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Abstract

We will consider a family of cellular automata Φ : {1, 2, ..., r}N �
that are not of algebraic type. Our first goal is to determine con-
ditions that result in the identification of probabilities that are at
the same time σ-invariant and Φ-invariant, where σ is the full shift.
Via the use of versions of the Ruelle operator LA,σ and LB,Φ we will
show that there is an abundant set of measures with this property;
they will be equilibrium probabilities for different Lispchitz potentials
A,B and for the corresponding dynamics σ and Φ. Via the use of
a version of the involution kernel W for a (σ,Φ)-mixed skew prod-
uct Φ̂ : {1, 2, ..., r}Z �, given A one can determine B, in such way
that the integral kernel eW produce a duality between eigenproba-
bilities ρA for (LA,σ)∗ and eigenfunctions ψB for LB,Φ. In another

direction, considering the non-mixed extension Φ̂n : {1, 2, ..., r}Z �
of Φ, given a Lispchitz potential Â : {1, 2, ..., r}Z → R, we can iden-
tify a Lipschitz potential A : {1, 2, ..., r}N → R, in such away that
relates the variational problem of Φ̂n-Topological Pressure for Â with
the Φ-Topological Pressure for A. We also present a version of Livsic’s
Theorem. Whether or not Φ (or Φ̂) can eventually be conjugated with
another shift of finite type is irrelevant in our context.

1 Introduction

Denote the alphabet by A = {1, 2, ..., r}, Ω = AN, and take two Lispchitz
potentials B1, B2 : Ω→ R.

Let’s first consider a more general setting that involves two commuting
transformations Φ1 : Ω→ Ω and Φ2 : Ω→ Ω, and where some of the results
we will describe can be applied. A particular case of interest is when Φ1 is
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the unilateral shift σ : Ω → Ω and Φ2 : Ω → Ω is a cellular automata to be
defined later. As usual

σ(x1, x2, ..., xn, ...) = (x2, x3, ..., xn, ...).

The bilateral shift is denoted by σ̂ : AZ → AZ.
Consider two r to 1 surjective expanding transformation Φ1,Φ2, which

commute, and for j = 1, 2, the two corresponding topological pressure prob-
lems

PΦj
(Bj) := sup

ρ∈M(Φj)

{hΦj
(ρ) +

∫
Bj(x)dρ(x)}, (1.1)

where, hΦj
(ρ) is the Shannon-Kolmogorov entropy of ρ for the dynamics of

Φj, and M(Φj) and M(Φ1,Φ2) are the set of probabilities that are invari-
ant, respectively, for Φj and both Φ1,Φ2. From the above problems we get,
respectively, the solutions µBj ,Φj

, j = 1, 2, which are called the equilibrium
probabilities for respectively Bj,Φj, j = 1, 2. The value PΦj

(Bj) is called the
topological pressure for the potential Bj and the dynamics of Φj, j = 1, 2.

We will show here that M(Φ1,Φ2) is not empty, which will imply that
M(σ,Φ) is also not empty (and has an abundance of elements as described
for instance in Example 2.5).

The Ruelle operator is defined as Lj(f) = LBj ,Φj
(f) = g, via

g(y) = Lj(f)(y) =
∑

Φj(x)=y

eBj(x)f(x). (1.2)

The Ruelle Theorem is valid for both L1,L2, and we get, respectively, the
eigenvalues λBj ,Φj

, eigenfunctions ψBj ,Φj
, and eigenprobabilities ρBj ,Φj

for L∗j ,
j = 1, 2. It is well known that µBj ,Φj

= ψBj ,Φj
ρBj ,Φj

, when normalized. A
particular case of interest is when Φ1 = σ and Φ2 = Φ is the CA to be defined
in the introduction.

A general reference for classical Thermodynamic Formalism is [31] and
for IFS Thermodynamic Formalism see [11], [45], or [6].

It is well known that the eigenfunction ψBj ,Φj
, and eigenprobability ρBj ,Φj

are dual objects; as the duality of functions and measures, but by this we
mean a relation not in the sense of Riesz Theorem. They are obtained respec-
tively via LBj ,Φj

and (LBj ,Φj
)∗. We are interested here, among other things,

in conditions on B1 and B2 that relate ψB2,Φ1 and ρB1,Φ2 .
In another direction, we ask: is there B1, B2 such that µB1,Φ1 = µB2,Φ2?
Following [20], the answer to this last question regards considering a cer-

tain special relation between B1 and B2.
Below, in order to be in accordance with the notation in [20], we will take

B1 = A2 and B2 = A1.
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The authors in [20] introduced the condition

1)A1 − A1 ◦ Φ1 = A2 − A2 ◦ Φ2, (1.3)

or a more general one, where it is assumed that there exists a Lipschitz
function w such

2)(A1−A1 ◦Φ1)− (A2−A2 ◦Φ2) = (w−w ◦Φ1)− (w−w ◦Φ1) ◦Φ2, (1.4)

which is equivalent to

(A1 − A1 ◦ Φ1) = [A2 + (w − w ◦ Φ1)]− [A2 + (w − w ◦ Φ1)] ◦ Φ2.

In [20] it was shown that if A1, A2 satisfies condition 2), then µA2,Φ1 =
µA1,Φ2 (see our Theorem 3.7 for a more detailed proof).

However, [20] does not provide an example of potentials satisfying such
conditions 1) or 2). An interesting question is to find an example where
Φ1 = σ and Φ2 = Φ, and this will be provided later in Example 2.5.

In Section 2 we introduce the local rule that will define the class of cellular
automata Φ (and we present examples) that will be the focus of Sections 3
and 4.

In Theorem 3.7 in Section 3 we exhibit conditions on potentials A1 and
A2 such that the respective equilibrium probabilities for σ and Φ, are the
same. Theorem 3.9 is a kind of reciprocal of Theorem 3.7.

In Section 4 via the use of a version of the involution kernel W for a
(σ,Φ)-mixed skew product Φ̂ : {1, 2, ..., r}Z �, we show that given a Lipschitz
potential A one can determine another Lipschitz potential B, in such way
that the integral kernel eW : {1, 2, ..., r}Z → R produce a duality between
eigenprobabilities ρA for (LA,σ)∗ and eigenfunctions ψB for LB,Φ. In another

direction, considering the non-mixed extension Φ̂n : {1, 2, ..., r}Z � of Φ,
given a Lispchitz potential Â : {1, 2, ..., r}Z → R, we can identify a Lipschitz
potential A : {1, 2, ..., r}N → R, in such away that relates the variational
problem of Φ̂n-Topological Pressure for Â with the Φ-Topological Pressure
for A. Properties for the Φ̂n-equilibrium probability for Â : {1, 2, ..., r}Z → R
can be derived in this way.

In Section 5 we present a version of Livsic’s Theorem for our setting.
In Section 6, with the aim of putting our results in context, we present a

review of previous results that are at the interface of cellular automata and
ergodic theory. In particular questions that are in one way or another related
to Furstenberg’s conjecture.

Finally, in the Appendix we present the proof of some technical results
mentioned before on the text.
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2 A family of Cellular Automata

Remember that the alphabet is A = {1, 2, ..., r} and Ω = AN.
In Ω we consider the metric d such that for

x = (x1, x2, ....), y = (y1, y2, ....) :

a) If x1 6= y1, then, d(x, y) = 2−1 = 1/2, and otherwise,

d(x, y) =

{
0, x = y
2−{minj xj 6=yj}, x 6= y

x = (x1, x2, ....), y = (y1, y2, ....).
Note that, if x1 = y1, then d(x, y) ≤ 1/4.
We define a particular local rule φ : A×A → A, where we assume that

for any fixed a, the law

b ∈ A → φ(a, b) is bijective. (2.1)

Then, for each a we get that b→ φ(a, b) is a permutation on d symbols.
Since A is finite, the local rule is completely described by a matrix M :=

(φ(i, j))r×r such that φ(a, b) = Ma,b, thus each row is a permutation of A.
For example, for A = {1, 2, 3} we may choose,

M :=

 1 2 3
1 2 3
3 1 2


So, in this case φ(3, 2) = M3,2 = 1.

We will consider the cellular automata Φ : Ω→ Ω given by

Φ(x1, x2, x3, x4, .., xn, ...) = (φ(x1, x2), φ(x2, x3), φ(x3, x4), ...). (2.2)

We avoid the case of the trivial cellular automata: for each a, φ(a, b) = b,
in order that Φ is not σ. Here we call permutative the CA Φ obtained from
the φ of (2.1). Our examples do not necessarily fit the ones in the family of
algebraic cellular automata.

Note that σ ◦ Φ = Φ ◦ σ. The Φ defined by (2.1) is in some sense the
simpler of all possible CA.

We point out that our main goal is to determine properties that result in
the identification of probabilities that are at the same time σ-invariant and
Φ-invariant. If A2 and A1 are such that

(A1 − A1 ◦ σ)− (A2 − A2 ◦ Φ) = (w − w ◦ σ)− (w − w ◦ σ) ◦ Φ, (2.3)
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for some Lispchitz function w, then, in Theorem 3.7 we will show that the
classical σ-equilibrium probability for the pressure of A2 (see [31]) will be
also Φ-invariant.

Therefore, whether or not Φ can eventually be conjugated with another
shift is irrelevant in our context. We will work with information and proper-
ties obtained directly from A1, A2, σ and Φ (see for instance expressions (2.8)
and (7.1)).

The next result will show that Φ is such that for each x ∈ Ω, the set of
preimages Φ−n(x), n ∈ N is dense in Ω.

Proposition 2.1. Let φ : A×A → A a local rule (we assume in this section
that

j → φ(a, j) is a bijection for any a ∈ A). (2.4)

Consider the map Φ : Ω→ Ω, where Ω = {1, . . . , r}N, associated to this rule.
For any x ∈ Ω the set of preimages by Φ is dense.

For proof see Proposition 7.1 in the Appendix.
We denoted by M(σ),M(Φ) and M(σ,Φ) the set of probabilities that

are invariant, respectively, for σ,Φ and simultaneously for σ, and Φ.
The function Φ is continuous, expanding at rate 2 (see Lemma 5.1), and

we will show that the set M(Φ, σ) is not empty and with cardinality bigger
than one in several cases (see Example 2.5).

Given a, we denote ua(b) = c, the element c such that φ(a, c) = b.
Given y = (b1, b2, ..., bn, ..), there exist r points x = (a1, a2, ..., an, ..),

such that Φ(x) = y. Indeed, given a1 ∈ A, take

x = (a1, ua1(b1), uua1 (b1)(b2), ...). (2.5)

Given j ∈ A, we denote by τj : Ω → Ω the function such that given
x = (x1, x2, ..., xn, ..)

