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ABSTRACT. Consider the transformation T : S1→ S1, such that T (x)= 2x (mod 1), and where S1 is the unitary
circle. Suppose J : S1→ R is Hölder continuous and positive, and moreover that, for any y ∈ S1, we have that
∑x such that T (x)=y J(x) = 1.

We say that ρ is a Gibbs probability for the Hölder continuous potential logJ, if L ∗
logJ (ρ) = ρ, where

LlogJ is the Ruelle operator for logJ. We call J the Jacobian of ρ .
Suppose ν = µ1 ∗ µ2 is the convolution of two Gibbs probabilities µ1 and µ2 associated, respectively, to

logJ1 and logJ2. We show that ν is also Gibbs and its Jacobian J̃ is given by J̃(u) =
∫

J1(u− x)dµ2(x)
In this case, the entropy h(ν) is given by the expression

h(ν) =−
∫

[
∫

log(
∫

J1(r+ s− x)dµ2(x))dµ2(r) ] dµ1(s).

For a fixed µ2 we consider differentiable variations µ t
1, t ∈ (−ε,ε), of µ1 on the Banach manifold of Gibbs

probabilities, where µ0
1 = µ1, and we estimate the derivative of the entropy h(µ t

1 ∗µ2) at t = 0.
We also present an expression for the Jacobian of the convolution of a Gibbs probability ρ with the invariant

probability with support on a periodic orbit of period two. This expression is based on the Jacobian of ρ and
two Radon-Nidodym derivatives.

1. INTRODUCTION

Consider the 2x (mod 1) transformation T on the unitary circle S1.
All expressions of the form x+ y below are consider (mod 1).
Given two probabilities η and µ on S1 the convolution ν = η ∗ µ is the probability such that for any

Borel set A we have
ν(A) = (η ∗µ)(A) =

∫
µ(A− x)dη(x).

This is the same as saying that for any continuous function φ∫
φ(z)dν(z) =

∫
(
∫

φ(y+ x)dµ(y))d η(x).

Note that if µ is the Lebesgue probability on S1 then, for any ν we get µ ∗ν = µ (just change coordi-
nates).

On the other hand if µ = δ0, then, for any ν we have that µ ∗ν = ν .

Suppose µ and η are T invariant.
Note that for any continuous φ∫

(φ ◦T )(z) dν(z) =
∫

(
∫

(φ ◦T )(x+ y)dµ(y))d η(x) =∫
(
∫

(φ(T (x)+T (y))dµ(y))d η(x) =∫
(
∫

(φ(T (x)+ y)dµ(y))d η(x) =∫
(
∫

(φ(x+ y)dµ(y))d η(x) =
∫

φ(z)dν(z).
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Then, it follows that ν is also T -invariant.
The convolution operation is commutative.
A very important contribution to the topic of convolution of invariant probabilities on the circle is [6].

By means of combinatorial techniques it was proved there, among other things, the convergence of the
n-convolution of positive entropy measures for the Lebesgue measure. They also show that convolution
does not decrease entropy (increase in most of the examples). The proofs of our results have a different
nature (and they are for a particular family of probabilities).

Related results concerning convolution are [4], [10], [11] and [12].

Definition 1. The Jacobian of an invariant measure ρ is the measurable transformation Jρ such that

ρ(T (A)) =
∫

A
J−1

ρ dρ,

for any Borel set A such that T |A is injective (see the paragraphs before Proposition 3.4 in [18]).

The role of J−1
ρ is to provide a formula for the change of variables on the inverse branches of T .

A more elegant form of expressing this property for J−1
ρ (in the particular case which is the main

interest of our paper ) is via the Ruelle operator. We begin with the ”Jacobian” and a posteriori we get the
probability. We point out that the Jacobian in [18] is the inverse of what we call Jacobian here.

We assume from now on that J : S1→ R is at least continuous and positive, and such that, for any y we
have that

∑
x such that T (x)=y

J(x) = 1.

Given J as above the Ruelle operator LlogJ acts on continuous functions ϕ on the following way:
LlogJ(ϕ) = φ , where

φ(y) = ∑
x such that T (x)=y

J(x)ϕ(x).

The dual L ∗
logJ of LlogJ acts on probabilities.

Definition 2. We say that ρ is a Gibbs probability (or, a g-measure, where g = logJ) for the continuous
function J if

L ∗
logJ (ρ) = ρ.

The entropy of ρ is given by the Rokhlin formula: −
∫

logJdρ (see for instance section 9.7 in [21]). The
probability ρ is the equilibrium probability (maximize pressure) for the potential logJ (see Proposition 3.4
in [14]).

The Jacobian Jρ of ρ according to definition 1 agrees with the above J.
In this way is natural to call J the Jacobian of ρ .
As an example we mention that for the transformation T (x)= 2x (mod 1) the Lebesgue probability has

Jacobian J constant equal to 1/2.
If J is just continuous it is possible that exists more than one fixed point probability for L ∗

logJ (see [2]
and [17]). If J is Hölder the fixed point probability is unique.

General references for Jacobians and Thermodynamics Formalism are [21], [13], [14], [15] and [19].
We use the dynamics of the doubling map on an essential way. The possible extension to expanding
transformations on the circle would require a good meaning for translation on the circle which is at the
same time compatible with the distance among preimages of a general point.

In the section 2 we will consider convolution of two Gibbs probabilities. We estimate the entropy of the
convolution of two Gibbs probabilities (see Theorem 3). We also show for the case of Gibbs probabilities
that, if ν = µ1 ∗ µ2, then, h(ν) ≥ h(µ2) (see Theorem 6). This result appears in a more general setting in
[6]. We do not use here the Hausdorff dimension as a tool in our proof.

We will present in section 3 an explicit expression for the Jacobian of the probability obtained by the
convolution of a Gibbs probability and a periodic orbit of period two (see expression (14)).

