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An invariant measure for rational maps

Alexandre Freire, Artur Lopes and Ricardo Mané

Introduction

Let T=Cu {w) be the Riemann sphere and f : C © be an analytic
endomorphism of degree d > 2. Then f can be written as a rational
function f(z) = P(2)/Q(z) where P and Q are relatively prime polynomials
and either P or Q has degree d. Set f"= f". = . [. The purpose of this
paper is to construct an f-invariant probability that describes the asymptotic
random distribution of the roots of the equation f"(z)=a, when n — + %.
More precisely, denote z"(a), i = 1,...,d", the roots of the equation
f"z)=a (counted with algebraic multiplicity), and define a probability
wla) by: dan
Hula) = E]; Z 5:1"(»1

i=0

Let .# be the space of probabilities on the Borel o-algebra of € endowed
with the weak topology, ie., the unique metrizable topology on .# such
that a sequence {u,|n = 1} = # converges to pue.# if and only if:

lim j ¢du"=J pdu
n=ran | =

[ c
for every continuous ¢ : C — R. We shall prove that for every ae C (with
the possible exception of two values that can be explicitly characterized)
the sequence w,(a) converges to an f-invariant probability p € #, indepen-
dent of a, that exhibits certain interesting ergodic properties. To give the
full statement of our theorem, we have to recall first the definition of
the Julia set J(f) of f. J(f) is the set of points ze C such that for every
neighborhood U of z, the family {/"/U|n >0} is not normal. It is easy
to check that J(f) is compact and satisfies / ~'(J(f)) = J(f). Moreover,
J(/f) is the closure of the set of sources of f, 1.e., points z such that f"(z) ==
and | (f")'(z)| > 1 for some n = | (Julia [4], Fatou [3]). The definition
of J(f) easily implies that every z¢ J(f) has a neighborhood U where
the family of iterates f"/U — C is equicontinuous. In other words, in
the complement of J(f) the dynamics of f is extremely stable (in the sense
of Lyapounov). On the other hand, every neighborhood of a point in
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th? Julia set is expanded under forward interation. In fact, if I/ is a
neighborhood of ze J(f), the non-normality of {f"/U |n>1) ‘implies (by
Montel's characterization of normal families) that for Targje values of
n, | J f™U) covers the whole sphere except for at most two points. With

mzn

some more work (see Brolin [1]), it can be proved that there exists a set
Exc(f)=C, wh.ose elements are called exceptional points, containing
z_:.t most two points, and such that for every neighborhood U of a point
in J(f), there exigts N >0 such that f(U)=Exc(f) for every n> N
Morepver, the points of Exc(f) can be described as follows. If Ex;{ f ]
contains only one point p, then it must satisfy f ~'(p) = {p!. Then if
L:C 2is a Mobius transformation such that L(p) = w0, it Jis easy to
check that (LfL™")"Ywo)= {0}, and this implies that L}'L" Is a po-
lyplormal. If Exe(f) contains two points p and ¢, they must satisf
T 'dr.g))={p.q). Taking a Mobius transformations L : € o such lha)l(
Lip)= w0, L{g)=0, it follows that (L™ L) ({0,00))=1{0, !. This
property implies that (L™'f L)™!(z)= 2z*¢ for some o:e E’I o

a) lim ufa)= ) . .
) r'mh(ﬂ) Hy Jor every a¢ Exc(f). Moreover, this convergence

is uniform when a varies in a compact subsct of Exc(f)
b) The support of up if J(f). -
) fis a K-system with respect to ;.
e o o A
o s Ky € unique f-invariant probability satisfying this
e) h,(f) = log d.

_Sint:e the c_ieﬁnit_ion of k-system used sometimes in Ergodic Theory
applies only to invertible transformations, that is not our case, it is perhaps
useful for the reader to explain property (c). We shall that if ¢ is the

Borel g-algebra of T, then Qﬂ f (@) contains only sets of measure 0

or 1. It is natural to include these transformations (as is done by several
authors) in the class of K-systems, As in the invertible case (and for the
same reasons), it_ implies the mixing property but is much stronger
In [1], Brolin proved the existence of ;:rf satisfying (a), (b) fnd a
weaifcr form pf () {vyith mixing instead of K-system) for the c;se of poly-
nomial mappings. His methods, based in Potential Theory, do not extend
to general ratloqal maps. On the other hand, when f is a polynomial
these methods give a remarkable identification of Hys namely,ythat u J‘
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is the equilibrium distribution (in the sense of Potential Theory) associated
to J(f). This means, roughly speaking, that u, describes the way a unit
positive electric charge would be distributed in J(f) under equilibrium
conditions (for the formal definition, see Brolin [1]). Unfortunately, this
beautiful characterization of u, doesn't extend to general rational maps.