τj(x) := (j, uj(x1), uuj(x1)(x2), ...).

For each j we get that τj has a Lipschitz constant equal to 1/2. Indeed,
note that if w1 = (x1, x2, ..., xn, xn+1, xn+2, ...) and w2 = (x1, x2, ..., xn, yn+1, yn+2..),
where xn+1 6= yn+1 (which means d(w1, w2) = 2−n), then, as φ(xn, xn+1) 6=
φ(xn, yn+1) (by bijectivity on the second variable)

d(Φ(w1),Φ(w2) =

d((φ(x1, x2), ..., φ(xn, xn+1), ...), (φ(x1, x2), ..., φ(xn, yn+1), ...)) =

2−(n−1) = 2 2−n = 2 d(w1, w2).
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Remark 2.2. The map Φ : Ω → Ω of (2.4), where Ω = {1, . . . , r}N, has
a transitive orbit (see Theorem 5.9). In Theorem 5.10 in Subsection 5.1
we show that each periodic point x for Φ with period m is a solution of
τj1 ◦ · · · ◦ τjm(x) = x, for some choice of j1, . . . , jm ∈ {1, . . . , r}. For each m
there exists rm points of period m. In Subsection 5.1 we exhibit the periodic
points of periods two and three in a particular example.

Example 2.3. We will present examples of periodic orbits for Φ : {1, 2}N →
{1, 2}N in Subsection 5.1. For example, when

M =

(
φ(1, 1) φ(1, 2)
φ(2, 1) φ(2, 2)

)
=

(
2 1
1 2

)
.

The points x = (1, 2, 2, .., ) and (2, 2, 2, ...) are fixed points.
The point x = (2, 1, 2, 2, 2, 2, ..) has period two: Φ(x) = (1, 1, 2, 2, 2, ..).

The next example shows that the sets M(σ) and M(Φ) are different.

Example 2.4. Consider r = 3 and a case where lines can repeat as in

M =

 φ(1, 1) φ(1, 2) φ(1, 3)
φ(2, 1) φ(2, 2) φ(2, 3)
φ(3, 1) φ(3, 2) φ(3, 3)

 =

 1 2 3
1 2 3
3 2 1

 .

In this case
Φ−1(1) = 33 ∪ 21 ∪ 11,

Φ−1(2) = 32 ∪ 22 ∪ 12

and
Φ−1(3) = 31 ∪ 23 ∪ 13.

Moreover, Φ−2(1) ∪ Φ−2(2) ∪ Φ−2(3) is a total of 33 different cylinders.
The independent probability µ on {1, 2, 3}N associated to the weights

(1/7, 2/7, 4/7)

is σ-invariant but not Φ-invariant. Indeed,

µ(Φ−1(1)) = µ(33) + µ(21) + µ(11) =

4/7 4/7 + 2/7 1/7 + 1/7 1/7 6= 4/7 1/7 + 2/7 1/7 + 1/7 1/7 = 1/7 = µ(1).

In this case M(σ) 6=M(Φ).
If µ0 is the measure of maximal entropy (for the shift σ), then,

µ0(b1, b2, ..., bn) = 3−n, (2.6)
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and therefore from the above µ0 is also Φ-invariant, that is µ0 ∈M(σ,Φ).

A particular case of φ as in (2.1) is the bipermutative CA Φ where we
assume the extra assumption on φ: for each b, the law

a ∈ A → φ(a, b) is bijective. (2.7)

Most of our results are for the general case of the permutative CA Φ. We
point out that in several papers on the area what is called a bipermutative
CA is always described by a local rule φ derived from some kind of group
structure on the set of symbols {1, 2, ..., r}; the algebraic cellular automata
(see for instance [33] and [15]).

Example 2.5. We will provide an example where equation (1.3) is true for
Φ1 = σ and Φ2 = Φ, r = 2, for functions that depends on the first two
coordinates.

Consider φ such that

M =

(
φ(1, 1) φ(1, 2)
φ(2, 1) φ(2, 2)

)
=

(
2 1
2 1

)
.

This example of φ defines a permutative Φ that is not bipermutative.
Take the functions A1 and A2 depending on the two first coordinates sat-

isfying
A1(x1, x2, ...) = Qx1,x2

and
A2(x1, x2, ...) = Cx1,x2 .

Assume that

Q2,1 = Q1,2, C1,2 = C1,1 +Q1,2 −Q2,2,

C2,1 = C1,1 −Q1,1 +Q1,2, C2,2 = C1,1. (2.8)

Then,

A1 − A1 ◦ σ = A2 − A2 ◦ Φ.

From [20] (see also Theorem 3.7) this implies that the σ-equilibrium for
A2 is equal to the Φ-equilibrium for A1. Then, M(σ,Φ) is not empty.

Without loss of generality we can assume that C12 = 1 − C11 and C22 =
1−C21 (see [22]). The σ-equilibrium probability for A2 is a Markov stationary
measure µ (see [22] or [43]). The set M(σ,Φ) contains the one-parameter
family of stationary Markov probabilities µ index by −1 < λ < 1, obtained
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by symmetric line stochastic matrices, where C2,1 − C1,1, = λ. In this case
Q1,1 = Q1,2 − λ and Q2,2 = Q1,1, Q1,2 = Q2,1.

For the line stochastic matrix(
1/3 2/3
2/3 1/3

)
,

the left invariant probability vector is (Π1,Π2) = (1/2, 1/2).
In this case

Φ−1(1) = 1, 2 ∪ 2, 2,

and
Φ−1(2) = 1, 1 ∪ 2, 1.

Then,

µ(Φ−1(1)) = µ(1, 2) + µ(2, 2) = 1/2 2/3 + 1/2 1/3 = 1/2 = µ(1).

In the same way µ(Φ−1(2)) = µ(2). This, computation highlights the prop-
erty that Φ preserves the Markov probability µ.

If

M =

(
φ(1, 1) φ(1, 2)
φ(2, 1) φ(2, 2)

)
=

(
2 1
1 2

)
,

there are also solutions for A1 and A2 when

Q2,1 = 2Q1,2 −Q1,1, Q2,2 = Q1,2, C1,2 = C1,1 +Q1,1 −Q1,2,

C2,1 = C1,1 −Q1,1 +Q1,2, C2,2 = C1,1.

In this case, one can deduce (after a simple manipulation) that the inde-
pendent probability with weights (1/2, 1/2) (the maximal entropy measure) is
the only one that can be obtained as Φ-equilibrium for potentials that depend
on two coordinates.

This example of φ defines a bipermutative CA Φ, and it also fits the case
of an algebraic CA on two symbols (see [32] and [33]).

The property that we just show for this bipermutative CA (the maximal
entropy measure is the only one in M(σ,Φ), for potentials that depend on
two coordinates) is in some sense a very particular example of a series of
important cases covered by the setting of algebraic cellular automata (see
[42], [41], [7] and [32]).

For instance in [17] the authors show that the only Φ-invariant, σ-ergodic
measure m with with positive Φ-entropy is the maximal entropy measure.
In another direction for affine cellular automata the authors in [27] show
that the only measure with complete connections and summable decay, that
is simultaneously invariant by the cellular automata and the shift map, is the
measure of maximum entropy.

8



We will provide an example where equation (1.3) is true for Φ1 = σ and
Φ2 = Φ, r = 2, for functions that depend on the first three coordinates in
Example 7.3 in the Appendix. This will show the existence of more complex
examples in M(σ,Φ).

Proposition 2.6. Consider K := {1, 2, . . . , r}, a partition of Ω. Then, for
all n ≥ 0 we have

K
∨

Φ−1(K)
∨

. . .
∨

Φ−n(K) =
⊎

a1...an+1∈A

a1 . . . an+1.

Moreover, give n, x ∈ Ω, for each y = (a1, a2, .., an, yn+1, yn+2, ..) ∈
Φ−n(x), there exist a unique z of the form z = (a1, a2, ..., an, zn+1, zn+2, ..)
in σ−1(x), and vice versa.

For proof see Proposition 7.2 in the Appendix.

Remark 2.7. Given the natural partition K = {1, 2, ..., r}

Kn = K ∨ Φ−1K ∨ ... ∨ Φ−nK

suppose that it is equal to the partition {a1, a2, ..., an, aj ∈ A, j = 1, 2, ..., n},
for every n ∈ N. This is the case we consider here as shown in Proposition
2.6.

In the case µ ∈M(σ), then the entropy according to σ

h(µ) = hσ(µ) =

− lim
m→∞

1

m

∑
(a1,a2,..,am)∈{1,2,...,d}m

µ(a1, a2, .., am) log(µ(a1, a2, .., am)). (2.9)

In the case µ ∈M(Φ), then the entropy according to Φ is

h(µ) = hΦ(µ) = − lim
n→∞

1

n

∑
S∈Kn

µ(S) log(µ(S)). (2.10)

In this case, if µ ∈M(σ,Φ), then hΦ(µ) = hσ(µ).

3 Thermodynamic Formalism for Φ

First will state some results on Thermodynamic Formalism for the Φ defined
via (2.1). We point out that the proofs of these results follow from a simple
adaptation of the ones claiming analogous results (which are well known) for
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the shift σ, as in [31] (Φ is an expanding map as shown in Lemma 5.1). We
point out that the IFS Thermodynamic Formalism (as in [18], [1] and [3])
can also be applied to Φ (the similar results that we will use here are also
true)

The classical Ruelle Theorem is valid for σ; the same proof also works
replacing σ for Φ. In order to make a distinction we can write LA2,σ and
LA1,Φ.

