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Abstract

We introduce a general IFS Bayesian method for getting posterior
probabilities from prior probabilities, and also a generalized Bayes’
rule, which will contemplate a dynamical, as well as a non-dynamical
setting. Given a loss function l, we detail the prior and posterior items,
their consequences and exhibit several examples. Taking Θ as the set
of parameters and Y as the set of data (which usually provides random
samples), a general IFS is a measurable map τ : Θ×Y → Y , which can
be interpreted as a family of maps τθ : Y → Y, θ ∈ Θ. The main inspi-
ration for the results we will get here comes from a paper by Zellner
(with no dynamics), where Bayes’ rule is related to a principle of min-
imization of information. We will show that our IFS Bayesian method
which produces posterior probabilities (which are associated to holo-
nomic probabilities) is related to the optimal solution of a variational
principle, somehow corresponding to the pressure in Thermodynamic
Formalism, and also to the principle of minimization of information
in Information Theory. Among other results, we present the prior dy-
namical elements and we derive the corresponding posterior elements
via the Ruelle operator of Thermodynamic Formalism; getting in this
way a form of dynamical Bayes’ rule.

1 Introduction

As far as we know, no previous work described the existence of a connection
between Bayes’ rule in probability theory and the Ruelle Operator in ergodic
theory. This is one of the main goals in the present work. It is also important
to remark that the generalized IFS Bayesian method as introduced in section
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3 (see definition 20) is so broad that it encompasses the classical Bayes’ rule
as well as the dynamical case (obtained via the use of the Ruelle operator).
This assertion is evidenced by several examples (see examples 22, 23, 27 and
29). Furthermore, in section 5 we present a variational principle and exhibit
its connections with the generalized IFS Bayesian method as introduced in
section 3 (see Theorem 30). We exhibit examples which prove that Theo-
rem 30 provides also a connection between the main result present in [11]
(see example 31) and a well known result in ergodic theory concerning the
variational principle of pressure and the Ruelle Operator (see example 32).
Holonomic probabilities for IFS played an important role in our reasoning.

We initially suppose that Θ and Y are measurable spaces. In the Bayesian
setting one is interested in probabilities (prior and posterior) and minimiza-
tion problems which are in some way related to a loss function l : Θ×Y → R.
In its simplest formulation, by considering finite sets, Bayes’ rule is obtained
as follows. Suppose we have a joint probability distribution of the variables
θ ∈ Θ, y ∈ Y and the individual probabilities of θ and y. We are interested
in a convenient expression for the probability of θ conditioned on y. In this
direction, we recall that the conditional probability of θ given y is

P (θ|y) =
P (θ, y)

p(y)
. (1)

On the other hand, the conditional probability of y given θ is

P (y|θ) =
P (θ, y)

p(θ)
. (2)

From equations (1) and (2), the conditional probability of θ, given y, can be
written as:

P (θ|y) =
P (y|θ) p(θ)

p(y)
, (3)

which is known as Bayes’ rule.
This expression is quite useful in a large number of applications. In the

Bayesian point of view, p(θ) is the prior probability of θ, and for any given
new information (a sample y) it is updated by a new probability P (θ|y),
which is called the posterior probability of θ, given y.

One way to describe the difference between the Bayesian point of view
and that of classical statistics (also called frequentist) is that in the former
the probability is random and the sample is fixed, and in the latter, the
probability is fixed and the sample is random.

The frequentist point of view of probability relies on the average of possi-
ble samples. Against this point of view, it is necessary to say that, in applied
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problems, sometimes you don’t have access to a large number of samples in
order to estimate the mean value of an observable.

From the Bayesian point of view it is more appropriate to think of a
probability as a measure of a prior belief. Bayesian inference relies on a
given observed sample and not on the result of averaging over the sample
space.

The reader may eventually get confused because we will talk about ergodic
and dynamic issues - which somehow have a frequentist character - within a
setting that in principle would be Bayesian. But this is quite natural, as we
shall see, in our general framework.

Quoting [1], page 128:

“Although the two approaches are conceptually different, they are
nevertheless not “complete strangers” to each other and may benefit from

cooperation. Frequentist analysis of Bayesian procedures can be very useful
for better understanding and validating their results. Similarly, Bayesian
interpretation of a frequentist procedure is often helpful in providing the

intuition behind it.”

In Section 3 we will present a general IFS Bayesian method associated
with a given loss function l. With this purpose we consider a more general
setting using iterated function systems (IFS) and holonomic probabilities
(see Definition 15 or [8], [7]), which in some sense will play the role of the
posterior probability.

A general IFS is a measurable map τ : Θ× Y → Y . Usually we interpret
τ as a family of maps τθ : Y → Y, θ ∈ Θ, indexed by θ ∈ Θ. The classical
Bayesian point of view can also be considered as a particular case of this
setting. Alternatively, as a particular - and a dynamical - example of IFS one
can consider the inverse branches of the shift map σ acting on the symbolic
space Y = {1, 2, .., d}N. With this purpose, it is natural to consider Θ =
{1, 2, ..., d}, and the IFS τ , where τθ : Y → Y satisfies τθ(y1, y2, .., yn, ...) =
(θ, y1, y2, ..., yn, ...).

From another point of view, in [11], relations were exhibited between an
optimal information processing rule and the posterior Bayes probability. In
section 5 we extend to IFS and holonomic probabilities the main result in [11].
The results in [11] are not of a dynamical nature but can be considered as a
particular case of our reasoning as explained in Example 31. This extension
allows us to emphasize the relationship between the optimal information
processing rule and the posterior probability, described in [11], with the vari-
ational principle of pressure and equilibrium measures in Thermodynamic
Formalism (see Example 27).
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Our main results concern the description of the IFS Bayesian method,
in Section 3, and its connection with a variational principle, which will be
presented in Section 5. Such a connection could be seen, in some sense, as
similar to the relation of the results for the Ruelle operator (about eigenfunc-
tions and eigenprobabilities) and the variational principle of pressure, which
is a major result in Thermodynamic Formalism. For related results see [9]
and [5].

Initially, in section 2 we will consider Bayes’ rule in the measurable setting
with more comments and examples concerning the Bayesian method. In
section 3 we present the IFS Bayesian method with examples, which explain
why our version of Bayes’ rule includes the usual one, as presented in section
2. At the end of section 3 we discuss an example - illustrating our reasoning
- which is related to Markov chains. In section 4 we present examples of a
dynamical nature regarding compact spaces and contractive IFS. In section
5 we present a variational principle and its relation with the generalized IFS
Bayesian method, given in Theorem 30.

2 Bayes’ rule in the measurable setting

In this section, we propose to present briefly the rule of Bayes in the measur-
able setting using a notation that is compatible (as much as possible) with
the one in [11].

Let us fix a probability dθ on Θ and a measure (which can also be a prob-
ability) dy on Y , where Θ and Y are measurable spaces. We fix a prior prob-
ability density function πa : Θ→ (0,+∞), that is, we assume

∫
πa(θ) dθ = 1,

and also a measurable, bounded and positive function f(y, θ) = f(y|θ).
From the Bayesian point of view it is natural to assume, for each param-

eter θ ∈ Θ, that y → fθ(y) = f(y|θ) is a probability density function on Y ,
that is, it satisfies ∫

f(y, θ)dy = 1, ∀θ ∈ Θ. (4)

It is also natural to assume that the map θ → fθ is an injective map.
As an example, consider an observer which has uncertainty (or lack of

knowledge) about the probability that models a certain random problem,
but, for some reason, believes that the family fθ(y)dy is a relevant class to
consider. Moreover, the observer also has faith that some parameters θ are
more suitable than others for the modeling, and then, the prior probability
πa(θ)dθ in Θ will describe such a conviction.

