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Abstract

Denote by T the transformation T (x) = 2x (mod 1). Given a potential
A : S1 → R the main interest in Ergodic Optimization are probabilities µ
which maximize

∫
Adµ (among invariant probabilities) and also calibrated

subactions u : S1 → R. We will analyze the 1/2-operator G which acts
on Hölder functions f : S1 → R. Assuming that the subaction for the
Hölder potential A is unique (up to adding constants) it follows from the
work of W. Dotson, H. Senter and S. Ishikawa that limn→∞ Gn(f0) = u
(for any given f0). G is not a strong contraction and we analyze here the
performance of the algorithm from two points of view: the generic point
of view and its action close by the fixed point.

In a companion paper we will consider several examples. The sharp
numerical evidence obtained from the algorithm permits to guess explicit
expressions for the subaction: among them for A(x) = sin2(2πx) and
A(x) = sin(2πx). There we present a piecewise analytical expression for
the calibrated subaction in this case. The algorithm can also be applied
to the estimation of the joint spectral radius of matrices.

1 Introduction

Here we analyze some properties of an algorithm designed for approximating
subactions. Properties for a general form of such kind of algorithm were con-
sidered in [30], [12], [43] and [22] (see also [42] and [1] for more recent results).
We analyze here the performance of a specific version of the algorithm which
is useful in Ergodic Optimization.

In a companion paper [13] we will consider several examples. The sharp
numerical evidence obtained from the algorithm permits to guess explicit ex-
pressions for the subaction.

One can also consider a similar kind of algorithm for approximating eigen-
functions of the Ruelle operator (see [13]). We will leave for a future paper a
more careful analysis of this case. The method works fine when the eigenvalue
is not necessarily equal to 1 and the potential is not of the form − log f ′, where
f is an expanding transformation on the circle.
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In recent years several papers considered numerical properties of algorithms
that can be used for a better understanding of important questions in Ther-
modynamic Formalism and Ergodic Theory (see [29], [2], [16], [32] and [14]).

We denote by T : S1 → S1 the transformation T (x) = 2x (mod 1).
We identify the unitary circle with the interval [0, 1). We denote by τ2 :

[0, 1)→ [0, 1/2) and τ2 : [0, 1)→ [1/2, 1) the two inverse branches of T (τ2(x) =
1
2x and τ2(x) = 1

2 (x+ 1)).
We consider here results either for potentials A : [0, 1] → R or periodic

potentials A : S1 → R.

Definition 1. Given a continuous function A : S1 → R (or, A : [0, 1]→ R) we
denote by

m(A) = sup
ρ invariant forT

∫
Adρ.

Any invariant probability µ attaining such supremum is called a maximiz-
ing probability.

The properties of the maximizing probabilities µ are the main interest of
Ergodic Optimization (see [3], [19], [23], [24], [7] and [31]).

In Statistical Mechanics the limits of equilibrium probabilities when tem-
perature goes to zero (see [3]) are called ground states (they are maximizing
probabilities).

A interesting line of reasoning is the following: there is a theory, someone
gives a particular example which leads to a problem to solve, then, use the
theory to exhibit the solution. Is there a general procedure to find the solution
of this kind of problem? Here we will address this kind of query on the present
setting.

Definition 2. Given the Hölder continuous function A : S1 → R the union of
the supports of all the maximizing probabilities is called the Mather set for A.

We will assume from now on that A is Hölder continuous and that the
maximizing probability is unique.

It is known that for a generic Hölder potential A (in the Hölder norm) the
maximizing probability is unique and has support on a T -periodic orbit (see
[9]). We do not have to assume here that the unique maximizing probability
has support on a unique periodic orbit.

Definition 3. Given the Hölder continuous function A : S1 → R, then a con-
tinuous function u : S1 → R is called a calibrated subaction for A, if, for
any x ∈ S1, we have

u(x) = max
T (y)=x

[A(y) + u(y)−m(A)]. (1)
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For Hölder potentials A there exists Hölder calibrated subactions (see [7]). If
the maximizing probability is unique (our assumption) then the calibrated
subaction is unique up to add a constant (see [7] or [17]).

One interesting question is the dependence of the calibrated subaction u on
the potential A (we will adress this question on [13]).

Calibrated subactions play an important role in Ergodic Optimization (see
[3] and [19]). From an explicit calibrated subaction one can guess where is the
support of the maximizing probability.

Indeed, given u we have that for all x

R(x) := u(T (x))− u(x)−A(x) +m(A) ≥ 0, (2)

and, for any point x in the Mather set R(x) = 0. Moreover, if an invariant prob-
ability has support inside the set of points where R = 0, then, this probability
is maximizing (see [7]).

Example 4. We show in Figure 1 the graph of a potential A, the graph of
the calibrated subaction u and the graph of R. The potential A is zero at the
points 1/4, 3/4 and it is equal to −1 in the points 0, 1/2, 1. The set {1/3, 2/3} is
contained on the Mather set (then, it is the support of a maximizing probability)
and m(A) = − 1/3. The calibrated subaction is 0 at the point 1/2 and equal to
2/3 at the points 0, 1. The function R is equal to 2/3 at the points 0, 1 and it
is equal to zero on the interval [1/4, 3/4]. We point out that we easily guessed
the explicit expression for the subaction u from the picture obtained from the
application of the algorithm on the initial condition f0 = 0.
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Figure 1: From left to right: the graph of the potential A, the graph of the
calibrated subaction u and the graph of R.

Given x, then, u(x) = A(τj(x)) + u(τj(x)) −m(A), for some j = 1, 2. We
say that τj(x) is a realizer for x. There are some points x that eventually get
at the same time two realizers.

We are interested in an algorithm for getting a good approximation of the
subaction in the case the maximizing probability is unique. As a byproduct we
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will also get the value m(A). This will help to get R (as above) and eventually
to find the support of the maximizing probability.

We will consider a map G acting on functions such that the subaction u is the
unique fixed point. Unfortunately, G is not a strong contraction but we know
that limn→∞ Gn(f0) = u (for any given f0). The performance of the algorithm
is quite good for exhibiting good approximations.

We explore here in section 3 the generic point of view and expression (21)
( and (22) ) in Theorem 15 and also expression (20) in Remark 3 in some way
justify the excellent performance one can observe for the algorithm which we
will describe here.

A natural question: when the calibrated subaction is unique is there an
uniform exponential speed of approximation (or, something numerically good)
of the iteration Gn(f0) to the subaction? At least close by the subaction? In
section 4 we present a very detailed analysis of the action of the map G close by
the fixed point u and we will show that this is not the case. We will consider in
Example 29 a case where where |G(fε)−G(u)| = |fε − u| , ε > 0, for fε as close
as you want to the calibrated subaction u. One can also show that close by u
there are other gε, ε > 0, such that, |G(gε)−G(u)| = 1/2 |gε − u| (see Corollary
28).

In section 5 we will describe a method for getting the maximizing probability
via a limit procedure in the case we have the explicit expression for the subaction
u.

In the Appendix (section 6) we will briefly describe the steps used on the
algorithm which was performed on the language C++.

In [13] we will present several examples where the calibrated subaction can be
explicitly expressed. When the potential A is analytic the calibrated subaction
will be piecewise analytic. The pictures we obtained from the algorithm helped
to figure out the explicit solutions we had to look for.

The algorithm we use here can be helpful for estimating the joint spectral
radius (see [13]). This question is related to the recent work [28].

2 The 1/2-algorithm

On the set of continuous functions f : S1 → R we consider the sup norm:
|f |0 = sup{|f(x)|, x ∈ S1}.

Definition 5. For the set of Hölder continuous functions from S1 to R we
consider the equivalence relation f ∼ g, if f − g is a constant.

The set of classes is denoted by C and, by convention, we will consider in
each class a representative which has supremum equal to zero.

In C we consider the quotient norm (see section 7.2 in [38])

|f | = inf
α∈R
|f + α|0.

(C, | · |) is a Banach space (see [38]). As S1 is compact we get that: for any
given f there exists α, such that, |f | = |f + α|0.
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We denote sometimes the constant α associated to f by αf .
We point out that when we write |f(x)| this means the modulus of an element

in R and |f | means the norm defined above.