We also show examples of Gibbs probabilities µ where the convolution of µ with a periodic orbit of
period two results in the same probability µ (see the class of potentials S defined by expression (21)).
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In section 4 we analyze the following problem: for a fixed µ2 consider differentiable variations µ t
1,

t ∈ (−ε,ε), of µ1 on the Banach manifold of Gibbs probabilities, where µ0
1 = µ1. How can one estimate

the derivative of the entropy h(µ t
1 ∗µ2) at t = 0? On this direction see Proposition 12.

In the appendix we consider the following problem: suppose J1 and J2 are the Hölder Jacobians and
they are such that: J2 ≥ J1, when J1 ≥ 1/2, and J2 ≤ J1, when J1 ≤ 1/2. Denote µi the Gibbs probability
associated to the potential logJi, i = 1,2. We show that h(µ1)≥ h(µ2) (see Proposition 13). This problem
is related to questions raised in section 3.

The PhD thesis [20] and [1] consider several properties for the convolution of invariant probabilities for
the symbolic space setting. An appropriate structure have to be considered for replacing the sum translation
on the circle. These works do not consider results similar to ours.

We thanks L. Cioletti, P. Giulietti and B. Uggioni for helpful conversations on the topic of convolution
of invariant probabilities.

2. CONVOLUTION OF GIBBS PROBABILITIES

Suppose J2 is a Hölder Jacobian and J1 is a Jacobian which is just continuous. As we said Ji : S1→ R,
i = 1,2, are such that L ∗

logJi
(µi) = µi. The probability µ2 is invariant, ergodic and has support on S1.

We want to estimate analytical properties of the probability ν = µ1 ∗µ2.
A natural question is to ask if there exists an explicit expression for the Jacobian J̃, such that,

L ∗
log J̃ (ν) = ν

in terms of J1,J2.

Theorem 3. Suppose J2 is a Hölder and J1 is continuous. Then, the Jacobian J̃ of ν = µ1 ∗µ2 satisfies for
any u the expression

J̃(u) =
∫

J1(u− x)dµ2(x) (1)

and, therefore

h(ν) =−
∫

log J̃(u)dν(u) =−
∫

log(
∫

J1(u− x)dµ2(x))dν(u) =

−
∫

[
∫

log(
∫

J1(r+ s− x)dµ2(x))dµ2(r) ] dµ1(s). (2)

In the proof of this theorem we just need to use the fact that L ∗
logJ1

(µ1) = µ1 and it is not required that
µ1 is the limit of the ρn, n ∈N, defined by (4). However, this property is required for µ2. The proof will be
done later.

Note that by the commutativity of the convolution we get that the above defined function J̃ is Holder if
either J1 or J2 is Holder.

Corollary 4. Suppose µ1 has a Jacobian J1 which is continuous and µ2 is any invariant probability. Then,
the Jacobian J̃ of ν = µ1 ∗µ2 satisfies for any u ∈ S1 the expression

J̃(u) =
∫

J1(u− x)dµ2(x) (3)

Proof: Any invariant probability µ2 can be weakly approximated by Gibbs states µn
2 , n ∈ N (see for

instance Theorem 8 page 536 in [9]).
The function ρ → µ1 ∗ρ is continuous in the weak topology.
Then, the Jacobian J̃n of νn = µ1 ∗ µn

2 converges to the function J̃(u) =
∫

J1(u− x)dµ2(x). Indeed,
x→ J1(u− x) is a continuous function depending C0 on u.

The function J̃ is continuous positive and satisfies J̃(x1)+ J̃(x2) = 1, if T (x1) = T (x2).
In order to show that J̃ is the Jacobian of ν = µ1 ∗µ2 consider any arbitrary continuous function ϕ .
Then, ∫

Llog J̃ (ϕ)(z)dν(z) =
∫

∑
T (w)=z

[
∫

J1(w− x)dµ2(x) ]ϕ(w)dν(z) =
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∑

T (w)=z
[
∫

J1(w− x)dµ2(x) ]ϕ(w)d(µ1 ∗µ2)(z) =

lim
n→∞

∫
∑

T (w)=z
[
∫

J1(w− x)dµ
n
2 (x) ]ϕ(w)d(µ1 ∗µ

n
2 )(z) =

lim
n→∞

∫
ϕ(z)d(µ1 ∗µ

n
2 )(z) =

∫
ϕ(z)d(µ1 ∗µ2)(z) =

∫
ϕ(z)dν(z).

Therefore, L ∗
log J̃(ν) = ν . Finally, from Theorem 3 we get that u→

∫
J1(u− x)dµ2(x) is the continuous

Jacobian of ν = µ1 ∗µ2.
�

Corollary 5. Suppose J1 is a Hölder, J2 is continuous and µ2 is the limit of the probabilities ρn defined
on (4). Then, the Jacobian J̃ of µ1 ∗ µ2 is Hölder and has the same Hölder constant. This means that
convolution regularizes Jacobian.

Proof:
As we mention in the remark at the end of this section the expression J̃(u) =

∫
J1(u − x)dµ2(x) is true.

Suppose 0 < α ≤ 1 and K are such that for any r,s we have

|J1(r)− J1(s)| ≤ K |r− s|α ,

then, for any u1,u2

|
∫

J1(u1− x)dµ2(x) −
∫

J1(u2− x)dµ2(x) | ≤∫
|J1(u1− x) − J1(u2− x) |dµ2(x)≤ K |u1−u2|α .

�

It is known from Lemma 9.2 (or, Corollary 9.3) in [6] that convolution increase entropy, that is, h(µ1 ∗
µ2) ≥ h(µ2). The proof in [6] basically use the fact that HD(µ) = h(µ)

log2 and simple properties of the
Hausdorff dimension of an invariant probability. We will present a direct proof without using Hausdorff
dimension for the case of Gibbs probabilities. We point out that Gibbs probabilities are dense in the set of
invariant probabilities (see for instance Theorem 8 page 536 in [9]).

