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ABSTRACT. Here we consider the discrete time dynamics described by a trans-
formation T' : M — M, where T is either the action of shift 7' = o on the sym-
bolic space M = {1,2, ..., d}N, or, T describes the action of a d to 1 expanding
transformation T : ST — ST of class O (for example x — T(z) = dx (mod
1)), where M = S?! is the unit circle. It is known that the infinite-dimensional
manifold A of Holder equilibrium probabilities is an analytical manifold and
carries a natural Riemannian metric. Given a certain normalized Holder po-
tential A denote by pa € N the associated equilibrium probability. The set of
tangent vectors X (functions X : M — R) to the manifold AN at the point
(a subspace of the Hilbert space L?(u4)) coincides with the kernel of the Ruelle
operator for the normalized potential A. The Riemannian norm |X| = |X|4
of the vector X, which is tangent to N at the point p 4, is described via the
asymptotic variance, that is, satisfies
X2 = (X,X) = limposoo 2 [(X07) X 0T dpa.

Consider an orthonormal basis X;, ¢ € N, for the tangent space at pa. For

any two orthonormal vectors X and Y on the basis the curvature K(X,Y) is

1 (e o) o0
K(X,Y) = Z[Z(/nyid;m)? —Z/XQXiduA /YQXidpA].
i=1 i=1

When the equilibrium probabilities p 4 is the set of invariant Markov proba-
bilities on {0,1} C N, introducing an orthonormal basis d,, indexed by finite
words y, we show explicit expressions for K(dz,a-), which is a finite sum.
These values can be positive or negative depending on A and the words x and
z. Words z, z with large length can eventually produce large negative curvature
K (az,az). If z, z do not begin with the same letter, then K(a,,a.) = 0.

1. INTRODUCTION

We denote by T': M — M a transformation acting on the metric space M,
which is either the shift o acting on M = {1,2,...,d}", or, T is the action of a d to
1 expanding transformation T : S* — S, of class C'*®, where M = S' is the unit
circle.

For a fixed a > 0 we denote by Hol the set of a-Holder functions on M.

For a Holder potential A : M — R we define the Ruelle operator (sometimes
called transfer operator) - which acts on Holder functions f : M — R - by

(1) f=Zafx)= > *Wfy)

T(y)==
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It is known (see for instance [22] or [2]) that .#Z4 has a positive, simple leading
eigenvalue A\ 4 with a positive Holder eigenfunction h 4. Moreover, the dual operator
acting on measures .Z’; has a unique eigenprobability ¥4 which is associated to the
same eigenvalue A 4.

Given a Holder potential A we say that the probability 4 - defined on the Borel
sigma-algebra of M - is the equilibrium probability for A, if u4 maximizes the
values

o + [ 4 du.

among Borel T-invariant probabilities p and where h(u) is the Kolmogorov-Sinai
entropy of p.

The theory of thermodynamics formalism shows that the probability p 4 is unique
and is given by the expression py = hava.

In some particular cases, the equilibrium probability (also called Gibbs probabil-
ity) pa is the one observed on the thermodynamical equilibrium in the Statistical
Mechanics of the one-dimensional lattice N (under an interaction described by the
potential A). As an example (where the spin in each site of the lattice N could be
+ or —) one can take M = {+, —}N, A: M — R and T is the shift.

Taking into account the above definitions, we say that a Holder potential A is
normalized if Z41 = 1. In this case Ay =1 and pgq = v4.

Two potentials A, B in Hol will be called cohomologous to each other (up to a
constant), if there exists a continuous function g : M — R and a constant ¢, such
that,

(2) A=B+g—goT —c.

Note that the equilibrium probability for A, respectively B, is the same if A
and B are coboundaries to each other. In each coboundary class (an equivalence
relation) there exists a unique normalized potential A (see [22]). Therefore, the
set of equilibrium probabilities for Holder potentials N can be indexed by Holder
potentials A which are normalized. We will use this point of view here: A <> 4.

The infinite-dimensional manifold N of Holder equilibrium probabilities p4 is
an analytic manifold (see [24], [10], [22], [7]) and it was shown in [12] that it carries
a natural Riemannian structure. In order to provide a context for our main result,
let us review first some of the main properties of this infinite-dimensional manifold
and some definitions described on [12].

The set of tangent vectors X (a function X : M — R) to N at the point pa
coincides with the kernel of 4. The Riemannian norm |X| = |X|,, of the vector
X, which is tangent to N at the point 4, is described (see Theorem D in [12]) via
the asymptotic variance, that is, satisfies

(3) X| = V(X,X) = | lim 1/(2_:X0Tj)2d,u,4

n—oo N -
j=0

The associated bilinear form on the tangent space at the point p 4 can be described
(see Theorem D in [12]) by

(4) (X,Y) :/XYdMA.
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This bilinear form is positive semi-definite and in order to make it definite one

can consider equivalence classes (cohomologous up to a constant) as described by

Definition 5.4 in [12]. In this way, we finally get a Riemannian structure on N (as

anticipated in some paragraphs above). Elements X on the tangent space at ua

have the property [ X dua = 0. The tangent space to A" at p14 is denoted by TaN.
Given a normalized potential A let {X;} be an orthonormal basis of T4\, i € N.
Our main result is :

Theorem 1.1. Let A be a normalized potential, and let {X;} be an orthonormal
basis of TaN. Let X = X1,Y = X, then the sectional curvature K(X,Y) is given

by

) KOCY) = I XY X =3 [ Xeda [ Y20 dya)

The expression of K (X,Y") applies of course to any pair of vectors in the basis
{X;}, we can always change the enumeration of the vectors in the basis without
changing the basis. The work consists of two distinct parts: the first part, from
Sections 2 to 5, has a more geometric nature and deals with the calculation of the
Levi-Civita connection and the curvature tensor. This estimate becomes quite com-
plex because we are dealing with an infinitely dimensional Riemannian manifold.
Our goal was to express the sectional curvature for sections on the tangent space at
14 in terms of integrals of functions with respect to g 4. An important tool which
will be used here is item (iv) on Theorem 5.1 in [12]: for all normalized A € N,
X € TaN and ¢ a continuous function it holds:

— [ exdua
t=0

d

(6) dat wdpayix

In Section 4.3 we describe the expression of sectional curvature K (X,Y") in terms
of the calculus of thermodynamics formalism.

The nature of the second part of the paper, from Sections 6 to 9, is more dy-
namic, analytical and considers M = {0, 1}. We denote by K the set of station-
ary Markov probabilities taking values in {0,1}. The set of shift invariant prob-
abilities u € K is contained in A'. The probabilities p are defined on the space
{0,1}. The two dimensional manifold K is the set of equilibrium probabilities
for potentials A depending on the two first coordinates (see [22]), that is, when
Az, 22,23, .y T, ..) = A(z1, T2).

For each point p4 in K we are able to exhibit a special orthonormal basis {a,}
for the tangent space TN, indexed by finite words y on the alphabet {0,1} (see
expression (24)). This orthonormal family will be denoted by F. We focus, for each
point in /C, on the sectional curvatures for pairs of vectors on F. We get explicit
results in this case. This second part of the article is perhaps the more technical
and subtle part; after some computations we will get the explicit expression for
sectional curvature K (d,,a.) (see expression (41) in Theorem 7.7 and Propositions
7.9 and 7.12).

A remarkable fact appearing in the proof of Theorem 1.1 is that the expression
(5) of the sectional curvature K(d,,a,) is actually a sum of a finite number of
parcels (see expression (41) in Theorem 7.7 and Remark 7.11).
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We highlight some properties that will be demonstrated in the future and that
describe the eventual values of the sectional curvature K(a,,d.) depending on the
pair of vectors G, a, and the point in I under consideration.

1. Each vector a, is a function which is constant in cylinders of finite size (see
expressions (24) and (21)). More precisely, given a finite word y = (Y1, Y2, ..-s Yn),
n > 1, we denote by [y] = [y1,¥2,...,yn] the associated cylinder set in {0, 1}".
The function &, is constant in each of the cylinder sets [a,y1,¥2, ..., Yn, b], where
a,b=0,1. The support of a, is the union of these cylinder sets. In this way if the
word y has large length, then the support of @, is contained on very small sets. We
will have to consider the empty word which will give rise to two tangent vectors d8
and &é, which are functions with support on cylinders of size two.