Given a Lipschitz potential A : Ω = {1, 2, ..., r}N → R, we interested in a
probability µA which maximizes the pressure

PΦ(A) := sup
ρ∈M(Φ)

{hΦ(ρ) +

∫
A(x)dρ(x)} = (3.1)

hΦ(µA) +

∫
AdµA,

where A is the potential and hΦ(ρ) is the Φ-entropy of ρ (defined before).
Such µA is unique and will be called the Φ-equilibrium for A.
Given a Lipschitz potential A : Ω→ R, define LA(f) = LA,Φ(f) = g, via

g(y) = LA(f)(y) = LA,Φ(f)(y) =
∑

Φ(x)=y

eA(x)f(x). (3.2)

Note that for each n > 1

g(y) = LnA(f)(y) =
∑

Φn(x)=y

e
∑n−1

j=0 A(Φj(x))f(x). (3.3)

Consider a Lipschitz-continuous potential A with Lipschitz constant c,
and x, y ∈ AN, then given a ∈ Ak, there exist just two points ax, ay in the
same cylinder set such that Φn(ax) = x, and Φn(ay) = y. An important
property for the validity of the Ruelle Theorem (that we can also use for the
dynamics of Φ) is

|A(ax)− A(ay)| ≤ c d(ax, ay) ≤ c
1

2k
d(x, y) (3.4)

Above we are using the second claim in Proposition 2.6.
Note that given a Lipschitz-continuous potential A, there exists b > 0,

such that, ∀n, and ∀ j = (j1, j2, ..., jn) ∈ {1, 2, ..., r}n = An∏n−1
j=0 e

A(Φj(x))∏n−1
j=0 e

A(Φj(y))
< b, (3.5)
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∀x, y ∈ j1, j2, ..., jn = j.
From (3.4) follows that for a Lipschitz-continuous potential A, given

x, y ∈ AN, we get that
|Sn,A (ax)− Sn,A (ax)| (3.6)

is bounded independently of n and the size of the word a ∈ Ak, k > 0.
The above property (3.5) (or (3.6)) is called the bounded distortion

property for the Lipschitz-continuous potential A. This property is the key
ingredient for analyzing the asymptotic of (3.3) when n→∞.

We denote by C = C(Ω,R) the space of continuous functions f : Ω→ R.
For the proof of the next theorem see for instance [31] (adapted to our

setting).

Theorem 3.1. There exists a strict positive Lipschitz eigenfunction ψA =
ψA,Φ for LA,Φ : C → C, associated to a unique strictly positive eigenvalue
λA = λA,Φ. The eigenvalue is simple (and isolated from the rest of the
spectrum when LA acts on the set of Lipschitz functions) and it is equal
to the supremum of the modulus of the values of the spectrum. Moreover,
log λA,Φ = PΦ(A).

The pressure PΦ(− log r) = 0 because in this case, the eigenvalue is equal
to 1.

Remark 3.2. If a continuous function f > 0 satisfies for some λ > 0

LA(f) = λf,

then, λ is the main eigenvalue and f is the main eigenfunction (see [31]).

Given a continuous potential A : Ω→ R, we can define the dual operator
L∗A = L∗A,Φ on the space of the Borel finite measures on Ω, as the operator
that sends a measure ν to the measure L∗A(ν), defined by∫

ψ dL∗A(v) =

∫
LA(ψ) dv . (3.7)

for any ψ ∈ C.
The operator L∗A acts on the space of all probabilities in Ω. Note that

if v is Φ-invariant, then, not necessarily the probability L∗A(v) is Φ-invariant
(the same claim is valid for σ).

Lemma 3.3. Suppose A : Ω→ R is a Lipschitz potential. Then, there exist
a probability ρA = ρA,Φ on Ω and a real positive eigenvalue λ̃A = λ̃A,Φ such
that

L∗A(ρA) = λ̃A ρA. (3.8)

Moreover, λ̃A = λA.
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We call such ρA the eigenprobability for A.

Remark 3.4. The eigenprobability ρA and the eigenfunction ψA are dual
entities, one is obtained from to L∗A and the other is obtained from LA; both
for the same eigenvalue λA.

One can show (see [31]) that ψA,Φ ρA,Φ is the equilibrium probability for
PΦ(A). Moreover, if w is such that B = A+w−w ◦Φ, then the equilibrium
probability for B and A are equal and PΦ(A) = Pφ(B) (see [31]).

In [20] the authors considered transformations Φ1,Φ2 : Ω → Ω which
commute and we will adapt their results for our setting: Φ1 = σ and Φ2 = Φ.
For generality, we will state some claims in terms of Φ1 and Φ2 (assuming
they satisfy the proper conditions).

Remark 3.5. Denote by Π either Φ1 or Φ2. We say that the Lipschitz
potential B is normalized for Π if LB,Π(1) = 1.

In this case

lim
n→∞

LnB,Π(f) =

∫
fdµ,

where µ is the equilibrium potential for B (see [31]). Moreover, L∗B,Π(µ) = µ.
If B is normalized it is usual to denote by J : Ω → (0, 1) the function

such that B = log J . We call J the Jacobian of the probability µ such that
L∗B,Π(µ) = L∗log J,Π(µ) = µ.

In the case of Φ, if J is a Jacobian, then for any x we have∑
Φ(y)=x

J(y) = 1.

The Jacobian in some sense plays the role of a stochastic matrix. In Example
8 in [22] this is properly described for the case of the shift.

Given a Lipschitz potential A, the associated eigenvalue λA and the cor-
responding eigenfunction ψA, the potential

Ā = A+ logψA − log(ψA ◦ Φ)− log λA

is normalized, has pressure zero and it is called the normalization of A. The
equilibrium probability for A is the measure of maximal entropy, if and only
if Ā = − log r (see the end of Section 2 in [22]); this is true for Φ and σ.

An interesting result claims the following (see Lemma 2.1 in [20]):
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Lemma 3.6. Suppose Φ1 and Φ2 commute, then

LA1,Φ2 ◦ LA2,Φ1 = LA2,Φ1 ◦ LA1,Φ2 ,

if and only if,
A1 − A1 ◦ Φ1 = A2 − A2 ◦ Φ2.

Below, in Theorem 3.7, we will fill in some details missing on the proof
of Theorem 2.2 in [20] that we believe would be appropriate.

The next theorem contemplates the case

A1 − A1 ◦ σ = A2 − A2 ◦ Φ,

taking w = 0. Therefore, M(Φ, σ) is not empty for the case of Example 2.5.

Given Lipschitz potentials A1 and A2, we ask: what are sufficient condi-
tions on A1, A2 in such way that µA2,Φ1 = µA1,Φ2?

Theorem 3.7. Suppose Φ1 and Φ2 commute, and assume that A1 and A2

are Lipschitz functions. If for some Lipschitz function w we get

(A1 −A1 ◦ Φ1)− (A2 −A2 ◦ Φ2) = (w − w ◦ Φ1)− (w − w ◦ Φ1) ◦ Φ2, (3.9)

Then, µA2,Φ1 = µA1,Φ2.

Proof. Note that if (B1 −B1 ◦ Φ1) = (B2 −B2 ◦ Φ2), then for any f

LB1,Φ2(LB2,Φ1(f)) = LB2+B1◦Φ1,Φ2◦Φ1(f)(y) = LB2,Φ1(LB1,Φ2(f)). (3.10)

Therefore, the Ruelle operators commute.
Condition (3.9) implies that LA1,Φ2 and LA2+(w−w◦Φ1),Φ1 commute.
Suppose that ϕ > 0 is eigenfunction for LA1,Φ2 , that is LA1,Φ2(ϕ) = λϕ,

and ψ > 0 is eigenfunction for LA2,Φ1 , that is LA2,Φ1(ψ) = βψ.
Moreover, we set L∗A2,Φ1

(ρ) = βρ and L∗A1,Φ2
(ν) = λν. The equilibrium

probability for A2 is ψ ρ.
Without loss of generality, we can assume that β = λ = 1. Indeed.

Replacing A1 by A1 − log λ and A2 by A2 − log β we keep the relation (3.9)
for the same w (and, respectively, the equilibrium properties will not change).
We can also assume that A2 is Φ1 normalized, that is ψ = 1, which means
ρ = µA2,Φ1,1.

The eigenfunction for LA2+(w−w◦Φ1),Φ1 is f = e−w, indeed

LA2+(w−w◦Φ1),Φ1(f)(x) =

LA2+(w−w◦Φ1),Φ1( e−w)(x) =
∑

Φ1(y)=x

eA2(y) ew(y)

ew◦Φ1(y)
e−w(y) =

13



∑
Φ1(y)=x

eA2(y) e
w(y)

ew(x)
e−w(y) =

∑
Φ1(y)=x

eA2(y) 1

ew(x)
=

1

ew(x)
.

Now, note that

LA2+(w−w◦Φ1),Φ1(LA1,Φ2(
1

ew
)) = LA1,Φ2(LA2+(w−w◦Φ1),Φ1(

1

ew
) ) =

LA1,Φ2(
1

ew
).

Therefore, g = LA1,Φ2( 1
ew

) > 0 is eigenfunction for LA2+(w−w◦Φ1),Φ1 , and
associated to the eigenvalue 1. From Remark 3.2 we get that g is colinear
with 1

ew
. That is LA1,Φ2( 1

ew
) = γ 1

ew
, for some γ > 0. Once more from

Remark 3.2 we get that γ = 1, and the eigenfunction ϕ for LA1,Φ2 is colinear
with 1

ew
. This shows that w = − logϕ+ c.

This shows that (3.9) is true replacing w by − logϕ.
Then, LA1,Φ2 and LA2+( (− logϕ)−(− logϕ)◦Φ1),Φ1 commute.
Expression (3.9) is equivalent to

(A2 − A2 ◦ Φ2)− (A1 − A1 ◦ Φ1) =

((−w)− (−w) ◦ Φ2)− ((−w)− (−w) ◦ Φ2) ◦ Φ1. (3.11)

Therefore, LA2,Φ1 and LA1−w+w◦Φ2,Φ2 commute.
Note that the potential A1 −w +w ◦Φ2 − log γ = A1 −w +w ◦Φ2 is Φ2

normalized.
From Remark 3.5 we get for any continuous function h

lim
n→∞

LnA2,Φ1
(LA1−w+w◦Φ2−log γ,Φ2)(h) =

∫
LA1−w+w◦Φ2−log γ,Φ2(h)dρ,

From the commutative property, we get from Remark 3.5

lim
n→∞

LA1−w+w◦Φ2−log γ,Φ2(LnA2,Φ1
(h)) = LA1−w+w◦Φ2−log γ,Φ2(

∫
hdρ) =

∫
hdρ.

This shows that L∗A1−w+w◦Φ2,Φ2
(ρ) = ρ. Therefore, we were able to show

that ρ is the Φ2-equilibrium probability for A1. That is, µA2,Φ1,1 = µA1,Φ2,1.

Remark 3.8. (A− A ◦ σ) is in some sense the discrete time version of the
σ-derivative of the “function” A. Note that in the case µ is σ-invariant for
the shift we get

∫
(A − A ◦ σ)dµ = 0, which corresponds to

∫ b
a
f ′(x)dx = 0,

when f is periodic in [a, b].
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The hypothesis

(A1 − A1 ◦ σ)− (A2 − A2 ◦ σ) = (w − w ◦ σ)− (w − w ◦ σ) ◦ σ,

is a discrete version of the postulation

f ′ − g′ = d2

dx2
w.

The hypothesis

(A1 − A1 ◦ Φ1)− (A2 − A2 ◦ Φ2) = (w − w ◦ Φ1)− (w − w ◦ Φ1) ◦ Φ2,

is in some sense a kind of mixed derivatives expression.