Theorem 6. Suppose J1 and J2 are Hölder Jacobians. Denote by µ1 and µ2 the corresponding Gibbs
probabilities. If ν = µ1 ∗µ2, then, h(ν)≥ h(µ2). Moreover, we have that h(ν)> h(µ2), unless µ1 or µ2 is
the Lebesgue probability.

Proof: It is known from [7] (or, [8] for a more general statement) that when µ2 has a Hölder Jacobian
we get

h(µ2) = inf
v>0, vHölder

∫
log
(

L0v(s)
v(s)

)
dµ2(s).

where for any s we have L0v(s) = v(s1) + v(s2). This condition can be relaxed assuming that v is just
continuous (indeed, one can check that the proof of Lemma 2 in [8] applies to continuous potentials).

We will show that there exists u such that

h(ν)≥
∫

log
(

L0u(s)
u(s)

)
dµ2(s) =∫

log(L0u(s))dµ2(s) −
∫

logu(s)dµ2(s).

More precisely we will exhibit a Hölder continuous function u such that

−
∫

logu(s)dµ2(s) = h(ν),

and, moreover that ∫
log(L0u(s))dµ2(s)≤ 0.
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From (2) we have that

h(ν) =−
∫

[
∫

log(
∫

J1(r+ s− x)dµ2(x))dµ2(r) ] dµ1(s) =

−
∫

[
∫

log(
∫

J1(r+ s− x)dµ2(x))dµ1(r) ] dµ2(s).

Then, taking
u(s) = e

∫
log(

∫
J1(r+s−x)dµ2(x))dµ1(r) ,

we just have to show that L0(u(s))≤ 1.
Suppose s1 and s2 are the two preimages of s, then,∫ ∫

J1(r+ s1− x)dµ2(x)dµ1(r)+
∫ ∫

J1(r+ s2− x)dµ2(x)dµ1(r) = 1.

From Jensen inequality we get that
u(s1)+u(s2) =

e
∫

log(
∫

J1(r+s1−x)dµ2(x))dµ1(r) + e
∫

log(
∫

J1(r+s2−x)dµ2(x))dµ1(r) ≤
e log[

∫
(
∫

J1(r+s1−x)dµ2(x)) ]dµ1(r)+ e log [
∫
(
∫

J1(r+s2−x)dµ2(x)) ]dµ1(r) =∫ ∫
J1(r+ s1− x)dµ2(x)dµ1(r)+

∫ ∫
J1(r+ s2− x)dµ2(x)dµ1(r) = 1.

Note that if for some s we have that L0u(s) < 1, then, as µ2 has full support (see [14]), we have strict
inequality h(ν)> h(µ2). In order to prevent this from happening it is required that for any s∫

log(
∫

J1(r+ s− x)dµ2(x))dµ1(r) =

log
∫

(
∫

J1(r+ s− x)dµ2(x))dµ1(r).

Note that when J = 1/2 (the Lebesgue probability) then the above equality is true.
On the other hand, if the above equality is true for any s then J1 is constant (equal to 1/2). Indeed, it is

know that the Jensen inequality is an equality just when all weights are equal. It follows that
∫

J1(r+ s−
x)dµ2(x) is constant independent of r and s. As µ2 has full support we get that J1 is constant.

�

We will show later in section 3 that there are examples in which the convolution of a Gibbs probability
with a probability with support on a periodic orbit results on the initial Gibbs probability.

Theorem 7. Suppose µ is Gibbs probability for a Hölder Jacobian J. For each n ∈ N denote νn =
µ ∗µ ∗ ....∗µ︸ ︷︷ ︸

n

, then, limn→∞ νn is the Lebesgue probability

Proof: If µ is the Lebesgue probability there is nothing to prove.
The sequence of probabilities νn, n∈N, has a convergent subsequence, νnk , k∈N. Suppose limk→∞ νnk =

ρ and ρ is not Lebesgue probability.
Denote by Jk the Jacobian of νnk . The sequence Jk, k ∈ N, is equicontinuous and bounded by Theorem

5. Then, by Arzela-Ascoli theorem there exist an uniform limit J∞ (which is Hölder) of a subsequence of
Jk, k ∈ N.

Remark 8. . By weak∗ topology one can show that the Jacobian of such probability ρ is exactly J∞ .

Denote by α the supremum of the entropy of h(ρ) among the possible ρ obtained by convergent subse-
quences, νnk , k ∈ N.

We claim that one ρ̂ of such possible ρ attains the supremum.
Consider a sequence of ρ̂r, r ∈ N of such possible limit of subsequences νr

nk
, r ∈ N, n ∈ N such that

lim
r→∞

ρ̂r = ρ,

and
lim
r→∞

h(ρ̂r) = α.
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Then, it is possible to get a sequence νr
nk(r)

such that

lim
r→∞

ν
r
nk(r)

= ρ,

and
lim
r→∞

h(νr
nk(r)

) = α.

As the entropy is lower semicontinuous we get that h(ρ) = α . By Remark 8 we get that ρ has a Hölder
Jacobian.

Suppose α < log2. Then, we get by Theorem 6 that µ ∗ρ has bigger entropy than ρ . If limk→∞ νnk = ρ̂

then limk→∞ µ ∗νnk = µ ∗ ρ̂ and this is a contradiction.
This proves that α = log2 and, by monotonicity of the entropy function along the sequence νn, that the

unique maximal entropy measure (Lebesgue) is the weak limit of νn.
�

In [6] the authors proved convergence to Lebesgue measure for concatenations µn ∗ ...∗µ2 ∗µ1 (invariant
measures) with some bound on their entropy. In the moment we don’t know how to get this kind of result
with our methods.