Remark 1: Suppose f, g ∈ C. One can show that

|f − g| = max(f − g)−min(f − g)

2
. (3)

Moreover,

αf−g = −max(f − g) + min(f − g)

2
. (4)

This also means that given f

αf = −max f + min f

2
. (5)

Indeed, assume that |(f−g)+d|0 = |f−g| and z0 are such that |(f−g)(z0)+
d| = |f − g|. Without loss of generality we can assume that (f − g)(z0) + d > 0.
Note that, if

inf
v∈S1

[ (f − g)(v) + d ] > −[ (f − g)(z0) + d ],

then exists d1 < d, such that, | (f − g) + d1 |0 < | (f − g) + d |0. This is not
possible.

It is not possible either that infv∈S1 [(f − g)(z0) + d] < −[(f − g)(z0) + d],
because z0 maximizes z → |(f − g)(z) + d|.

Then,

inf
v∈S1

[ (f − g)(v) + d ] = −[ (f − g)(z0) + d ] = −| f − g |. (6)

This show that there exist a point r ∈ S1, such that,

|f − g| = | (f − g)(z0) + d | = − [ (f − g)(r) + d ].

It follows that

|f − g| = max(f − g)−min(f − g)

2
. (7)

Moreover,

d = αf−g = −max(f − g) + min(f − g)

2
. (8)

This also means that given f then equation (5) is true.
♦
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Figure 2: Case A(x) = −(x − 1/2)2 and T (x) = −2x (mod 1) - In this case
m(A) = −1/36. The red graph describes the values of the approximation (via
1/2-algorithm) to the calibrated subaction u given by G10(0) (using the language
C++ and a mesh of points) and the two blue graphs describe, respectively, the
graphs of x → −1/3x2 +1/9x, and x → −1/3x2 +5/9x−2/9. The supremum
of these two functions is the exact analytical expression for the graph of the
calibrated subaction u. The red color obliterates the blue color.

Definition 6. Given a Hölder continuous function A : S1 → R we consider the
operator (map) L̂ = L̂A, such that, for f : S1 → R, we have L̂A(f) = g, if

L̂A(f)(x) = g(x) = max
T (y)=x

[A(y) + f(y)−m(A)]. (9)

for any x ∈ S1.

Note that u is a fixed point for such operator f → L̂A(f), if and only if, u
is a calibrated subaction.

One could hope that a high iterate L̂nA(f0) (n large) would give an approxi-
mation of the calibrated subaction.

This operator will not be very helpful because we have to known in advance
the value m(A).

Even if we know the value m(A) the iterations L̂nA(f0) applied on an initial
continuous function f0 may not converge. This can happen even in the case the
calibrated subaction is unique.

Definition 7. Given a Hölder continuous function A : S1 → R we consider the
operator (map) L = LA : C → C, such that, for f : S1 → R, we have LA(f) = g,
if

LA(f)(x) = g(x) = max
T (y)=x

[A(y) + f(y)]− sup
s∈S1

{ max
T (r)=s

[A(r) + f(r)]}. (10)

for any x ∈ S1.

The advantage here is that we do not have to know the value m(A). In the
same way as before u is a fixed point for the operator LA(f), if and only if, u is
a calibrated subaction (see end of the proof of Theorem 11 in [4]).
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We call the algorithm (defined below) the 1/2-algorithm. It is a particular
case of the algorithm described on [12] and [22]. From these two papers it follows
that given any initial function f0 ∈ C we have that limn→∞ Gn(f0) exists and it
is the subaction u (which belongs to C.)

Remark 2: The iterations LnA(f0) applied on an initial continuous function
f0 may not converge (see Figure 4). This can happen even in the case the
calibrated subaction is unique. On the graphs on the left side in Figure 4 we
compare the iteration by L with the iteration by G to be introduced next. ♦
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Figure 3: Case A(x) = −(x − 1/3)2(x − 2/3)2 and T (x) = 2x (mod 1) - This
picture shows the graph (plotted on Mathematica) of R (see (12)) obtained from
an approximation of the calibrated subaction u after 7 iterations of the 1/2-
algorithm. We can infer from this Figure that the maximizing probability has
support on the periodic orbit {1/3, 2/3} as expected. Therefore, this algorithm
has the potential to display the support of the maximizing probability.

In order to show the power of the approximation scheme we consider an
example where the subaction u was already known. The dynamics is T (x) =
−2x (mod 1) ( not T (x) = 2x (mod 1) ). The 1/2-algorithm works also fine in
this case.

According to example 5 in pages 366-367 in [35] the subaction u (see picture
on page 367 in [35]) for the potential A(x) = −(x− 1/2)2 is

u(x) = sup{−1/3x2 + 1/9x, −1/3x2 + 5/9x− 2/9 }.

More generally, in page 391 in [35] is described a natural procedure to get
the subaction u for potentials A which are quadratic polynomials.

The maximizing probability µ in this case has support on the orbit of period
two (according to [25], [26] and [27]) and m(A) = −1/36.

One can see from Figure 2 a perfect match of the solution obtained from the
algorithm described by G and the graph of the exact calibrated subaction u.

Definition 8. Given a Hölder continuous function A : S1 → R we consider the
operator (map) G = GA : C → C, such that, for f : S1 → R, we have GA(f) = g,
if

GA(f)(x) = g(x) =
maxT (y)=x[A(y) + f(y)] + f(x)

2
− cf
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for any x ∈ S1, where

cf := sup
s∈S1

maxT (r)=s[A(r) + f(r)] + f(r)

2
. (11)

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

06
−

0.
05

−
0.

04
−

0.
03

−
0.

02
−

0.
01

0.
00

x

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

V1

V
2

Figure 4: The case of the potential A(x) = −(x − 1/3)2. - On the left side we
show in the colors green red and blue the graphs we obtain from high iterates of
Ln applied to the initial function f0 = 0. The iteration of Ln around n = 1000
seems to be in period three where successively we obtain the graphs in the colors
blue (L998(0)), red (L999(0)) and green (L1000(0)). In the same picture (on the
left) in the color black we show the graph of G1000(0) (in fact the picture for
G20(0) is almost the same). This iteration procedure using G stabilizes on this
black graph. We use a mesh of 4000 points in [0, 1] and C for all pictures. On
the right side we show the picture of the function R (see (12)) we obtain by
taking as the function u what we get from the approximation (described by
the black graph on the left) via G1000(0). The graph of R shows that there is
a numerical evidence that the support of the maximizing probability for such
A is inside an interval of size 0.5. This is just a confirmation of the claim of
Corollary 4 in [25]. The maximizing probability in this case is a periodic orbit
of period 3 (see [13]). Note that this potential is not periodic. We point out
that the period three behavior for the iteration of L already happens for low
iterates like n = 8, 9, 10.

We will show later in Theorem 11 that |G(f) − G(g)| ≤ |f − g|, for any
f, g ∈ C. Therefore, G is Lipschitz continuous.

The operator G is not linear.
We call the algorithm based on high iterations Gn(f0) the 1/2-algorithm.

The above Definition 8 was inspired by expressions (5.1) and (5.2) of [8].
This is a particular case of a more general kind of numerical iteration procedure
known as the Mann iterative process (see [12], [43], [30], [22] and [39]).

Assuming that the subaction u for the Hölder potential A is unique (up to
adding constants) it follows (as particular case) from the general results of W.
Dotson, H. Senter and S. Ishikawa (see Corollary 1 in [43], [12] or [22]) that

lim
n→∞

Gn(f0) = u,

(or any given f0 ∈ C.
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The special G presented above was not previously consider in the literature
(as far as we know).

Note that GA(f + c) = GA(f) if c is a constant and for any f the supremum
of GA(f) is equal to 0.

When running the algorithm on a computer (using the language C++) one fix
a mesh of points in [0, 1] and perform the operations on each site (see Appendix
6). The pictures we will show here are obtained in this way when we consider a
large number of points equally spaced. One can also get as output the realizer
for each point x on the lattice. This is very helpful when trying to obtain explicit
calibrated subactions in some examples (or, numerical evidence) as we wil show
in [13].

Some of our examples in [13] also consider the case when there exists more
than one maximizing probability.

One important issue on the companion paper [13] with explicit examples
is corroboration. By this we mean: we derive analytically some complicated
expressions and we use the algorithm to compare and confirm that our reasoning
was correct.