The next result is a kind of converse of Theorem 3.7.

Theorem 3.9. Suppose Φ1 and Φ2 commute, and assume that A1 and A2

are Lipschitz functions. Also assume that fdµ = gdν, where f, µ are, re-
spectively, the eigenfunction and eigen-probability for LA1,Φ2, and g, ν are,
respectively, the eigenfunction and eigenprobability for LA2,Φ1.

Then, the Lipschitz function w = log g − log f satisfies

(A1 −A1 ◦Φ1)− (A2 −A2 ◦Φ2) = (w−w ◦Φ1)− (w−w ◦Φ1) ◦Φ2. (3.12)

For proof see Theorem 2.2 in [20].

Remark 3.10. When asking properties derived from the equality between two
equilibrium probabilities for respectively, A1,Φ2 and A2,Φ1, we can assume
in the hypothesis of Theorem 3.9 that f = 1 = g (that is, A1 is Φ2 normalized
and A1 is Φ2 normalized). In this way, from the hypotheses µ = ν, we derive
the property

(A1 − A1 ◦ Φ1) = (A2 − A2 ◦ Φ2). (3.13)

4 The involution Kernel: σ and Φ duality

The eigenfunction and the eigenprobability are dual concepts (see Remark
3.4) and in this section, we will address results in some way related to this
claim.

We will adapt the reasoning of [31], Proposition 1.2 in Section 1, to show
that a natural skew dynamics associated with cellular automata (and the
shift) have the special property that a potential f(x, y), initially defined at
the skew structure {1, 2, ..., k}N × {1, 2, ..., k}N, is co-homologous to another
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one g(x, y) that depends only of the “future” coordinates x. This will gener-
alize the well known result for the shift σ̂ acting on {1, 2, ..., k}Z, as in [31].
Here we represent

{1, 2, ..., k}Z ' {1, 2, ..., k}N × {1, 2, ..., k}N := {(x, y)|x, y ∈ {1, 2, ..., k}N}

to avoid the identification of the coordinate correspondent to zero when we
define our dynamics. In this notation, x is the “future” and y is the “past”
because we could relabel y as the negative coordinates in {1, 2, ..., k}Z.

The inverse branch τj : Ω→ Ω is given by the formula

τj(x) = y if Φ(y) = x and y1 = j.

In the next result, we assume that x → A(x) is a function of the future
variables x and y → A∗(y) is a function of the past variable y. One of
the purposes of Subsection 4.1 is to derive such result from a more general
reasoning which is of interest in itself.

Proposition 4.1. Assume that A depending just of the future coordinates
x, and A∗ which depends on past coordinates y, are such that, there exist
W : Ω× Ω satisfying for i = 1, 2, ..., r, x, y ∈ Ω

(A+W )(ix, y) = (A∗ +W )(x, τi(y)). (4.1)

Then, if ρA∗ is the eigenprobability for the Φ-Ruelle operator LA∗,Φ of the
potential A∗, then

φ(x) =

∫
eW (x,y)dρA∗(y)

is the eigenfunction for the σ-Ruelle operator LA,σ of the potential A.
Moreover, given a Lipschitz function y → A∗(y), there exists a Lipschitz

function x→ A(x) and W as in (4.1).

W will be called an involution kernel for A, and A is called the dual po-
tential of A∗. The integral kernel K(x, y) = eW (x,y) relates eigeinprobabilities
and eigenfunctions.

We will present the proof of such results in Propositions 4.3 and 4.5.
In this direction, it will be necessary to introduce the mixed skew product
Φ̂ to be defined later (see (4.2)). Proposition 4.1 relates dual objects: the
eigenprobabilities for the CA Φ and eigenfunctions for σ. Proposition 4.3 is
similar, but different for Proposition 8 item (2) in [9], where it is considered
σ̂ instead of Φ̂.

Given 0 < θ < 1, consider the maximum metric d̂θ defined by

d̂θ((x, y), (x′, y′)) := max(dθ(x, x
′), dθ(y, y

′)),
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where
dθ(x, x

′) = θN

for N being the first coordinate where xi 6= x′i (and zero if x = x′). The
metric d̂θ is equivalent to the one defined in [31].

In the general setting, we get a matrix M of zeroes and ones and deal
with the subshifts of finite type

Σ̂M :=

{(x, y)|x, y ∈ {1, 2, ..., k}N, M(xi, xi+1) = 1,M(yi−1, yi) = 1,M(y1, x1) = 1},

ΣM := {x|x ∈ {1, 2, ..., k}N, M(xi, xi+1) = 1}.

As usual, the “future” and the “past” projections are well defined respec-
tively as π1, π2 : Σ̂M → ΣM by

π1(x, y) = x and π2(x, y) = y.

In this setting we define an immersion function ϕ : ΣM → Σ̂M by

ϕ(x) = (x, b(x1))

where M(b1, x1) = 1 and b(x1) ∈ ΣM is a fixed sequence.
Notice that the above formalism is necessary when we are dealing with

actual subshifts of finite type. From now on, we assume we are considering
just the full shift (for simplification of the argument). In this case
ΣM = {1, 2, ..., k}N, Σ̂M = {1, 2, ..., k}N × {1, 2, ..., k}N and the immersion
function assume a very simple form

ϕ(x) = (x, y′)

where y′ ∈ {1, 2, ..., k}N is a fixed sequence, for all x.
In order to clarify the notation we denote Ω := ΣM = {1, 2, ..., k}N, where

it is necessary.
Assume f : Ω2 → R is a Lipschitz potential. We will consider two skew

homeomorphisms (the mixed one in Subsection 4.1 and the non-mixed one
in Subsection 4.2), and our main goal is to relate f (via a cohomological
equation) to a new potential g : Ω2 → R such that g(x, y) = g(x, z), for all
x, y, z ∈ Ω, that is, g depends only of the “future” coordinates.
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4.1 The mixed skew product Φ̂

Consider Φ̂ : Ω2 → Ω2 defined by

Φ̂(x, y) = (σ(x), τx1(y)), (4.2)

where the inverse branch τj : Ω→ Ω is given by the formula

τj(x) = y if Φ(y) = x and y1 = j.

We introduce the n-branch

τn,x(y) = π2(Φ̂n(x, y)).

For a fixed z ∈ Ω we define the immersion function ϕ(x) = (x, z) and
for any x, y ∈ Ω we define the mix W -kernel as the formal correspondence
W : Ω2 → R by

W (x, y) :=
∑
n≥0

f(Φ̂n(x, y))− f(Φ̂n(ϕ(x))) =
∑
n≥0

f(Φ̂n(x, y))− f(Φ̂n(x, z)).

(4.3)
The next result generalizes the result from [31] if we choose the trivial

cellular automata (that is φ(x, y) = y).

Theorem 4.2. In the above conditions, we have the following properties.

1. The skew map Φ̂ is a homeomorphism.

2. The series defining W (x, y) is absolutely convergent.

3. Given a Lipschitz function f : Ω2 → R, there exists a Lipschitz function
g : Ω2 → R such that

f(x, y) = g(x, y) +W (x, y)−W (Φ̂(x, y)), (4.4)

and g(x, y) = g(x, z) for all x, y, z ∈ Ω.

4. W is a Lipschitz function with respect to the metric d√θ in Ω2 and

Lip(W ) ≤ 2Lip(f)
(

1+θ
1−θ

)
. In particular, g is also a Lipschitz function

with respect to the metric d√θ.

Proof. (1) Φ̂ is obviously continuous because each coordinate is. To see that
it is a bijection suppose

Φ̂(x, y) = (σ(x), τx1(y)) = (σ(x′), τx′1(y′)) = Φ̂(x′, y′).
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Since σ(x′) = σ(x), the strings x, x′ coincide, except eventually by the first
coordinate. On the other hand z′ = τx′1(y′) = τx1(y) = z meaning that
Φ(z) = y and z1 = x1 and Φ(z′) = y′ and z′1 = x′1 thus x1 = x′1. From the
equations Φ(z) = y, Φ(z′) = y′ and z = z′, we get y = y′ and x = x′.

(2) Consider the absolute value series∑
n≥0

|f(Φ̂n(x, y))− f(Φ̂n(x, z))| ≤
∑
n≥0

Lip(f)θnd(y, z) <∞.

(3) One just needs to transform the equation

W (x, y)−W (Φ̂(x, y)) =

=
∑
n≥0

f(Φ̂n(x, y))− f(Φ̂n(x, z))−
∑
n≥0

f(Φ̂n+1(x, y))− f(Φ̂n(σ(x), z)) =

= f(x, y)− f(x, z) + f(Φ̂(x, y))− f(Φ̂(x, z)) + f(Φ̂2(x, y))−
f(Φ̂2(x, z)) + f(Φ̂3(x, y))− f(Φ̂3(x, z))+

+ . . .−
[
f(Φ̂(x, y))− f(Φ̂(σ(x), z)) + f(Φ̂2(x, y))−

f(Φ̂2(σ(x), z)) + f(Φ̂3(x, y))− f(Φ̂3(σ(x), z)) + . . .
]

=

= f(x, y)−

[
f(x, z) +

∑
n≥1

f(Φ̂n(x, z))− f(Φ̂n(σ(x), z))

]
.

Thus, taking

g(x, y) = f(x, z) +
∑
n≥1

f(Φ̂n(x, z))− f(Φ̂n(σ(x), z))

we get the cohomological equation (4.4), where W is given by (4.3). We
notice that g(x, y) depends only on the future coordinates (given by x).

(4) Take any x, x′, y, y′ ∈ Ω.
If, for a fixed N > 0 we suppose d((x, y), (x′, y′)) = θ2N , then

W (x, y)−W (x′, y′) =∑
n≥0

f(Φ̂n(x, y))− f(Φ̂n(x, z))−
∑
n≥0

f(Φ̂n(x′, y′))− f(Φ̂n(x′, z)),

can be evaluated as follows.
For n ≤ N we have

|f(Φ̂n(x, y))− f(Φ̂n(x′, y′))| ≤ |f(σn(x), τn,x(y))− f(σn(x′), τn,x′(y
′))| ≤
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Lip(f) max(dθ(σ
n(x), σn(x′)), dθ(τn,x(y), τn,x′(y

′)) ≤
≤ Lip(f) max(θ−ndθ(x, x

′), θndθ(y, y
′)) ≤ Lip(f)θ2N−n.

A similar reasoning shows that

|f(Φ̂n(x, z))− f(Φ̂n(x′, z))| ≤ Lip(f)θ2N−n.