Suppose J is the Hölder Jacobian of the probability ρ.
Consider for each n ∈ N, the probability

ρn =
2n

∑
j=1

δ j
2n

Π
n−1
k=0J(T k(

j
2n )) (4)

which is not T invariant.
Note that T n( j

2n ) = 0.
If limn→∞ ρn = ρ , then ρ will satisfy the equation L ∗

logJ (ρ) = ρ. (see Ruelle Theorem [14])

Remark 9. Note that ρn = (L ∗
logJ)

n(δ0). In the case J is Holder it is a classical result that ρn→ ρ (see
Ruelle Theorem 2.2 (iv) in [14]). A more strong claim is Theorem 1.1 in [5] which shows convergence on
the 1-Wassertein distance.

In the case J is continuous we will assume here that such limit exists ρn→ ρ and we point out that this
limit is a Gibbs state for J.

If J is Hölder such limit exist and it is the only fixed point of L ∗
logJ .

Now we will begin the proof of Theorem 3. From now on we denote µ1 = µ and J1 = J. We want to
determine J̃ from J.

Denote Jn
2 ( j) := Π

n−1
k=0J2(T k( j

2n )), j = 1,2, ..,2n.
Now we will consider ρn when J = J2. That is, ρn is the probability

ρn =
2n

∑
j=1

δ j
2n

Jn
2 ( j),

which is not T invariant.
It is known (see Remark 9) that

lim
n→∞

ρn = µ2

It is natural to consider in our reasoning the convolution µ ∗ ρn = νn, n ∈ N, because νn → ν , when
n→ ∞. We denote by J̃n the Jacobian of the (in principle) non invariant probability νn.

Suppose y is such that k
2n ≤ y < k+1

2n . For fixed j, what is the range of x such that y = x
2 +

j
2n . The answer

is k− j
2n−1 ≤ x < k− j+1

2n−1 .

We will show later that for u ∈ [ v
2n+1 ,

v+1
2n+1 )

J̃n(u) =
2n−1

∑
j=1

Jn
2 ( j)J(u− j

2n ).
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Note that for a continuous function f we get∫
f (z)d(µ ∗ρn)(z) =

∫
(
∫

f (x+ y)dµ(x))dρn(y)) =∫
(
∫

LlogJ( f (x+ y))dµ(x))dρn(y) =

2n

∑
j=1

Π
n−1
w=0J2(T w(

j
2n ))

∫
[J(x/2)( f (x/2 +

j
2n ))+ J((x+1)/2)( f ((x+1)/2+

j
2n ))]dµ(x)) =

2n

∑
j=1

Π
n−1
w=0J2(T w(

j
2n ))

∫
[J(x/2) f (x/2+

j
2n )+ J(x/2+1/2) f (x/2+1/2+

j
2n )]dµ(x)) = (5)

2n

∑
j=1

Π
n−1
w=0J2(T w(

j
2n ))

∫
[J̃n(x/2+

j
2n+1 ) f (x/2+

j
2n+1 )+ J̃n(x/2+

j
2n+1 +1/2) f (x/2+

j
2n+1 +1/2)]dµ(x)=

(6)
2n

∑
j=1

Π
n−1
w=0J2(T w(

j
2n ))

∫
[J̃n((x+

j
2n )/2) f ((x+

j
2n )/2)+ J̃n((x+

j
2n +1)/2) f ((x+

j
2n +1)/2) ]dµ(x) =∫

Llog J̃n
( f )(x+ y)dµ(x)dρn(y) =∫

Llog J̃n
( f )(z)d(µ ∗ρn)(z) =

∫
f (z)d(µ ∗ρn)(z).

Below we consider any j modulo 2n.

Suppose f is a function with support on [ v
2n+1 ,

v+1
2n+1 ), 0≤ v≤ 2n+1−1.

In figure 1 we consider the case n = 2, and one can see, for instance, on the interval [ 3
23 ,

4
23 ) =

[ v
2n+1 ,

v+1
2n+1 ), that two branches x/2 and x/2+ 1

22 , have projections over ( 3
23 ,

4
23 ), (using the red color -

this corresponds j = 1,3 and to left hand side of (5) ) and, moreover, x/2, x/2+ 1
23 , x/2+ 2

23 x/2+ 3
23

(using the red and the blue color - this corresponds to j = 1,2,3,4 and (6) ), also have projections over
( 3

23 ,
4
23 ).

In the general case for the interval [ v
2n+1 ,

v+1
2n+1 ), v = 0,1, ...,2n+1−1, we have to consider for (5)

a) for v= even it is required a range of values j where j = v−t 2
2 , t = 0, ..,2n−1−1 (for the left hand side

of (5) ). Moreover, for the right hand side of (5) we will need the values of j = v−2t
2 −2n−1.

b) for v=odd it is required a range of values j where j = v−1−t 2
2 , t = 0, ..,2n−1−1 (for the left hand side

of (5) ). Similar as above for the right hand side.
This means the total of 2n possible values of j

2n in each case a) or b). We use this identification of t and
j on future expressions.

For the interval [ v
2n+1 ,

v+1
2n+1 ) we have to consider at same time the both expressions (left and right) of the

sum for (6). Note that v ranges on 0,1, ..,2n+1. Given j, there exists a j0 ∈ {1,2, ..,2n} such that either
j + j0 = v or j + j0 = v− 2n. Each j ∈ {1,2, ..,2n} can not satisfy both conditions at same time. Any
j ∈ {1,2, ..,2n} will satisfy one of the conditions. In this way all j will be used when considering together
the left and right side of (6).