As an example of the kind of result we can get we show in Figure 3 (for the
where case A(x) = −(x − 1/3)2(x − 2/3)2 and T (x) = 2x (mod 1)) the graph
of R obtained from the calibrated subaction u we can get via the algorithm.
Therefore, the algorithm we will consider here can eventually exhibit the support
of maximizing probabilities via such function R (see also Figure 4).

The algorithm also performs fine in Mathematica (not using a mesh of dis-
crete points on the interval as in the case where we use the language C++) but
not so fast as in C.

In most of the examples where the explicit subaction was previously known
when comparing the graph obtained from the algorithm (for the approximated
subaction) with the exact one we get that the difference is invisible to the naked
eye.

Proposition 9. If u is such that GA(u) = u, then, u is a calibrated subaction
and

m(A) = sup
z

max
T (y)=z

[A(y) + u(y)] + u(z). (12)

Proof: If

u(x) =
maxT (y)=x[A(y) + u(y)] + u(x)

2
− cu, (13)

then, for all x, we obtain u(x) =
maxT (y)=x[A(y)+u(y)]+u(x)

2 − c, where c = cu =

supz
maxT (y)=z [A(y)+u(y)]+u(z)

2 is constant. This means that

2u(x) = max
T (y)=x

[A(y) + u(y)] + u(x)− 2c,

and, finally, we get u(x) = maxT (y)=x[A(y) + u(y)]− 2c, for any x.
In the end of the proof of Theorem 11 in [4] it is shown that this implies

that m(A) = 2c and it follows that u is a calibrated subaction.
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Counter example 1: G may not be a strong contraction (by a factor smaller
than 1). We will present an example where f0, g0 ∈ C but |G(f0) − G(g0)| =
1/2 = |f0 − g0|.

Consider the potential A with the graph given by Figure 5. This potential
is linear by parts and has the value 0 on the points 1/8, 1/4, 3/4, 7/8. The value
−1 is attained at the points 0, 3/16, 1/2, 13/16, 1.

Denote g0 = 0 and f0 = A. Then, |f0 − g0| = |f0 − g0 + 1/2|0 = 1/2. We
denote f1 = G(f0) and g1 = G(g0). The graph of the function x → |f1(x) −
g1(x) + 0.5| is described by the bottom rigth picture on Figure 5. One can show
that |f1 − g1| = |f1 − g1 + 1/2|0 = 1/2. Therefore, for such potential A the
transformation G is not a strong contraction. Theorem 11 shows that G is a
weak contraction.

♦
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Figure 5: On the top: from left to right the graph of A = f0, the graph of
x → |(f0(x) − 0) + 0.5|, the graph of f1 = G(f0). On the bottom: from left to
right the graph of g1 = G(0) = G(g0) and the graph of x→ |f1(x)−g1(x)+0.5|.
Therefore, G is not a strong contraction because |f0 − g0| = 1/2 = |f1 − g1| =
|G(f0)− G(g0)|.

Denote by CK , the set of Lipschitz (could be also Hölder but in order to
simplify the proofs we assume Lipschitz) function f : S1 → R, where f ∈ C,
with Lipschitz constant smaller or equal to K.

By Arzela-Ascoli Theorem CK is a compact space for the quotient norm on
C.

Theorem 10. Suppose A has Lipschitz constant equal to K. The map G : C → C
takes a function f0, which has Lipschitz constant smaller or equal K, to the
function f1 = G(f0) which has also a Lipschitz constant smaller or equal to K.
Therefore, the image of CK by G is compact in the quotient norm.

Proof: Denote f1 = G(f0).
Given a point y assume without loss of generality that f1(x)− f1(y) ≥ 0.
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Then,

f1(x)− f1(y) ≤

[
A(τ

a
x,f0
0

(x))

2
+

1

2
( f0(τ

a
x,f0
0

(x)) + f0(x) )

]
−

[
A(τ

a
x,f0
0

(y))

2
+

1

2
( f0(τ

a
x,f0
0

(y)) + f0(y) )

]
=

1

2
[A(τ

a
x,f0
0

(x))−A(τ
a
x,f0
0

(y))]+
1

2
[ f0(τ

a
x,f0
0

(x))− f0(τ
a
x,f0
0

(y))]+
1

2
[f0(x)−f0(y)] ≤

K
1

2
|τ
a
x,f0
0

(x))− τ
a
x,f0
0

(y)|+K
1

2
|τ
a
x,f0
0

(x))− τ
a
x,f0
0

(y)|+ 1

2
K |x− y| =

K
1

2

1

2
|x− y|+K

1

2

1

2
|x− y|+ 1

2
K |x− y| = K |x− y|.

Theorem 11. Given the functions f, g ∈ C we have

|G(f)− G(g)| ≤ |f − g|.

Proof: Let [f ], [g] ∈ C and d = αf−g ∈ R such that

|[f ]− [g]| = |f − g + d|0.

We denote k = αG(f)−G(g) the value such that |G([f ]) − G([g])| = |G([f ]) −
G([g]) + k|0.

In order to estimate |G([f ])− G([g])| consider G(f)(x)− G(g)(x) =

−cf +
1

2
f(x)+

1

2
max
i∈{1,2}

[(A+ f)(τi(x))]+cg−
1

2
g(x)− 1

2
max
i∈{1,2}

[(A+ g)(τi(x))] ,

which means 2 (G(f)(x)− G(g)(x) + cf − cg) =

f(x)− g(x) + max
i∈{1,2}

[(A+ f)(τi(x))]− max
i∈{1,2}

[(A+ g)(τi(x))] .

We add d to both sides obtaining

2 (G(f)(x)− G(g)(x) + cf − cg + d) =

f(x)− g(x) + d+ max
i∈{1,2}

[(A+ f + d)(τi(x))]− max
i∈{1,2}

[(A+ g)(τi(x))] ,

which can be rewritten as 2 (G(f)(x)− G(g)(x) + cf − cg + d) =

(f(x)− g(x) + d)+ max
i∈{1,2}

[(A+ g + f − g + d)(τi(x))]− max
i∈{1,2}

[(A+ g)(τi(x))] .
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We notice that −|[f ] − [g]| ≤ f(y) − g(y) + d ≤ |[f ] − [g]| for any y ∈ X. By
monotonicity of the supremum we get

−|[f ]− [g]|+ max
i∈{1,2}

[(A+ g)(τi(x))] ≤

max
i∈{1,2}

[(A+ g + f − g + d)(τi(x))] ≤ |[f ]− [g]|+ max
i∈{1,2}

[(A+ g)(τi(x))] ,

which is equivalent to −|[f ]− [g]| ≤

max
i∈{1,2}

[(A+ g + f − g + d)(τi(x))]− max
i∈{1,2}

[(A+ g)(τi(x))] ≤ |[f ]− [g]|,

thus

| max
i∈{1,2}

[(A+ g + f − g + d)(τi(x))]− max
i∈{1,2}

[(A+ g)(τi(x))] |0 ≤ |[f ]− [g]|.

We assumed that |f − g + d|0 = |[f ] − [g]|. Therefore, using the two last
inequalities we get |2 (G(f)− G(g) + cf − cg + d) |0 ≤ |[f ] − [g]| + |[f ] − [g]|,
which is equivalent to

|G(f)− G(g) + (cf − cg + d)|0 ≤ |[f ]− [g]|. (14)

We recall that |G([f ])− G([g])| =

min
k∈R
|G(f)− G(g) + k|0 ≤ |G(f)− G(g) + (cf − cg + d)|0 ≤ |[f ]− [g]|,

and this finish the proof.

3 The generic point of view

Definition 12. Consider the set A ⊂ C × C of pairs of functions (f0, g0), such
that, if |f0 − g0| = |(f0 − g0) + αf0−g0)|0 = (f0 − g0)(r) + αf0−g0 , for some r,
then,

(f0 − g0)(r) 6= (f0 − g0)(τ2(r)) and (f0 − g0)(r) 6= (f0 − g0)(τ2(r)).

Note that the above condition does not depends on the potential A. In
the case |f0(x)− g0(x) + αf0−g0)| attains the supremum in a unique point then
(f0, g0) ∈ A.

We will show in Corollary 18 that the condition (f, g) ∈ A is generic.

Theorem 13. Given the functions f0, g0 ∈ C, assume (f0, g0) ∈ A. In this
case, if |G(f0)− G(g0)| = |f0 − g0|, then, f0 = g0.
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Proof: We denote by d = αf0−g0 the value such that |(f0 − g0) + d|0 =
|f0 − g0|.