Analogously, for every n ≥ 1 we get

|f(Φ̂n(x, y))− f(Φ̂n(x, z))| = |f(σn(x), τn,x(y))− f(σn(x), τn,x(z))| ≤

≤ Lip(f) max(dθ(σ
n(x), σn(x)), dθ(τn,x(y), τn,x(z)) ≤

≤ Lip(f) max(0, θndθ(y, y
′)) ≤ Lip(f)θn.

A similar reasoning shows that

|f(Φ̂n(x′, y))− f(Φ̂n(x′, z))| ≤ Lip(f)θn.

From these four inequalities, we can write

|W (x, y)−W (x′, y′)| ≤

≤ |
∑

0≤n≤N

f(Φ̂n(x, y))− f(Φ̂n(x, z))−
∑

0≤n≤N

f(Φ̂n(x′, y′))− f(Φ̂n(x′, z))|+

|
∑
n>N

f(Φ̂n(x, y))− f(Φ̂n(x, z))−
∑
n>N

f(Φ̂n(x′, y′))− f(Φ̂n(x′, z))| ≤

≤
∑

0≤n≤N

|f(Φ̂n(x, y))− f(Φ̂n(x′, y′))|+
∑

0≤n≤N

|f(Φ̂n(x, z))− f(Φ̂n(x′, z))|+

∑
n>N

|f(Φ̂n(x, y))− f(Φ̂n(x, z))|+
∑
n>N

|f(Φ̂n(x′, y′))− f(Φ̂n(x′, z))| ≤

≤
∑

0≤n≤N

Lip(f)θ2N−n +
∑

0≤n≤N

Lip(f)θ2N−n+

∑
n>N

Lip(f)θn +
∑
n>N

Lip(f)θn ≤

2Lip(f)

(
θ2N

∑
0≤n≤N

θ−n + θN+1 1

1− θ

)
=

= 2Lip(f)

(
θN

∑
0≤n≤N

θ−n +
θ

1− θ

)
θN = Cd√θ((x, y), (x′, y′)),

20



for

C := 2Lip(f)

(
1 + θ

1− θ

)
<∞.

Here we used the fact that

θN
∑

0≤n≤N

θ−n =
∑

0≤n≤N

θn ≤ 1

1− θ
.

Proposition 4.3. Assume that A depending just of the future coordinates
x and A∗ which depends on past coordinates y are such that, there exist
W : Ω× Ω satisfying

(A+W )(ix, y) = (A∗ +W )(x, τi(y)). (4.5)

Then, if ρA∗ is the eigenprobability for the Φ-Ruelle operator LA∗,Φ of the
potential A∗, then

φ(x) =

∫
eW (x,y)dρA∗(y)

is the eigenfunction for the σ-Ruelle operator LA,σ of the potential A.
Moreover, given A∗, there exist A and W as in (4.5).

Proof. Note that

LσA(φ)(x) = LσA(

∫
eW (.,y)dρA∗(y))(x) =∫

LσA(eW (.,y))(x)dρA∗(y) =

∫ ∑
i

eA(ix)eW (ix,y)dρA∗(y) =∫ ∑
i

eA
∗(τi(y))eW (x,iy)dρA∗(y) =

∫
LΦ
A∗(e

W (x,.))dρA∗(y) =

λφA∗

∫
eW (x,y)dρA∗(y).

From Remark 3.2 we get that λφA∗ = λσA.
For the proof of the existence of A and W see Proposition 4.5 and Remark

4.4.

Remark 4.4. A particular situation of the previous result occurs when f
is defined in the following way: consider a Lipschitz potential A∗ : Ω → R
depending only on the past, and take

f(x, y) = A∗(π2(Φ̂(x, y))) = A∗(π2(σ(x), τ1,x(y)) = A∗(τ1,x(y)) = A∗(τx1(y)).
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In this case, the cohomological equation produces

A∗(τ1,x(y)) = g(x, y) +W (x, y)−W (Φ̂(x, y)),

where g(x, y) does not depends on y, meaning that there exists a potential
A : Ω→ R, given by

A(x) = f(x, z) +
∑
n≥1

f(Φ̂n(x, z))− f(Φ̂n(σ(x), z)) =

A∗(τ1,x(z)) +
∑
n≥1

A∗(τn+1,x(z))− A∗(τn+1,σ(x)(z)),

also Lipschitz (w.r.t. the appropriated metric) such that

A(x) = A∗(π2(Φ̂(x, y))) +W (x, y)−W (Φ̂(x, y)),

for some W .
In this situation we say that A and A∗ are dual potentials w.r.t. the W -kernel
W chosen by fixing z.
From this, we get a simpler cohomological equation

A∗(τ1,x(y)) = A(x) +W (x, y)−W (Φ̂(x, y)),

or, equivalently

A∗(τ1,σ(x)(y)) +W (Φ̂(x, y)) = A(x) +W (x, y). (4.6)

From the above Remark, we get:

Proposition 4.5. Given a Lipschitz function y → A∗(y), there exists a
Lipschitz function x→ A∗(x), and a bi-Lipschitz function (x, y)→ W (x, y),
such that for all i = 1, 2..., r and x, y

(A+W )(ix, y) = (A∗ +W )(x, τi(y)). (4.7)

In a similar fashion, given A one can find A∗ and W such that (4.7) is
true.

Proof. Replacing x by ix = (i, x1, x2, ...) in (4.6) we get

(A+W )(ix, y) = (A∗ +W )(σ(ix), τ1,ix(y)) = (A∗ +W )(x, τi(y)). (4.8)
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In the above we replace Φ̂ by the shift σ̂, and we exchange the variables
x and y above, then we get the similar expression described by Definition 6
obtained in [9].
Finally, we notice that the dual relation can be reversed, that is,

A(x) = A∗(π2(Φ̂(x, y))) +W (x, y)−W (Φ̂(x, y)),

is equivalent to

A(π1(Φ̂−1(x, y))) = A∗(y) +W (Φ̂−1(x, y))−W (x, y),

or
A∗(y) = A(π1(Φ̂−1(x, y))) +W (x, y)−W (Φ̂−1(x, y)),

where Φ̂−1(x, y) = (y1x,Φ(y)).

4.2 The non-mixed skew product Φ̂n

In this subsection we consider the non-mixed skew product Φ̂n : Ω2 → Ω2

defined by
Φ̂n(x, y) = (Φ(x), τx1(y)),

where the inverse branch τj : Ω→ Ω is given by the formula

τj(x) = y if Φ(y) = x and y1 = j.

We introduce the k-branch

τk,x(y) = π2(Φ̂k
n(x, y)).

For a fixed z ∈ Ω we define the immersion function ϕ(x) = (x, z) and for
any x, y ∈ Ω we define the non-mixed involution kernel W as the formal
correspondence W : Ω2 → R given by

Wn(x, y) :=
∑
k≥0

f(Φ̂k
n(x, y))− f(Φ̂k

n(ϕ(x))) =
∑
k≥0

f(Φ̂k
n(x, y))− f(Φ̂k

n(x, z)).

In a similar way as in the last subsection, we can show that such Wn is
well-defined. Moreover, given a Lipschitz function f : Ω2 → R, there exists
a Lipschitz function g : Ω2 → R, such that,

f(x, y) = g(x, y) +Wn(x, y)−Wn(Φ̂n(x, y)), (4.9)

and g(x, y) = g(x, z) for all x, y, z ∈ Ω.
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A similar version of Theorem 4.2 for Φ̂n is true (the reasoning is similar
to the one in the last subsection).

Denote by M(Φ̂n) the set of Borel probabilities on Ω × Ω which are
invariant by Φ̂n. Given a Lipschitz potential Â : Ω × Ω → R, consider the
topological pressure problem

P (Â) := sup
µ̂∈M(Φ̂n)

{h(µ̂) +

∫
Âdµ̂}, (4.10)

where h(µ̂) is the Shannon-Kolmogorov entropy of µ̂. A probability µ̂Â attain-

ing the supremum value P (Â) will be called an Φ̂n-equilibrium probability
for Â.

Of course, if B̂ : Ω × Ω → R is such that there exist a continuous Ĉ :
Ω× Ω→ R satisfying

B̂ = Â+ Ĉ − Ĉ ◦ Φ̂n,

then an equilibrium probability for Â is an equilibrium probability for B̂,
and vice-versa.

The reasoning showing the validity of expression (4.9) implies that we can
replace in the above Pressure problem (4.10) the potential Â : Ω × Ω → R
by a Lipschitz potential B̂ : Ω→ R, that depends just on future coordinates
x. The equilibrium probabilities for Â and B̂ := B will be the same. As B
depends just on future coordinates one can define the Ruelle operator LB,Φ
and take advantage of the Ruelle Theorem. Suppose µB,Φ is the Φ-equilibrium
probability for B. This will define the probability µB,Φ(a1, a2, ..., am), aj ∈
{1, 2, ..., r}, j = 1, 2, ...,m, for any cylinder a1, a2, ..., am. This means that
we are in fact defining probabilities for sets of the form

Ω× a1, a2, ..., am ⊂ Ω× Ω.

In (4.10) we are interested only in probabilities onM(Φ̂n). There is only
way to extend µB,Φ for a Φ̂n-invariant probability µ̂ on Ω× Ω. We set

µ(Φ̂−kn (Ω× a1, a2, ..., am)) = µB,Φ(a1, a2, ..., am).

The probability µ is called the natural extension of µB,Φ. Note that
for our Φ (obtained from the local rule φ defined on section 2) we get that
Φ̂−kn (Ω×a1, a2, ..., am) will exhaust the class of all possible cylinders in Ω×Ω,
changing k, the cylinders a1, a2, ..., am, etc. These cylinders will generate the
Borel sigma-algebra of Ω×Ω. In this way, we can identify the Φ̂n-equilibrium
probability for Â via such µ. The several ergodic properties, for instance,
exponential decay of correlations, for the Φ-equilibrium probability for B are
transferred for the Φ̂n-equilibrium probability for Â. In other words, we can
take advantage of the properties described in Section 3 for Φ, but now for
the Φ̂n-equilibrium probability for Â.
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5 Livsic’s theorem for cellular automata

In this section, we will present a version of Livsic’s Theorem for the permu-
tative CA Φ satisfying (2.1) of Section 2. This result is based on estimates of
the Birkhoff averages of the potential A over periodic orbits. Among other
things, we are interested in criteria to be able to decide whether a certain po-
tential A of Holder class has, or not, as equilibrium probability the measure
of maximum entropy. We also present a criteria for finding periodic orbits
for Φ.