We assume now that v = 0,1, ...,2n+1−1 is even.
In this case we consider the two terms of (6):

∑
j such that j+ j0=v for some j0

Π
n−1
w=0J2(T w(

j
2n ))

∫ v− j+1
2n

v− j
2n

J̃n(
x
2
+

j
2n+1 ) f (

x
2
+

j
2n+1 )dµ(x)+ (7)

∑
j such that j+ j0=v−2n for some j0

Π
n−1
w=0J2(T w(

j
2n ))

∫ v− j−2n+1
2n

v− j−2n
2n

J̃n(
x
2
+

j+2n

2n+1 ) f (
x
2
+

j+2n

2n+1 )dµ(x) = (8)

∑
j such that j+ j0=v for some j0

Π
n−1
w=0J2(T w(

j
2n ))

∫ v+1
2n+1

v
2n+1

J̃n(u)
Jn(u)

f (u)dµ(u)+ (9)
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FIGURE 1. The case n = 2

∑
j such that j+ j0=v−2n for some j0

Π
n−1
w=0J2(T w(

j
2n ))

∫ v+1
2n+1

v
2n+1

J̃n(u)
Jn(u)

f (u)dµ(u) = (10)

∫ v+1
2n+1

v
2n+1

J̃n(u)
Jn(u)

f (u)dµ(u). (11)

Assume that v = 0,1, ...,2n+1−1 is even. In this case we consider the two terms of (5):

∑
0≤t≤2n−1−1

Π
n−1
w=0J2(T w(

v−2t
2

2n ))
∫ 2 t+1

2n

2 t
2n

J(x/2) f (x/2 +
v−2t

2
2n )dµ(x)+

∑
0≤t≤2n−1−1

Π
n−1
w=0J2(T w(

v−2t
2 −2n−1

2n ))
∫ 2 t+1

2n

2 t
2n

J(x/2 +1/2) f (x/2 +1/2 +
v−2t

2 −2n−1

2n )dµ(x) =
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2n−1

∑
j =1

Π
n−1
w=0J2(T w(

j
2n ))

∫ v+1
2n+1

v
2n+1

J(u− j
2n )

Jn(u)
f (u)dµ(u).

Therefore, when v even we get that for u ∈ [ v
2n+1 ,

v+1
2n+1 )

J̃n(u) =
2n−1

∑
j=1

Π
n−1
w=0J2(T w(

j
2n ))J(u− j

2n )

A similar result is true when v is odd.

Remember that limn→∞ ρn = µ2.
As J2 is a Hölder function, given any x0 ∈ S1 we have that limn→∞ L n

logJ2
(g)(x0) =

∫
g(z)dµ2(z). Then,

we consider for u ∈ S1 fixed, the function x→ g(x) = J(u− x).
Then, taking x0 = 0 we get

J̃(u) = lim
n→∞

J̃n(u) = lim
n→∞

L n
logJ2

(g)(0) =
∫

J(u− x)dµ2(x).

In this way

h(ν) =−
∫

log J̃(u)dν(u) =−
∫

log(
∫

J(u− x)dµ2(x))dν(x).

Remark 10. Note also that if J2 is continuous and satisfies the hypothesis of being the limit of ρn, n ∈ N,
the same expression J̃(u) =

∫
J(u− x)dµ2(x) obtained above is also true.

In the case J is constant J = 1/2 we get that J̃n = 1/2. In this way if µ is the Lebesgue probability, then,
νn = µ ∗ρn is also Lebesgue probability.

Note that for any u we have that J̃n(u)+ J̃n(u+1/2) = 1. In this way the probability νn is invariant for
the T . Then, we get that the convolution of any invariant probability µ with ρn (not invariant) is invariant.

The entropy of νn satisfies h(νn) =−
∫

log J̃ndν(n).

3. CONVOLUTION OF GIBBS PROBABILITY AND A PERIODIC ORBIT OF PERIOD TWO

In this section we consider the convolution of a Gibbs probability with a probability with support on an
orbit of period two.

Suppose the Jacobian J : S1→ R is such that L ∗
logJ(µ) = µ .

Consider now ρ = 1
2 (δ1/3 +δ2/3) and we want to analyze properties of ν = µ ∗ρ .

We denote the Jacobian of ν (in the sense of Definition 1) by J̃. We have to understand in this case the
corresponding change of coordinates on the inverse branches.

In other words, we want to express the J̃, such that,

L ∗
log J̃ (ν) = ν (12)

in terms of J, ρ and µ .
We will present an explicit expression for J̃ in terms of J and two more Radon-Nikodym derivatives (see

expression (14)). This will provide a formula for the entropy of µ ∗ρ (see (17)).
We will also show that there exist Gibbs probabilities µ satisfying µ = ν = µ ∗ρ. Jacobians described

by equation (21) satisfy this property. For these examples, of course, the entropy does not increase by
convolution.

About question (12) the main property for J̃ is: for any continuous function f∫
Llog J̃( f )(z)d(µ ∗ρ)(z) =

∫
f (z)d(µ ∗ρ)(z).

In this way µ ∗ρ is a fixed point for L ∗
log J̃ .

Remember that when J̃ is Hölder the fixed point probability is unique.
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For a continuous function f we get∫
f (z)d(µ ∗ρ)(z) =

∫
f (x+ y)dµ(x)dρ(y) =

1/2(
∫

f (x+1/3)dµ(x) +
∫

f (x+2/3)dµ(x)) =

1/2(
∫

LlogJ( f (x+1/3))dµ(x) +
∫

LlogJ( f (x+2/3))dµ(x)) =

1/2(
∫
[J(x/2)( f (x/2 + 1/3))+ J((x+1)/2)( f ((x+1)/2 + 1/3))]dµ(x)+

∫
[J(x/2)( f (x/2 + 2/3))+ J((x+1)/2)( f ((x+1)/2 + 2/3))]dµ(x)) =

1/2(
∫
[J(x/2) f (x/2 + 1/3)+ J((x+1)/2) f (x/2 + 5/6) ]dµ(x)+

∫
[J(x/2) f (x/2 + 2/3)+ J((x+1)/2) f (x/2 + 1/6) ]dµ(x)).