We denote by z0 the point such that |f0−g0| = |f0(z0)−g0(z0)+d|. Without
loss of generality we assume that f0(z0)− g0(z0) + d > 0.

Note that |(f0 − g0 + d)(z0)| also maximizes

x→ |(f0 − g0 + d)(x)|. (15)

Note that d was determined by the choice (f0 − g0) (and, not (g0 − f0)).
We denote by k = αG(f0)−G(g0) the value |G(f0) − G(g0)| + k|0 = |G(f0) −

G(g0)|.
Assuming |G(f0)− G(g0)| = |f0 − g0|, then, from (14) we get

|G(f0)−G(g0)| = |G(f0)−G(g0)+k|0 ≤ |G(f0)−G(g0)+(cf0−cg0+d)|0 ≤ |[f0]−[g0]|.
(16)

Therefore, k can be taken as k = cf0 − cg0 + d. Note that k was determined
by d and the choice (f0 − g0) (and, not (g0 − f0)).

We denote by z1 a point such that |G(f0)−G(g0)| = |G(f0)(z1)−G(g0)(z1)+
k| = |f1(z1)− g1(z1) + k|.

In the case (f1−g1)(z1) +k ≤ 0, from (6) we know that there exists another
point z̃1, such that, 0 ≤ (f1 − g1)(z̃1) + k = |G(f0)− G(g0) + k|0.

Therefore, without loss of generality, we can always assume that it is true
(f1 − g1)(z1) + k ≥ 0.

Assume that (f0, g0) ∈ A.
Under the above conditions in f0, g0, there exists z0, z1, z̄ = τ

a
z1,f0
0

(z1) and

w̄ = τaz1,g0
0

(z1) such that

(f0 − g0)(z0) + d = |f0 − g0| = |G(f0)− G(g0)| = (f1 − g1)(z1) + k =

[
A(z̄)

2
+

1

2
(f0(z̄) + f0(z1))]− [

A(w̄)

2
+

1

2
(g0(w̄) + g0(z1))] + k − cf + cg ≤

[
A(z̄)

2
+

1

2
(f0(z̄) + f0(z1))]− [

A(z̄)

2
+

1

2
(g0(z̄) + g0(z1))] + k − cf + cg =

[
1

2
(f0(z̄) + f0(z1))]− [

1

2
(g0(z̄) + g0(z1))] + k − cf + cg =

1

2
(f0(z1)− g0(z1)) +

1

2
(f0(z̄)− g0(z̄) + k − cf + cg =

1

2
(f0(z1)− g0(z1)) +

1

2
(f0(z̄)− g0(z̄) + d. (17)

As (f0 − g0 + d)(z0) > 0 is a supremum, it follows from the above that

(f0 − g0)(z0) + d ≤ 1

2
[(f0 − g0)(z1) + d] +

1

2
[(f0 − g0)(z̄) + d] ≤

1

2
[(f0 − g0)(z0) + d] +

1

2
[(f0 − g0)(z0) + d] = (f0 − g0)(z0) + d. (18)

13



(f0 − g0)(z1) + d and (f0 − g0)(z̄) + d can not be both negative (because
(f0 − g0)(z0) + d > 0).

Both (f0 − g0)(z1) + d and (f0 − g0)(z̄) + d are positive. Otherwise, from
(18) we get (f0 − g0)(z0) + d < 1

2 [ (f0 − g0)(z0) + d ]. This implies that 1
2 [(f0 −

g0)(z1) + d] + 1
2 [(f0 − g0)(z̄) + d] = (f0 − g0)(z0) + d.

Remember that by (8) we have d = αf0−g0 = −max(f0−g0)+min(f0−g0)
2 . From

18 we get (f0 − g0)(z1) + d = (f0 − g0)(z̄) + d = (f0 − g0)(z0) + d.
As (f0, g0) ∈ A we get by Corollary 18 a contradiction.

Remark 3: Given the point z1 above (supremum of x→ (f1(x)−g1(x))+k)
we get from (17) that

(f1−g1)(z1)+k ≤ 1

2
(f0(z1)−g0(z1)+d)+

1

2
(f0(τ

a
z1,f0
0

(z1))−g0(τ
a
z1,f0
0

(z1)+d).

(19)
Note that if f0(z1) − g0(z1) + d and f0(τ

a
z1,f0
0

(z1)) − g0(τ
a
z1,f0
0

(z1) + d) have

opposite signals, then we get a better rate

|G(f0)− G(g0)| = (f1 − g1)(z1) + k ≤ 1

2
|f0 − g0|. (20)

During the iteration procedure this will happen from time to time for fn =
Gn(f0) and gn = Gn(u) = u. This is a good explanation for the outstanding
performance of the algorithm.

♦

Definition 14. Given a Hölder potential A with a unique subaction u ∈ C
consider the set B ⊂ C of functions f0, such that, if |f0 − u| = |(f0 − u) +
αf0−u)|0 = (f0 − u)(r) + αf0−u, for some r, then,

(f0 − u)(r) 6= (f0 − u)(τ2(r)) and (f0 − u)(r) 6= (f0 − u)(τ2(r)).

The set B is generic in C. The proof of this fact is basically the same as the
proof that A is generic on C × C and will be not presented.

In the same way as before one can show that:

Theorem 15. Given the function f0 ∈ C, assume f0 ∈ B. In this case, if
|G(f0)− u| = |f0 − u|, then, f0 = u. This implies that if f0 6= u, then

|G(f0)− u| < |f0 − u|. (21)

Therefore, if Gn(f0) ∈ B and Gn(f0) 6= u, then

|Gn+1(f0)− u| < |Gn(f0)− u|. (22)

14



Given an initial f0 from time to time Gn(f0) ∈ B for some n, and then the
next iterate will experience a better approximation to the calibrated subaction
u.

Now we will prove that A is generic. We will need first to state some pre-
liminary properties which will be used later. We recall that the norm in C
is given by |f | = inf

d∈R
|f + d|0 and the distance in C × C is the max distance

d((f, g), (f ′, g′)) := max(|f − f ′|, |g − g′|) which is equivalent to the product
topology. We will show now that the set A is generic in C × C with respect to
this topology.

Consider X = [0, 1] and the maps τ2(x) = 1
2x and τ2(x) = 1

2 (x + 1). Let
F = {(f, g)| f, g are both continuous}. Denote by β the map β : X × F → R
given by

β(x, f, g) = |f − g| − |f(x)− g(x)|+ min
i∈{0,1}

{|f − g| − |f(τi(x))− g(τi(x))|} .

We notice that β(x, f, g) ≥ 0, and, moreover

• β(x, f, g) = 0, if and only if, |f − g| = |f(x)− g(x)|, and,
|f − g| = |f(τ1(x))− g(τ1(x))| or |f − g| = |f(τ2(x))− g(τ2(x))|;

• β(x, f, g) > 0, if and only if, one of the two conditions is true

|f − g| > |f(x)− g(x)|, or,
|f − g| > |f(τ1(x))− g(τ1(x))| and |f − g| > |f(τ2(x))− g(τ2(x))|.

We define the set O ⊂ F as being

OF,δ = {(f, g) ∈ F|β(x, f, g) > 0, ∀x ∈ [δ, 1− δ]} .

By (8), if d = −max(f−g)+min(f−g)
2 , then |f−g| = |f−g+d|0 = max(f−g)−min(f−g)

2 .
From the previous observation we conclude that for all (f, g) ∈ OF,δ, if, x is

such that |f−g+d| = |f(x)−g(x)+d|, then, |f−g+d| 6= |f(τ1(x))−g(τ1(x))+d|
and |f − g + d| 6= |f(τ2(x))− g(τ2(x)) + d|.

To motivate our proof we are going to consider an explicit example where
we made a perturbation of a pair (f, g) ∈ C, but β(x, f, g) = 0, for some x.