For instance, take

-l (£22)

where |a;| < | for all i and not all are zero. It is easy to check that
J(f) is the unit circle and that f/J(f) is an expanding endomorphism, i.e..
lim |(f™(2)v|= 4+ for every ze J(f) and every 0 # v tangent to J([)

B4

at z. The equilibrium distribution in the unit circle is the Lebesgue measure
/. We shall show that p, is singular with respect to 4 By the theory of
expanding endomorphisms of manifolds, there exists an f-invariant ergodic
probability v on J(f) that is equivalent to / and such that dv/d/ is a
strictly positive continuous function. Since both v and pu, are ergodic,
they are either singular or equal. Suppose that v = yu, and set H = dp,/d-.
From property (d) it follows that:

| Hf(2)
m= | f (Z] | '—H'j'(‘-T
for a.e. z. Hince H is continuous, this property holds for every =. Therefore
| f'@2)|=m
for every fixed point z of f. It is not difficult to show that there exist values
of a,,...,a, such that this condition is not satisfied. Then, for these

values the probabilities 11, and v cannot coincide. Hence, they are singular
and p;, is singular with respect to the Lebesgue measure of the unit circle.

I. Proof of the Theorem

The proof of the Theorem will be based in the following definitions
and lemma. We say that a set y = C is an arc if it is homeomorphic to the
interval [0,1]. A set U cC is a topological disk if it is homeomorphic
to the disk D={z| |z|<1].

Definition 1. We say that a set U < C is (N, e)-adapted if for all n = N
there exist topological disks S, i=1,...,f, and intergers 1 <k{” such
that:
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a) f"/S{" is a k{-to-1 map onto U,
b) diam (S{") < ¢
o

) Y A > (1 — ),
i1
d) lim (sup diam (8{")) = 0.

n—=+m f

Definition Il. We say that two points z,eT, = 1,2, are (N, ¢)-related
if for all n> N the roots 2™zy), i=1,....d" of the equation f"(z) = z,
and the roots z{"(z,), i= 1, ..., d" of the equation f*(z) = z, can be indexed
in such a way that: - '

d(2f"(z,), 2M(z,)) < ¢
for all 1<i<t,, where 1, satisfies
Ly 2 (1 — gam,

An important property that links these two definitions is that if z,
belongs to an (N, e)-adapted set Uyi=1,2 and U, n U, # &, then )
and z, are (N, 2¢)-related. The proof is immediate and we leave it to the
reader.

Fundamental Lemma. Given ¢ > 0, z¢ Exc(f) and an arc y containing z
and such that y — {z} doesn’t contain critical valyes of f" for all n = 1, there
exists an (N, e)-adapted set U = {7} for some N >1.

The proof of this Lemma will be given in the next section. Now let
us show some of its corollaries.

Corollary 1. Given a compact set K c:'ExC( JY and £>0, there exists
N=NI(K, &)= 0 such that any couple of points in K is (N, ¢)-related.

Proof. First, we shall prove that if zy and z, are in K, there exist N > 0
and an open set ¥ 5 {z,, z,) such that any couple of points in V is
(N, ¢/2)-related. For this, take arcs yi2{z),i=12 satisfying the hypo-
thesis of the Fundamental Lemma and Y1 Ny, # . Then there exist
(Ni, &/2)-adapted sets U, >y, i=1,2. Taking N = max (N, N,!, the
remark after Definition II concludes the proof of the property. Now
define N : K x K — Z" by the following property: N(zy, z;) is the mi-
nimum N > 0 such that there exist neighborhoods V; of z;, i= 1, 2, such
that every point in ¥, is (N(z,, z3), e)related to every point in V,. The
previous property shows that N is well defined. Moreover, it is obviously
upper semicontinuous. Then it is bounded. Let N > 0 be an upper bound.
Clearly, N satisfies the required property.
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Corollary IL. If K = Exc(f) is compact, for all £,>0 and every r'or.ui-
nuous function ¢ : C — R, there exists N= N(K,z,,0)>0 such that:

I ity — j' din(z3)
T

C

=r

for every z, and z, in K and n= N.