2. The values K(a.,a.) can be positive or negative depending on the point in
K and the words z and z (see Example 7.19).

3. We say that z is a subprefix of z, if x and z satisfy

[.17] = [1‘1,1‘2, o Lhy Tt 1, ...,$n] C [Z] = [$1,$2,...,xk],

where n > k. If 2 and z do not begin with the same letter (do not share a
common subprefix), then K (d,,d,) = 0 (see Proposition 7.10). As an example take
x=1(0,1,1,0) and z = (1,1,0).

4. Words = and z with large length can eventually produce extremely negative
curvature K (a,, a,). This may happen when z and z have several common subpre-
fixes. This is due to expression (41). As an example take x = (0,1,1,0,0,1) and
z=1(0,1,1,0,0,0,1). But even in this case, it is possible to get positive curvature
depending on the point in K (see Example 7.19 for a discussion in a particular
case).

5. We also show that if 4 (a point in ) corresponds to the measure of maximal
entropy on {0,1}N, most of the sectional curvatures K (a,,a.) are equal to —1/2
(see Proposition 7.16). Proposition 7.18 shows, in this case, an example where the
sectional curvature K (d?®]7d0) = 1/2. The different possibilities also include the
case K(af,a;) = 0.

6. Considering the two dimensional manifold K (of the Markov invariant proba-
bilities) it is natural to consider that vectors on T'M should be functions depending
on two coordinates. In our setting, the corresponding elements on the basis F are
ag and ag. We show that for any points in K the sectional curvature K (ag, ag) =0
(see Theorem 7.14). In this way, considering K as a surface in itself, we get that K
is a flat surface (see Remark 7.15).

In [21] , [4] and [23] the authors consider a similar kind of Riemannian structure.
The bilinear form considered in [21] is the one we consider here divided by the
entropy of pa. As mentioned in section 8 in [12] in that case the curvature can be
positive and also negative in some parts.

The main motivation for the results obtained on [21] (and also [4]) is related to
the study of a particular norm on the Teichmiiller space.

The results presented in [12] and here are related to the topic of Information
Geometry (see [1] for general results on the subject) and this is described in Section
5 in [16]. We point out that in the setting of Thermodynamic Formalism the
asymptotic variance is the Fisher information (see Definition 4.3 and Proposition 4.4
in [13]). Results about Kullback-Leibler divergence on Thermodynamic Formalism
appeared recently in [18].
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General references for analyticity (and inverse function theorems and implicit
function theorems) in Banach spaces are [7] and [25].

A reference for general results in infinite-dimensional Riemannian manifolds is
In section 6 in [12] it is explained that the Riemannian metric considered here
is not compatible with the 2-Wasserstein Riemannian structure on the space of
probabilities.

We would like thanks to Paulo Varandas, Miguel Paternain, and Gonzalo Con-
treras for helpful conversations on questions related to the topics considered in this
paper.

We thank the referee for extremely careful reading and criticism of previous
versions of our paper. Related results appear in [17].

2. PRELIMINARIES OF RIEMANNIAN GEOMETRY

Let us introduce some basic notions of Riemannian geometry. Given an infinite-
dimensional C° manifold (M, g) equipped with a smooth Riemannian metric g, let
T M be the tangent bundle and T3 M be the set of unit norm tangent vectors of
(M, g), the unit tangent bundle. Let x (M) be the set of C* vector fields of M.

In [3] several results for Riemannian metrics on infinite-dimensional manifolds
are presented. We will not use any of the results of that paper.

The only infinite-dimensional manifold we will be interested in here is N which
is the set of Holder equilibrium probabilities (which was initially defined in [12]).
Tangent vectors, differentiability, analyticity, etc, should be always considered in
the sense of the setting described in sections 2.3 and 5.1 in [12] (see also [6] and
[10]). We will elaborate on this later.

So in our case, M = N, and g is the L? metric, g4(X,Y) = [ X Ydua,

For practical purposes, we shall call Energy the function E(v) = g(v,v), v € TN,
although in mechanics the energy is rather defined by %g(v, ).

Given a smooth function f : N — R, the derivative of f with respect to a
vector field X € x(N) will be denoted by X (f). The Lie bracket of two vector fields
X,Y € x(N) is the vector field whose action on the set of functions f : NV — R is
given by [X,Y](f) = X(Y(f)) = Y(X(f)).

The Levi-Civita connection of (N, g), V : x(N) x x(N) — x(N), with notation
V(X,Y) = VxY, is the affine operator characterized by the following properties:

(1) Compatibility with the metric g:
Xg(Y,Z)=g(VxY,Z) +g(Y,VxZ)

for every triple of vector fields X,Y, Z.
(2) Absence of torsion:

VxY —VyX = [X,Y].

(3) For every smooth scalar function f and vector fields X,Y € x(N) we have
o VixY = fVxY,
e Leibniz rule: Vx(fY) = X(f)Y + fVxY.

The expression of VxY can be obtained explicitly from the expression of the
Riemannian metric, in dual form. Namely, given two vector fields X,Y € x(N),
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and Z € x(N) we have

o(VxY,Z) = J(Xg¥,Z)+Yg(Z,X)~ Zg(X.Y)

- 9([X,2],Y) = g(IY, 2], X) = 9([X, Y], 2)),
2.1. Curvature tensor and sectional curvatures. We follow [8] for the defini-

tions in the subsection. To simplify the notation, from now on we shall adopt the
convention g(X,Y) = (X,Y). The curvature tensor

R x(N) x x(N) x x(N) — x(N)
is defined in terms of the Levi-Civita connection as follows
(7) R(X,Y)Z:VyVXZ—VXVyZ—i—V[X,y]Z.

The sectional curvature of the plane generated by two vector fields X,Y at the
point A € N, which are orthonormal at A, is given by

8)  K(X,Y)=(VyVxX - VxVyX + VixyX,Y) = (R(X,Y)X,Y).

Let A be a normalized Hélder potential. Let us consider a local smooth surface
S(t,s), for | t|,| s |< e small, tangent to the plane {A + tX + sY'} generated by
X,Y at the point A = S(0,0). Let X, Y be the coordinate vector fields of the
surface, and suppose that X, = X, Y4 = Y. In Subsection 4.2 we shall exhibit
such local surfaces.

Lemma 2.1. The expression of the sectional curvature of the plane generated by
the two orthonormal vectors X,Y is

(9)
K(X,Y) = —%(X(X(II YV PD+HY @ (X P))+ [ VeX |7 +Y (X (X,Y)—(Vx X,V
Proof. The fact that X and Y commute implies that V¢Y = VX and
(R(X,Y)X,Y)=(VyViX —VgVypX,Y).
The first term of (R(X,Y)X,Y) gives

<V‘VXX,Y> = Y<VXX,}7>—<VX ,VyY)
= Y(7<77Y>_<7’VXY>)_<VX“X7vYY>
V(X(X,Y) - (X, V5 X)) - (V& X, V5 Y)
= V(XX V)~ V(| X ) - (V5 X, V5Y)

1 o _ _
= YV (I X ) +Y(X(X,Y)) = (Vg X, VyY)
The second term of the formula gives

(VxVyX)Y) =

= SXEXAYIP)-1IveX |?

Substracting the second term from the first one we obtain the lemma.
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3. THE ANALYTIC STRUCTURE OF THE SET OF NORMALIZED POTENTIALS

Definition 3.1. Let (X, |.|) and (Y, |.]) Banach spaces and V' an open subset of
X. Given k € N, a function F' : V — Y is called k-differentiable in x, if for each
j=1,...,k, there exists a j-linear bounded transformation

DIF(z): X x X x .. x X =Y,
N——
J
such that,

DI F(z4v;)(v1, ey vj—1) — DT (2) (01, vy vj-1) = DIF(2)(v1, ..., v5) + 04 (0;),
where

0j : X =Y, satisfies, lim Lj(vﬂy =0

v=0  |u|x
By definition F' has derivatives of all orders in V, if for any x € V and any k € N,
the function F' is k-differentiable in x.