Example 16. Consider (f, g) ∈ C where

f(x) =


16
3 x− 2 0 ≤ x and x < 3/8

32x2 − 36x+ 9 3/8 ≤ x and x < 3/4
64x2 − 104x+ 42 3/4 ≤ x and x ≤ 7/8
−16x+ 14 7/8 ≤ x and x ≤ 1.

and g(x) = 0.
It is easy to see that for x = 3/4 we have |f−0| = |f−0+1| = f (3/4)+1 = 1,

f (τ2 (3/4))+1 = 1 and f (τ1 (3/4))+1 = 1, (see Figure 6) thus, β (3/4, f, 0) = 0,
meaning that (f, 0) 6∈ OF, 14 . The same is true for x = 0.

15



Figure 6: f(x) of example 16

Figure 7: uε

In order to obtain the perturbation (fε, gε) we consider an ε-concentrated

approximation via Dirac function uε(x) := 1
ε
√
π

e−
x2

ε2 (see Figure 7) and we also

we define for ε = 0.005 the modifications (see Figure 8):

Qε(x) :=
1

500
uε (x− (3/4− 0.015)) and Wε(x) := − 1

1000
uε (x− (0 + 0.015)) :

We set fε(x) = f (x)+Qε(x)+Wε(x) and gε(x) = g(x). In this case |fε−f | =
| −Qε −Wε| = (0.113− (−0.226))/2 = 0.1695 as we can see by the picture (see
Figure 9).

As we can see, after the perturbation the maximum value is attained only for
x0 = 3

4 − 0.015 and for x1 = 0 + 0.015 and neither of them are pre-image one
of each other. Therefore, (fε, gε) ∈ OF,0 (see Figure 16).

Theorem 17. Let Λ ⊂ F a compact subset. Then the set OΛ,δ is an open and
dense set. In particular, OΛ =

⋂
n>2OΛ, 1n

is a generic set.

As a consequence, taking A = OΛ, it will follow:

Corollary 18. The set A is generic. In other words, generically, if |f − g| =
|f−g+d| = f(x0)−g(x0)+d, then f(τi(x0))−g(τi(x0))+d 6= f(x0)−g(x0)+d
, for i = 1, 2.
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Figure 8: Qε (red) and Wε(blue).

Proof. The first step in the proof of Theorem 17 is the openness of OΛ, 1n
.

In this direction we observe that β is continuous because the min oper-
ation and the sup-norm are continuous. Taking (f0, g0) ∈ OΛ, 1n

we obtain

β(x, f0, g0) > 0, ∀x ∈
[

1
n , 1−

1
n

]
, as we can see in the Figure 11.

Using the compactness and the continuity we can take α > 0, such that,
β(x, f0, g0) > α, ∀x ∈ [ 1

n , 1 −
1
n ]. Therefore, if (f, g) ∈ U , where U is an open

neighborhood of (f0, g0), we get

β(x, f, g)− α

2
= β(x, f, g)− β(x, f0, g0) + β(x, f0, g0)− α+ α− α

2
≥

≤ β(x, f0, g0)− β(x, f, g) + β(x, f, g)− α+ α− α

2
> −εx + 0 +

α

2
> 0,

if we choose εx <
α
2 , where εx is the continuity constant for the map (f, g) →

β(x, f, g), for a fixed x ∈
[

1
n , 1−

1
n

]
.

Figure 9: Calculating | −Qε −Wε|.

Since the interval
[

1
n , 1−

1
n

]
is compact we can take 0 < ε ≤ εx, ∀x ∈[

1
n , 1−

1
n

]
.

This proves that the set
Uδ :={

(f, g) | if d((f, g), (f0, g0)) < δ, then |β(x, f, g)− β(x, f0, g0)| < ε, ∀x ∈
[

1

n
, 1− 1

n

]}
is an open neighborhood of (f0, g0) in OΛ, 1n

.

In order to prove the density of OΛ, 1n
we observe that if x0 ∈

[
1
n , 1−

1
n

]
,

then 1
2n + i

2 − x0 ≤ τi(x0)− x0 ≤ i
2 + 1

2 −
1

2n − x0. Thus |τi(x0)− x0| ≥ 1
2n for

all x0 ∈ [ 1
n , 1−

1
n ].
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Figure 10: |fε − gε| = |fε − gε − (−0.985)|0 = (0.07− (−2.04))/2 = 1.055.

Figure 11: Approximating (x0, f0, g0).

Using this estimate we can apply an ε-concentrated perturbations with ε <
1

2n (see Example 16 for a constructive approach) obtaining a pair (fε, gε), in
such way that, gε = g, x0 and x1 are the only points where |fε− gε| = |fε(x0)−
g(x0) + d| = |fε(x1)− g(x1) + d| and x0 6= τ0(x1), τ2(x1), x1 6= τ0(x0), τ2(x0).

In particular β(x, fε, g) > 0, for any x ∈
[

1
n , 1−

1
n

]
, which means that

(fε, gε) ∈ OΛ, 1n
.
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4 Perturbation theory: close by the fixed point

In this section we analyse the question: when the calibrated subaction is unique
is there an uniform exponential speed of approximation of the iteration Gn(f0)
to the subaction? The question makes sense close by the subaction u. The
answer is no.

We will proceed a careful analysis of the action of G close by the fixed point
u ∈ C.

We denote C0(X) = {f : X → R|f continuous }.
In some examples we may consider a different dynamical system onX = [0, 1]

given by the maps τi(x) = 1
2 (i+1−x), for i = 0, 1, which are the inverse branches

of T (x) = −2x mod 1.
Our main task is to evaluate the effect of a perturbation on the nonlinear

operator ψ defined by

ψ(f)(x) = max
T (y)=x

(A+ f)(y) = max
i=0,1

(A+ f)(τi(x))

for a fixed potential A ∈ Ck.

Figure 12: The graph of the function α0.05,0.7 in the left side, f(x) = −(x−1/2)2

in the center and f0.05 = f(x) + α0.05,0.7(x) in the right side.

The operator H := HA given by

H(f)(x) :=
1

2
f(x) +

1

2
ψ(f)(x),

Note that G := GA is a normalized version of H

G(f)(x) := H(f)(x)− sup
x∈X

H(f)(x).
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It is usual to denote cf := sup
x∈X

H(f)(x) thenH(f)(x) = G(f)+cf (normalization

means that sup
x∈X
G(f)(x) = 0). Sometimes it is useful to look at the operator

H − Id given by (H − Id)(f) := 1
2ψ(f)(x)− 1

2f(x).
We assume that there exists a unique function u ∈ Ck such that G(u) = u

(this is true if the maximizing probability is unique). Thus, H(u)(x) = G(u) +
cu = u(x) + cu where cu := sup

x∈X
H(u)(x).

The above equation is equivalent to u(x) + cu = 1
2u(x) + 1

2ψ(f)(x) which is
equivalent to the sub-action equation

u(x) = max
i=0,1

(A− 2cu + u)(τi(x)).

We can assume that mA = 2cu = 0 (by adding a constant to A) and then,
H(u) = u. It is useful to observe that under this assumption we also get
ψ(u) = u.

We start with a local perturbation lemma.
Let αε,a : X → R be a piecewise linear bump function defined by

αε,a(x) =


0, 0 ≤ x ≤ a− ε
kx− k(a− ε), a− ε ≤ x ≤ a
−kx+ k(a+ ε), a ≤ x ≤ a+ ε
0, a+ ε ≤ x ≤ 1,

where a ∈ (0, 1) and ε > 0 is arbitrary small.

Lemma 19. If f ∈ Ck, then fε = f(x) + αε,a(x) ∈ Ck. Moreover, fε(x) ≥ f(x)
and fε(x) = f(x) outside of the interval [a− ε, a+ ε]. Finally, |fε − f | = kε

2 .

Proof. The proof is straightforward because |fε− f | = |αε,a| and 0 ≤ αε,a(x) ≤
kε.

We will make the perturbations by choosing a fixed point x0 6= 0, 1, 1/2
in X and ε > 0, such that, the intervals I = [x0 − ε, x0 + ε] and T (I) =
[T (x0)− 2ε, T (x0) + 2ε] are disjoint. Then, we take fε = f(x) +αε,a(x) and we
will try to estimate ψ(fε).

Lemma 20. ψ(fε) = ψ(f) outside of T (I).

Proof. We notice that A remains unchanged and [T (x0) − 2ε, T (x0) + 2ε] =
T ([x0 − ε, x0 + ε]). Therefore, for any y such that T (y) = x we can not have
y ∈ [x0 − ε, x0 + ε]. Thus, fε(y) = f(y), proving that ψ(fε) = ψ(f).