Proof. Take &> 0 such that:
esup | o(z)| <e,/2

: )= d(2")| <&, /2 Il d(Z, 2") <& Take N = NlK., £) gi?fen by
gﬁn%if‘y}]‘ I?,L D_E[N-, b;‘ the definition of (N, s)»—related p?mts, "gwe_n 2
and z, in K, we can arrange the roots zﬁ"‘[zl‘i, =1y d" of:f (z)‘; Z15
and the roots z\"(z,), i=1, ..., d"of fz)=z,,insuch a way" that d(“?' (zi)
2"z < & for i=1,...,s,, where s, satisfies s, > (1 —¢)d". Then:

. db‘
J Pdpfz)) — f Pz | < 5 & | BN — Blafla) | <
T (o

—dt S

Sn d" — Sy 2
s% 21 | 6(20) — $la(z) | + = sgplfﬁwl <

=L
=

m

) 2 772

|

r '
L s, + esup | d(z) | ££1-+F-SUP|¢(2)| < -k =

Corollary 1IL. Given a compact set K = Exe(f ), &, >0 and a continuous
function ¢ : T — R, there exists N >0 such that:

I ddulay - '[ ()
T C

C

=g

Jor every ze K and m=n2N.

Proof. Set K= |J f ™K) and take N = N(K, ¢, e,) given by Corollary I1.
nz0 :
Using the notation of the introduction, we can write for all m>n and

zel:

d!

j Hedp(e) = j budit(9(2)
€ y €

ix

=1

where k =m —n. Then, if ze K,

1 i
j pdp,(z) — .[ Pdum(z) | < & _Z
E € =1

.[ $dp(z) —J pdp,(z(2))
T T

£ j
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But !¢ K for all n 2 0. Hence, if n > N, the last term above is
bounded by d~"d",) = ¢, by Corollary IL

Now we are ready to prove the theorem. By Corollary III, if
2€ Exc(f, the sequence {i,(z)|n >0} converges, in the topology of .#,
to a probability u (z). Moreover, also by Corollary III, this convergence
is uniform on compact sets of Exc(f). By Corollary II, the probability
#s(z) is independent of z. Denote it u,. Moreover, My is invariant because
for every continuous ¢ : C — R, taking any ae Exc(f )

an
f (bo f)du, = lim -d'—,, 2, Hf(=Ma) =
n- F o i=1

C

dl‘i" I
i o I o= [ o
b= il

This completes the proof of the existence of an J-mvariant probability
1y satisfying (a). Now let us prove property (b). Take ae J(f). Then the
support of u,(a) is contained in J(f) for all n> 1. Then the support of
Wy is contained in J(f). Conversely, if peJ(f), we shall prove that it
belongs to the support of Hy. Take a point g in the support of i . Since
p and g are not exceptional points (because they belong to J(f)). there
exist a sequence p, — p and a sequence of integers m, — + o such that
f™(py) = q. Since the support is closed, it is sufficient to show that p,
belongs to the support of #y for all n. Given any neighborhood V of Pus
we take a neighborhood U of p, such that U < V. uy(eU) = 0 and also
HeAO(f™U)) = 0. Moreover, J™{UY) is an open set containing ¢. Since
the boundaries of U and f™(U) have measure Zero, we can write:

O hlt= lim wakU)= lim o (e U] o) = o

@ wA™UN= lm ok UN= lim L fze U Sl =a)
J= 4+ =+ @i

where ¢ is any point in Exc(f ) that is not a critical value of any f/ (in

order to grant that every root of f(z)=a is simple). Moreover:

(3] /3 {ZE U ' f.f(z} = a} > # {Z Efm"(U)I fj_m"{ZJ' _ a}.

From (1), (2)and (3)it follows that pAU) = d™u (f™(U)). But uAS™(U) >0
because /™ (U) is a neighborhood of ¢ that is in the support of uy. Hence,
u(U)>0 and then V) = uU) > 0.