Definition 3.2. Let X, Y be Banach spaces and V' an open subset of X. A function
F :V — X is called analytic on V', when F' has derivatives of all orders in V', and
for each = € V there exists an open neighborhood V, of z in V', such that, for all
v € V., we have that

Flz+v) — F(z) = Z % DI F(z)v7,

where DI F(z)vi = DIF(x)(v,...,v) and D;F(x) is the j-th derivative of F in x.
Above we use the notation of section 3.2 in [10].

N can be expressed locally in coordinates via analytic charts (see [12]).

3.1. Some more estimates from Thermodynamic Formalism. Given a po-
tential B € Hol we consider the associated Ruelle operator £g and the correspond-
ing main eigenvalue A\ and eigenfunction hp.

The function

(10) II(B) = B +log(hp) — log(hp(T)) —log(Ap)

describes the projection of the space of potentials B on Hol onto the analytic
manifold of normalized potentials .
We identify below T4\ with the affine subspace {A + X : X € TaN}.
The function IT is analytic (see [12]) and therefore has first and second derivatives.
Given the potential B, then the map DpIl : TgN' — TrypyN given by
0
should be considered as a linear map from Hol to itself (with the Holder norm
on Hol). Moreover, the second derivative D%II should be interpreted as a bilinear
form from Hol x Hol to Hol, and is given by
> 0
DEII(X,)Y) = II(B 4+ tX + sY );—s—0.
BII(X,Y) 8t8s((+ + 8Y )i1=s=0

We denote by ||A||o the a-Holder norm of an a-Hélder function A.
When B is normalized the eigenvalue is 1 and the eigenfunction is equal to 1. We
would like to study the geometry of the projection II restricted to the tangent space
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TN into the manifold A/ (namely, to get bounds for its first and second derivatives
with respect to the potential viewed as a variable) for a given normalized potential
A.

The space T4 is a linear subspace of functions and the derivative map D II is
analytic when restricted to it.

We denote by Ey = E§' the set of Holder functions g, such that, [ gdpa =0,
where j14 is the equilibrium probability for the normalized potential A. Note that
E§' is contained in T4 (N).

Most of the claims of the next Lemma are based mainly on results of [12] (see
also [10], [6]).

Lemma 3.3. Let A : Hol — R, H : Hol — Hol be given, respectively, by
A(B) = A, H(B) = hp. Then we have
(1) The maps A, H, and A — 4 are analytz'c.
(2) Fora normalzzed B we get that Dpglog(A = [dusg,
(3) D%log(A)(n,v) = [ mpdup, where 1, are at TsN, and B is normalized.
(4) For any Holder potential A and any Hoélder function X, we have

(11) DoH(X)=hy /([(I—ﬁT,A|E5x)’1 (1—ha)]. X)dva.

If A is normalized, vqa = g and DyH =0,
(5) If A is a normalized potential, then for every function X € TaN we have
. fXd/JA =0.
o DAII(X) =X.

In order to simplify the notation, from now on, unless is necessary for the un-
derstanding, we will denote (I — L1 a|ga)~! by (I — Lr.a)~"

Items (2) and (3) are taken from Theorem D in [12]. Item | Xdpa = 0 in (5)
follows from Theorem A and Corollary B in [12] the other item in (5) is trivial.

The analyticity of A and H of the item (1) are well-known facts (see chapter 4
in [22] or Corollary B in [12]) which was also proved in [6].

The law that takes a Holder potential B to its normalization A is differentiable
according to section 2.2 in [12].

Note that the derivative linear operator X — D4 H(X) is zero when A is nor-
malized.

Remark 1: In Proposition 10.1 in the Appendix of our article, we present the
proof of Item (4). Expression (11) mentioned in item (4) appears in an old version
in arXiv of the paper [6]. Our proof follows the reasoning of this old version; we
were authorized by the authors of [6] to do so. This expression did not appear in
the final published version of [6].

Remark 2: Item (1) above means that for a fixed Holder function f the map
A — [ fdua is differentiable on A (see theorem B in [6])

Questions related to second derivatives on Thermodynamic Formalism are con-
sidered in [19] and [23].
4. EVALUATING THE SECTIONAL CURVATURES OF THE RIEMANNIAN METRIC

The goal of the section is to calculate the sectional curvature K(X,Y) of the
plane generated by two orthogonal vector fields tangent to A € N applying the
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calculus of Thermodynamics formalism. We start with a technical result that is a
consequence of formula 6. This lemma will be extensively used in the article.

4.1. Leibniz rule of differentiation.

Lemma 4.1. Let A € N and let v : (—e,€) — N be a smooth curve such that
v(0) = A. Let X(t) =+/(t), and let Y be a smooth vector field tangent to N defined
in an open neighborhood of A. Denote by Y (t) = Y (~(t)). Then the derivative of
J Y (t)dpr iy with respect to the parameter t is

d dY (t)
7 / Y(t)dpy oy = / —q e+ / Y ()X (8)dpn ey

for every t € (—e¢,¢€).

Proof. The idea of the proof is very simple and based on the fact that the function
Q : x(N) x mp — R given by

Q) = [ X

is a bilinear form, where y(N) is the set of C! vector fields tangent to N and mrp
is the set of invariant measures of the map T'. So the derivative of a function of the
type Q(X(t), u(t)) satisfies a sort of Leibniz rule. Let us check.

Let us calculate the derivative at ¢t = 0, for every other ¢ € (—e¢, €) the calculation
is analogous. We have

d
%/Y(t)d/‘v(t) =0 = }1_{% /Y )dps (1) /Y )dpa)

= [ tim 070 - Y )iy

tﬂOt
+ hm /Y Ydpiy () — /Y Vi)

1

where in the last step we use the fact that the derivative with respect to ¢ only
depends on the vector X (0) and not on the curve through A tangent to X (0). By
equation (6) the second term in the above equality is just % JY(0)dpatixo) li=o,
which equals [ X(0)Y (0)dpa. This finishes the proof of the lemma.

O

From now on, we shall adopt the notations 2 at =Y’ =Y;, the second one applies
when there is only one parameter involved in the calculations, the third one will be
used otherwise.

4.2. Auxiliary local surfaces in A. Next, given a normalized potential A and
X,Y orthonormal vector fields in the tangent space of A, we proceed to construct
a local surface S(t,s), | t |,| s |< € small, such that S(0,0) = A, and the tangent
space of S(t,s) at A is the plane generated by X,Y. Let us consider the plane

P(t,s) = A+tX +sY
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where t, s, € R, that is a subset of T4 A, and let II be the projection into N defined
in equation 10. The vector fields Xp(; ) = %P(t, 5) =X, Ypus = %P(t,s) =Y
are tangent to the plane P of course.

Let S(t,s) = II(P(t,s)). By Lemma 3.3 item (5), the restriction of the map II to
the plane P(t, s) is a local diffeomorphism onto its image, so there exists € > 0 small
such that S(t,s) is an analytic embedding of the rectangle {| ¢ |[< €} x {| s |< €}.

The coordinate vector fields of S(t, s) are Xg (1.5 = 2 (II(P(t, s))) = Dp(;,)IL(X),
Yt = %(H(P(t7 s)) = Dpg,oII(Y), so X, Y are extensions of X,Y.

Moreover, we have the following

Lemma 4.2. The derivatives with respect to t,s of the coordinate vector fields X,
Y at the point A (a normalized potential) are

(1) X =&Y =-1

2) X =2y =0.
Proof. This claim will be a consequence of Lemma 3.3. Indeed, since the local sur-
face S(t, s) is contained in the manifold of normalized potentials, the eigenvalues
As(t,s) of the Ruelle operator associated to the functions S(t, s), and the eigenfunc-
tions hg( s are equal to 1 for every ¢,s. Thus, the differentials of the functions
A(B) = A, log(A)(B), H(B) = hp and log(H)(B) at the point B = A are equal
to zero.

By definition, we have

0 0
(12) a(XS(t,o))t:o = a(DP(t,O)H(XP(t,O)))t:O
Let I be the identity map. The expression of the projection IT (equation (10)) is
II(B) = I(B) + log(hp) — log(hp(T)) — log(Ap).