The Bayesian point of view contemplates the modeling of a random source
that produces random samples y, but there exists uncertainty about which
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probability produces the data sample. This can be expressed in the following
way: each fθ(y)dy determines a randomness in y, but as there exists also
uncertainty in θ, which in the initial belief on the observer is described by
πa(θ)dθ, it is necessary to consider a mean of this randomness for y which is
described by the probability density function

p(y) =

∫
fθ(y) πa(θ)dθ. (5)

In some cases, the prior probability is information that the observer has at
his disposal and is not the result of subjectivity.

For each fixed y ∈ Y , the function θ → f(y, θ), is usually called the
likelihood function. In order to align with the notation of [11], we can use
the notation l(θ|y) = f(y|θ) to stress the dependence on θ (given y).

Given the above prior elements, we can exhibit in a natural way an as-
sociated probability on Θ × Y . Let π be the probability on Θ × Y defined
by

dπ := f(y|θ)dy πa(θ)dθ = fθ(y)dy πa(θ)dθ, (6)

that is, for any measurable and finite function g : Θ× Y → R,∫
g(θ, y)dπ(θ, y) =

∫∫
g(θ, y)f(y|θ)dy πa(θ)dθ.

Denote dν := πa(θ)dθ. It is easy to show that the θ−marginal of π is ν. Fur-
thermore, looking for the definition of π we get that f(y|θ)dy is a probability
kernel and the right-hand side of equation

dπ = [f(y|θ)dy]dν(θ)

is a disintegration of π.
The random choice of y according to the family of probabilities fθ(y)dy

is known in Statistics as the sampling procedure. Each possible y is a la-
tent sample. A classical strategy in Bayesian inference is the procedure of
updating a prior belief distribution πa on Θ to a posterior distribution πp on
Θ, when the parameter of interest is connected to observations (taken from
random samples y ∈ Y ), via the likelihood function. All this is in some way
related to Bayes’ rule.

In order to get Bayes’ rule it is natural to consider a disintegration of π
in the opposite order of variables. By integrating functions of variable y we
get that the y−marginal of π is given by dµ := p(y)dy, where

p(y) =

∫
f(y|θ)πa(θ)dθ. (7)
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Finally, in order to complete the disintegration of π, we need to find a prob-
ability kernel k such that dπ = k(θ|y)p(y)dy. With this purpose, just return
to the definition of π in order to get

k(θ|y) =
f(y|θ)πa(θ)

p(y)
dθ. (8)

It is clear that for each given y0 ∈ Y , the probability k(θ|y0) is absolutely
continuous with respect to dθ. The associated probability density function
is given by

πp(θ|y0) :=
f(y0|θ)πa(θ)

p(y0)
, (9)

which will be called the posterior probability density function on θ associated
with the observed sample y0. In this way πa(θ)dθ is the prior probability on Θ
while πp(θ|y0)dθ is the posterior probability on Θ, given the observed sample
y0.

The formula

πp(θ|y) =
f(y|θ)πa(θ)

p(y)
(10)

(which is constructed from a change of order of variables in the disintegration)
corresponds to Bayes’ rule in the measurable setting.

In the Bayesian method, πa(θ) describes the initial (prior) randomness of
the probabilities indexed by θ, then, given the observed sample y0, we update
the randomness of the probabilities indexed by θ ∈ Θ, via the posterior
πp(θ|y0).

Finally, returning to the computations, we observe that from the disinte-
gration of π,

[f(y|θ)dy]πa(θ)dθ = dπ = [πp(θ|y)dθ]p(y)dy (11)

we get a map from the prior to the posterior via Bayes’ rule, which can be
illustrated by the following diagram (see also figure 1 in [11]):

f(y|θ)
πa(θ)

−→ πp(θ|y)
p(y)

.

Remark 1. From a theoretical point of view, even in the case where f(y|θ) =
fθ(y) is not a family of probability density functions on Y , we get that, for
each fixed point y0 ∈ Y , the function θ → πp(θ|y0), defined from (9) is a
probability density function on Θ. It could be called the posterior probability
density function defined by the prior probability density function πa and the
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point y0 ∈ Y . An important issue when analyzing equation (9) is that for-
mally for each fixed point y0 ∈ Y , usually, the function θ → f(y0|θ) is not
a probability density function on Θ. So, we can interpret that (9) exhibits a
normalization of f in order to get a new function πp which is a probability
density function on Θ.

Finally, we observe that, in order to assume that f(y|θ) is a probability
density function on Y for each θ, it is also necessary to fix (or to choose) a
measure dy on Y (see (4)). Such a dy is not used in (9).

The idea behind this procedure is as follows: we are not sure, a priori
(in θ), about which density fθ is responsible for the generation of the sample
y. This uncertainty is described by the prior πa on θ (this choice of πa may
be subjective, or not, and sometimes results from the previous intuition of
the observer). In some examples taken from Physics, the description of this
uncertainty on θ is a consequence of the nature of the physical problem.
There are two possible points of view that are popular for applications.

I. We assume that one particular probability associated with fθ0 , where θ0

is fixed among the θ ∈ Θ, is generating the sampling procedure. However, we
do not know which θ0 produces the randomness. Then, having obtained y0 by
sampling, we can ask (an inference) what would be the probability (indexed
θ) that more likely fits the data obtained from the sample y0. Given y0, the
maximum θ0 in θ of the likelihood θ → l(θ|y0), in some sense, indicates the
parameter θ0 which seems more likely to match the data (see the beginning
of Section 1.2 in [1]). As the sampling procedure of getting y0 is random,
this value alone θ0 does not deterministically determine the solution to the
problem; it is natural to ask about the probability in θ, of the fθ indexed by
θ, which best fit the data, given the sample y0. This will be described by πp
in (9). The main goal in this setting is to try to guess θ0 from the sample
y0. This type of point of view in a dynamical setting is considered in [5] (in
this case the sample y0 is obtained via a Birkhoff point where the probability
associated to fθ0 is assumed to be ergodic).

II. There exists uncertainty in the fθ that produces the sample y0, and
this uncertainty is described by the prior probability on θ given by πa(θ). The
prior probability πa (which for some reason the observer believes is natural
for modeling a certain real-life application) on θ ∈ Θ, has to be updated, from
the information given by the sample data y0 - which we get from the specific
applied problem under consideration - in order to get another probability πp,
which suits best the model under analysis (which will be described by (9)).
This kind of problem appears in Decision Theory where it is usual to consider
the case where the support of πa is the finite set {θ1, θ2}. As an example (to
be more elaborated in Example 3) one can consider a case where there exists
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a probability 1/3 that the sample y0 was obtained from fθ1 , and a probability
2/3 that the sample y0 was obtained from fθ2 (these are the conditions for a
simple Hypothesis test according to the Appendix in [2]). This point of view
in a dynamical setting was considered in Section 6 in [3] and also in [2].

Example 2. Let Θ = [0, 1] and for each θ ∈ [0, 1] we define the probability
pθ = (θ, 1 − θ) on {0, 1} (that is pθ(0) = θ and pθ(1) = 1 − θ) and the
corresponding independent Bernoulli probability (using the same notation) pθ
on Ω = {0, 1}N. Suppose that in a game, balls with numbers zero or one are
randomly picked following an unknown probability pθ0. Let Y = {0, 1}1000 =
{(y1, y2, ..., y1000)|yi ∈ {0, 1}}, that is, the set of sequences of zeros and ones
of length 1000.