To prove (), we shall show that if @ denotes the Borel o-algebra

of J(f), then ﬂ J "' Q) contains only sets of measure 0 or 1. Suppose
nzo
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that Se () f~"(¥) and p/(S)>0. We have to prove that u(S)=I. Take
nz0

0 < &< pyS)/2, Take N>0, m> 0 such that there exists a family
#={P,,....P,) of disjoint (N, ¢/2)-adapted sets such that:

TR U P))=0.

i i ition i he fact that a topological
tence of this partition is based on t
E;z i);l:tained in an (N, e/2)-adapted set is also an (N, eﬁ)-adapeld.sei:
Then to every point z in J(f), by the Fundamental Lemma and the prev’iou-b
remark, we can associate an integer N(z) and a disk B(z) cem‘e-r_ecli at _;
with u{@B(z))=0, that is (N(z),2/2)-adapted. Take Zi El.lf(f },a;_a;..sgts
such that J(f)c UB{:,-] and set N:ma{ax N(z,). Finally, take

P.. all the intersections of sets B(z;) or Bf(z;) that have measure # 0.

Denote P™ k" j=1,..., ¢(n, i) the sets and integers associated to P

gy g

by Definition I. We shall need two lemmas:

Lemma I. Let V = T be an open set with u, (V) =0 such that r:‘ere
exist open sets V,, ..., Vysuch that for all 1 <i<d, f/Visa homeomorphism
of V, onto V. Then

d#f(f _I(-A} nV) = Ju,r(A]

for every Borel set AcV and all 1 <i<d.

Proof. First we shall prove the lemma when A is open and u(cA)=0.
By the hypothesis u,(@4)=0, we can calculate p,(A4) by:

= I - ALY — ]
(1) uAA) = tim Haa)A) = lim — 7 {z€ 4 | £7(2) = a

i i at is iti lue of " for all n = 1.
here @ is any point that is not a crltlcal_ va )
;;?FA}:U, then w0~ (A) N V) < udf ~ (@A) = ps@4)=0. Hence,

\= lim : A ARl
@ udfTNAn V)= lim G # {z€ ] A V| ["(2) = a)

By the relation f(f~*(4)~ V)=A and the injectivity of f/V,,

1 e
B) #lzef NV A =a] =—# (zed| 1A =4

Then, (1), (2) and (3) prove the lemma in this case. If 4 = V' is any Borel

set, we can write it as A =( [} 4,)u 4 where 4, 2 4, = ... Is a sequence
nz0

of open sets with p(@4,)=0 for all i and py(A,)=0. Then:
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=3 5
HAS AN V) = Tim w1 =) 0 VD) = udf~4,) V) =

n—= +x
n—=+ o

— K =1 e 1
m A f (A,.)ﬁVf%F lim p;{A,.)z?ﬂ;(A}.

Corollary. u/(f(4)) < dpd(A) for every Borel ser A.
Proof. Take a family ¥, 2 V2, ... of disjoint topological disks satisfying:
a) f/V,is a homeomorphism onto S (V).

b) p,{{({) V))=0 and u{0f(V))=0 for all i

¢) f(¥) doesn’t contain critical values of /, for all i. Then,
HAS () = #f(f{(t!J(A n V;))U(UA nev)) <
< ZI:#JU(A W)+ ;#ﬂf(fi Nan)) ; Z_#f(f[A AV +
+ ZuAl 030 = Sl o 1)
But by (a) and (c), we can apply Lemma I to obtain:
BAT(A N V) = dudd n V).

Hence, by (b):

Lemma I1. If A .is a Borel set contained in a ser P{" n> N:
BAA) = K" d ™" py (£7(A)).

Proof. Take a topological disk V = i
ke O P with p(V)=0, u(P\V)=0
:g:_colntammg cnnga] values of /", To obtain V. it is enojugl‘l toj Jjain atr::
m::;:zrevalugs Ef f"in .Pi to its boundary with disjoint arcs having zero
T ;;E l* :: defimnﬁ V‘as the complement in P; of theses curves.
e t_:k (f,,, b( Vyn P, S{nce there are no critical values of finV
o lsk'"’l' j branches of f “" on ¥, je, analytic functions ¢, : V — W
i , 1:' s s..uch‘ that ¢(f(z)) =z for all ze W and ¢, (w)# ¢ (w) fo;-
WeV 1 <i<j<k{™ It is clear that: ’

(1) SN (V) =2, 1 <i<j<kp, |
@ V)=V, i=1,.. k"

(3) I"1dV) is injective, i = 1, s ki,

54 Uein =w
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By properties (1)(4), we can apply Lemma I to obtain:
(5) A G(V) = d "pudf(A) V).
By (1), (4)'and (5):

\
b

\\

A W)= YA V) = KA B V) = R d (A,

But pfA4 n W)= u(A) because:
uAA) = pdA W) < pdPPNW) < udf “(PAV)) = udP\V)=0.