Lemma 3.3 grants that all the functions involved in the expression of II are
differentiable, so we get at the point ¢ = 0,

0 0
= (Dp,o)(Xp,0)))t=0 = &(Dp(t,O)I(XP(t,O)))t:O

ot
0
+ - ((Dp(t,0) log(H))(Xpt,0)))t=0
(13) o
- a((DP(t,o) log(H o T))(Xp(t,0)))t=0
0
- a((DP(t,o) log(A))(Xp(t,0)))t=0
The first term gives at t = 0,
O Doy I(Xp(e))imo = (X} = 0
57 Preol(Xpo))=0 = 7 (X)i=0 =

since X does not depend on t.
By Lemma 3.3 item (3), the fourth term of this equality gives at ¢t = 0,
0? 5
O log(Marx = - / X2y = -1

To evaluate the second and third terms let us first show that

Claim 1: 2 (Dp(,0/H(Xp(1,0))) =0 at t =0.
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We shall prove Claim 1 in two steps. Let §(t) = II(P(t,0)), that is an analytic

curve in the manifold A with 8(0) = A, 8'(0) = X, the same values at t = 0 for
the curve P(t,0) = A+ tX and its first derivative.

Claim 2: §(Dpuo)H(Xp.0)) = 5 (DawyH (' (1)) at t = 0.

Indeed, the function F'(B) = Dp(H) is analytic as a map from Hol to the space
of linear maps in Hol. Then we have,

| F(P(t,0)) = F(B(1)) |

| DptoyH(X) — Dy H(B(2)) ||
| DptoyH(X) — DawyH(X) ||

| DayH(X) — Dy H(B(2)) ||

Il Dpt,0)H — Dy H ||| X |

| Dy H ||| X = B'(¢) |

+ IN + A

Since P(t,0) — 8(t) = O(t?) because these curves are tangent at t = 0, Taylor

expansion yields that the term || Dp(;0)H — DgyH ||| X || is of order O(t?).
Moreover, the term || X —8'(¢)) || is of order O(t) since the curve §(t) is tangent to

X at t = 0, and the term || Dy H || vanishes because 3(t) is a curve of normalized

potentials ( item (4) of Lemma 3.3 ). Hence, the whole above expression is of order
O(t?) and Claim 2 holds.

So let us proceed to evaluate 2 (Dg(yH(B'(t))) at t = 0. Recall that 3(t) is a
curve of normalized potentials, so hg) = 1 for every t. Therefore,

0 0

= S(H(E®) = 5,1 =0,

Dy H(B'(t)) =

This yields the proof of Claim 1.

To finish the proof of the first part of item (1) in the Lemma, it remains to show
that %((Dp(t,o) log(H))(Xpt,0)))t=0 = 0. This result can be deduced by either
applying the chain rule to log(H) or following the same steps of the proof of Claim
1, carried out replacing H by log(H) (for more details see Remark 3).

Replacing ¢t by s and X by Y, and P(t,0) = A+tX by P(0,s) = A+ sY in the
above argument we get

9y —/Y%m = 1.
Js

Since X, Y are unit vector fields, we get item (1) in Lemma 4.2.

Item (2) follows the same type of reasoning. By definition we have,

0 - 0
%(XS(O,S))SZO = %(DP(t,s)H(XP(t,s))t:O)s:O~
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This expression, according to equation (13) is
0 0

%(DP(t,s)H(XP(t,s)))t:szo = % (DP(t,s)I(XP(t,s)))t:s:o

(D 108 (H) (X prs))ieo

ds
0
%((DP(t,s) log(H o T))(Xp(t,s)) ) t=s=0
0

%((DP(t,s) log(A))(XP(t,s)))t:s:O

The first term gives at t = 0,
0 0
g(DP(t,O)I(XP(t,O)))t:O = %(X)t:o =0

since X does not depend on ¢, s. The fourth term is, by Lemma 3.3 item (3),
0
=55 (DP(t,5) 108(A) (Xp(r,s)) ) t=s=0 = — D% log(A)(Y, X) = — /XYduA =0

To evaluate the second and third terms we proceed in the same way as in the
proof of item (1), we shall show that they vanish (this follows from the chain rule).
Similar to Claims 1 and 2 in the proof of item (1) we have

Claim 3 2 (Dp,oH(Xp(,5)) =0 at t = s =0.

We shall prove Claim 3 in two steps. Let Ss,(t) = S(¢, s0) = II(P(¢, s0)), that is
an analytic curve, for each sg, in the manifold V.

Claim: 4 %(Dp(t,s)H(XP(t,s))) = %(Dss(t)H(XSs(t))) att =s= 0, recalling
that X = DII(X).

The proof of Claim 4 is an extension of the proof of Claim 2. We shall show that
the diference Dp(; )H(Xp(1,s))) — Ds,,, H(Xs, (1)) is of the order of a quadratic
term in ¢, s in an open neigborhood of (0,0).

Let us start by observing that Taylor approximation of order 2 of the function
S(t,s) in terms of ¢, s is

S(t,s) = TI(P(t,s)) = A+ (Dall) o (D0 P)(t,s) +O(2)
= A+tX+sY +0(2) =P(t,s)+0(2)
since D4II = I, where O(2) is a term of order 2 in ¢,s. In particular, notice that
D(Owo)s - D(070)P. B

To estimate the difference Dp( o\ H(Xp,s)) — Ds, (1) H(Xs,()) in an open neig-
borhood of (0,0), let us first extend the vector field X as a constant vector field in
an open neighborhood B of A in the Banach space of Holder functions. We shall
denote by X this extension, to simplify notation. We have

| Dpg,s)H(Xpt,s)) — Ds,yH (Xs,) | < || Dp,s)H(Xp,s)) — Ds, iy H (X pe,s)) |l
+ || Ds,tyH(Xp(t,5)) — Ds,cy H(Xpz,s)) |

which implies

(14) || Dp,s H(Xp(t,5)) — Ds. iy H(Xs. 1) IS Dp.syH — Ds, iy H |||l Xp@,s) |

+ I Ds,yH Il Xpe,s) — Xpes Il -
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Since B — DpH is an analytic function of B, there exists a constant L > 0 such
that for every t, s sufficiently small we have

| Dpt,s)H = Ds,inH |< L || P(t,s) = Ss(t) [|= LO(2).
Since Xp(; ) = X we have
| Dpe,s)H = Ds iy H ||| Xp,s) [I< L X [ O2)

so the first term of inequality (14) is of order O(2) in ¢, s.

As for the second term of inequality (14), observe that Ss(t) is a curve of nor-
malized potentials, so the function H is constant in S¢(¢) and equal to the constant
function 1. Then we have that Dg_;)H = 0. So the only relevant term of inequality
(14) is the first one which clearly yields Claim 4.

Claim 3 follows from Claim 4 and the fact that Ss(t) is a curve of normalized
potentials, so Dg_(y)H = 0 for every ¢, s as noticed in the proof of Claim 4.

As in the proof of item (1), to obtain the values of the derivative of D log(H)
we either apply the chain rule and Claim 3 or we follow step by step the proof of
Claims 3 and 4 replacing H by log(H).

Remark 3: The Claims also hold for the functions H o T and log(H) o T
Indeed, since H(A) = ha, (H oT)(A) = haor, and if A is a normalized potential,
the function AoT is a normalized potential as well. So the calculations in the proof
of the Claims for normalized potentials apply to A o T'. This yields item (2).

U

4.3. The expression of K(X,Y) in terms of the calculus of thermodynam-
ics formalism. Let us first state some notations. Let X; be the derivative of the
vector field X with respect to the parameter t and X, be the derivative of the vector
field X with respect to the parameter s. The same convention applies to Y;, Ys.
The notations X (Y) = %Y =Y, will always represent derivatives with respect to
the vector field X, while XY or X x Y will represent the product of the functions
X and Y. Through the section this double character of the vectors tangent to the
manifold A which are also functions will show up in all statements and proofs.