For each θ ∈ Θ consider the function f(y|θ) = θ#0(1 − θ)#1 where
#0 and #1 denote the numbers of zeros and ones in the finite sequence
y = (y1, y2, y3, ..., y1000), respectively. We observe that f(y|θ) describes for
each fixed θ the probability of getting the sequence y after playing 1000 times
the game, following the probability pθ and supposing independence and iden-
tical distributions. As we mentioned above, the probability pθ0 is unknown.
Consider the uniform Lebesgue probability dθ on Θ = [0, 1]. Let θ → πa(θ) be
a probability density function and suppose that we have a prior belief that θ
belongs to any interval I with probability

∫
I
πa(θ)dθ. This is before the game

starts.
Now suppose that we just play the game 1000 times and observe the results

getting a sample ỹ = (y1, y2, ..., y1000). Suppose also that for this observed
sample we have #0 = 900 and #1 = 100. Such an observed sample can be
used to update our prior belief concerning θ. For this purpose, we can use
Bayes’ rule. The posterior belief is that now θ belongs to any interval I with
probability given by

∫
I
πp(θ|ỹ)dθ where

πp(θ|ỹ) =
f(ỹ|θ)πa(θ)∫
f(ỹ|θ)πa(θ) dθ

=
θ900(1− θ)100πa(θ)∫
θ900(1− θ)100πa(θ) dθ

.

Example 3. A random source is modeled in the following way: samples are
obtained in Y = {1, 2}, where the prior πa on θ ∈ Θ = {θ1, θ2}, is given by
πa(θ1) = 1/3 and πa(θ2) = 2/3.

y → f(y|θ) = fθ(y) are assumed to be independent probabilities on Y =
{1, 2}, for each θ, and they are given in the following way:

a) fθ1(1) = f(1|θ1) = 3/10 and fθ1(2) = f(2|θ1) = 7/10,
b) fθ2(1) = f(1|θ2) = 4/10 and fθ2(2) = f(2|θ2) = 6/10.
Then, by considering the prior πa to θ, the probabilities of 1 and 2 are

given by

p(1) = πa(θ1) 3/10 + πa(θ2) 4/10 = 1/3 3/10 + 2/3 4/10 = 11/30,
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and

p(2) = πa(θ1) 7/10 + πa(θ2) 6/10 = 1/3 7/10 + 2/3 6/10 = 19/30.

The probability p(y) satisfies

p(y) =
∑
θ

f(y|θ)πa(θ).

The value p(1) = 11/30 describes the probability of getting 1 as a sample
obtained from the source by considering the prior πa to θ.

Now we can ask about the posterior probability of θ, given y, which will be
denoted by πp(θ|y). Suppose, for example, we get y = 1 as a sample. In this
case, what is the posterior probability πp(θ2|1) that this sample was obtained
from θ2?

Bayes’ rule determines

πp(θ|y) =
f(y|θ) πa(θ)

p(y)
.

Then,

πp(θ1|1) =
3/10 1/3

11/30
= 3/11 and πp(θ2|1) = 8/11,

while

πp(θ1|2) =
7/10 1/3

19/30
= 7/19 and πp(θ2|1) = 12/19.

Once a sample y0 has been obtained, we can update the uncertainty on Θ,
given by πa(θ), by taking into account the new probability πp(θ|y0), as in (9).

3 Bayes’ rule and the IFS Bayesian method

In this section, we consider another point of view, which is associated with
a measurable IFS τ . We will present a general IFS Bayesian method
which will work in a dynamical setting as well as in a non-dynamical setting.
In this section, we consider that Θ and Y are just measurable spaces and
the IFS τ is measurable. This section is inspired by [8], which considers a
more particular case where Θ, Y are compact metric spaces and the IFS is
contractible (which will be presented as an example in Section 4).

The next example contains fundamental ideas for a better understanding
of our reasoning in this section.
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Example 4. This example proposes a generalization of formula (9), which
is Bayes’ rule. The idea is to replace the observed sample y0 ∈ Y , by a
probability ρ on Y , in order to define a new kind of posterior probability
density function which will be denoted by πp(θ|ρ). As motivation, consider
two points y1, y2 ∈ Y which play the role of two of the possible samples. After
one observation, if we get the sample y1 then we can update our prior belief of
the probability on θ from the prior πa(θ)dθ to the posterior πp(θ|y1)dθ, where
πp(θ|y) is given by Bayes’ rule (10) as presented in section 2. Similarly, if
we observe the sample y2 then we update it as another posterior, given by
πp(θ|y2)dθ. Suppose now that 10 observations are made and as result the
sample y1 was obtained 3 times while the sample y2 was obtained 7 times.
In this case unfortunately we possibly have an uncertainty concerning the
sample. Our uncertainty can be described by a probability ρ = 3

10
δy1 + 7

10
δy2:

we get a sample y1 with probability 3/10 and a sample y2 with probability
7/10 (and this determines the ρ in the specific problem we are considering).

An observer of certain random phenomena realizes that the ρ obtained
above is in agreement with the mathematical modeling he is looking for. As-
sume this person is not interested (or, does not consider relevant for the prob-
lem) in getting posterior information on θ based on a single random sample,
but the relevant information is in fact on the mean value of the posterior
probability based on the global and random information given by ρ.

Therefore, alternatively, it is possible to update his belief by defining a
mean posterior

πp(θ|ρ) :=
3

10
πp(θ|y1) +

7

10
πp(θ|y2) =

∫
πp(θ|y) dρ(y),

where πp(θ|y) is given in (10).
More generally, given any probability ρ on Y (which can be considered as

a new information concerning the distribution of y obtained by observations)
we can update our prior πa to get the posterior πp(θ|ρ) defined by

πp(θ|ρ) :=

∫
f(y|θ)πa(θ)

p(y)
dρ(y) =

∫
πp(θ|y) dρ(y). (12)

Clearly, given a sample y0 ∈ Y and considering ρ = δy0 we get from (12) the
Bayes’ rule

πp(θ|y0) =
f(y0|θ)πa(θ)

p(y0)
.

If, for example, the new information concerning the distribution of y,
which is an observed distribution ρ, coincides with our prior belief p(y)dy
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(that is, if dρ(y) = p(y)dy) it is natural to expect that πp = πa. It is in
accordance with the computation below

πp(θ|p(y)dy) =

∫
Y

f(y|θ)πa(θ)
p(y)

p(y)dy =

∫
Y

f(y|θ)πa(θ)dy = πa(θ).

From now on we will not update the prior πa to a posterior πp just from a
single-sample procedure. The newer πp will be constructed from theoretical
information concerning an IFS together with other mathematical concepts.
We will provide examples that support the claim that the classical approach
presented in section 2 can be seen embedded in this new theoretical point of
view.

Given a loss function l : θ × Y → R and the IFS τ , our main purpose
in this section is to detail the prior and posterior items of the general IFS
Bayesian method to be defined below. Along the section, we will present
examples to illustrate our reasoning.

The particular IFS described in the next two definitions will help to justify
our point of view.

Definition 5. The particular case where the IFS is constant (that is, there
exists y0 ∈ Y , such that τθ(y) = y0, ∀θ, y), will be called the constant IFS
associated to y0 in Y .

Definition 6. When the IFS is such that it is given by τθ(y) = y, ∀θ, y, we
call it the identity IFS.

The identity IFS corresponds in some sense to the case where there is no
dynamics at all. We will show that our formalism corresponds to the classical
Bayes’ rule when considering the constant IFS and also when considering the
identity IFS.