Now set U, = ] P". By Lemma II:
i‘j

HAU,) = E AP = d™" Lk udPi) =
Ll L

&

= dﬂz(;d&?f,)uﬁp,} > d-"(l - %)ﬂmz‘,#,r(Pi) =1-=

i

For each n> N, the sets P J(f), i=1,....,4, j=1,....€(n, i) are a
partition of U n J(f). This partition can be extended to a partition P,
of J(f) in such a way that:

lim (sup diam(P)) = 0.

Attt e,

This property and standard derivation theorems imply that if 2,(x) denotes
the atom of 2, containing x, then the sequence of functions F,: J(f)—R
defined by:
Fu0)= tim £80Zdx)
n= -+ oo p}{'@n(x))

converges in measure to the characteristic function fy of S. From this
property, we shall prove the following claim: if we take Borel sets 4,,
n = 1, such that f ~"(4,) = S, there exists an atom P; and a sequence
n;— + o such that p(P\A,)— 0 when j— +co. This implies that
ugS) =1 because there exists n > 0 such that f"(P;) = J(f), and by
the corollary of Lemma I:

lim Py Ag)) = lim (P = [P =
- il 2
=1- jliin udf P\ = 1 — 4 im uP\A,,) = 1.

But:
[P A,) e fUP) fY(A,) = [YAy) = Apjin-
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Then J_lim Hy(Ap44) =1 and:

HAS) = S = (A4 ) = (A, 00,

He = ¢ i
nee, (4(S)=1. To prove the claim observe that the convergence in

measure of the sequence F, to fs impli
" s implies that for every k > 0 there exist
ny such that the set of points x satisfying: 4 e’“313

(6) HgS 2,.(x))
HAZ (X))

1

Tk

— Js(x)

has measure > 1 — (¢/2). Then this set intersects S A U, because
UAS A Up) = g8 0 US)) > ((1 — 2 i) oy |
2 2
Let x, be a point in the intersecti ince i
on. Since it bel 4
P lx,) = P{™ for some i and j. By (6): Ut ' e
™ BSOFD S, 1
me(PYF) T k-

Bjr Lemma II:
®) Ak 1 (1™(S 0 PEYY = uylS  Pi)
©9) A7k u S ™PY = pu(P).

But f™(P{") = P;. Hence, (7), (8) and (9) imply:
(=L S BASOPIY) _ uds™S o Py
k Hy(P{™) uy(P;)
o BAS™S) N f™P™)
e Py) a
== Ju-f(’an n Pa]
.Iu'f(Pt)

Hénce:
LP\A,,) = udP;) — H_:'(P;ﬁ A,) <
1 5
<z udP) < o 1AP;)

thus completing the proof of the claim.
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To prove (d) take a family (U500 Uy of topological disks not
containing critical values of f and such that:

(1) : pA(L) U))=0.
i=1

‘Thcn for every 1 <i < m, there exist d branches gj“ =U;— f.j: Vosssad

of f"\U,. Set UY" = g{"(U;). From (1) it follows that:

]

o al(f )

Suppose A < C is a Borel set such that f/4 is injective. It follows from
the injectivity of f/A that the sets f(4 N UPyl<sism1<jsd are
disjoint. This property together with (1), (2) and Lemma 1 yield

i F A = 1 (A0 U =y (L flAn U =
i it 2

=Y uf(An UM =dY plAdn U=
I"J \‘-j

= d A o (J U = dpA)
iJ

To prove that y is the unique f-invariant probability satisfying (d),
consider another f-invariant probability y satisfying (d). We shall prove
that yt << p,. Then the ergodicity of u, implies p = p;. To show p << .
we have to find for every ¢ >0, a 6 > 0 such that if K = J(f) is a
compact set whith i (K) < 8, then u(K) < e Given #> 0 take N > 0
such that there exists a family 2 = {P,,..., P} of (N, ¢/2)-adapted sets
such that