Another question is about what happens in T (I). For any x in this interval
one of its pre-images y belongs to I therefore fε(y) ≥ f(y). Thus, ψ may change.

We recall that a turning point x (see also [34] and [35]) is a point where
(A + f)(τ1(x)) = (A + f)(τ2(x)). If x is not a turning point then there exists
a dominant realizer, that is, (A + f)(τ1(x)) > (A + f)(τ2(x)), or, (A +
f)(τ1(x)) < (A+ f)(τ2(x)).
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Figure 13: The graph of the functions ψ(fε) (blue line) and ψ(f) (traced line)
where, A(x) = sin2(2πx), f(x) = −(x−1/2)2 and f0.1 = f(x)+α0.1,0.7(x). The
difference occurs only in the interval T (I) = [0.2, 0.6] because T (0.7) = 0.4 and
I = [0.6, 0.8].

Lemma 21. Suppose that x0 is such that T (x0) is not a turning point and j is
the dominant symbol. Let i ∈ {0, 1} be such that τi(T (x0)) = x0. We have two
possible cases:

• If j 6= i, then ψ(fε)(x) = ψ(f)(x), for any x ∈ T (I).

• If j = i, then ψ(fε)(x) = ψ(f)(x) + αε,x0(τj(x)) ≥ ψ(f)(x), for any
x ∈ T (I) and |ψ(fε)(x)− ψ(f)(x)| = kε

2 .

Proof. In the first case, in order to fix ideas we suppose, without lost of gen-
erality, j = 0 and i = 1, then τ2(T (x0)) = x0 and (A + f)(τ1(T (x0))) >
(A + f)(τ2(T (x0))). By the continuity of A + f we can choose ε > 0 small
enough in order to have (A + fε)(τ1(x)) > (A + fε)(τ2(x)), for all x ∈ T (I).
Therefore, ψ(fε)(x) = (A + fε)(τ1(x)) = (A + f)(τ1(x)) = ψ(f)(x), for any
x ∈ T (I).
In the second case, τj(T (x0)) = x0 and (A+f)(τj(T (x0))) > (A+f)(τi(T (x0))).
Once more we use the continuity of A+f to choose ε > 0 small enough in order
to have (A+fε)(τj(x)) > (A+fε)(τi(x)), for all x ∈ T (I). Therefore, ψ(fε)(x) =
(A + fε)(τj(x)) = (A + f)(τj(x)) + αε,x0(τj(x)) = ψ(f)(x) + αε,x0(τj(x)), for
any x ∈ T (I).

Our first task is to compare H(f) and H(fε). We can always assume that
T (I) and I are disjoint so the perturbation f → fε acts separately in each one
as described by the previous lemmas.

Lemma 22. Let fε a perturbation of f and x0 such that is not a pre-image of
a turning point (with respect to f). Then, H(f)(x) ≤ H(fε)(x), with equality
only outside of [T (x0)−2ε, T (x0)+2ε]∪ [x0−ε, x0 +ε]. Moreover, H(fε)(x)−
H(f)(x) ≤ kε

2 . (We can prove similar results for (H − Id).)

The proof is a direct consequence of the previous lemmas.
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Figure 14: The graph of the functions H(fε) (blue line) and H(f) (traced line)
where, A(x) = sin2(2πx), f(x) = −(x−1/2)2 and f0.1 = f(x)+α0.1,0.7(x). The
difference occurs only in the interval [0.2, 0.6]∪ [0.6, 0.8] because T (0.7) = 0.4.

We want to study the relation between |G(f)−u| and |f −u|. We also want
to see what happens when we make a perturbation f → fε.

We start by choosing d = αf−u such that δ = |f − u| = |f − u+ d|0, then

−δ ≤ f(y)− u(y) + d ≤ δ,

for all y ∈ X. Multiplying the above by 1/2 we conclude that

−δ
2
≤ 1

2
(f(y)− u(y)) +

d

2
≤ δ

2
.

Adding A(y) we obtain the inequalities

−δ ≤ A(y) + f(y)− (A(y) + u(y)) + d ≤ δ,

and
−δ + (A(y) + u(y)) ≤ A(y) + f(y) + d ≤ δ + (A(y) + u(y)).

Taking the supremum in y, such that, T (y) = x, we get −δ + ψ(u)(x) ≤
ψ(f)(x) + d ≤ δ + ψ(u)(x). Multiplying by 1/2 we conclude that

−δ
2
≤ 1

2
(ψ(f)(x)− ψ(u)(x)) +

d

2
≤ δ

2
.

Note that

G(f)(x)− u(x) + d = G(f)(x)− G(u)(x) + d =

=
1

2
(f(x)− u(x)) +

1

2
(ψ(f)(x)− ψ(u)(x))− cf + cu + d =
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1

2
(f(x)− u(x) + d) +

1

2
(ψ(f)(x)− ψ(u)(x) + d)− cf .

Using the inequalities

−δ
2
≤ 1

2
(ψ(f)(x)− ψ(u)(x)) +

d

2
≤ δ

2
,

−δ
2
≤ 1

2
(f(y)− u(y)) +

d

2
≤ δ

2
,

and, the fact that cu = 0, we finally obtain

−δ
2
− δ

2
− cf ≤ G(f)(x)− u(x) + d ≤ δ

2
+
δ

2
− cf ,

and,
−δ ≤ G(f)(x)− u(x) + (d+ cf ) ≤ δ.

Therefore,
|G(f)(x)− u(x) + (d+ cf )| ≤ δ = |f − u|,

for all x ∈ X.
From this fundamental inequality we get a very important result about the

operator G.
We recall that |G(f)(x)−u(x)| = minγ |G(f)−u+γ|0 ≤ |G(f)−u+(d+cf )|0 =

supx∈X |G(f)(x)− u(x) + (d+ cf )| ≤ |f − u|.

Theorem 23. Let G be the operator associated to A and u the fixed point
(G(u)(x) = u(x)), then,

a) The contraction rate is controlled by H − Id;

b) |H(f)− f |0 ≤ 2|f − u|;

c) If |H(f)− f |0 = β, then |G(f)(x)− u(x) + (d+ cf )|0 ≥ |f − u| − β.

Proof. (a) We recall that G(f)(x) + cf = H(f), thus,

|G(f)(x)− u(x) + (d+ cf )| ≤ |f − u|

|G(f)(x) + cf − f(x) + f(x)− u(x) + d| ≤ sup
x∈X
|f(x)− u(x) + d|

|[H(f)− f(x)] + f(x)− u(x) + d| ≤ sup
x∈X
|f(x)− u(x) + d|

sup
x∈X
|[H(f)− f(x)] + f(x)− u(x) + d| ≤ sup

x∈X
|f(x)− u(x) + d|.

(b) Here we use the triangular inequality

|H(f)− f(x)| ≤ |[H(f)− f(x)] + f(x)−u(x) + d|+ |f(x)−u(x) + d| ≤ 2|f −u|.
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(c) Using the triangular inequality we obtain

|f−u| = |f−u+d|0 ≤ |f−u+d+G(f)(x)+cf−f(x)−(G(f)(x)+cf−f(x))|0 ≤

≤ |G(f)(x) + cf − f(x) + f − u+ d|0 + |G(f)(x) + cf − f(x)|0 =

= |G(f)(x)− u+ (d+ cf )|0 + |H(f)(x)− f(x)|0 = |G(f)(x)− u+ (d+ cf )|0 + β,

or, equivalently,

|G(f)(x)− u+ (d+ cf )|0 ≥ |f − u| − β.

Figure 15: Functions (H − Id)(fε) (blue line) and (H − Id)(f) (traced line)
where, A(x) = sin2(2πx), f(x) = −(x − 1/2)2 and f0.1 = f(x) + α0.1,0.7(x).
The difference occurs only in the interval [0.2, 0.6], where the perturbation is
bigger, and, the interval [0.6, 0.8], where the perturbation is smaller, because
T (0.7) = 0.4.

We are dealing with a kind of technical problem: |p(x)+q(x)| ≤ |q|0, ∀x ∈ X,
where max q = −min q. In our case, p(x) = H(f) − f(x) and q(x) = f(x) −
u(x) + d are continuous functions. The first observation is that |p(x) + q(x)| ≤
|q|0, ∀x ∈ X, is equivalent to −|q|0 − q(x) ≤ p(x) ≤ |q|0 − q(x). From this we
can get interesting examples.