Definition 7. Given a prior probability ν on Θ and a measurable function
g : Θ × Y → [0,+∞) we will call g a Jacobian with respect to ν (or ν-
Jacobian) if ∫

g(θ, y) dν(θ) = 1, ∀y ∈ Y. (13)

We can interpret a ν-Jacobian g as a family, indexed by y, of probability
density functions θ → gy(θ) = g(θ, y), of the variable θ. In the above section
2 the function πp(θ|y) plays the role of g. As in the above section, usually, we
start with a non-Jacobian function (which eventually is a family of densities
in the opposite variable - a likelihood). Our first objective is to describe what
will be considered a normalization in the present setting. Remark 1 is useful
to the reader at this point.
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Definition 8. Given a measurable and bounded function l : Θ × Y →
(0,+∞), an IFS τ and a probability ν on Θ, we will call a normalizer
pair for (l, ν, τ), a pair of measurable and positive functions (ϕ, ψ), defined
on Y , such that the function

l̄(θ, y) :=
l(θ, y) · ψ(τθ(y))

ψ(y) · ϕ(y)
(14)

is a ν-Jacobian.

Remark 9. Note that by taking ψ ≡ 1 and ϕ(y) =
∫
l(θ, y)dν(θ), we al-

ways can get a normalizer pair satisfying Definition 8, which we will call
the canonical normalizer pair. We point out that in some cases a differ-
ent choice of normalizer pair is more appropriate (for instance it happens in
Example 25).

In section 2 the function p defined in (7) plays the role of ϕ in the canonical
normalizer pair. The next proposition shows that once we choose ψ the
function ϕ is also determined.

Proposition 10. Given a measurable, positive and bounded function ψ we
have that (ϕ, ψ) is a normalizer pair for (l, ν, τ) iff

ϕ(y) =
1

ψ(y)

∫
l(θ, y) · ψ(τθ(y)) dν(θ). (15)

Furthermore, the associated Jacobian function l̄ given in (14) satisfies

l̄(θ, y) =
l(θ, y)ψ(τθ(y))∫

l(θ, y)ψ(τθ(y)) dν(θ)
. (16)

Proof. Let (ϕ, ψ) be a normalizer pair, and suppose ψ is bounded. We ob-
serve that ∫

l(θ, y) · ψ(τθ(y))

ψ(y) · ϕ(y)
dν(θ) = 1, ∀ y

corresponds to ∫
l(θ, y) · ψ(τθ(y)) dν(θ) = ψ(y) · ϕ(y), ∀ y.

Therefore we get (15). On the other hand, given a measurable, positive,
and bounded function ψ, by defining ϕ from (15) we get a normalizer pair.
Furthermore,

l̄(θ, y) :=
l(θ, y) · ψ(τθ(y))

ψ(y) · ϕ(y)
=

l(θ, y) · ψ(τθ(y))∫
l(θ, y) · ψ(τθ(y)) dν(θ)

.
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The meaning of the normalizer pair (ϕ, ψ) in the above definition is not
the one considered in [8], where ϕ is assumed to be constant. As we will
show in Section 4, a special normalizer pair, given by a constant function
ϕ, occur when the IFS is contractible (see Definition 28) and the spaces are
compact metric spaces (in this case ϕ is the main eigenvalue for a Transfer
Operator). In [8] such as setting was considered.

In the case of the constant IFS associated to y0 in Y , we can consider a
special normalization where ϕ is taken constant, as we will show in the next
example.

Example 11. Suppose τθ(y) = y0, ∀θ, y. Then we get ψ(τθ(y))/ψ(y) =
ψ(y0)/ψ(y) for any ψ. Considering (14) and choosing ψ(y) =

∫
l(θ, y)dν(θ)

and ϕ(y) ≡ ψ(y0) we get∫
l(θ, y)ψ(τθ(y))

ψ(y)ϕ(y)
dν(θ) =

∫
l(θ, y) dν(θ)

ψ(y)
=

∫
l(θ, y)dν(θ)∫
l(θ, y)dν(θ)

= 1∀ y.

So (ϕ, ψ) is a normalizer pair with ϕ constant.

Remark 12. Considering the normalizer pair of the above example we get
that

ψ(τθ(y))

ψ(y)ϕ(y)
=

1

ψ(y)
=

1∫
l(θ, y)dν(θ)

corresponds to the normalizer function 1
p

in (7) and also to the normalization

c on page 279 in [11]. Furthermore, as ψ(τθ(y))
ψ(y)ϕ(y)

= ψ(y0)
ψ(y)ϕ(y)

is just a new
function of the y−variable, the normalizer pair is essentially unique, that is,
for any normalizer pair (ϕ, ψ) we get ψ(τθ(y))

ψ(y)ϕ(y)
= 1∫

l(θ,y)dν(θ)
. Another possible

normalizer pair is given, for example, by ψ = 1 and ϕ(y) =
∫
l(θ, y)dν(θ))

(the canonical normalizer pair), but we prefer to highlight the choice of ϕ
constant because it is similar to the normalization in [8].

For a general IFS, it is not always possible to get normalizer pairs where
ϕ is constant. This is the case for the identity IFS, as we will show next.

Example 13. Suppose τθ(y) = y, ∀θ, y. Then, as ψ(τθ(y)) = ψ(y), by con-
sidering (14) we get

1 =

∫
l(θ, y)ψ(τθ(y))

ψ(y)ϕ(y)
dν(θ) =

∫
l(θ, y) dν(θ)

ϕ(y)
= ∀ y.

There exists a unique possible ϕ which is ϕ(y) =
∫
l(θ, y)dν(θ). In this case,

we can not normalize l with ϕ constant.
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Remark 14. As we saw, considering the above two examples (τθ(y) = y0 or
τθ(y) = y), there exists essentially one normalizer pair, that is,

ψ(τθ(y))

ψ(y)ϕ(y)
=

1∫
l(θ, y)dν(θ)

.

It is easy to show that in general, if τ does not depend on θ, this property is
true. In this case, considering equation (16), the Jacobian function is given
by

l̄(θ, y) =
l(θ, y)∫

l(θ, y)dν(θ)
.

The expression above reminds us of equation (10).

An IFS can also be seen as a dynamical system where concepts like en-
tropy and others can be defined. Under such a point of view, when consid-
ering the IFS setting, it is natural to replace the concept of invariant proba-
bility (the classical dynamical point of view) with the concept of holonomic
probability (see [7] and [8]).

Definition 15. We say that a probability π on Θ × Y is holonomic with
respect to the IFS τ if for any measurable and bounded function g : Y → R,∫

g(y) dπ(θ, y) =

∫
g(τθ(y))dπ(θ, y). (17)

Definition 16. Given a ν-Jacobian l̄, we say that a probability ρ on Y is
stationary with respect to (l̄, ν, τ), if for any measurable and bounded func-
tion g : Y → R, we have∫ ∫

l̄(θ, y)g(τθ(y)) dν(θ)dρ(y) =

∫
g(y) dρ(y). (18)

Proposition 17. If ρ is stationary with respect to (l̄, ν, τ), then the probabil-
ity π on Θ×Y , defined by dπ = l̄(θ, y)dνdρ, is holonomic and its y−marginal
is the probability ρ.

Proof. For any measurable and bounded function g : Y → R we have∫
g(y)dπ(x, y) =

∫ ∫
l̄(θ, y)g(y)dν(θ)dρ(y) =

∫
1 · g(y)dρ(y)

and so ρ is the y−marginal of π. Furthermore, π is holonomic because∫
g(τθ(y))dπ(x, y) =

∫ ∫
l̄(θ, y)g(τθ(y))dν(θ)dρ(y)

stationary
=

∫
g(y) dρ(y) =

∫
g(y) dπ(x, y).