We recall that, for given 0 < θ < 1, the usual metric is defined by

dθ(x, x
′) = θN ,

for N being the first coordinate where xi = x′i (and zero otherwise), makes Φ
be a uniform expanding homeomorphism (by θ−1) and the inverse branches,
τj : Ω→ Ω are given by the formula

τj(x) = y if Φ(y) = x and y1 = j,

and are uniform contractions by θ.

Lemma 5.1. The endomorphism Φ : Ω→ Ω is expanding, that is, there exist
ε > 0 and L := θ−1 > 1 such that d(Φ(x),Φ(y)) ≥ Ld(x, y) for all x, y ∈ Ω
such that d(x, y) < ε.

Proof. Indeed, if d(x, y) = θN < ε, x 6= y then x = (a1, ...., aN−1, xN , ....) and
y = (a1, ...., aN−1, yN , ....) with xN 6= yN . As

Φ(x) = (φ(a1, a2), φ(a2, a3), ..., φ(aN−2, aN−1), φ(aN−1, xN), ...)

and

Φ(y) = (φ(a1, a2), φ(a2, a3), ..., φ(aN−2, aN−1), φ(aN−1, yN), ...)

we have φ(aN−1, xN) 6= φ(aN−1, yN) meaning that d(Φ(x),Φ(y)) = θN−1 =
θ−1d(x, y). Thus we can take L := θ−1 > 1.

Theorem 5.2. The map Φ satisfies the closing lemma property, that is, for
every ε > 0 there exists δ > 0 such that if x ∈ Ω and n ≥ 0 are such
that d (Φn(x), x) < δ, then there exists y ∈ Ω such that Φn(y) = y and
d
(
Φk(y),Φk(x)

)
< ε for all 0 ≤ k ≤ n− 1.
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Proof. Consider the orbit Φk(x) for 0 ≤ k ≤ n there is always jk such that
τjk(Φk(x)) = Φk−1(x) thus

τj1(· · · τjn(Φn(x)) = x.

Since τj1 ◦ . . . ◦ τjn is a contraction by θn << 1 we get a unique fixed point
y ∈ Ω such that τj1(· · · τjn(y)) = y. It is easy to see that Φn(y) = y.

In this way,

d(y, x) = d(τj1(· · · τjn(y)), τj1(· · · τjn(Φn(x)))) = θnd(y,Φn(x)) ≤

≤ θn(d(y, x) + d(x,Φn(x))) < θn(d(y, x) + δ)

or

d(y, x) <
θnδ

1− θn
.

So, if θnδ
1−θn < ε or

δ <
1− θn

θn
ε = (θ−n − 1)ε

then the proof is concluded since θ−n− 1 > 0 is bounded away from zero for
all n.

Recall that, for a potential A : Ω→ R, the sum

SnA(x) :=
n−1∑
k=0

A(Φk(x))

is well-defined.
The Walters property (w.r.t. Φ) is: for every ζ > 0 there exist ε > 0

such that if x, y ∈ Ω and n ≥ 0 are such that d
(
Φk(x),Φk(y)

)
< ε for all

0 ≤ k ≤ n− 1, then |SnA(x)− SnA(y)| < ζ (see [8]).

Theorem 5.3. If A : Ω → R is a Lipschitz (Hölder) potential then it has
the Walters property w.r.t. Φ.

Proof. Consider ζ > 0, and x, y ∈ Ω and n ≥ 0 are such that

d
(
Φk(x),Φk(y)

)
< ε,

for all 0 ≤ k ≤ n− 1. As Φ is expanding by θ−1 we know that

d
(
Φn−1(x),Φn−1(y)

)
< ε,
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only if d(x, y) < θn−1 ε thus

|SnA(x)− SnA(y)| ≤
n−1∑
k=0

∣∣A(Φk(x))− A(Φk(y)))
∣∣ ≤ Lip(A)

n−1∑
k=0

θ−kd(x, y) ≤

< Lip(A)
n−1∑
k=0

θ−kθn−1 ε ≤ Lip(A)

1− θ
ε < ζ

if

ε <
1− θ

Lip(A)
ζ,

concluding our proof (the Hölder case is similar).

Let X be a compact metric space, T : X → X a continuous map, and
A : X → R. We recall that A : X → R is a coboundary if A = h − h ◦ T
for some continuous map h : X → R and A is cohomologous to B : X → R
if A − B is a coboundary, that is, A = B + h − h ◦ T . In particular, any
coboundary is cohomologous to zero.

An important result is

Theorem 5.4. (Livsic Theorem - see Section 19.2 in [19]) Let X be a com-
pact metric space, T : X → X a continuous map satisfying the Closing
Lemma and possessing a point whose orbit is dense, and A : X → R a contin-
uous function satisfying the Walters Property. Then A is a coboundary(A =
h − h ◦ T ) if and only if for every periodic point x = T n(x) ∈ X, we have
SnA(x) = 0.

Obviously, X = Ω is a compact metric space and T = Φ is a continuous
map. Moreover, each Lipschitz potential is continuous, and theorems 5.2 and
5.3 ensure that the Closing lemma and Walters property are true for Φ. Thus
we have the following corollary.

Corollary 5.5. If A : Ω → R is a Lipschitz (Hölder) potential and Φ is
transitive, then A is a coboundary (A = h − h ◦ Φ) if and only if for every
periodic point x = Φn(x), we have SnA(x) = 0.

The map Φ of expression (2.4) is transitive as shown in Theorem 5.9.
Therefore, Corollary 5.5 is true for such Φ.

Remark 5.6. Note that given Lipschitz (Holder) potentials A,B, and the
Φ-equilibrium probabilities mA and mB, there exists normalized potentials Ā
and B̄, such that the equilibrium probabilities for Ā and B̄ are respectively
mA and mB. It follows from the end of Section 2 in [22] that mA 6= mB,
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if and only if Ā 6= B̄. It follows that for a given Holder potential A, the
equilibrium probability mA is the maximal entropy measure, if and only if, Ā
is constant.

Proposition 5.7. If A is a Lipschitz (Hölder) potential such that for some
constant c, is true that for any n periodic orbit x = Φn(x) ∈ X, we have
that Sn(A+ c)(x) = 0, then the equilibrium probability for A is the maximal
entropy measure.

Proof. If for any n periodic orbit x = Φn(x) ∈ X, we have that Sn(A+c)(x) =
0, then from Theorem 5.4 we get that there exists Lipschitz (Hölder) function
g such that

A+ c = g − g ◦ Φ.

This shows that A is Φ coboundary to a constant, and therefore the Φ-
equilibrium probability for A is the maximal entropy measure.

Proposition 5.8. If A is a Lipschitz (Hölder) potential such that for a cer-
tain n periodic orbit x = Φn(x), we have that Sn(A)(x) = nc1, and for
another m periodic orbit x = Φm(x), we have that Sm(A)(x) = mc2, where
c1 6= c2, then the equilibrium probability for A is not the maximal entropy
measure.

Proof. A Lipschitz (Hölder) potential A such the Φ-equilibrium probability
µA is the maximal entropy measure is of the form

A = g − g ◦ Φ + c,

where c is a constant.
Therefore, for any k periodic orbit x = Φk(x), we have that Sk(A)(x) =

k c. In this way, under the above hypotheses, if c1 6= c2, we reach a contra-
diction.

Theorem 5.9. If the correspondence i → φ(a, i) is bijective for any a ∈
{1, . . . , r} then the map Φ is transitive, that is, there exists y ∈ Ω such that
the orbit of y is dense in Ω.

Proof. Consider the set of maps τj : Ω → Ω. We already know that under
the hypothesis i → φ(a, i) is bijective for any a ∈ {1, . . . , r}, is true that
Ω =

⋃
j τj(Ω). By extension, for any k ≥ 1 we get

Ω =
⋃
j1...jk

τj1 ◦ · · · ◦ τjk(Ω)
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a cover of Ω of diameter smaller than θk → 0 when k →∞. To simplify the
notation we denote τj1...jk := τj1 ◦ · · · ◦ τjk and define recursively

Z0 ∈ Ω, Zk := τr...r ◦ · · · ◦ τ1...2 1 ◦ τ1...1 1(Zk−1)

where the composition is take over all k-uples j1 . . . jk.
We claim that for any j1 . . . jk and any x ∈ τj1 ◦ · · · ◦ τjk(Ω) and w ∈ Ω

we get d(x, τj1...jk(w)) < θk. Which is evident because each τj contracts by θ
and x ∈ τj1 ◦ · · · ◦ τjk(Ω) means that x = τj1 ◦ · · · ◦ τjk(w′).

Consider the sequence Zk, k ≥ 0 and, by the compactness of Ω a point
y ∈ Ω for which Zki → y when i→∞.

We claim that the orbit of y by Φ is dense. To see that take any x ∈ Ω
and ε > 0. Choose ki big enough to ensure θki < ε/2. Notice that, by
continuity,

Φmki(y) = Φmki( lim
i→∞

Zki) = lim
i→∞

Φmki(Zki).

Let x ∈ τj01 ◦ · · · ◦ τj0ki (Ω), as Φ ◦ τj = Id we can choose 0 ≤ m ≤ rki in such

way that
Φmki(Zki) = τj01 ◦ · · · ◦ τj0ki (w

′)

and, by the above result we get d(Φmki(Zki), x) < θki < ε/2.
If we consider additionally ki big enough to d(Φmki(y),Φmki(Zki)) < ε/2,

we obtain

d(Φmki(y), x) ≤ d(Φmki(y),Φmki(Zki)) + d(Φmki(Zki), x) < ε,

proving the density.

5.1 Periodic points

In this subsection, we describe an algorithmic procedure to compute the fixed
points for Φm, m ∈ N. This characterization is helpful to be able to apply
Livsic’s Theorem.

We just assume that i→ φ(a, i) is bijective for any a ∈ {1, . . . , r}.
The inverse branches of Φ are, τj : Ω→ Ω are given by the formula

τj(x) = y if Φ(y) = x and y1 = j

and are uniform contractions (by θ).

Theorem 5.10. Suppose that i→ φ(a, i) is bijective for any a ∈ {1, . . . , r}.
Then,
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1. Each periodic point x for Φ with period m is a solution of τj1 ◦ · · · ◦
τjm(x) = x for some choice of j1, . . . , jm ∈ {1, . . . , r};

2. The periodic point, above defined, is the solution of the following recur-
rence

x1 = j, z1
1 = i1, . . . , z

m−1
1 = im−1,

xk+1, z
j
k+1, 1 ≤ j ≤ m− 1 solving


φ(xk, xk+1) = z1

k

φ(z1
k, z

1
k+1) = z2

k

φ(z2
k, z

2
k+1) = z3

k

· · ·
φ(zm−1

k , zm−1
k+1 ) = xk

3. The map (j, i1, . . . , im−1) → x, defined as the solution of the above
recurrence, is a bijection. In particular, Φ has exactly rm periodic points
of period m.