Example 24. Consider p(x) = −4 (x− 1/2)
2

and q(x) = cos (2π x). It is
easy to see that |q|0 = max q = −min q = 1 and the inequality −1 − q(x) ≤
p(x) ≤ 1 − q(x) is described in the Figure 16. A simple calculation shows that
|p+ q|0 = 1 = |q|0, but |p+ q| = |p+ q + 0.414|0 = 0.586.

The property max q = −min q means that |q| = |q + 0|0, therefore, |p+ q| =
0.586 < 1 = |q|.
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Figure 16: Functions −1− q(x) and 1− q(x).

Lemma 25. Consider |p(x) + q(x)| ≤ |q|0, ∀x ∈ X, with max q = −min q.
Then, there exists z ∈ X, such that, p(z) = 0. In particular, taking p(x) =
H(f)− f(x) and q(x) = f(x)− u(x) + d, we have

f(z) = max
T (y)=z

A(y) + f(y).

Proof. We already know that there exists x0 such that |q|0 = q(x0), therefore,
p(x0) + q(x0) ≤ |q|0 = q(x0), or, equivalently, p(x0) ≤ 0. Analogously, there
exists x1 such that |q|0 = −q(x1) and p(x1) ≥ 0. Unless q = cte we can always
suppose that x0 6= x1. If p(x0) = 0 or p(x1) = 0 the problem is solved. Other-
wise, if p(x0) < 0 and p(x1) > 0 the intermediate value theorem for continuous
functions claims that there exists z ∈ [x0, x1], such that, p(z) = 0.

Note that for p(x) = H(f) − f(x), the equation p(z) = 0 is equivalent to
f(z) = max

T (y)=z
A(y) + f(y).

The behaviour of |G(f)(x)−u+(d+cf )|0 may be very different from |G(f)−u|.
On the one hand |G(f)− u| ≤ |G(f)− u+ (d+ cf )|0 ≤ |f − u| and on the other
hand we can find f arbitrarily close to u, such that, |G(f)− u| = 1

4 ≤ |f − u|.

Figure 17: In the left side the graph of u and in the right side the graph of fε.
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Lemma 26. Let u be the only sub-action of A (mA = 0). Let fε = u+ αε,x0 a
perturbation of f and take x0 not a pre-image of a turning point (with respect
to f). Then, |G(fε)− u| = 1

2 |fε − u| and |fε − u| = kε
2 .

Proof. First, we observe that |fε − u| = |αε,x0
| =

maxαε,x0
−minαε,x0

2 = kε−0
2 =

kε
2 .

Rewriting |G(fε)− u| we obtain

|G(fε)− u| = |H(fε)− cfε − u| = |H(fε)− u| = |
1

2
fε +

1

2
ψ(fε)− u| =

= |1
2

(u+ αε,x0
) +

1

2
ψ(fε)− ψ(u)| = |1

2
αε,x0

+
1

2
(ψ(fε)− ψ(u))|.

The function αε,x0
is zero outside of the set [x0−ε, x0+ε], and, ψ(fε)−ψ(u) = 0

outside of the set [T (x0)− 2ε, T (x0) + 2ε] by Lemma 20.

Figure 18: In the left the graph of fε (x) − u (x) − kε
2 and in the right the one

for 1/2 fε (x) + 1/2ψ (fε) (x)− u (x)− kε
4 .

Therefore, the min 1
2αε,x0

+ 1
2 (ψ(fε)−ψ(u)) = 0, and, max 1

2αε,x0
+ 1

2 (ψ(fε)−
ψ(u)) = kε

2 . By definition |G(fε)(x)− u| = kε
4 .

Example 27. Consider the dynamics T (x) = −2x mod 1.
Let A(x) = −(x− 1

2 )2 + 1
36 be the potential and u the subaction (see Figures

17, 18 and 19)

u(x) =

{
−1/3x2 + x/9, 0 ≤ x ≤ 1/2
−1/3x2 + 5/9x− 2/9, 1/2 ≤ x ≤ 1.

From the graph of u we see that x = 1
2 is the only turning point. Therefore,

we can take x0 = 0.7, ε = 0.05 and fε = u + α0.05,0.7. We also know that
Lip(A) = 1 and Lip(u) = 2

9 , thus, we can take k = 2
9 .

As predicted |G(fε)(x)− u| = kε
4 = 0.0028 and |fε − u| = kε

2 = 0.0056.
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Figure 19: The graph of the functions (A+ u)(τ1(x)) and (A+ u)(τ2(x)).

From Lemma 26 we get

Corollary 28. For any ε > 0 there exists a function f which is ε-close to u,
such that, G contracts by 1/2 in f , that is, |G(f)− u| = 1

2 |f − u|.

We may ask if there exists some neighborhood of u where |G(fε)(x) − u| ≤
(1 − δ)|fε − u|. The answer is no. Actually, it is the opposite of that. We can
exhibit a sequence fε → u, and, |G(fε)(x)− u| = |fε − u|.

Example 29. We will show an example where |G(fε)−G(u)| = |fε−u| , ε > 0,
for fε as close as you want to the calibrated subaction u.

Consider again the dynamics T (x) = −2x (mod 1). Let A(x) = −(x− 1
2 )2 +

1
36 be the potential and u the subaction

u(x) =

{
−1/3x2 + x/9, 0 ≤ x ≤ 1/2
−1/3x2 + 5/9x− 2/9, 1/2 ≤ x ≤ 1.

We fix x0 = 2
3 . The function αε,x0 is zero outside of I = [ 2

3 − ε,
2
3 + ε] and

ψ(fε)− ψ(u) = 0 outside of T (I) by Lemma 20.
We know that T ( 1

3 ) = 1
3 and T ( 2

3 ) = 2
3 . As we can see in the Figure 19,

{0, 1
2 , 1}, are the only turning points and the dominant symbol in x0 = 2/3 is

j = 1. Also, τ2(T ( 2
3 )) = 2

3 , and thus i = 1 = j.
Once more

|G(fε)− u| =
∣∣∣∣12αε,x0 +

1

2
(ψ(fε)− ψ(u))

∣∣∣∣ .
Since I ⊂ T (I), we get, by Lemma 21, that αε,x0

attains the value kε and
ψ(fε)(x) − ψ(u)(x) = αε,x0

(τ2(x)) attains the value kε at least in x0. Thus,
1
2αε,x0

+ 1
2 (ψ(fε) − ψ(u)) attains the value kε

2 = |fε − u| (see Figure 20 for
ε = 0.01 and x0 = 2

3).
Therefore, |G(fε)− u| ≥ |fε − u|.
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Figure 20: In the left side the graph of fε (x)− u (x)− kε
2 and in the right side

the graph of 1/2 fε (x) + 1/2ψ (fε) (x)− u (x)− kε
2 .

5 Approximating the maximizing probability

In this section we will show how one can get the maximizing probability µ from
a limit procedure when the calibrated subaction u is explicitly known.

Suppose u ∈ C is the subaction for the generic potential A. Given a point
x0 there exist (at least one) x1, such that,

u(x0) = A(x1) + u(x1)−m(A),

where T (x1) = x0.
This means that there exists a0 ∈ {1, 2}, such that, and τa0(x0) = x1. We

say that x1 is a realizer for x0. In the same way, for fixed x0, given the realizer
x1 there exists an x2 = τa1(x1), for some a1 ∈ {1, 2}, which is a realizer for x1.
In this way τa1 ◦ τa0(x0) = x2.

By induction, for fixed x0 and for each n we have a sequence of realizers
which are described by an element in (a0, a1, .., an−1) ∈ {1, 2}n, such that,
xn = τan−1

◦ .... ◦ τa1 ◦ τa0(x0) is a realizer for xn−1.
We say that x1 is the first realizer of x0, and, that x2 is the second realizer

of x0 and so on.
We denote by a(x0) = (a0, a1, ..., an, ...) ∈ {1, 2}N the string derived by this

procedure. We call a(x) ∈ {1, 2}N the string realizer of x.
The string do not have to be unique but we fix one element a(x) by conven-

tion.
Associated to this string there exist a sequence x0, x1, x2, ..., xn, ... of ele-

ments on S1, such that T (xn) = xn−1 and xn is a realizer for xn−1.
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We say that x0 is the initial point of the realizer process that gave origin to
the sequence x0, x1, x2, ..., xn, ....