UL Piy) =0
u(l) Py =0.
i

This family is constructed as the family used in the proof of (¢). Take
0 > 0 satisfying:
P,

(1 _“_(J]_ < £

uAP) 4

for every | < i < r. As in the proof of (c), denote P and k" j= 1...,
¢ (n. i) the sets and integers associated to P, by Definition I. By Lemma 11,
we have:

) p AP = k" d™"u(P).
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Since in the proof of Lemma II the only property of u, used is precisely
(d), we can apply Lemma II to u instead of - Hence:

(3) UPE) = k" d~"u(P,).
From (3) and part (c) of Definition I, we obtain:

k(U PE) = d WP T 2 a7 (1 = g) &=

= (1 = —;‘) H(P;).

The same argument, replacing (3) by (2), shows that:

ML}J P 2 (1 - —g—) uyAP,).

Then

(4) ul Py >1- £,
i j 2

) uAU P > 1 - g.
iJ

uK o () Py < <
iJ 2

It remains to prove:

(6) WK o (U PE) < -
Set 4
Lo={iJ)| Py K # &)
K= U{P] G j)e &,

Since the diameters
of the atoms of P{") converge to zero uniformely

in (i, i .
- ;:, J) (by part (d) of Definition I) and by the compactness of K, it follows

Jim pf(K,) = k),

(7 ;
n!-uf-lm #(K") - #(K)
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Then u,(K,) <24 if n is large. It follows that:
202 udK,) = Y uAPT).

(i, j)e #p

By (2) and (3):

22 3 pPO)= X £APD ) pae.

(1, )€ #n (. J)E Sn H(P;)
Hence:
- P-(P;]
288up ——— 2 Py = u(K,).
( I_P 1P U‘E,y"#( ") = ul
By (1)
: u(P;)
— = 20sup ——— = ulK,).
IP AP) H

Then. by (7), p(K) < &/2.
To prove (c), take a family 2 = {P,, ..., P, of disjoint topological
disks such that f/P; is injective for all 1 <i <r and p) P = 0.
i

Denote 2, =\/ ["(?) and let Z,(x) be the atom of 2, containing x.
j=0

Observe that f"/#,(x) is injective for all n > 1. In fact, this property

holds for n = 0 and if it is true for n = m then

[ YP s 1(X) = ([P s 100) o (f /Pl ] (X))

But f/2,,.,(x) is injective because 2, (x) = P(x) and ["/P,([(x)) is
injective by the induction hypothesis. Now we shall prove that:

1
(10) lim sup(— = log ;t_,{?,,{x)}) > logd

n— o

for pu, —ae. x. We have: f"(2,(x)) = Z(f"(x)). Then
RAS NP ox)) € AP XD,
By (d) and by the injective of f"/2,(x):
UAP () = d™"u A f(Pox)) < d7"p AP,
Then:

I -
- —’11- log u2,(x)) = logd — ?log pAP (X))
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From this (10) follows. But (10) implies that

h, (f) = log d.

On the other hand, Gromov proved in [3 _
hu,[f} < log d. P mn [ ] that hlup{ﬂ = log d. Then

II. Proof of the Fundamental Lemma

If weC and ne Z*, denote m,(w) the multiplici
_ n Z”, s plieity of w as root of
the equation f"(z)= f"(w). Set m,(z)=max {m (w)|wef "z)!. We shall
need the following lemma: ' j

Lemma. For every z ¢ Exc(f) there exist N, > 0
: and 1 <d, < d .
that m,(z) < dby for all n > N,. l ’ %

Proof. Define %(z) as the set of functions 0 : Z* — T such that 0(0) = 2
and f(0 + 1)) = 6() for all j > 0, Define @,(z) as the set of ¢ B(z)
§ur§h that 6()) is a critical value of f only for a finite set of values of . The:l
it is easy to see that 98(z) # %,(z) if and only if z belongs to the orbit
of a periodic critical point, and that in this case, there is only one element
Y€ B(2)\B,(2) that is periodic ie., for some 1, satisfies y(t + j) = y(j) for

all j > 0. Now define
n(z) = {0(n) | O € B(2)},
ad(z) = {B(n)| e By(2)!.