On the other hand

∫
Llog J̃( f )(z)d(µ ∗ρ)(z) =

∫
Llog J̃( f )(x+ y)dµ(x)dρ(y) =

∫
[J̃((x+ y)/2)( f ((x+ y)/2))+ J̃((x+ y+1)/2)( f ((x+ y+1)/2))]dµ(x)ρ(y) =

1/2(
∫
[ J̃((x+ 1/3)/2) f ((x+ 1/3)/2) + J̃((x+ 1/3 +1)/2) f ((x+ 1/3 +1)/2) ]dµ(x)+

∫
[ J̃((x + 2/3)/2) f ((x + 2/3 )/2)+ J̃((x+ 2/3 +1)/2) f ((x + 2/3 + 1)/2)]dµ(x) .

The above means that it is required that for any continuous f∫
[J(x/2) f (x/2 + 1/3)+ J((x+1)/2) f (x/2 + 5/6) ]dµ(x)+

∫
[J(x/2) f (x/2 + 2/3)+ J((x+1)/2) f (x/2 + 1/6) ]dµ(x) =

∫
[ J̃(x/2 + 1/6) f (x/2+ 1/6)+ J̃ (x/2 + 2/3 ) f (x/2 + 2/3) ]dµ(x)+

∫
[ J̃(x/2+ 1/3) f (x/2+ 1/3) + J̃(x/2 + 5/6) f (x/2+ 5/6) ]dµ(x) . (13)
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3.1. An explicit expression for the convolution in the case of Gibbs probabilities for Hölder Jaco-
bians.

Consider a Hölder Jacobian J on S1 and suppose that J is the Jacobian of µ .
J̃ denotes the Jacobian of ν = µ ∗ρ .
We will not be able to show that J̃ is continuous (just measurable). Anyway, we denote J̃ as the Jacobian

of ν in the sense of Remark 1.
In this subsection we want to show an explicit expression (in terms of certain Radon-Nidodym deriva-

tives) for J̃ (see (14)). In order to get that we will have to use equation (13).
Denote by µ1 the probability such that µ1(B) = µ(B+ 1/3) for any Borel set B and denote by µ2 the

probability such that µ2(B) = µ(B+2/3) for any Borel set B.
The measure µ3 = µ1 +µ2.
Then, µ1 is absolutely continuous with respect to µ3. Denote by R1 the Radon-Nikodym derivative.
Moreover, µ2 is absolutely continuous with respect to µ3. Denote by R2 the corresponding Radon-

Nykodim derivative.
Therefore, for any continuous function h we have∫

hdµ1 =
∫

h(z−1/3)dµ(z) =
∫

h(z−1/3)R1(z−1/3)dµ(z)+
∫

h(z−2/3)R1(z−2/3)dµ(z)

and ∫
hdµ2 =

∫
h(z−2/3)dµ(z) =

∫
h(z−1/3)R2(z−1/3)dµ +

∫
h(z−2/3)R2(z−2/3)dµ(z).

Taking above h(z) = g(z+1/3) the first condition can be rewritten as: for any continuous function g:∫
gdµ =

∫
g(z)R1(z−1/3)dµ(z)+

∫
g(z−1/3)R1(z−2/3)dµ(z).

Taking above h(z) = g(z+2/3) the first condition can be rewritten as: for any continuous function g:∫
gdµ =

∫
g(z+1/3)R2(z−1/3)dµ(z)+

∫
g(z)R2(z−2/3)dµ(z)

We will show that
J̃(z) = J(z−2/6)R1(2z)+ J(z−4/6)R2(2z). (14)

This corresponds also to

J̃(x/2+5/6) = J(x/2+3/6)R1(x−1/3)+ J(x/2+1/6)R2(x/2−1/3) (15)

and
J̃(x/2+2/3) = J(x/2+2/6)R1(x−2/3)+ J(x/2)R2(x/2−2/3). (16)

It will follow that the entropy of ν is

h(ν) =−
∫

log( J(z−2/6)R1(2z)+ J(z−4/6)R2(2z) )dν . (17)

Remark 11. Note that for any x we have that R1(x)+R2(x) = 1. The above expression for J̃ in (14) says
in some sense that J̃ attain values on the convex hull of the values of J. It is reasonable to guess that this
mechanism is responsible for the increase of entropy under convolution (see a kind of more general and
analytic statement in the appendix). Expression (17) permits an analytic estimation of this increase.

Assuming (14) we have to show that (13) is true for any f .

a) Consider first a function f with support on (0,1/6).
We have to show that∫ 1

2/3
J(x/2) f (x/2 + 2/3) dµ(x)+

∫ 2/3

1/3
J(x/2 + 1/2) f (x/2 + 5/6) dµ(x) =

∫ 1

2/3
J̃ (x/2 + 2/3 ) f (x/2 + 2/3)dµ(x) +

∫ 2/3

1/3
J̃(x/2 + 5/6) f (x/2+ 5/6)dµ(x) . (18)
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From (14), (15) and (16) we get∫ 1

2/3
J(x/2) f (x/2 + 2/3) dµ(x)+

∫ 2/3

1/3
J(x/2 + 1/2) f (x/2 + 5/6) dµ(x) =

[
∫ 1

2/3
J(x/2) f (x/2 + 2/3)R2(x−2/3) dµ(x)+

∫ 2/3

1/3
J(x/2+1/6) f (x/2 + 5/6)R2(x−1/3) dµ(x) ]+

[
∫ 1

2/3
J(x/2+2/6) f (x/2+2/3)R1(x−2/3)dµ(x)+

∫ 2/3

1/3
J(x/2+3/6) f (x/2+ 5/6)R1(x−1/3)dµ(x)] =

[
∫ 1

2/3
J(x/2) f (x/2+2/3)R2(x−2/3)dµ(x)+

∫ 1

2/3
J(x/2+2/6) f (x/2+2/3)R1(x−2/3)dµ(x) ]+

[
∫ 2/3

1/3
J(x/2+3/6) f (x/2+ 5/6)R1(x−1/3)dµ(x)+

∫ 2/3

1/3
J(x/2+1/6) f (x/2 + 5/6)R2(x−1/3) dµ(x) ]=

[
∫ 1

2/3
f (x/2+2/3) (J(x/2)R2(x−2/3)dµ(x)+ J(x/2+2/6)R1(x−2/3)) dµ(x) ]+

[
∫ 2/3

1/3
f (x/2+ 5/6) (J(x/2+3/6)R1(x−1/3)dµ(x)+ J(x/2+1/6) R2(x−1/3))dµ(x) ] =

∫ 1

2/3
f (x/2+2/3) J̃(x/2+2/3) dµ(x) +

∫ 2/3

1/3
f (x/2+ 5/6) J̃(x/2+5/6)dµ(x) ,

and this shows (18).
b) Suppose f has support on the interval [2/6,3/6).
We have to show that