Theorem 4.3. Let A be a normalized potential, let X,Y € TaN be a pair of
orthonormal vector fields, and let S : (—e,€) x (=6,0) — N be the local surface
defined in the previous subsection with S(0,0) = A, X, whose coordinate vector

fields are X, Y, with X (A) = X, Y(A) =Y. Then the sectional curvature K(X,Y)
at A of the plane generated by X,Y is given by the expression
K(X)Y) =[| Vg X ||? =(V£X,VyY)
We shall subdivide the proof into several steps.

Lemma 4.4. We have that X, =Y; in the local surface S.

This is a straightforward consequence of the fact that the vector fields X,
commute.
Next, let us evaluate the terms of the sectional curvature in Lemma 2.1,

1 o o _
KX, Y) = —5X&X(Y 1) +Y (Y (I X )+ || Ve X |7
Lemma 4.5. At every point p € S(t, s) we have
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(1) XXV () =2 [ VVudy — [ Py + [ X2V 2dp,.
2 YY(I| X 1?) =2 [ XXssdpp — [ X?dpy + [ X2Y?dpsy.
In particular, if p = A we have

(1) X(X(| Y [?) =2 [ VVudua — 1+ [ X2V ?dpa.
©2) V(V(| X 2) =2 [ XXoudpia — 1+ [ X2V 2dpy.

Proof. The expression follows from the application of the Leibniz rule to differen-

tiate || Y ||?= [ Y?du, (we shall omit for convenience the p in the notation of the
measure dp, )

(X / P = X2 / ¥ Vidp + / XV2dp)

2/(ﬁ)gdu+2/f/)7ttdu+2/}7)_ﬂ7tdu

+

/ X,V 2y + 2 / XY Vydp + / X272y

2 / (Va)2dpu + 2 / ¥ Yigdp + 4 / XY Vidp

+ / X,V 2 + / X272,
Since by Lemma 4.2 we have that X, = Y; = 0, X; = Y, = —1, we get item (1)
just by replacing this values in the integral expressions above.

Interchanging X and Y, ¢ and s, in the above formulla, we get item (2). At the
point p = A we have that fX2dpA = ngd/iA = 1, so replacing these values in
the formula we finish the proof of the lemma.

(I
Lemma 4.6. The expression of Y (X(X,Y)) =Y (X [ XYdpu,) is
V(X / XVdp,) = / Y Xpadpiy+1— / V2 djuy+ / XViadpty— / X2dp,+ / X272y,
at every point p € S(t,s). In particular, at p = A we have
V(X / KVdpa) = / ¥ Xyodpin + / XVyadpn —1+ / X292
Proof. We apply the Leibniz rule,
V(X / XVdy) = Vo / X, Vdu+ / XVydp+ / X2V dp)
_ / X,V + / X, Vadp + / X,V
b [ XV [ XFdas [ X0 d

+ / VX 2y + 2 / VX Xodp+ / X292y
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Since by Lemma 4.4 we have that X, = Y; we get the following formula just adding
the terms in the above formula:

?@/Xmm::/im@+/xzw+/xww+/@ym
/Xﬁmuﬂ/X&ﬁm+/ﬁﬁw+/XW%M
By Lemma 4.2 X, =Y,=0, X, =Y, =—1, and replacing these values in the
integral expression above we obtain the formula in the statement. Moreover, if
p = A we know that [ X2du, = fzduA =1,as well as [Y2dpa = [Y3dua = 1,
thus concluding the proof of the Lemma.
O

Corollary 4.7. The term —3(X(X(|| Y [|?) + Y(Y (| X ||?)) + Y(X(X,Y)) in
the expression of K(X,Y) at the point A vanishes.

Proof. To shorten notation, we shall omit the dependence of A in the expressions.
According to Lemma 4.4, we have that

1) [ XXodp = [ XVodps.

fYXstd,u' IYY;stdﬂ

Replacmg the above equalities in the expressions of Lemmas 4.5, 4.6, and adding
the resulting formulae we get Corollary 4.7.
|

Theorem 4.3 follows at once from Corollary 4.7.

5. CRISTOFFEL COEFFICIENTS AT THE EXPRESSION OF K (X,Y)

We denote by {X;}, ¢ € N, a complete orthonormal base of the vector space
TaN C L?(u) (for the Gibbs probability u associated to the normalized potential
A).

The main goal of the section is to obtain the expression for the sectional curvature
in Theorem 1.1.

Namely, let A € N be a point in the manifold of normalized potentials, let
X,Y € T4N be two orthonormal tangent vectors. Then the expression of the
curvature of the plane generated by X,Y is

(15)  K(X,Y)= /XYX dp)? /XQX dp /YXdu

In Proposition 5.2 we will show that the above sum is well defined.

The proof is a direct calculation of the terms || VyX ||2,(VgX,VyY) that
appear in the expression of the curvature in Theorem 4.3. We shall subdivide the
calculation in several lemmas.

We follow the notations of the previous section. Let S(¢,s) be the local surface
given in Section 4 tangent to the plane generated by the vectors X,Y, satisfying
S(0,0) = A, let X,Y be the local extensions of the vectors X,Y obtained by
projecting by the map II the plane generated by X,Y at TyA into the tangent
space of N.

Let us define local extensions X; of the vector fields X; in an analogous way
we defined the extensions of X,Y: let Si be the plane generated by X1, Xa, .., Xg
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and let us project by II the tangent space of Sy into T’V by the differential of the
projection into N.

The terms || VX [|2,(V X, VyY) involve the Cristoffel symbols of the vector
fields X,Y, at the point A we have:

Ve, Xi =Y TyX;
i=1

where '}, = (Vx, X;, X;) is the Cristoffel coefficient. We follow [8] for the defini-
tions and basic properties of Cristoffel coefficients.

The coeflicient Ffj can be calculated in terms of the coefficients of the first
fundamental form of the metric at A, the inner products g;; = (X;, X;) by the
following formula:

. 1 .
Iy = iglm(gmk,l + Gmik — Gkim)

where ¢'™ is the coefficient of the inverse of the first fundamental form of index
1M, gmk, is the derivative with respect to X, of the coefficient Imik, and the above
notation is Einstein’s convention for the sum on the index m.

The expression ”inverse of the first fundamental form” requires some explana-
tion since we are dealing with an infinite-dimensional Riemannian manifold. One
natural rigorous approach is to evaluate the series » .=, I‘};lXZ- as the limit of its
partial sums > ', X;, that includes the Cristoffel coefficients in the subspace of
TaN generated by {X1, Xs,.., X, }. The first fundamental form restricted to this
subspace is a n X n matrix that, under our assumptions, is the identity. Its inverse
is of course the identity. This allows us to define all the terms in the partial sum,
then we take the limit as n — oo to get the series. We shall prove that the series
converges absolutely, so the above procedure provides the expression of V g, X, as
an infinite series.

In particular, since the basis { X1, Xa, .., X, ..} is orthonormal, the indices in the
sum of the expression of Vg, X, according to Einstein’s convention just reduce to
ii,kk, ll, depending on the case, and gx; = ¢ = 6x;. So at the point A we get the
formula

. 1
I i(gik,z + Gitk — Gri,i)-

Lemma 5.1. The term g;;; at A, for any permutation of the indices, is
Jikg = /XiXledﬂ-
Then,
_ 1
VXle = 22_:1(/ XZXled,U,A)XZ

Proof. We have that g, = X;(X;, Xi) = X; f)_(iX'de. By the Leibniz rule we
have
% [ XixXpan= [ LX) Xean+ [ %L (Kodp+ [ XXX
l/ i k,u—/ai)—(l( i) ku-f-/ zﬁ( k)M+/ iX A0
where ain(Xi) is the derivative of the vector field X; in the direction of X;.
Notice that Lemma 4.2 extends to the submanifolds Sy for every k € N. So we
have
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o v _ . .

(1) 55 (X5) =01if I #4,
o o _ . -

In both cases, since [ X;du = 0 for every i, we get gix; = [ X;XpXidu as
claimed.