14



Example 18. In the case τθ(y) = y0 the unique stationary probability is
ρ = δy0. Indeed, for any measurable and bounded function g : Y → R and
any stationary probability ρ for (l̄, ν, τ) we have∫

g(y)dρ(y)
stationary

=

∫ ∫
l̄(θ, y)g(τθ(y))dν(θ)dρ(y)

=

∫ ∫
l̄(θ, y)g(y0)dν(θ)dρ(y) =

∫
1 · g(y0) dρ(y) = g(y0).

This proves that ρ = δy0. Furthermore, a probability π on Θ × Y is holo-
nomic iff its y−marginal is δy0. Indeed, by definition, π is holonomic iff∫
g(τθ(y))dπ =

∫
g(y)dπ for any measurable and bounded function g : Y →

R. The left-hand side is equal to g(y0) and so π is holonomic iff g(y0) =∫
g(y)dπ. Finally, for any given ν-Jacobian l̄ we get the holonomic probabil-

ity dπ = l̄(θ, y0)dν(θ)dδy0(y).

Now we consider the identity IFS.

Example 19. Suppose τθ(y) = y, for any θ. We claim that any probability
ρ on Y is stationary. This is not a surprise due to the fact that τθ(y) = y,
captures the case where there are no dynamics at all. In order to prove the
claim, consider any probability ρ on Y . We will prove that it is stationary
with respect to (l̄, ν, τ). For any measurable and bounded function g : Y → R
we have∫ ∫

l̄(θ, y)g(τθ(y))dν(θ)dρ(y) =

∫ ∫
l̄(θ, y)g(y)dν(θ)dρ(y) =

∫
1·g(y) dρ(y).

This proves that ρ is stationary. As a consequence, for any probability ρ on
Y we get that dπ = l̄(θ, y)dνdρ is holonomic. More generally, any probability
π on Θ× Y is holonomic. Indeed, as τθ(y) = y we get∫

g(τθ(y))dπ =

∫
g(y) dπ

for any probability π and any integrable function g.

Now, we will introduce a general IFS Bayesian posterior method. In this
way, we will consider a family of prior items which will allow us to obtain
a family of posterior items. We remember that in section 2, for a fixed
likelihood function l(θ|y) = f(y|θ), from a prior probability density function
πa(θ), and a given sample y0, we get the posterior probability density function
πp(θ|y0). Now, from a prior probability density function πa on Θ and a
probability ρ over Y , we will get a new kind of posterior πp on Θ. For a
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fixed loss function l, following a more broad point of view, we do not have
to consider any more just the case πp(θ|y0) (on the variable θ), where y0

comes from probabilistic sampling, but instead πp(θ|τ, ψ, ρ) (on the variable
θ). Example 4 illustrates this point of view. The introduction of a general ρ
over Y , as described below, will be an important issue in some other examples
like 25, 27 and 29.

Definition 20. The IFS Bayesian method is based on the definition of pos-
terior items, from the information of prior and intermediate items as below:
Prior items:
1. a probability dθ on Θ
2. a measurable probability density function πa : Θ → (0,+∞) and so the
probability dν(θ) := πa(θ)dθ
3. a measurable and bounded loss function l : Θ× Y → (0,+∞)
Intermediate items:
4. an IFS τ
5. a measurable and bounded function ψ : Y → (0,+∞) and so a normalizer
pair (ϕ, ψ) for (l, ν, τ), where ϕ is given in (15), and the Jacobian (as given
in (14), (16))

l̄(θ, y) =
l(θ, y)ψ(τθ(y))∫

l(θ, y)ψ(τθ(y))πa(θ)dθ
(19)

6. a stationary probability ρ for (l̄, ν, τ) in the sense of (18).

Posterior items:
1. The holonomic probability π = l̄(θ, y)πa(θ)dθdρ(y)
2. The probability density kernel πp(.|τ, ψ, y) : Θ→ R given by

πp(θ|τ, ψ, y) = l̄(θ, y)πa(θ) =
l(θ, y)ψ(τθ(y))πa(θ)∫
l(θ, y)ψ(τθ(y))πa(θ)dθ

(20)

3. The probability νp which is the θ−marginal of π
4. The probability density function πp(.|τ, ψ, ρ) : Θ → R, which satisfies
dνp(θ) = πp(θ|τ, ψ, ρ)dθ. That is,

πp(θ|τ, ψ, ρ) =

∫
Y

l(θ, y)ψ(τθ(y))πa(θ)∫
l(θ, y)ψ(τθ(y))πa(θ)dθ

dρ(y). (21)

The Posterior items are uniquely determined by the Prior and Interme-
diate items. The probability ν = πa(θ)dθ is called the prior probability on
the variable θ. We point out that given the prior items 1, 2, 3 above, in
some cases, there may exist more than one choice for the intermediate items
4, 5, and 6, and finding natural, or suitable, choices can be the main issue.
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When trying to detail the items on the IFS Bayesian method, its inherent
flexibility allows one to get different kinds of information depending on these
choices (which can be chosen according to convenience or context). We will
illustrate this claim via several different types of examples.

When considering the classic Bayesian case, the information obtained
from an observed sample is the key element for setting the Intermediate
items (see Examples 22 and 23).

We observe that we can always consider as intermediate the function
ψ = 1 (which corresponds to the canonical normalizer pair) and for such an
intermediate item we get

πp(θ|τ, 1, y) =
l(θ, y)πa(θ)∫
l(θ, y) πa(θ)dθ

(22)

and

πp(θ|τ, 1, ρ) =

∫
Y

l(θ, y)πa(θ)∫
l(θ, y)πa(θ)dθ

dρ(y). (23)

Depending on the problem of interest the choice ψ = 1 is not adequate.

We can say that equations (20) and (21) play the role of a generalized
Bayes’ rule (in two different forms). We will call πp(θ|τ, ψ, y) the posterior
probability density function of the variable θ associated to the (τ, ψ, y), and
πp(θ|τ, ψ, ρ) the posterior probability density function of the variable θ asso-
ciated to intermediate items (τ, ψ, ρ).

Remark 21. In order to get the usual Bayes’ rule an optional assumption
regarding the above-defined items can be taken:

- fix a measure dy on Y and assume l is such that for all θ ∈ Θ,∫
l(θ, y) dy = 1. (24)

In this case, the function l(θ, y) is a probability density function with
respect to dy, for each fixed θ ∈ Θ. Taking ψ = 1 we get from (22) a Bayes’
rule expression similar to (10), where the density p(y) (with respect to dy)
corresponds to

∫
l(θ, y)πa(θ)dθ (see also (7)).

It is not a necessary hypothesis for the application of the method, as dis-
cussed in Remark 1.

The next two examples will clarify the assertion that the IFS Bayesian
method used to construct πp, as given in (20) and (21), extends Bayes’ rule
as expressed in (9) and (10).
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Example 22. Consider an observed sample y0 ∈ Y . The specific nature of
the generation of this sample y0 is not relevant to what comes next. Then,
it is natural to consider the constant IFS, where τθ(y) = y0, for any y ∈ Y ,
θ ∈ Θ. We want to recover Bayes’ rule of Section 2. With this purpose, we
explain also the connections between notations of both sections.
In this case the prior items are:
1. a probability dθ on Θ
2. a density function πa : Θ → (0,+∞) and so the probability dν(θ) :=
πa(θ)dθ
3. a loss function l : Θ × Y → (0,+∞). We can suppose the remark 21 is
satisfied and write also l(θ, y) = f(y|θ), using the notation of Section 2.