Proof. (1) It is evident that each composition τj1 ◦· · ·◦τjm has a unique fixed
point x such that τj1◦· · ·◦τjm(x) = x because it is a contraction. Those are in
fact periodic points of Φ, because Φm(x) = x. Reciprocally, Φm(x) = x taking
Φ(Φm(x)) = x we can find j1 = x1 such that Φm(x) = τj1(x). Repeating this
procedure we obtain τj1 ◦ · · · ◦ τjm(x) = x.

(2) To avoid extremely complex notation we consider the case m = 3.
The general case is obtained by the same reasoning. We must have

τnτiτj(x) = x iff Φ(x) = τiτj(x) and x1 = n.

Let us to introduce new variables z := τiτj(x) and w := τj(x) then

τi(w) = z iff Φ(z) = w and z1 = i,

τj(x) = w iff Φ(w) = x and w1 = j

and
Φ(x) = z and x1 = n,

which is equivalent to the recursive system
φ(i, z2) = w1 = j, φ(z2, z3) = w2, φ(z3, z4) = w3, etc.
φ(j, w2) = x1 = n, φ(w2, w3) = x2, φ(w3, w4) = x3, etc.
φ(n, x2) = z1 = i, φ(x2, x3) = z2, φ(x3, x4) = z3, etc.
So we must solve the implicit recurrence

x1 = n, z1 = i, w1 = j,

xk+1, zk+1, wk+1 solving


φ(xk, xk+1) = zk
φ(zk, zk+1) = wk
φ(wk, wk+1) = xk
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(3) By (2) we know that, in order to find the periodic points we must
solve the previous recurrence with the following initial conditions

x1 = j, z1
1 = i1, . . . , z

m−1
1 = im−1.

As we have a finite set, is enough to show that the correspondence is injective.
Suppose, by contradiction, that for a different set of initial conditions

x1 = j, w1
1 = h1, . . . , w

m−1
1 = hm−1

we produce the same periodic point x. Using the respective equations we get
for k ≥ 1

φ(xk, xk+1) = z1
k and φ(xk, xk+1) = w1

k

thus z1
k = w1

k, k ≥ 1.

φ(z1
k, z

1
k+1) = z2

k and φ(w1
k, w

1
k+1) = w2

k

thus z2
k = w2

k, k ≥ 1.
And so on. In particular

z1
1 = w1

1, . . . , z
m−1
1 = wm−1

1

contradicting (i1, . . . , im−1) 6= (h1, . . . , hm−1).

Example 5.11. Let Φ be the map obtained by the local interaction

M :=

(
2 1
1 2

)
Fixed points (m = 1) are obtained by x1 = 1 and xk+1 solving φ(xk, xk+1) =
xk, that is,
φ(1, x2) = 1 then x2 := 2;
φ(2, x3) = 2 then x3 := 2;
φ(2, x4) = 2 then x4 := 2;
and so on, thus the first fixed point is (1, 2, 2, 2, 2, 2, ...). The second one is
obtained by x1 = 2 and xk+1 solving φ(xk, xk+1) = xk, that is,
φ(2, x2) = 2 then x2 := 2;
φ(2, x3) = 2 then x3 := 2;
φ(2, x4) = 2 then x4 := 2;
and so on, thus the first fixed point is (2, 2, 2, 2, 2, 2, ...).

For period 2 we have four points
a) x1 = 1, z1 = 1 and xk+1, zk+1 solving φ(xk, xk+1) = zk, φ(zk, zk+1) = xk.
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So,
φ(1, x2) = 1, φ(1, z2) = 1 then x2 = 2 and z2 = 2;
φ(2, x3) = 2, φ(2, z3) = 2 then x3 = 2 and z3 = 2;
and so on. Thus (1, 2, 2, 2, 2, ....) is our first point (it is also a fixed point).

b) x1 = 1, z1 = 2 and xk+1, zk+1 solving φ(xk, xk+1) = zk, φ(zk, zk+1) =
xk. So,
φ(1, x2) = 2, φ(2, z2) = 1 then x2 = 1 and z2 = 1;
φ(1, x3) = 1, φ(1, z3) = 1 then x3 = 2 and z3 = 2;
and so on. Thus (1, 1, 2, 2, 2, ....) is our second point.

The remaining points are (2, 1, 2, 2, 2, ....) and (2, 2, 2, 2, 2, ....).
Finally, we compute a periodic point of period 3. For that we choose

x1 = 1, z1 = 2, w1 = 1 and use the equations,
φ(xk, xk+1) = zk φ(zk, zk+1) = wk φ(wk, wk+1) = xk. So
φ(1, x2) = 2 φ(2, z2) = 1 φ(1, w2) = 1 then x2 = 1, z2 = 1 and w2 = 2;
φ(1, x3) = 1 φ(1, z3) = 2 φ(2, w3) = 1 then x3 = 2, z3 = 1 and w3 = 1;
φ(2, x4) = 1 φ(1, z4) = 1 φ(1, w4) = 2 then x4 = 1, z4 = 2 and w4 = 1;
φ(1, x5) = 2 φ(2, z5) = 1 φ(1, w5) = 1 then x5 = 1, z5 = 1 and w5 = 2;
and so on, thus (1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, ...) is a periodic point of pe-
riod 3.

6 Measure rigidity review

The measure rigidity problem for a pair of maps, that is, the problem of
showing the uniqueness of the measure (generally the Parry measure) that is
invariant for some pair of maps, is related to an early result by Furstenberg
who proved that for relative primes p, q ∈ Z the unique infinite set of the
torus T := R/Z which is invariant for the maps Tp : T→ T and Tq : T→ T,
given by Tp(x) = px and Tq(x) = qx, is the whole torus itself [14]. Such result
leads Furstenberg to conjecture that the Lebesgue probability measure is the
unique continuous probability measure on the torus which is simultaneously
invariant for the maps Tp and Tq (see [24]).

Since each point of a shift space is a sequence that carries explicitly all
the information about its topological location in the space, it follows that
there is a direct relationship between the emergence of patterns in a given
point of the shift space under the action of some map and the trajectory
of this point for that map. From the statistical point of view, by supposing
Φ : Ω→ Ω is a cellular automaton and µ is a Φ-invariant probability measure
on the Borelians of Ω, it means that the probability of a µ-randomly chosen
point x ∈ Ω being such that Φn(x) has some pattern w1w2 . . . wk on first k
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positions is equal to µ(w1w2 . . . wk), for all n ≥ 0.
If, additionally, µ is assumed to be also σ-invariant, then the probabil-

ity that Φn(x) exhibits the pattern w1w2 . . . wk at any fixed k consecutive
positions, for a point x ∈ Ω randomly chosen according to µ, is equal to
µ(w1w2 . . . wk). In other words, considering the double-indexed sequence(

Φn(x)i

)
i,n≥0

, measures that are simultaneously invariant under σ and a cel-

lular automaton Φ enable the identification of patterns that are spatially (in
the index i) and temporally (in the index n) statistically invariant through
the orbit of x for Φ.

An early result characterizing measures that are (σ,Φ)-invariant is due
to Lind [23] who examined the scenario where A is the group Z2, Ω = AZ,
Φ : Ω → Ω has local rule φ(a, b) = a + b (mod 2), and µ is any Bernoulli
probability measure with full support on Ω. Under these conditions, Lind
demonstrated that the Cesro mean distribution CΦ

N(µ) = N−1
∑N−1

n=0 µ ◦Φ−n

converges to the Haar measure, which here is the uniform Bernoulli proba-
bility measure λ. As consequence, since any initial Bernoulli measure is σ-
invariant, and λ is (σ,Φ)-invariant, it follows that the uniform Bernoulli prob-
ability measure is the unique Bernoulli probability measure (σ,Φ)-invariant1.

Latter, Schmidt [40] considered A being any Abelian group, and extend
the group operation from A to Ω = AZd

as a component-wise operation.
Among other important results provided by the author, one can use [40,
Corollary 29.5, p. 289] to find out that if A = Z2 and φ : AH → A, the local
rule of Φ, is defined with H ⊂ Z such that |H| ≥ 2, then the unique (σ,Φ)-
invariant probability measure with full support on Ω = AZ which holds a
certain mixing property (called H-mixing) is the uniform Bernoulli proba-
bility measure. This result can be extend for measures with full support on
a subshift G ⊂ AZd

, where it is assumed that G is a subgroup of AZd
and

Φ(G) = G. In such a case, the unique (σ,Φ)-invariant probability measure
with full support on G is the Haar measure on G - see [37, Proposition 29]).

As Lind [23] and Schmidt [40], as the subsequent works that have ad-
dressed the problem of measure rigidity in cellular automata, have always
considered an algebraic structure on the alphabet which induces an algebraic
structure on AZd

, Ω being a subshift and a subgroup of AZd
, and cellular

automata Φ : Ω→ Ω which are endomorphisms for that algebraic structure.

1Note that given any σ-invairant meaures µ, if the Cesro mean distributions
N−1

∑N−1
n=0 µ ◦Φ−n converges to some probability measure µ̂ in the weak* topology, then

µ̂ is (σ,Φ)-invariant. Furthermore, it is interesting to notice that the uniform Bernoulli

measures is invariant for a cellular automaton Φ : AZd → AZd

if, and only if, Φ is onto.
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In particular, several works have considered the particular classes of cellular
automata whose local rules have algebraic origin, that is, cellular automata
Φ : Ω → Ω with local rule φ : AH → A for some H finite subset of ⊂ Zd,
such that for all x = (xi)i∈H ∈ AH we have

φ(x) =
∑
i∈H

ηi(xi) + c,

where: the sum is with respect to the operation considered in A; ηi : A → A
is an endomorphism for each i ∈ H; ηi ◦ ηj = ηj ◦ ηi for all i, j ∈ H; and c
is a fixed symbol of A. A cellular automaton in this form is said to be an
affine cellular automaton and, in the particular case that c = 0 (the identity
element of A) it is said to be a linear cellular automaton, while if ηi : A → A
is the identity map for all i ∈ H and c = 0 it is said to be a group cellular
automaton.

We remark that the algebraic origin of the cellular automata considered
in all of these works is due to the need for a local rule for which one can
explicitly compute successive iterates.

Following Linds seminal work [23], several papers have found out measure
rigidity results (see Table 1). By assuming that A is some group (with
some specific features), Ω is some specific shift space on A, µ is a measure
on Ω (taken within some class of measures), and Φ : Ω → Ω belongs to
some specific class of endomorphic cellular automata, these works proved the
convergence of the Cesaro mean distribution of µ under the dynamics of Φ.