The expression for V g, X is straightforward from this formula.
O

Corollary 5.2. Let us assume that X = X1 and Y = X5 are the first two vectors
of the orthonormal base {X;}. For the normalized potential A = S(0,0) we get the
following expressions

_ 1
VXle = 5 Z(/Xszd,uA)Xz

=1

_ 1
Vi, X2 =5 Z(/ X2 Xdpa) X

=1

1 o0
Vi, Xo= 3 Z(/ X1 X0 Xidua)X;.
i=1

Moreover, for any pair X,Y € TaN the sums

Z(/XYXidu)Q and Z/XQXZ-d,u /Y2Xid,u
1=1 =1
are both finite.

Proof. We consider an extension of the family X,, r € N, to all L?(u) and we get
a complete orthonormal base of the vector space L?(u), given by X,., Yy, 7,5 € N.
The first three expressions in the statement are straightforward from Lemma 5.1.

Given two elements X,Y € T4N consider f = XY =Y af X, + Y blY; €
L?(u), then,

(/XYXi dp)? = |al .

It follows that S2°°, ([ XY X, du)? = 322, |af |2 <|| f ||? is finite.
Denote g = X? = Y afdX, + >, b9 and h = Y2 = 3 alX, + 3 b1y,

Therefore,
/ghdu = Zafa? + Zb?b;“
i=1 j=1

Form this follows that > ;2 a’al converges. Note that [X2X;du = af and
JY?X, dp = al. Then,

i/X2Xidu /YQXidu:iaga?
i=1 =1

converges.

O

Theorem 1.1 follows from direct calculation aplying Corollary 5.2 to the expres-
sion of K(X,Y).



18 ARTUR O. LOPES AND RAFAEL O. RUGGIERO

6. A WORKED EXAMPLE IN THE MARKOV CASE: AN ORTHONORMAL BASIS FOR
THE KERNEL OF THE RUELLE OPERATOR

From now on M = {0,1}" and we denote by K the set of stationary Markov
probabilities taking values in {0, 1}.

In this section, given a probability ua € K, we will exhibit an orthonormal basis
for the tangent space to A (the kernel of the Ruelle operator) at 4.

Given a finite word @ = (1,2, ...,xx) € {0,1}*, k € N, we denote by [z] the
associated cylinder set in M = {0, 1},

Consider an invariant Markov probability u obtained from a row stochastic ma-
trix (P; ;)i j—o0,1 and an initial left invariant vector of probability 7 = (mg,71) € R?.

Given r € (0,1) and s € (0,1) we denote

_ P0,0 P071 o T 1—r
(16) P_(PLO P171>_(1—$ S )

In this way (r,s) € (0,1) x (0,1) parametrize all row stochastic matrices.
The explicit expression is

(17) M[l‘hl‘z, ">In] = Ty PIlJz sz,ws Pwnflxajn'

Definition 6.1. Denote by J : {0,1} — R the Jacobian associated to P. This
function J is such that is constant equal
Uy Pi,j

T

Jij =

on the cylinder [4, j], i,5 = 0, 1.

According to our previous notation g4 = pieg s (Which in this section will be
called just ).

Definition 6.2. The Ruelle operator for log J acts on continuous functions ¢ and
is given by: for each ¢ : M — R, we get that

0 Po 2, T P g,

(18) EIOgJ(gp)(th‘Q’m?f“) = @(0a$1a1‘2a-~-)+

Ty Ty

It is known that Ly, (1) = p. (see [22])
We also consider the action of Lo s on L?(11) and we are interested in the kernel
of this operator when acting on Holder functions.

(p(l, T1,T2, )

Given a finite word & = (1,2, ..., Zn), depending of the context [z] will either
denote the word or the corresponding cylinder set in {0,1}". The empty word is
also considered a finite word.

We start by recalling that, given a Markov probability x on {0, 1}, the family
of Holder functions

(19) €] = \/— 1[z0) — \/— 1”’ L),
where x = (21, z3, ..., %,) is a finite word on the symbols {0 1} is an orthonormal
set for L£2(u) (see [14] for a general expression and [9] for the specific expression we

are using here). In order to get a (Haar) basis we should add efy = ml[o] and

1
e = \/Wl“] to this family.
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Definition 6.3. Given a finite word x = (21, 2, ..., Zn ), we denote
T . Tz, .
[0,21,22,..,xn] — (1,z1,22,..,25]>
VT0/ FPo 2, VT Pz,

It will follow from (29) and (30) that the terms |a,| are uniformly bounded away
from zero (the minimum value is 2). Moreover, they depend just on the first letter
of the word [z].

(20) ay =

Definition 6.4. We denote by
1
(21) Ay = — Ay

|az|

the normalization of a,.

In order to get a complete orthonomal set for the kernel of the Ruelle operator
we will have to add to the functions of the form (21) two more functions: d?w] and
d([)w to be set in Definition 6.8. To show this result is our main goal in this section.
This family will be later denoted by F according to Definition 6.9.

In this direction, we first consider the problem of exhibiting an orthogonal family
which is a basis for the kernel of the Ruelle operator, and later via normalization,
we will get a complete orthonormal family which is a basis for the kernel of the
Ruelle operator.

Following this line of reasoning, one of our main tasks in this section is to show
the following:

Theorem 6.5. The family a,, indexed by all words x = (x1,%2,...,Tn), plus the
two functions 6([]@] and e[lw], determine an orthogonal set on the kernel of the Ruelle
operator Liog .

We will address first the issue related to the functions a,, and later to questions
regarding the functions e?m and 6[1@].

First note that as the family ef,], where x is a finite word, is orthonormal, then,
a,, where x is a finite word with size bigger or equal to 1, is an orthogonal family.

Indeed, it follows from the fact that the family e[,y defined by (19) is orthogonal,
and the bilinearity of the inner product, that

<aacaaz> =
0] — —F———C[1,2]> e[o,z] — ———[1,4)) =0,
\/7T0P0x1 \/7T1P L1 7T0P( \/7T1P121

for all x = (21,22, .., 2n) # 2 = (21, 22, vy 2k)-

=

We shall subdivide the proof of Theorem 6.5 into several steps. First of all, we
have that:

Proposition 6.6. Given x = [x1, 29, .., x,] with a size larger or equal to 1,

A /7Tm1
(22) £logJ (6[11@2,“,:1:”]) = \/@ V Pw1,wze[z2,m3,..,zn]'

From this follows that all elements in the orthogonal family

(23) G

Ay =
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indezed by words © = (x1, 2, ..., Ty), are in the kernel of the Ruelle operator Liog .

Proof. We consider finite words = with size larger or equal to 1.
Indeed, given the word x = (1,22, ..,7,), let L = Liog 1 (€[z, 2s,..,z,])> then we
get

Px,“1
\/7 Lzs,..,20,0]

Pan

7T351
L = Pa:mﬂz

Llzs,. 7:707“1]

\ﬁ

xnv
- ’l'rz1 \/ rl,rg acn
- xl T2 $27 :»Lmo]
wz wru

961,962 Pzn,(]

[z2,.,2n,1]
ZTn,l

This is equal to

Tz \/ Txa \/Pi V PIl,EQ Pzn,l 1
T1,T2 P P P P [m27--1xn
Ty V Ty \/7T961 T1,T2 ©+ 2,3 *** & Tn—-1,Tn r

Tz \/ Txo V P$1,$2
- V4 x,a2

P,
P, T l[a:
25,Tn,1]
UEZIRVALES \/ﬂ'm Py 2y Poyag oo Poy 12y | Pra

which is equivalent to

Ty \/ P 1 Py, 1
:101,12 P P Lizs,..,2,,0]

Ty \/7Tz2 ro,x3 Lz, 1,2, Tp,0

Txq vV Txo \/Pf 1 PZ‘-,,,,O
- T1,T2 Iz Iz P l[$27..,xn,1]

Txy /Tay \/71'1'2 wa,xy o Lan_q,2n Tn,1

that yields

\/ﬂ-ﬂh 1 P;E 1 Px 0
L Pw T - liz,,..2 - #lzmxn
vz Y e aeranand | Pewo om0 T\ By Mzl

/TTzq
= V PIl,IQ 6I2,13,~a$n
VAU

Then,

Ty

Llog J(

6[171 ;$27~-71n])
117582

_ In» 1 _ Pxn,(] 1 ] —e
- [z2,..,20,0 P [z2,.zn,1]] = Clze,x3,..,2n]
M[CL’Q, T3y ey T\ Pps0 L1

and therefore,

)=

£logJ( $ 6[0,12,..,1: Elog J( $ e[l,mg,..,mn}
VT0v/ Poz, VT Pizs
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For each finite word (131 Z3, .., Tn) denote

j

VT
Ay = €[0,21,z2,. €[1,21,2
\/WO\/PO 1 2oesnd Vaiy/Pray 2

= In7 1
\/ﬁm \/7 z" 1(0z0] z" 1oz ]

l[1xl]]~

(24) LT LBy
VA Pry /ua)) \ Peo

From the above reasoning, it follows that the family a, is in the kernel of the

Ruelle operator. O

For words, = of size greater or equal to 1 the function a, is constant in cylinder
sets of size equal to the length of x plus 2.
As an example, we get that

apg =

il ! [ Po,11000_ @1001}
Vo Pow /u(00]) '\ Poo %\ By, T

(25) S £ S Y K i
Vv Pro Va(o]) \ Poo M\ By T

is constant on cylinders of size 3.
Note that if 2 and z are different words, then, 1z, 0z, 0z and 1z are four different
words.