By considering the intermediate item τθ(y) = y0, the next intermediate
items 5. and 6. are essentially unique:
5. The function ψ = 1 and so the canonical normalizer pair ψ(y) = 1 and

ϕ(y) =
∫
l(θ, y)πa(θ)dθ. So the ν-Jacobian is l̄(θ, y) := l(θ,y)∫

l(θ,y)πa(θ)dθ
.

It follows that

l̄(θ, y) =
f(y|θ)
p(y)

,

where p(y) is given in (7) in Section 2 and coincides with ϕ(y).
6. The stationary probability ρ = δy0 (which is the unique stationary proba-
bility for such IFS).

Now we can consider the posterior items. We observe that as for τ ≡ y0,
the intermediate items ψ, ϕ, ρ are essentially unique, we can consider that
πp(θ|τ, ψ, ρ) corresponds in some sense to a computation of πp(θ|y0).

The posterior items are given by:
1. The probability

dπ = l̄(θ, y)πa(θ)dθdρ(y) =
l(θ, y)πa(θ)∫
l(θ, y)πa(θ)dθ

dθ dδy0(y) =
f(y|θ)πa(θ)

p(y)
dθ dδy0(y).

2. The probability density kernel πp(.|τ, ψ, y) : Θ→ R given by

πp(θ|τ, ψ, y) =
l(θ, y)πa(θ)∫
l(θ, y) πa(θ)dθ

=
f(y|θ)πa(θ)

p(y)
.

3. The probability νp, which is the θ−marginal of π, satisfies

dνp(θ) =
l(θ, y0)πa(θ)∫
l(θ, y0)πa(θ)dθ

dθ =
f(y0|θ)πa(θ)

p(y0)
dθ.

4. The probability density function

πp(θ|τ, ψ, δy0) =
l(θ, y0)πa(θ)∫
l(θ, y0)πa(θ)dθ

.
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Using the correspondence of notations we get

πp(θ|τ, ψ, δy0) =
f(y0|θ)πa(θ)

p(y0)
.

This density function πp is exactly the posterior probability density function
given the sample y0, as presented in (9) when considered f = l.

We observe that y0 is any fixed point of Y , and so we can also denote
this generic point by y. Finally we can write that for a given sample y, the
posterior density function is

πp(θ|y) =
l(θ, y)πa(θ)∫
l(θ, y)πa(θ)dθ

=
f(y|θ)πa(θ)

p(y)
, (25)

where πa is the prior probability density function. This corresponds to (10).

Example 23. In this example we consider the identity IFS, which is the one
given by τθ(y) = y, for any y ∈ Y , θ ∈ Θ. As in the above example, we want
to recover Bayes’ rule of Section 2.
In this case the prior items are:
1. a probability dθ on Θ
2. a density function πa : Θ → (0,+∞) and so the probability dν(θ) :=
πa(θ)dθ
3. a loss function l : Θ× Y → (0,+∞). We can suppose again that remark
21 is satisfied and write also l(θ, y) = f(y|θ), using the notation of Section
2.
The intermediate items are:
4. the IFS τθ(y) = y
5. The (essentially unique) normalizer pair ψ = 1 and ϕ(y) =

∫
l(θ, y)πa(θ)dθ.

It follows, as in above example, that

l̄(θ, y) =
l(θ, y)∫

l(θ, y)πa(θ)dθ
=

l(θ, y)∫
l(θ, y)πa(θ)dθ

=
f(y|θ)
p(y)

,

where p(y) is given in (7) in Section 2.
6. Any probability ρ on Y (any one is stationary).

The posterior items are given below:
1. The probability

dπ =
l(θ, y)πa(θ)∫
l(θ, y)πa(θ)dθ

dθ dρ(y) =
f(y|θ)πa(θ)

p(y)
dθ dρ(y).

19



2. The probability density kernel πp(.|τ, ψ, y) : Θ→ (0,+∞) given by

πp(θ|τ, ψ, y) =
l(θ, y)πa(θ)∫
l(θ, y) πa(θ)dθ

.

3. The probability νp which is the θ−marginal of π

dνp(θ) =

[ ∫
l(θ, y)πa(θ)∫
l(θ, y)πa(θ)dθ

dρ(y)

]
dθ =

[∫
f(y|θ)πa(θ)

p(y)
dρ(y)

]
dθ.

4. The probability density function πp(θ|τ, ψ, ρ) : Θ→ R which is given by

πp(θ|τ, ψ, ρ) =

∫
l(θ, y)πa(θ)∫
l(θ, y)πa(θ)dθ

dρ(y) =

∫
f(y|θ)πa(θ)

p(y)
dρ(y). (26)

As we set p(y) = ϕ(y) =
∫
l(θ, y)πa(θ)dθ, we get in posterior item 2

above the same expression given by (10). The equation (26) does not match
with (9) and (10) because we have to consider a mean using ρ. While in
(9) we are computing πp(θ|y0) for an observed sample y0, in (26) we are
computing πp(θ|τ, ψ, ρ). We remark that for the identity IFS any probability
ρ is stationary and produces a different πp. We can take, as a special example,
ρ = δy0. For this particular stationary prior item 6. we get that (26) match
with (9) in Section 2. Furthermore, such prior ρ = δy0 will be essential in
Example 31.

Remark 24. Example 4 describes an interpretation of the formula (26).

Example 25. Markov Measures and the IFS Bayesian method.
Suppose that Θ = Y = {1, ..., d} and let τθ(y) = θ, for all y, θ. As we will see
next it is natural to consider such IFS. The introduction of the possibility to
set a suitable ρ over Y , as considered in Intermediate item 6 in Definition
20, will be necessary to get natural posterior items.

Consider the prior items:
1. let dθ be the counting measure (not a probability)
2. πa ≡ 1 and so dν(θ) = dθ
3. a positive loss function l : Θ× Y → R
Consider the intermediate items below:
4. the IFS τθ(y) = θ
5. There exists a lot of normalizer pairs, but we will consider a special
one by taking ϕ constant. From the Perron-Frobenius theorem, there exists a
(unique) positive number λ and a (unique except by a multiplicative constant)
positive vector h such that∑

θ

h(θ)l(θ, y) = λ · h(y)∀y.
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We set the normalizer pair ψ = h and ϕ(y) ≡ λ. Therefore,

l̄(θ, y) =
l(θ, y)ψ(θ)

λψ(y)
=

l(θ, y)ψ(θ)∑
θ l(θ, y)ψ(θ)

. (27)

We observe that l̄ to be a Jacobian means that it defines a column stochastic
matrix: ∑

θ

l̄(θ, y) = 1, ∀ y.

6. A stationary probability ρ = (ρ1, ..., ρd) on Y satisfies, for any g∑
j

∑
θ

l̄(θ, j)g(θ)ρj =
∑
j

(g(j))ρj

Choosing for each i ∈ Y the function v = Ii (it is a basis for the space of
functions on Y ) we get that ρ needs to satisfy∑

j

l̄(i, j)ρj = ρi, ∀ i,

that is, the probability vector ρ satisfies

(l̄) · ρ = ρ.

Such a ρ is unique (and it is usually known in the literature of Stochas-
tic Processes as the stationary probability vector associated with the column
stochastic matrix (l̄)).