Proposition 30. Assume the maximizing probability for A is unique. For each
x0 denote by

µx0
n = µn =

1

n

n−1∑
j=0

δxj ,

where xj, j ∈ N, is the sequence associated to x0 (as above). Then, for any x0

the sequence µx0
n converges to the maximizing probability µ.

Proof: For a proof see Proposition 7 in [36] or in [5].

We will present in Proposition 34 a more robust version of the above result.

Proposition 31. Assume A has a unique maximizing probability.
Consider a sequence of initial points xk0 , k ∈ N, and a sequence of times

Nk →∞, as k →∞. Denote for each k the realizer sequence with initial point
xk0 by

xk0 , x
k
1 , x

k
2 , ..., x

k
Nk
, ...

Then, given a open neighborhood Λ of the Mather set, it is not possible that
all points xkj , 0 ≤ j ≤ Nk, Nk →∞, are not in Λ.

Proof:
For each k denote

µk =
1

Nk

Nk−1∑
j=0

δxk
j
.

As the set of probabilities on S1 is sequentially compact there exists a con-
vergent subsequence µk → ρ, when k →∞.

We will show that ρ is a maximizing probability which is a contradiction
because its support is outside K.

Given a continuous function f we have that∫
(f ◦ T )dρ = lim

k→∞

∫
f(T (x))dµk(x) = lim

k→∞

1

Nk

Nk−1∑
j=0

f(T (xkj )) =

lim
k→∞

1

Nk
[ f(T (xk0)) + f(xk0) + f(xk1) + ...+ f(xkNk−2) ] =

lim
k→∞

1

Nk
[f(xk0)+...+f(xkNk−2)+f(xkNk−1)]+

1

Nk
[f(T (xk0))−f(xNk−1)] =

∫
f dρ.

Therefore, ρ is T -invariant
Moreover, ∫

(A−m(A))dρ = lim
k→∞

∫
(A(x)−m(A))dµk(x) =
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lim
k→∞

1

Nk

Nk−1∑
j=0

(A(xkj )−m(A)) = lim
k→∞

1

Nk

Nk−1∑
j=0

(u(xkj+1)− u(xkj )) =

lim
k→∞

1

Nk
(u(xknK

)− u(xk0)) = 0.

Therefore, ρ = µ is a maximizing probability and this is a contradiction by
uniqueness of the maximizing probability for A.

Definition 32. We say that a Hölder potential A is good if the rate function
R associated to the calibrated subaction u satisfies the property: if x is not in
the Mather set but T (x) is in the Mather set, then, RA(x) > 0.

Theorem 33. Generically the potential A is good.

For a proof see [18] or Corollary 3 in section 12.3 in [10].

Proposition 34. Suppose the potential A is good and the maximizing probability
is unique. Given ε > 0, there exist a compact neighborhood of size ε of the
Mather set, such that, for any x0 the associated sequence xj, j ∈ N, is such that
xj ∈ Λ for all j large enough.

There exists an N > 0, such that, for any x0 and any j > N , we get that
the associated sequence x0

j , j ∈ N satisfies x0
j ∈ K, for all j > N .

Therefore, uniformly on x0 we have that µx0
n converges, when n→∞, to the

maximizing probability.

Proof:
As the potential A is good one can get ε > 0 and a compact neighborhood

Λof the Mather set such that R(x) < ε, for all x ∈ K. Moreover, we can assume
that r(y) > 2 ε for all y not in the Mather set, such that, T (y) is on the Mather
set.

We may assume that T−1(K) ∩K is inside K.
From Proposition 30 given a point x the associated sequence µxn(K) will

be positive for some large n. Therefore, for some large j0 some element xj0
(obtained at level j0 on the realizer process beginning on x) will be on K.

The point xj0 has two preimages, let’s say y1 ∈ K and y2 not in K
By hypothesis

R(y1) = u(xj0)−u(y1)−A(y1)+m(A) < R(y2) = u(xj0)−u(y2)−A(y2)+m(A).

From this we get

u(y1) +A(y1)−m(A) > u(y2) +A(y2)−m(A).

In this way we get that xj0+1 is on K. Therefore, by induction, all xj ∈ K
for j ≥ j0.

If the maximizing probability is unique and is a periodic orbit then the
realizer a(x) ∈ {1, 2}N will be a periodic orbit for the shift with the same period
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of the maximizing periodic orbit. This orbit on the symbolic space is called the
dual orbit.

These kind of duality ideas are presented in several papers as [34], [35] and
[10].

6 Appendix. Implementation of the algorithm
via a mesh of points

In this section we will describe the numerical procedure we employed. As-
sume that the calibrated subation is unique up to add constants.

Given a potential A denote the operator G (without centering our initial
function F by adding a constant).

G(F )(x) =
1

2
max
T (y)=x

[A(y) + F (y)] + F (x)

Consider a potential A and two inverse branches of some transformation T
which we denote by τ1, τ2. We want to approximate numerically the pair of
solutions m(A) and V satisfying V (x) +m(A) = maxi[A ◦ τi(x) + V ◦ τi(x)] in
a given interval I.

We first define Ω = {x1, x2, x3, ..., xN} a discretization of the interval I.
In general, we relate these points by a one-to-one, non-decreasing map f :
{1, 2, ..., N} → Ω.

As an example, if I = [0, 1] we could define f(n) = n/N and

Ω = {f(1), f(2)..., f(N)},

in this case, we would have f−1(n) = Nn, where N is the chosen number of
points in Ω.

Now, we choose a starting point for our algorithm. In our examples, we chose
F0(x) = 0. We want to compute a sequence of functions Fn(x) = Gn(F0)(x) −
Cn, where Cn is a constant such that maxx∈I Fn(x) = 0. To do so, we denote
Fn by a vector, which approximates the function obtained in the form

Fn = (Fn(x1), Fn(x2)..., Fn(xN ))

(Consider as an example the case where Ω = {x1, x2, x3}, with F = (8, 2, 7),
which we mean that F (x1) = 8 F (x2) = 2 F (x3) = 7).

Now, given some injective τ : I → I we compute

Fn ◦τ = (Fn ◦τ(x1), Fn ◦τ(x2), ..., Fn ◦τ(xN )) = (Fn(xj1), Fn(xj2), ..., Fn(xjN )).
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Where xjk ∈ Ω minimizes |τ(xk)−xjk |, and so, xjk is our best approximation
of τ(xk) within Ω (for τ(xk) need not be in Ω). When given a non-decreasing
one-to-one map f : {1, 2, ..., N} → Ω where the points are equidistant, we
mostly computed xjk simply by making jk = [f−1(τ(xk))], the closest integer
to f−1(τ(xk)). Now, given the starting point F0, we define the numerical vector
F1 = (F1(x1), ..., F1(xN )) where

F1(xk) = G(F0)(xk) =
maxi∈{1,2}[A(τi(xk)) + F0 ◦ τi(xk)] + F (xk)

2
.

We compute A(τ2(xk)) by its definition and F0◦τi by the procedure described
above. We then compute the constant C1 = maxk F1(xk), k ∈ {1, 2, ..., N}, and
we redefine F1 as

F1(xk) = G(F0)(xk)− C1.

In this way we obtain maxk F1(xk) = 0. Then, we repeat the procedure for
F2 = (F2(x1), ..., F2(xN )) by taking

F2(xk) = G(F1)(xk)− C2.

We check if Fn is an adequate approximation of some sub-action V by the error

ε = max
k∈{1,2,...,N}

‖ max
i∈{1,2}

[A ◦ τi(xk) + Fn ◦ τi(xk)− Fn(xk)− m̂(A)] ‖, (23)

where m̂(A) is our numerical approximation for m(A) given by

m̂(A) = max
k∈{1,2...,N}

max
i∈{1,2}

[A ◦ τi(xk) + Fn ◦ τi(xk)].

The reasoning behind such approximation is that, if we had u, a sub-action
such that maxx∈[0,1] u(x) = 0, then

max
i∈{1,2}

[A ◦ τi(x) + u ◦ τi(x)] = u(x) + λ,

which means
max
x∈[0,1]

max
i∈{1,2}

[A ◦ τi(x) + u ◦ τi(x)] = 0 + λ.
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