Note that
1 PfC 1 1 Px 0
(26) ey = —e =T 1)+ e = 1.
B () Prao T pl(a]) Py Y
Therefore,
2 __ _ Ty 2 Ty 2
A, = Az Ay = 7T0P0 . [0,21,22,..,2,] 7T1P1 . [1,z1,22,..,25]
Ty 1 mel + Ty 1 Pﬂfnao }
= 1oz 10z
m0Po, p([02]) P, o 0 moPo g, p([02]) Py, iy O
(27) +[ 7'('11 1 Pw 1 7T$1 1 szo

~— 111000 + 111511 |-
2Py (1)) Povo 050 2Py la]) P )

From the above it follows that

(28) |am|:\/ Ty + Ty

T0Foz  m™Pia,

Using the notation in the variables r, s for the matrix P, when z; = 0 we get

(20) ax|—¢ T Tn (T o))

T0Poe,  m™Pia,

and when 1 = 1 we get

(30) |ax=\/ T 4 Im _(Vs(—s)h




22 ARTUR O. LOPES AND RAFAEL O. RUGGIERO

Definition 6.7. We denote by F the orthonormal set of normalized functions é,
where © = (21, x2, ..., x1) is a finite word with size equal or larger than 1.

As we mentioned before, we will have to add two more functions in order to get a
basis (a completely orthogonal set in the Hilbert space) for the kernel of the Ruelle
operator Ligg j.

We claim that the orthogonal pair (constant in cylinders of size 2)

Vi =mPio1p0 — m0Fo,01[10)

(31) Vo = moPo1p11) — mPii1py

is in the kernel of the Ruelle operator (see Proposition 6.11). The functions V; and
V5 are orthogonal to all a,, € F and they depend on the first two coordinates x1, xo
of x.

The vectors Vl = ﬁ and VQ = ﬁ are normalized and orthogonal to all a,.
This claim will be proved in Proposition 6.11.

One can show that

(1-mr)r(s—1)3

(32) Vil = 7 PlomoPoo + 76550 ™ Pro =\ | 5 o
and

(1—s)s(r—1)3
(33) Vo] = \/W3P02,17T1P1,1 + 7 PY ooy = rrap

Definition 6.8. As a matter of notation we denote d?@] =V, and d[lm = Vs.

These two functions are constant in cylinders of size 2

Definition 6.9. We add &?@] and &[1@] to the family F in order to get the family F.

Remark 6.10. The elements in F range in all possible words of size larger or equal
to zero. A generic element in F is denoted by a,, and by this we mean that a, can
eventually represent &([)@] or d[lm].

Proposition 6.11. The orthogonal pair

Vi =mPiotjoo) — moFo,01[10]

(34) Vo =moPo11p11; — mPriiljog

is such that, each one of them is orthogonal to the other elements a,,, where  ranges
in all finite words with size bigger or equal to 1. V1 and Va are on the kernel of the
Ruelle operator Liog 7.



THE CURVATURE OF THE MANIFOLD OF HOLDER EQUILIBRIUM PROBABILITIES 23

Proof. Note first that 1jgg) is orthogonal to all a,, where x = (71,22, ...,,) is a
word with size equal or greater then 1. This claim follows from (24). Indeed, if

x1 =0, we get that
l[oo Ljoz0] — \/ l[om]

\/PmHIWOPOIlpzl,zzn Tpn—1,Tn Pzn

V Pxn,o o P0>931 PI1,I2 In—l-,fbn V GL’ml =0

If 1 = 1 the claim follows at once.

Using the same reasoning one can show that 1jg1}, 1[10], 1{11] are orthogonal to all
a., where length of x is bigger than zero. It follows that linear combinations of this
functions are also orthogonal to all a;. It follows that V; and V5 are orthogonal to
all a,, where the length of z is bigger than zero.

We will show that V] is in the kernel of the Ruelle operator (for V5 the proof is
similar). Given y = (y1,¥2, ---sYn, .-) € M, suppose first that y; = 0, then, we get

Liog 1(V1) = Liog s (m1P1o1p00) — moFo,01p10))(y) =
m1P1,0(J0,5, 11001 (0, Y1, Y2, ) + J1,45 100} (1, Y1, Y2, ) —
70L0,0(J0,5, 1110) (0, 1, Y2, ) + J14, 1110 (L, y1, Y2, ) =
moPoo m P

0Py 00— = 0.
o o

m1P1,0Jo,0 — m0FPo,0J1,0 = T1P1 o
In the case y; = 1, we get
Liog 1 (V1) = m1P1,0(Jo,y, 1100 (0, Y1, Y2, ) + J1,4, 1100 (1, Y1, Y2, ) ) —
70 Po,0(Jo,y: 11107 (0, 1, y2, --) + J14, 10y (L, y1, y2, -..)) = 0.
U

Remark 6.12. A function of the form w = r11jg) + 72 1) is in the kernel of Lyog
only in the case where Py; = (1 —r) = s = P11. In this case
(35) w = (1 - ’r’)l[o] — (1 - S) 101)
is such that Liog s (w) = 0.
We do not have to take into account in our future reasoning this function because
1
r—1
Proposition 6.13. The family of elements in F (see Definition 6.9 and Remark
6.10) is an orthonormal basis for the kernel of the Ruelle operator Liog j.

1
= Vit V5.
r

Proof. From Proposition 6.6 we know that given x = [x1, 2, .., Ty

Ty
(36) £10g] (e[zl,zg,..,xn]) = - \V Pz1,:rze[m2,m3,..,zn]-

Mo

Suppose ¢ is in the kernel of the Ruelle operator. We will show that ¢ can be
expressed as an infinite linear combination of the normalized functions a, € F.

We can express ¢ as
p= > ey

words y
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When applying Lioe 7 on ¢ we separate the infinite sum in subsums of the form

C0,az,..,00 €[0,02,..,n] T Cloaz,.,an €[1,02,..,000] -

Assuming that ¢ is in the kernel of Lig 7, we get from (36) that

0 = Ligs() Z [€0,a2,..,0m €[0,0,..0n] F CLoas,.s0n €[1,02,00n] | )

n o Qa2,..,0n

\/ AVAUS
Z Z \/ PO as €C0,aa,..,ap, 6[0427 L0y + \/ Pl,ozzCl,(xQ,..,ane[ag,..,an] }
n o a2,..,0n

\/ VT
Z Z \/ PO L, €O,z ,ocn \/ Pl ,a2Cl,as,. ,ozn 042,..,04.”] .

n  Qa2;..,0n

Then, for fixed n and (aq, as, .., a,)

/T T
\/POQQCOQQ,y = 1\/P104201042,7
\/7
which means
\/7

VT
C0,asz,..,an = _\/ﬂ— V P

1

\/7?0 m Cl,az,..,0

Then, the sum

C0,az,..,an €[0,az2,..,0n] + Cl,as,..,an €[1,a2,..,00n]

is equal to

VT Va
_Cl,aa,--,an[\/—vpl asz \/— \/Poi €10,az,..,an] 6[170427--,%,”-
as

7Ta2

Multiplying the above expression by L_ we get

VL [Pi o,

T 1 [ " ]
75— 1 C0,a2,..,0n€[0,a2,..,a,] T Cl,asz,..,an €[1,a0,..,an]
AVAUS ‘/Pl,Oéz

which is equal to

. AL Ve 1
1az,..,an \/7?0 m [0,a2,..,an] \/7?1 m [Laz,..,an]

- cl>a27-'7an a[a27~~7an] :

]

Then, (co,aq,..,an€[0,a2,..,an] T Cl,as,...an€[1,as,..,a,] ) 15 @ multiple of the function
fas,,...a,]- Since the above reasoning was done for a generic choice of (a2, as, .., ay),
we conclude that for each n the sum ) . yof lengthn Cy€ly] can be expressed as
a linear combination of elements a,, using words of length n — 1, n > 1.