The posterior items are:
1. The Markov measure for cylinders of length two:

π(i, j) = l̄(i, j) · ρ(j)

In this way, for any function g,∑
i,j

g(i, j)π(i, j) =
∑
i,j

l̄(i, j)g(i, j)ρ(j).

2. The probability density kernel πp(.|τ, ψ, y) : Θ→ R given by

πp(θ|τ, ψ, y) =
l(θ, y)h(θ)∑
θ l(θ, y)h(θ)

= l̄(θ, y).

3. The probability νp, which is the θ−marginal of π,

νp(i) =
∑
j

l̄(i, j) · ρ(j) = ρ(i).
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4. The probability density function

πp(i) =
∑
j

l̄(i, j) · ρ(j) = ρ(i).

Remark 26. The posterior probability density kernel πp(θ|τ, ψ, y) = l̄(θ, y)
coincides with the transition probability P (θ|y) which is given by the column
stochastic matrix l̄ (a natural way to define a Markovian stochastic process
taking values on a finite set). The above πp represents Bayes’ rule according
to (20) and (21).

4 Examples concerning contractible IFS

In this section, we present some more examples concerning the generalized
Bayes’ rule and the IFS Bayesian method in a dynamic context. With this
purpose we assume in such examples that Θ, Y are compact metric spaces,
respectively, with metrics d1 and d2, and we consider on Θ× Y the metric

d((θ1, y1), (θ2, y2)) = d1(θ1, θ2) + d2(y1, y2).

We will present a dynamical version of Bayes’ rule for an IFS τ , in con-
sonance with the reasoning of [8], and assuming some regularity for the loss
function. The meaning of this statement is associated with the fact that in
this section we will assume conditions such that the normalizer pair (ϕ, ψ)
for (l, ν, τ), can be taken in such way that ϕ is constant.

The next example will help the reader to make connections with classical
Thermodynamic Formalism as described in [10].

Example 27. General equilibrium measures in the full shift
Suppose that Θ = {1, ..., d}, Y = {1, ..., d}N and let τθ(y) = (θ, y1, y2, ...). In
such a setting the space Θ×Y is also denoted by Ω and we have an invertible
map Γ : Ω → Y given by Γ(θ, (y1, y2, ...)) = (θ, y1, y2, y3, ...). Such a map
allows us to identify Ω as Y and consequently any function or probability
on Ω can be seen as a function or probability on Y , respectively. The loss
function l(θ, y) we will consider here is of the form l(θ, y) = ev(τθ(y)), for some
Lipschitz function v : Y → R.

Consider the prior items below:
1. let dθ be the counting measure (not a probability) on Θ
2. πa ≡ 1 and so dν(θ) = dθ
3. a Lipschitz function v : Y → R and the loss function l : Ω→ R, given by
l(θ, y) = ev(τθ(y)).
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Consider the following intermediate items:
4. The IFS τθ(y) = (θ, y1, y2, ...) as presented above.
5. From the Ruelle-Perron-Frobenius theorem (see [10]), there exists a unique
positive number λ and a unique (except by a multiplicative constant) positive
Lipschitz function h : Y → R such that∑

θ

l(θ, y)h(τθ(y)) =
∑
θ

ev(θ,y1,y2,...)h(θ, y1, y2, ...) = λ · h(y)∀y. (28)

As h(θy) = h(τθ(y)) we get a normalizer pair by setting ψ = h and ϕ(y) ≡ λ.
In this way

l(θ, y) =
l(θ, y)h(θy)∑
θ l(θ, y)h(θy)

=
l(θ, y)h(θy)

λh(y)
. (29)

is a Jacobian.
6. There exists a unique stationary probability ρ on Y satisfying, for any g∫

Y

∑
θ

l̄(θ, y)g(θy)dρ(y) =

∫
g(y)dρ(y).

The probability ρ on Y is invariant for the shift map σ, and it is the equilib-
rium probability for the function v : Y → R (in the sense of [10]).

We can also identify ρ as a probability on Ω using the map Γ.

The posterior items are:
1. The equilibrium probability π = ρ (considering the identification of Ω =
Θ× Y and Y given by Γ):∫

g(θ, y)dπ(θ, y) =

∫
Y

∑
θ

l̄(θy)g(θy)dρ(y) =

∫
g(y)dρ(y) =

∫
g dρ.

2. The probability density kernel πp(.|τ, ψ, y) : Θ→ R given by

πp(θ|τ, ψ, y) =
l(θ, y)h(θy)∑
θ l(θ, y)h(θy)

= l̄(θ, y).

3. The probability νp, which is the θ−marginal of π,

νp(i) =

∫
Y

l̄(i, y)dρ(y) = π([i]).

4. The probability density function

πp(i) = π([i]).
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Above we are denoting by [i] a cylinder set of length one.
The above function l̄ is sometimes called the Jacobian of the equilibrium

probability ρ. The introduction of the possibility to set a convenient probability
ρ over Y , which was considered in Intermediate item 6 in Definition 20, was
an important issue to be able to get the posterior probability πp in posterior
item 2. above. The important issue in this example is to get the posterior
probability. The law πp represents Bayes’ rule according to (20) and (21) in
this case.

Definition 28. Suppose that Θ and Y are compact metric spaces. We say
that the IFS τ is contractible (or satisfies the uniform contraction property)
when there exists 0 < γ < 1, such that,

d(τθ1(y1), τθ2(y2)) ≤ γ[d1(θ1, θ2) + d2(y1, y2)]

for any θi ∈ Θ and yi ∈ Y .

Example 29. Holonomic probabilities for contractible IFS (see [8]).
Consider the following prior items:
1. a probability dθ on Θ
2. a probability density function πa : Θ→ (0,+∞) and so dν(θ) := πa(θ)dθ
3. a Lipschitz continuous function l : Θ × Y → R and the loss function
l : Θ× Y → (0,+∞), given by l(θ, y) = el(θ,y).
Consider the following intermediate items:
4. a contractible IFS τ .
5. we will consider a special normalizer pair where ϕ is constant. Follow-
ing [8] there exists a unique positive number λ and a unique (except by a
multiplicative constant) positive function h : Y → R such that∫

el(θ,y)h(τθ(y))dν(θ) = λ · h(y)∀y.

As in the above example, we get a normalizer pair by setting ψ = h and
ϕ(y) ≡ λ. In this way

l(θ, y) =
l(θ, y)h(τθ(y))∑
θ l(θ, y)h(τθ(y))

=
l(θ, y)h(τθ(y))

λh(y)
(30)

is a Jacobian.
6. Following [8] there exists a unique stationary probability ρ for (l̄, ν, τ).
Furthermore, if we denote by L : C(Y )→ C(Y ) the operator given by

L(g)(y) =

∫
l̄(θ, y)g(τθ(y))dν(θ),
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then Ln(g) converges uniformly to
∫
gdρ as n→ +∞.

The proofs of all claims above appear in [8]. The introduction of ρ, which
was considered in Intermediate item 6 in Definition 20, is an important issue
to get the posterior items.

The posterior items are:
1. The probability π = l̄(θ, y)πa(θ)dθdρ(y). We observe that π satisfies∫

g(θ, y) dπ =

∫
Y

l(θ, y)h(τθ(y))

λh(y)
πa(θ)g(θ, y)dθdρ(y).

2. The probability density kernel πp(.|τ, ψ, y) : Θ→ R given by

πp(θ|τ, ψ, y) =
l(θ, y)h(τθ(y))

λh(y)
πa(θ) = l̄(θ, y)πa(θ).