∫ 1/3

0
J(x/2) f (x/2 + 1/3) dµ(x)+

∫ 2/3

1/3
J(y/2+1/2) f (y/2 + 1/6) dµ(y) =

∫ 1/3

0
J̃ (x/2 + 1/3 ) f (x/2 + 1/3)dµ(x) +

∫ 2/3

1/3
J̃(y/2+ 1/6) f (y/2+ 1/6)dµ(y) . (19)

The proof is similar to the previous case and it will be left for the reader.

c) Suppose the function f has support on (4/6,5/6). We have to show that

∫ 1/3

0
J(x/2) f (x/2 + 2/3) dµ(x)+

∫ 1

2/3
J(y/2) f (y/2 + 1/3) dµ(y) =

∫ 1/3

0
J̃ (x/2 + 2/3 ) f (x/2 + 2/3)dµ(x) +

∫ 1

2/3
J̃(y/2 + 1/3) f (y/2+ 1/3)dµ(y) . (20)

The proof is similar to the previous case and it will be left for the reader.
For functions f with support on the other possible intervals we proceed in a similar way. This will give

the explicit expression of J̃ in terms of J,R1,R2 on all points.
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3.2. A class of examples where J = J̃.
Suppose we ask: when J = J̃? What equation should J satisfy in this case? Is there some special form

of J such that this happens? We will present examples where this happens.

Denote by S the class of positive Hölder Jacobians J such that for any x ∈ [0,1/6) we have

J(x) = J(x−2/6) = J(x−4/6). (21)
We point out that under the above conditions the values of J on [0,1/6) determine J uniquely. Indeed, on

the intervals [0,1/6) [2/6,3/6) and [4/6,5/6] is clearly determined. On the intervals of the form [1/6,2/6)
[3/6,4/6) and [5/6,1) it is also determined because the sum of J on the preimages of any point is equal to
1.

There exist several continuous (and Hölder) Jacobians satisfying such conditions.

The equation
J(z) = J(z−2/6)R1(2z)+ J(z−4/6)R2(2z)

is true for any f ∈S and any z ∈ S1 because R1 +R2 = 1.
As from (14) we get that for any z

J̃(z) = J(z−2/6)R1(2z)+ J(z−4/6)R2(2z),

it follows that in this case J̃ = J and µ = µ ∗ρ.

4. DIFFERENTIABILITY OF THE ENTROPY OF CONVOLUTION

To each equilibrium probability for a Hölder potential A one can associate a unique positive Holder
Jacobian. Therefore, the set of equilibrium probabilities can be considered as a Banach manifold N (see
[3]). In this way we can consider the bijective map logJ→ µlogJ over N .

Given a probability µlogJ ∈N (associated to the potential logJ) and a tangent vector ζ ∈ TµlogJ N , one
is interested on the derivative µlog+ζ along ζ , where µlogJ+ζ is the equilibrium probability for the potential
logJ+ζ .

For a fixed ϕ consider the transformation Gϕ , such that, Gϕ(logJ) =
∫

ϕ dµlogJ , then,

D(Gϕ)logJ(ζ ) =
∫
(I−LlogJ)

−1(ϕ) ·ζ dµlogJ =

+∞

∑
i=0

∫
ϕ ·ζ ◦T i dµlogJ .

Given a Hölder potential A, following [3], denote N (A) = logJ, where J is the Jacobian of the equilib-
rium probability for A. We also denote µN (A) the Gibbs (equilibrium) probability for A.

We denote µi, i = 1,2, the probability associated, respectively, to the Jacobians (logJ)i.
We denote µ t = µN (logJ1+tz3), where z3 is a tangent vector to the manifold of Gibbs probabilities at the

point µ1. Note that in this case
∫

z3 dµ1 = 0.
Denote by Jt

1 the Jacobian of µ t . This means that logJt
1 = N (logJ1 + tz3).

If νt = µ t ∗µ2 we get that

h(νt) =−
∫

[
∫

log(
∫

Jt
1(r+ s− x)dµ2(x))dµ2(r) ] dµ

t(s)

Denote
Zt(s) =

∫
log(

∫
Jt

1(r+ s− x)dµ2(x))dµ2(r) .

Then,
d
dt

h(νt)|t=0 =−
∫ d

dt
|t=0 Zt(s)dνt |t=0(s)−

∫
Zt(s) |t=0

d
dt
|t=0dνt(s).

Given a continuous function φ we have from [3] that∫
φ(s)

d
dt
|t=0dνt(s) =

∫
φ z3 dµ1.

Note that Zt −Z0 goes uniformly to zero when t→ 0.
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Therefore, from [3] ∫
Zt(s) |t=0

d
dt
|t=0dνt(s) =∫

Z0(s)
d
dt
|t=0dνt(s) =∫

[
∫

log(
∫

J1(r+ s− x)dµ2(x))dµ2(r)]
d
dt
|t=0dνt(s) =∫

[
∫

log(
∫

J1(r+ s− x)dµ2(x))dµ2(r)] z3(s)dµ1(s).

We denote by ϕ t and λ t , respectively, the main eigenfunction and the main eigenvalue of the Ruelle
operator for the potential log(J1)+ tz3.

