souza (1995).

Theorem 7.1: The spectral density function of the process
Zt:Xt+£t:¢(Fotz(X0;Y0))+£t7 fOT le Za

where F,, is defined by the expressions (7.2) and (7.3) and the point (Xo,Yo) is chosen
randomly according to the measure v or according to the Lebesque measure dxdy, is given
by

2

1 1 2 _ .3 o
to —a ]—l—ﬁ, for all X €[0,2m), (7.6)

fz(A) = 27 Var(Xy,) [’Y(eu) +y(e™™) - 32-a)

where Var(X;) = (—at1)(@®—5at5) 4 g v(z) is given by

12(2—a)?
() = 2 (1-a) -2(22-1;0;2)(2—04—04 ).,
n [az +§1_—aa)2z2]¢(z) n a(12%(();)zzw(z)’
with
o(z) = 1+az(l —a) and  p(z) = 2 —az(e® +a—2) +6a(l — a)?p(2)

2[(1 —a)z+1](1 — 2) 6[1 — a2z — (1 — )22?]

Remark: The power series y(z) is an analytic function on the disc {z € C| || z ||< 1} and

the expression (7.6) has the meaning of the radial limit

lim ret = e = 2.
r—1

In this sense, the series

. 1
ZeznAZZ'Re (m)—lzo, fOI‘ )\7&0,

neZz

even though the series ) e’ * does not converge. We are using this fact in the expres-
sion (7.6).

20



8. EXAMPLE 4

The example in this section generalizes the results by Grossmann and Thomae (1977).

Let aq,as,---,a, be any positive real numbers such that Z?zl a; = 1 and, for each
1 <4 < mn,let bj1,b;2,---,b;; be any positive real numbers such that Z?:1 bij = a;.
For each i € {1,2,--- ,n} one defines
i—1 i
B = za,,zal] ,
=1 I=1

0
where ) ;,_; a; = 0.
For each fixed i € {1,2,--- ,n}, one defines for any 1 < j <n

1—1 j—l 1—1 _7
St S bt zbz-m],
=1 m=1 =1 m=1

where Z?nzl bim =0, for all 1 <7 < n. Note that length(B;) = a; and length(B;;) = b;;.
Consider now the following function T : [0, 1] — [0, 1] given by

Jj—1 i—1 j—1 ‘
T(z) = Zal + (m — Zal — Z bim> Z—J, for all z € By;. (8.1)
=1 1=1 m=1 i

In Figure 5 we show the graph of 7" when n = 4. Consider F' the natural extension of
such function 7.
One is interested in the first order autocorrelation function of the stochastic process

Bij =

X, =T(X;_1) = F(X;_1,Y,_1), forall teZ,

when o¢ = 0 and ¢(z,y) = .
First we want to prove that the invariant measure associated with the function T is
of the form p(A) = [, > | piIp, (x) dz, that is, the density of y is given by

g9(z) = ZPiIBi ().

From the definition of the function T' in expression (8.1), if z € B;; then

Jj—1 J
T(z) € [Zal,Zal C B;.
=1 I=1

It is easy to see that B;; = {x €[0,1] | z € B;, T(z) € B,}.
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Suppose u(A) = [, > i, pilp,(x) dz, where p; > 0, dz is the Lebesgue measure and
it is an invariant measure for 7'.
Let w; be u([z € B;]). Then ) . ,w; = 1. From the invariance of p, one obtains
= ,LL([T(.T) € Bz]) Since [T(.’E) € BJ] = U?Zl[ﬂi € Bl] N [T(ﬂ?) € BJ] = Uglleija hence

wj = p(T(2) € By]) =D _ u(lw € BIN[T(x) € By)) Z“ )= /;((%y)

p;length(B _ "< by .
Z p;length(B w _Z a;

i=1 ¢

Therefore, for all j € {1,2,---,n}, w; =Y 0, l; w; or, in matrix form,
w = Bw
where w = (w1, -+ ,wy,) and B = (%) . It is easy to see that the matrix B is a stochastic
g

matrix.

In this way one can obtain, from the Perron- Frobenius Theorem, the invariant density
S pilp,(z), by taking lené"f"hBi = p;, for 1 < i < n, where w = (wq,--- ,wy,) satisfies
w = Bw.

This shows that the values of p;, 1 < ¢ < n, can be explicitly obtained by solving an
eigenvalue equation in w;.

The values w; can be alternatively obtained by iteration of the stochastic matrix. This
follows from the contraction fixed point theorem.

It will be necessary to obtain the value of the first and second moments of the random
variable X;. These moments are given as folows.

1. E(Xt)z/0 zdu(z) = Z

o s E (3]

Denote A(k), B(k,i) and V(k,i) by

1\3|ﬁ
| p— |

A(k):/o 2 T*(2)g(z) dz, B(k,z’):/Bl TH(z)dz  and V(k,z’):/Bla:T’“(x)dx.
1 1 (8.2)

The values of B(k,7) and V (k,4) can be obtained from the recurrence formula
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(8.3)

_]:1
n j—l
J

j=1 % 1=
One can describe the quantities A(k), B(k,%) and V (k, ) by the following power series
=) A(k)2*,  Ty(z) =) B(k,i)z* and  yi(z) = V(ki)z*.  (84)
k>0 k>0 k>0

From (8.3 a.), the second power series in expression (8.4) is given by

n

U, (2) =B(0,i)+zzb”\l' i(z), forall 1<i<m, (8.5)

a
j=1 "7

where the values B(0,%) can be calculated by

1
B(O,z’)z/ xdw=2[z Zal ], forall 1<i<mn.
B;

=1

Consider the vector v = (B(0,1), B(0,2),---,B(0,n)) and A the n X n matrix A =
(Zﬂ) Then one can easily find the vector ¥(z) = (¥1(2), Ua(2),---, ¥, (2)) by solving the
linear system (8.5) ¥ = v 4+ A(V)z. In this way we obtain the values ¥;(z), 1 <i < n.

From (8.3 b.), the third power series in expression (8.4) is given by

'yi(z):V(O,i)+zé<b”) +zz i (Zaﬁzbzm 5, 5. (56)

J =1

The value V(0,4) can be calculated as

V(O,i):/ v de = [Zal —(Zal ], forall 1<i<n.
Bi 1=1

K3

Lo =

As we also know W,(z), one can solve the linear system (8.6) and finally find v;(z), for
1< <n.
From the first power series in expression (8.4) one obtains

ZA k)z = sz’)’z (8.7)

k>0
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It is easy to see (Lopes, Lopes and Souza (1995)), by taking z = €* and z = e
that, from the expression for ¢(z) in (8.7), the explicit expression of the spectral density

function associated with T' can be obtained by

1 o?

fz(\) = m[cp(ei*) +p(e™™) — B(X})] + i for all X € [0, 2m).

where Var(X;) = E(X}) — [E(Xy)]? = [2?g(z)dz — ([ a:g(:c)dx)2.
A more general result for piecewise expanding linear maps is given in Lopes, Lopes
and Souza (1996).
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