3. The probability νp which is the θ−marginal of π. On this way∫
g(θ)dνp(θ) =

∫
Θ

[∫
Y

l(θ, y)h(τθ(y))πa(θ)

λh(y)
πa(θ)dρ(y)

]
g(θ)dθ

3. The density function πp : Θ → R which satisfies dνp(θ) = πp(θ)dθ.
Explicitly it is given by

πp(θ) =

∫
Y

l(θ, y)h(τθ(y))

λh(y)
πa(θ)dρ(y).

5 Entropy, pressure and the principle of min-

imization of information

In this section, we consider the prior, intermediate and posterior items as in
Definition 20. We will show that the posterior items πp and π are optimal
with respect to a certain variational principle. In Thermodynamic Formalism
(see [10]), and also in the holonomic setting (see [8],[6]), it corresponds to
finding the equilibrium probability maximizing the pressure functional. In in-
formation theory, this formalism corresponds to an information conservation
principle and an optimal information processing rule [11].

The main goal of [11] was to derive Bayes’ rule as a consequence of the
minimization of the information procedure. The reasoning of [11] was our
main motivation for the present paper. Minimization of information can be
seen as a variational principle for pressure (as in [10], [8]).
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We start by recalling the definition of entropy following the discussion
present in [6]. The entropy of a probability π on Θ × Y with respect to a
probability ν on Θ is given by

Hν(π) = − sup{
∫

log(J) dπ | J is a ν − Jacobian}.

This supremum is taken over functions J such that log(J) has a well defined
integral with respect to π. As J = 1 is a ν−Jacobian we get Hν(π) ≤ 0. If
ρ is the y-marginal of π then

Hν(π) = −DKL(π|ν × ρ),

where DKL is the Kullback-Leibler divergence. It means that

Hν(π) =


−
∫

log(J) dπ if dπ = J(θ, y)dν(θ)dρ(y)

−∞ if π is not absolutely continuous
with respect to ν × ρ

(31)

In such an entropy, the probability π and its y-marginal ρ are any probabil-
ities and they do not need to be holonomic or stationary.

Let us suppose that there exists a constant a > 0 such that a < l(θ, y)
for all (θ, y) ∈ Θ × Y and a < ψ(y) for all y ∈ Y . As these functions are
also bounded (see Definition 20) it follows from (16) that l̄ satisfies a similar
property and it is bounded. If Θ and Y are compact metric spaces and the
functions l, ψ are continuous then these hypotheses are satisfied. Furthermore
we suppose πa is bounded. If ρ is stationary for (l̄, ν, τ) and π is the posterior
probability, then (see [6])∫

log(l̄) dπ +Hν(π) = 0 = sup
π̃

∫
log(l̄) dπ̃ +Hν(π̃).

If l̄(θ, y) is a ν-Jacobian and dν = πa(θ)dθ then l̄ · πa is a dθ-Jacobian and as
dπ = (l̄ · πa)dθdρ we also get∫

[log(l̄) + log(πa)] dπ +Hdθ(π) = 0 = sup
π̃

∫
[log(l̄) + log(πa)] dπ̃ +Hdθ(π̃).

As l̄(θ, y) = l(θ,y)ψ(τθ(y))
ψ(y)ϕ(y)

and the integral of log(ψ(τθ(y))) − log(ψ(y)) over
holonomic probabilities is equal to zero, we also get

0 =

∫
[log(l(θ, y))− log(ϕ(y))] dπ +Hν(π)

= sup
π̃ holonomic

∫
[log(l(θ, y))− log(ϕ(y))] dπ̃ +Hν(π̃).

Furthermore, we obtain the following main result.
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Theorem 30. Consider the prior and intermediate items of the IFS Bayesian
method, according to Definition 20. Furthermore, suppose that πa is bounded
and that there exists a constant a > 0 such that a < l(θ, y) for all (θ, y) ∈
Θ×Y and a < ψ(y) for all y ∈ Y . Let us to consider the following variational
problem

sup
π̃ holonomic

∫
[log(l(θ, y)) + log(πa(θ))− log(ϕ(y))] dπ̃ +Hdθ(π̃). (32)

This supremum is attaining at any1 posterior probability π. Furthermore, it
is equal to zero.

The next example shows how the reasoning of [11] fits our IFS Bayesian
method.

Example 31. Optimal information processing rule as in [11].
Assume the prior items for the IFS Bayesian method as given in Example 22
or 23. Furthermore, assume that the assumption in Remark 21 is satisfied.
We observe that the function l(θ, y) is corresponding here to the f(y|θ) pre-
sented in section 2 and in [11]. For a such class of examples, we can consider
the canonical normalizer pair, that is ψ = 1 and

ϕ(y) =

∫
l(θ, y)πa(θ)dθ =

∫
f(y|θ)πa(θ)dθ.

We point out that the probability density function p in [11] coincides with our
p, as defined in (5), and moreover p(y) = ϕ(y).

Consider also the stationary probability ρ = δy0 and the associated poste-
rior probability π satisfying

dπ = πp(θ|y0)dθdδy0 =
f(y0|θ)πa(θ)

p(y0)
dθ dδy0(y).

Such π attains the supremum in (32) over all holonomic probabilities π̃. In
particular, as the y-marginal of π is δy0, it also assumes such supremum
over the subset of holonomic probabilities with y−marginal equal to δy0. Any
such holonomic probability has the form dπ̃ = π̃p(θ)dθdδy0, where π̃p(θ) is a
probability density function, or else Hdθ(π̃) = −∞ and certainly it does not
attains the supremum. Restricted to such particular class of probabilities, that

1If there are more than one stationary ρ with respect to (l̄, ν, τ), then we get more than
one possible posterior probability π
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is, holonomic probabilities π̃ of the form dπ̃ = π̃p(θ)dθdδy0, the variational
problem (32) of Theorem 30 can be rewritten as2

sup
π̃p(θ)

∫
[log(l(θ, y0)) + log(πa(θ))]π̃p(θ)dθ − log(p(y0))−

∫
log(π̃p(θ))π̃p(θ)dθ.

The above variational problem is exactly equal (changing sign and just replac-
ing the notation of sample from letter y0 by the letter y) to the minimization
problem (2.6) in [11]. Furthermore, from Theorem 30 and Example 22 its
supremum value is attained at the posterior probability π = πp(θ|y0)dθdδy0,

where πp(θ|y0) = f(y0|θ)πa(θ)
p(y0)

is given by Bayes’ rule (9), and its value is equal
to zero, that is,

0 =

∫
[log(l(θ, y0))+log(πa(θ))]πp(θ|y0)dθ−log p(y0)−

∫
log(πp(θ|y0))πp(θ|y0)dθ.

This corresponds exactly to the solution in the form of Bayes’ rule (2.8) in
[11], which solves the variational problem (2.6), and also the one in [11],
which is called an optimal information processing rule.

Example 32. Holonomic probabilities for contractible IFS
Consider the notations of Example 29. In this case l = el. Choosing ϕ as

a positive constant (which is the eigenvalue λ) we get from Theorem 30∫
l(θ, y) dπ +Hdθ(π) = log(λ) = sup

π̃ holonomic

∫
l(θ, y) dπ̃ +Hdθ(π̃),

which is the variational principle for pressure as considered in [8]. The equiv-
alence between the entropy as defined in [8] and the above-defined entropy is
proved in [6].

Artur O. Lopes
Instituto de Matemtica e Estatstica - UFRGS - Brazil
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2observe the importance of considering dπ̃ = π̃p(θ)dθdδy0 , to get the below expression
from (32), and that the supremum is over π̃p(θ), which is a probability density function
and no more a probability; furthermore, for the last term we take into account (31).
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