From the fact that f has only finitely many critical points it follows that

there exists N, > 0 such that 6(n) is f .
not a critical point
n=N,, 0€®z). Hence point of f for all

ﬁl(""‘) =1
for all weog(2) and n = N,. Then, if wead(z) with n > N,, we obtain
aal n=1 & . Nz—1
o0 =TI A= ] mylsion) 2 @
= j=0

If %(z) = %(z), this concludes the proof because
m,(z) = max {7, (w) | w e 2,(z)} = max {#,(w)| we al(2)) < a2
foralln> N,. If B,(z) # %(z) and if y is the unique element in %B(z)\%@,(z):

m,(z) = max {m,(w) | weay(z)} < max {d™, ?ﬁ‘"(y(n]];,
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Therefore the problem is reduced to show that there exist G > 0 and
| <d, <d such that m,(y(n) < Gdj, for large values of n. But if
n=ki +r keZ*, reZ*, 0 <r <1, we have, using the periodicity of
7. that

n—1 r =1 k
) = [ Aupln = M =TT Mioin - j)}(ﬂ r?n{?(in)-
=0 i=0 J=0
Set: p
== T
& = (_n ml(wn) .
j=0
Then:

M) < d" df < d'df.

for every n > t. This reduces our problem to prove that d, < d. But since
every factor in the definition of d, is < d, it is sufficient to show that we
cannot have #,(y())=d for all 0 <j<r. But m((j)) =d for all 0<j<t
implies that f ~'(n) = =, where n is the periodic orbic = {pO), ..., 5t —1)).
Then f~'(n°) c n. Therefore () f"(UNnm= @ for every subset U
nz0
of 7. But it is clear that = nJ(f) = ¢J. Hence, we can take U as an
open set intersecting J(/). Then. as we explained in the introduction,
|J f"(U) > Exc(f). This, together with (U fMunnn=g yields

nz0 nz0
n < Exc(f), contradicting the assumption z ¢ Exc(f).

Now let us prove the Fundamental Lemma. Take N, so large that
the sequence nd ", n = 1, is decreasing for n > N, and My (20N od ™™ < &/2.
Such N, exists by the previous Lemma. Then

(*) my,(2)nd ™" < %

for every n = N,. Assume that N, is large enough to satisfy
d? &

*k 44~ No i1}

() dmy (2)d o < 5

Set m = my, (). Since the only critical value of f Mo contained in y
can be z. it follows that the connected components p, ... 7% of f ~™(y)
are either arcs or a union of arcs with a unique point of intersection.
Therefore, each p, is simply connected. We can then take a topological
disk U, =7, so thin that there exist disjoint topological disks V; =7,
i=1,....r such that

V) = U,
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and fY/V;: V,— U, is a kqto-1 map for all 1 <i <r. Now set:
ey, =0
Ensy = &y + dmd ™"
for n = Ny. Observe that, by (**):
€y < By, + 4md? i d™7 = 4md=M & =k
r0 d—172
We claim that for every n > No, [ ~"(Uy) contains a union of disjoint

topological disks W™, i = 1, . f,,, such that, for all i, (W)=, and
SUIIWR W S Uy s a A“"-to-l map, where | <ki"<m, 1 <i<¢,

are integers satisfying
. 1
Y kP> (] — —e:")d".
=]

[‘]carly, the property is true for n= N, just taking W™ = V,i=1
") = k, because

,._....",
Z kii'_Nn] = Z k‘ = 4"

The proof of the claim will now be completed by induction. Suppose
sonstructed W™, k{", 1 <i < { Let H be the set of integers 1 between

| and f such that W' doesn’t contain critical values of f. For every
€ H there exist disjoint topological disks D 1 <j<d, such that i

naps Df homeomorphically onto W™, Define as W"* ") j=1. ... { .
he sets D"’ teH, 1 <j<d,and, if W“” = DY, set k" 1)'= k‘“’ Tl:er?

n.

ngui-n de"m_‘del"] dzf(';’”z

_ i=1 ieH i¢H
En o .
>d Z k" —d(f, — # Hm > (I = —%sn)d“” - d(? — # Hm.

3ut f — # H is bounded by the number of critical values of f, that is
'd — 2. Hence: .

Z “'z( ")d"“ ~ 2Pm =

- (l - 7(8,, + 4d2md“"”‘)) "t =

= (] — —é—ﬁn+|)d"+].
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This completes the proof of the claim. The next step is to restrict, for
each n, the family W™, 1 <i < {,, to those values of i that satisfy:

Jowm) <~

=

‘where A denotes the Lebesgue measure.