Note that when t = 0 we get that ϕ t = 1 and λ t = 1.
As

log(Jt
1) = log(J1)+ t z3 + logϕt − log(ϕt ◦T )− logλ

t ,

which means
Jt

1 = J1 et z3+logϕt−log(ϕt◦T )−logλ t
,

we get that

Zt(s) =
∫

log(
∫

J1 et z3+logϕt−log(ϕt◦T )−logλ t
(r+ s− x)dµ2(x))dµ2(r) .

and

d
dt
|t=0 Zt(s) =∫ d

dt
|t=0 [ log(

∫
J1 et z3+logϕt−log(ϕt◦T )−logλ t

(r+ s− x) dµ2(x) ]dµ2(r) .

Denote
Y t(s,r) = (

∫
J1 (r+ s− x)et z3+logϕt−log(ϕt◦T )−logλ t

(r+ s− x) dµ2(x).

Therefore,

−
∫ d

dt
|t=0 Zt(s)dνt |t=0(s) =−

∫ d
dt |t=0 Y t(s,r)

Y 0(s,r)
dµ2(r)dµ1(s).

Now we estimate
d
dt
|t=0 Y t(s,r) =∫

J1 (r+ s− x) [z3 +
d
dt
|t=0 ( logϕt − log(ϕt ◦T )− logλ

t )(r+ s− x) ]dµ2(x).

Finally,

−
∫ d

dt
|t=0 Zt(s)dνt |t=0(s) =

−
∫ ∫

J1 (r+ s− x) [z3 +
d
dt |t=0 ( logϕt − log(ϕt ◦T )− logλ t ) ](r+ s− x)dµ2(x)∫

J1 (r+ s− x)dµ2(x)
dµ2(r)dµ1(s)

In this way we get the following proposition:

Proposition 12. Suppose µi, i = 1,2 are probabilities associated, respectively, to the Jacobians logJi.
Denote µ t = µN (logJ1+tz3), t ∈ R small, where z3 is a tangent vector to the manifold of Gibbs probabil-

ities at the point µ1, and νt = µ t ∗µ2.
We also denote by ϕ t and λ t , respectively, the main eigenfunction and the main eigenvalue of the Ruelle

operator for the potential log(J1)+ tz3.
Then,

d
dt

h(νt)|t=0 =

−
∫ ∫

J1 (r+ s− x) [z3 +
d
dt |t=0 ( logϕt − log(ϕt ◦T )− logλ t ) ](r+ s− x)dµ2(x)∫

J1 (r+ s− x)dµ2(x)
dµ2(r)dµ1(s)
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−
∫

[
∫

log(
∫

J1(r+ s− x)dµ2(x))dµ2(r)] z3(s)dµ1(s).

5. APPENDIX

Now we will prove a result inspired by the reasoning followed in section 3 (see Remark 11).
It a result of interest in itself.

Proposition 13. Suppose are given the Hölder Jacobians J1 and J2 and they are such that: J2 ≥ J1 when
J1 ≥ 1/2, and J2 ≤ J1 when J1 ≤ 1/2.

Denote µi the Gibbs probability associated to the Hölder potential logJi, i = 1,2. Then, h(µ1)≥ h(µ2).

Proof:
One way to get a path from J1 to J2 is to take J t = J1 + t (J2− J1), t ∈ [0,1].
Note that J t(x1)+ Jt(x2) = 1, if T (x1) = T (x2) (therefore J t is a Hölder Jacobian for each value t).
We know that if

∫
χ dµ1 = 0, then, the entropy ht of the Gibbs state associated to logJ1 + t χ satisfies

d ht

dt t=0
=−

∫
χ logJ1 dµ1 =−

∫
χ (logJ1− log1/2)dµ1

(see page 38 in [3]).
In this way if χ(x) ≥ 0 when (logJ1(x)− log1/2) ≥ 0 and χ(x) ≤ 0 when (logJ1(x)− log1/2) ≤ 0

we get that the entropy decreases when we go in the direction χ beginning on µ1. This is so because
−
∫

χ logJ1 dµ1 < 0.
Take ε(t) such that

logJ1 + ε(t) = log(J1 + t (J2− J1)).

Note that logJ1 + ε(1) = log(J2).
Then, d

dt ε(t)|t=0 =
J2
J1
−1.

Moreover, ∫
(

J2

J1
−1)dµ1 =

∫ J2

J1
dµ1−1 =∫

LlogJ1 (
J2

J1
)dµ1−1 =

∫
LlogJ2 (1)dµ1 −1 = 0

The proof that d
dt ε(t)|t=0 ≤ 0 is similar to the case t = 0.

We denote µ t the equilibrium state for the normalized potential log(J1)+ ε(t).
Moreover, d

dt ε(t)|t = J2−J1
J1−t (J2−J1)

.
In this case ∫ d

dt
ε(t)|t dµ

t =
∫ J2− J1

J1 + t (J2− J1)
dµ

t =∫
Llog(J1 +t (J2−J1)) (

J2− J1

J1 + t (J2− J1)
)dµ

t =∫
L0(J1− J2)dµ

t = 0.

Then, d
dt ε(t)|t = χ t , t ∈ [0,1] is tangent vector on N at logJt .

Moreover,
d ht

dt
|t =−

∫
χ t logJt dµt =−

∫
χ t (logJt − log1/2)dµt =

−
∫ J2− J1

J1 + t (J2− J1)
(log(J1 + t(J2− J1))− log1/2)dµt .

Remember that J2 ≥ J1 when J1 ≥ 1/2, and J2 ≤ J1 when J1 ≤ 1/2.
When, J2− J1 ≥ 0, we get that (log(J1 + t(J2− J1))− log1/2)≥ 0.
On the other hand when J2− J1 ≤ 0, we get that (log(J1 + t(J2− J1))− log1/2)≤ 0.
Therefore, d ht

dt |t ≤ 0.
�
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