On the other hand, following Schmidts approach and considering some
conditions on the entropy and ergodicity, it was proved that the Haar measure
(in this case the uniform Bernoulli measure) is the unique (σ,Φ)-invariant
measure if Φ : AZ → AZ is a bipermutative endomorphic cellular automaton
with local rule φ : AH → A for some H ⊂ Z, and: A = Z/Zp for some p
prime, |H| = 2, and Φ is an affine cellular automaton [17]; A is any finite
Abelian group, and |H| = 2 [33]; A is any Abelian group, and |H| > 2 [39].
The Haar measure also was proved to be the unique (σ,Φ)-invariant measure
exhibiting some entropic and ergodic properties for some classes endomor-
phic cellular automata Φ : AZd → AZd

on Abelian groups [10, 34].

It is worth noting that Furstenberg’s conjecture on measure rigidity for
maps on the torus was proved by Lyons in [24], four years after the result by
Lind [23] for the cellular automaton, by considering the additional hypothesis
that the measure is Tp exact. Furthermore, the author also found sufficient
conditions under which a probability measure µ is such that ν◦T−nq converges
to the Lebesgue measure in the weak∗ topology. Still considering the case
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of the torus, in [38] and [2] it was proved that the Lebesgue measure is
the unique (Tp, Tq)-invariant measure in a wider class of measures. In [2],
measure rigidity results were also proved for (T, S)-invariant measures where
T and S are general differentiable expansive maps on the torus.

Shift space Local rule type Measure class Proof Ref.

Bernoulli measures [23]

A is the group Z2

Ω = AZ

Group C. A.

Markov measures [12, 25]

Diffusive linear C. A. Harmonic mixing Harmonic
analysis

[35, 36]

A is any finite
Abelian group

Dispersive linear C. A. Dispersion mixing [36]

Ω = AM, M any
monoid

Affine C. A.

(right-permutative
Ψ-associative and

N-scaling)

[17]

A is the group
Zps

Ω = AZ

Measures with complete
connections and
summable decay

[13]

Ω ⊆

(
s⊕

i=1
(Z

pi
)ni )Z

d

Linear C. A.

Markov measures Renewal
theory

[27, 28]

Affine C. A. [29]

Ω ⊆

(
s⊕

i=1
(Z

pi
)ni )Z Structurally-compatible

C. A.

(right-permutative
Ψ-associative and

N-scaling)

Measures with complete
connections and
summable decay Measure

conjugacy

[41]

Table 1: Different settings where the measure rigidity results have been ob-
tained through the Cesaro mean convergence of an initial σ-invariant mea-
sure. In the first column of the table we state the shift space and the group
structure, in the second column the type of cellular automata, in the third
column the class of initial measure, in the fourth column the method used
to prove the convergence, and in the last column the paper were the result
is proved.
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7 Appendix

Proposition 7.1. Let φ : A×A → A the local rule we assumed in Section
2. Consider the map Φ : Ω → Ω associated with this rule. Then, for any
x ∈ Ω the set of preimages by Φ is dense.

Proof. Let Λk(x) := {y ∈ Ω | Φk(y) = x} be the set of preimages of x of
order k and Λ(x) :=

⋃
k≥1 Λk(x) the set of all preimages of x.

We will use an IFS approach to simplify the reasoning. For each j ∈ A we
define the inverse branch τj : Ω→ Ω by the formula

τj(x) = y if Φ(y) = x and y1 = j.

In this way, the family τj, j ∈ A is a iterated function system.
Considering the fractal operator, F (B) = ∪j∈Aτj(B), defined for the set of
compact not empty parts of Ω, and the fact that each τj, j ∈ A is a Lipschitz
contraction, there exists a unique compact set K such that F (K) = K and
F k(B)→ K for any B.
First, we observe that choosing B = {x} we get F k(B) = Λk(x) thus Λ(x) is
dense in K.
To conclude our proof we claim that K = Ω. To do that, we will show that
F (Ω) = Ω and use the uniqueness of such set K. As F (Ω) ⊆ Ω, by definition,
we just need to show the opposite inclusion. Take y ∈ Ω and j = y1 we need
to find x ∈ Ω such that τj(x) = y, in other words,

φ(j, y2) = x1, φ(y2, y3) = x2, φ(y3, y4) = x3, . . .

which is always possible. Thus, y ∈ F (Ω) and, since y is arbitrary F (Ω) ⊇ Ω.
So we have the equality.

Proposition 7.2. Consider K := {1, 2, . . . , r}, a partition of Ω. Then, for
all n ≥ 0 we have

K
∨

Φ−1(K)
∨

. . .
∨

Φ−n(K) =
⊎

a1...an+1∈A

a1 . . . an+1.

Moreover, give n, x ∈ Ω, for each y = (a1, a2, .., an, yn+1, yn+2, ..) ∈
Φ−n(x), there exist a unique z of the form z = (a1, a2, ..., an, zn+1, zn+2, ..)
in σ−1(x), and vice versa.

Proof. The proof is by induction w.r.t. n. The bases, n = 0 is the identity

K =
⊎
a1∈A

a1.
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Now suppose, by hypothesis, that

K
∨

Φ−1(K)
∨

. . .
∨

Φ−n(K) =
⊎

a1...an+1∈A

a1 . . . an+1.

We consider a generic cylinder b1 . . . bn+1bn+2 and by applying Φ we obtain

Φ(b1 . . . bn+1bn+2) ⊂ φ(b1, b2) . . . φ(bn+1, bn+2).

From our hypothesis of induction,

φ(b1, b2) . . . φ(bn+1, bn+2) ∈ K
∨

Φ−1(K)
∨

. . .
∨

Φ−n(K),

that is, b1 . . . bn+1bn+2 ∈ Φ−1(K)
∨
. . .
∨

Φ−n−1(K).
Choosing b1 ∈ K we get, b1 . . . bnbn+1 ∈ K

∨
Φ−1(K)

∨
. . .
∨

Φ−n−1(K). Thus
K
∨

Φ−1(K)
∨
. . .
∨

Φ−n−1(K) ⊇
⊎
a1...an+2∈A a1 . . . an+2.

To show the opposite relation we take anyB ∈ K
∨

Φ−1(K)
∨
. . .
∨

Φ−n−1(K).
We claim the B is a cylinder of length (n+ 1) + 1 = n+ 2. By the induction
hypothesis K

∨
Φ−1(K)

∨
. . .
∨

Φ−n(K) =
⊎
a1...an+1∈A a1 . . . an+1 so

B = a1 . . . an+1 ∩ Φ−n−1(K).

Notice that
Φ(y1, y2, y3, ...) = (φ(y1, y2), φ(y2, y3), . . .)

Φ2(y1, y2, y3, ...) = (φ(φ(y1, y2), φ(y2, y3)), φ(φ(y3, y4), φ(y4, y5)), . . .)

and so on. In this way Φm(y) = (ψ(y1, . . . , ym+1), . . .), where ψ(y1, . . . , ym+1)
is a function of the first m+ 1 coordinates.
As K := {1, 2, . . . , r} and Φn+1(y) ∈ K we must have j such that Φn+1(y) ∈ j.
At the same time y1 = a1 . . . yn+1 = an+1 because y ∈ a1 . . . an+1. In other
words,

ψ(y1, . . . , y(n+1)+1) = j

ψ(a1, . . . , an+1, yn+2) = j.

Let an+2 be the unique solution of the above equation. Thus,

B = a1 . . . an+1 ∩ Φ−n−1(K) = a1 . . . an+1an+2,

which concludes our proof.
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Example 7.3. An example where equation (1.3) is true for Φ1 = σ and
Φ2 = Φ, r = 2, for functions that depend on the first three coordinates is the
following. We will have many more choices of possible functions A1 and A2

when compared with the last example.
Consider φ such that

M =

(
φ(1, 1) φ(1, 2)
φ(2, 1) φ(2, 2)

)
=

(
2 1
2 1

)
.

Take the functions A1 and A2 depending on the three first coordinates
satisfying

A1(x1, x2, x3, ...) = Qx1,x2,x3

and
A2(x1, x2, x3, ...) = Cx1,x2,x3 .

Then,
A1 − A1 ◦ σ = A2 − A2 ◦ Φ,

means

Qx1,x2,x3 −Qx2,x3,x4 = Cx1,x2,x3 − Cφ(x1,x2),φ(x2,x3),φ(x3,x4).

We get a solution for the system if we assume that

• C1,1,1 = C2,2,2

• C1,1,2 = Q2,2,1 −Q2,2,2 + C2,2,2

• C1,2,1 = Q2,1,2 −Q2,1,1 +Q1,2,2 −Q2,2,2 + C2,2,2

• C1,2,2 = Q1,2,2 −Q2,2,2 + C2,2,2

• C2,1,1 = Q2,2,1 −Q1,1,2 +Q1,2,2 −Q2,2,2 + C2,2,2

• C2,1,2 = Q2,1,2 +Q2,2,1 −Q1,1,2 −Q2,2,2 + C2,2,2

• C2,2,1 = Q2,2,1 −Q2,1,1 +Q1,2,2 −Q2,2,2 + C2,2,2

• C2,2,2 = free

• Q1,1,1 = −Q2,2,1 +Q2,1,1 +Q1,1,2 −Q1,2,2 +Q2,2,2

• Q1,1,2 = free

• Q1,2,1 = free
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• Q1,2,2 = free

• Q2,1,1 = free

• Q2,1,2 = free

• Q2,2,1 = free

•Q2,2,2 = free. (7.1)

Therefore, under the above hypotheses the σ-equilibrium for A2 is equal
to the Φ-equilibrium for A1.

We get above a system of 16 linear equations, therefore, given any choice
of the 8 parameters Ci,j,k (defining A2) we can get values Qi,j,k (defining A1)
satisfying the system. The bottom line is that any σ-equilibrium probability
for a potential A2, depending on the first three coordinates, can be realized as
a Φ-invariant probability.

A particular solution of the above system would be

C1,1,1 =
1

2
, C1,1,2 = −1

2
, C1,2,1 = −1

2
, C1,2,2 = −1

2
, C2,1,1 = −1

2
, C2,1,2 = −1

2
,

C2,2,1 = −1

2
, C2,2,2 =

1

2
, Q1,1,1 = 1, Q1,1,2 = 0, Q1,2,1 = 0, Q1,2,2 = 0,

Q2,1,1 = 0, Q2,1,2 = 0, Q2,2,1 = 0, Q2,2,2 = 1.

The above potential is not a potential that depends on the first two coor-
dinates.
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