Suppose that those values of i are 1,...,{,. Then:
En g -
Y k= Y kM — (£, — €,)m.
i=1 i=1
To bound (f, — ? ), observe that

124U Wiy > (f, —()—

i=fy

Then:
() | | -
(1) ikﬁ-"’z(l —?f)d"—nm—(l —?{€+2mnd "i)d".

By (*). the factor of d" is bounded by (1 — #). Finally, to complete
the proof of the Lemma, we shall prove that for any topological disk U
whose closure is contained in U,, we have:
(2) lim (sup diam (f ~"(U) n wimy) = 0.
n=+a i
If this property is true, the lemma is proved taking U containing y and
with closure contained in U,. Then we define:

S = f (U W,

By (2), there exists N = Ng such that property (b) of Definition 1 is
satisfied. Property (d) also follows from (2). Finally, f"/S{" is a k{"-to-1
map onto L, and from (1) and (*¥) it follows that the integers k" satisfy
property (c). It remains to prove (2). By the way the sets W™ were
constructed, we know that f" " /W™ is a conformal representation
onto some ¥,. Let ¢{" : ¥, — W be its inverse. Set D, = {z| |z| <r|.
Lel 2;: Dy = V; be a Lonformai representation. Define w‘"’ D, - w™"
as Y = ¢\"«,. Instead of (2), we shall prove
(3) lim {sup diam y{"(D,)) =

B 0 §

for all 0 < r < 1, This implies (2) because Y{"™(D,) > [~ M(U)~ W™
for all n > N, il r is near enough to 1. To prove (3), recall that the Dis-
tortion Theorem for univalent functions states that for all 0 < r < |
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there exists K(r) such that every univalent function ¢ : D; — C satisfies
| ¢'(a)/¢'(b)| < K(r) for all a and b in D,. In particular, if A(- ) denotes

Lebesgue measure, A(¢(D,)) = K(r)™"' | ¢'(a) |*A(D,), for all ae D,. In our
case:

% = A‘{mh’l’] = A.(djsﬂ)(Dr)} > k(r]—lj—(Dr} | (lll&n‘]'(_‘{] ‘2
for all 0 < r < 1, zeD,. Then:
lim (sup [W")()]) =0

for all 0 < r < 1, and this obviously implies (3).
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On the derivation algebra of zygotic algebras for
polyploidy with multiple alleles

R. Costa

1. Introduction

The terminology and notations of this paper are those of [1] of
which this one is a natural continuation. In that one, we have calculated
the derivation algebra of G(n + 1,2m), the gametic algebra of a 2m-ploid
and n + 1-allelic population. In particular, it was shown that the dimension
of this derivation algebra depends only on n. The integer m is related to
the nilpotence degree of certain nilpotent derivations of a basis ([1],
th. 3 and 4), as it is easily seen.

The problem now is the determination of the derivations of Z(n+ 1.2m),
the zygotic algebra of the same 2m-ploid and n+ l-allelic population.
As Z(n + 1,2m) is the commutative duplicate for G(n + 1,2m) ([10], Ch. 6C),
the first idea to obtain derivations in Z(n+ 1,2m) is to try to duplicate
derivations of G(n + 1,.2m). We recall briefly that given a genetic algebra A
with a canonical basis Cy,C,,..., C, then the set of symbols C;*C;
(0 <i<j<n)is a basis of the duplicate A*4 of 4 ([10], Ch. 6C). In par-
ticular if dim A =n+ 1 then dim (A*A]:lﬂi-ljzllﬂ. The multiplica-
tion in 4*A4 is given by

(CHFCH(C*Ce) = (CCHHCCe)

where C,C; (resp. C,C,) is the product, in 4, of C;and C(resp. Cyand Cy).
An intrinsic construction of 4*4 is the following: take the tensor product
vector space A ® A and define a multiplication by (¢ ® ble®@d)=
= (ab) ® (cd). Then let J be the two-sided ideal generated by the elements
a®@b—b®a, abe A and take A*4=(4 @ A)/J ([10].

Lemma 1. Let &:A4— A be a derivation. There exists one and only one
derivation 8: A¥A — A*A such that 8'(a*b) = d(a)*h + a*5(b) for all a, b in A.

Recebido em 24/6/83.