From this follows that each element in the kernel of Liog ; can be expressed as
an infinite linear combination of the functions a,.

|
Theorem 6.5 follows from the combination of Propositions 6.6 and 6.13

The above shows that the set F is a complete orthonormal set for the kernel of
the Ruelle operator acting on £2(u).
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7. A WORKED EXAMPLE IN THE MARKOV CASE: PRELIMINARY CALCULATIONS
OF THE TERMS IN K (X,Y)

In this section, we shall devote ourselves to the calculation of the sectional cur-
vatures in the case of Markov stationary probabilities on M = {0, 1}".

We denote by K C N, the set of Markov invariant probabilities. We will consider
this section the sectional curvature for points in K for general orthogonal pairs of
tangent vectors to .

We can also consider K as a two-dimensional manifold carrying the Riemannian
structure induced by N. From this point of view, there exists just one orthonormal
pair to be considered. One of our main results (see Theorem 7.14) claims that for
the two dimensional manifold K, for any point in I, the sectional curvature for the
pair of tangent vectors to K is always zero.

We will consider in our reasoning the empty word as a regular word. &8 and &(})
are two elements in F associated to the empty word.
Definition 7.1. We say that z is a subprefix of x, if x and z satisfy
[x] = [x1,Z2, ...Tk, Tkt .., Tn] C [2] = [X1, 22, ..oy Tg],
where n > k.
Note that, even when z is not a subprefix of z and x is not a subprefix of z,
they can share some common subprefix. Note also that if x and z do not share a

common subprefix, then z is not a subprefix of z and x is not a subprefix of z.
If [x] = [z], then, z is a subprefix of z.

Definition 7.2. We say that z is a strict subprefix of z, if x and z satisfy
[] = [x1, @2, ... Ty Tpg1, -y ) C [2] = [21, 22, oy Tk,
where n > k.
Two different words with the same length can not be subprefix of each other. If

the length of z is strictly larger than the length of z, then, z can not be a subprefix
of z.

Definition 7.3. Given the finite words z, z we denote by D[z, z] the set of all finite
words y such that are subprefix of z and z.

If for example x = (0,0,0) and z = (0,0, 0, 1), then
D[(E, Z} = {&87 (O)a (07 0)7 (Oa 0, 0)}
In the case z = (0,1,0,0,1) and z = (0,1,1) we get that D[z, z] = {a§(0), (0,1), }.
Another example: Dlag,o,ag] = {ag} and Dlag o, ay] = 0.
Note that in the case z = (21, 22, .., 2 ) is a subprefix of z = (z1, 22, .., z,), n > k,

then, z; = x1. Then, it follows from (28) that |a,| = |a.|.

Proposition 7.4. Assume that x is not a subprefix of z and z is not a subprefix
of x. Then,
aza, = 0.

Proof. Note that a, is a linear combination of 1(9.0], 1[021]; 1[120] and 11;1). As ag
is a linear combination of 1(oz0], 1[0x1]; 1[120] @nd 1[151] the result follows.
O
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Note that the hypothesis of the last proposition is equivalent to saying that the
cylinders [z] and [z] are disjoint.

Corollary 7.5. Given a word x assume that x is not a subprefix of y and y is not

a subprefix of x. Then,
a2 a, = 0.

Proof. This follows from at once from Proposition 7.4. (]

Note that if z and y have the same length, but they are different, then [ a2 a, dy =
0.

From Proposition 7.4 it follows:

Corollary 7.6. Assume that x is not a subprefiz of z and z is not a subprefix of x.
Then, we get that the products (part of the first sum contribution in (40)) satisfy

(37) /dw a, aydp =0,
for all word y.

Remember that F (defined in last section) is the set of all functions of the form

1
(38) a/:n = Ay,

g + Taq
\/Wopo,zl TP oy

where © = (21,2, ..., ) is a general finite word, plus the functions d?@] and &[1@].

Remember that Proposition 6.13 of last section claims that the family of func-
tions F determine an orthonormal basis for the Kernel of the Ruelle operator.

We want to estimate for X = a,, Y = a, € F and the orthogonal basis X; =

a, € F the explicit expression of the curvature which was described in Theorem
1.1

(39)  K(X,Y)= /XYX dp)? /XQX dp /Y2X dp).

We will not present the explicit expression of the sectional curvature K(X,Y)
for any pair of vectors X, Y in the kernel, but just for the case where the functions
X,Y are part of the family a, € F.

An important issue is: 0 = (a2, a,) = [ a2a, du, when the length of y is strictly
larger than the length of z (as will be proved in Sections 8 and 9). We mention this
point to stress the point that the last sum in expression (40) is a sum of a finite

number of terms.

Our main result in this section concerns the Markov case:

Theorem 7.7. For a fized pair Gy,a, € F (with z different from x) the value

(40) K(az,ar):i[ Z(/amazayd,u > /a iy dpt /a ay dp).

wordy wordy
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In the case the length of x is strictly larger than the length of z we get that (40)
can be expressed in a more simplified form as:

1 JOIN 2. 9.
(41) W @aa - Y [aad [da,du)
y € D[z,z]
In this case the above expression is a sum of a finite number of terms.

In the general case the value f&idzd,u s zero if z is not a subprefix of x. If z is
a strict subprefix of x and y is a strict subprefix of z, then the term

(42) — / aZay, du / a2ay, du

is non positive. Moreover, by (71) we get [ a2 a, du = 0. Then, it follows that (40)
is a sum of a finite number of terms, for any given x and z, with z # x.

The proof of this result will take several sections and subsections. Proposition
7.12 will will summarize several explicit computations that are necessary in our
reasoning.

We will also provide an explicit expression for the curvature (41) in terms of the
words z, z and the probability p (which is indexed by (r, s) of expression (16)). This
will follow from explicit expressions for ([ a; a a, du)?, [a2a,dp and [ a2a, du,
for all finite words =z, z,y, that will be presented the Propositions 7.9 and 7.12
(which will be proved in sections 8 and 9).

It will also follow that when x and z do not share a common subprefix y, then
the curvature K (a,Gy) is equal to 0 (see Proposition 7.10).

There are examples (for instance, the case x = (0, 1,0) and z = (0,1, 0,0)) where
the curvature K(a,,a,) is positive for some values of the parameters (r,s) and
negative for others (see Example 7.19). We can show from the explicit expressions
we obtain that for fixed values of the parameters (r, s) the curvature K(a., a,) can
be very negative if both words x, z have large lengths and share common subprefix
with large length (see Remark 7.17). In Example 7.20 we show that K (a(q), d(0,0)) =
—0.205714..., when r = 0.1, s = 0.3. In Proposition 7.18 we show the curvature
K (d?@] , dp) can be positive for some pairs r, s € (0,1). It follows from the expressions
of Proposition 7.12 that all sectional curvatures K (a., G, ) are equal to —1/2, when
r =1/2 = s, the size of z is bigger than 1 and z is a strict subprefix of x. See also
Proposition 7.18, when r = 1/2 = s, for the computation of K(d‘[)m,do) =1/2.

Remark 7.8. Expression (69) in Subsection 8.3 shows that in the case the length
of z is larger than the length of z, then ([ a2 a, du)? = 0.

Proposition 7.9. Assume that the length of x is larger than the length of z. The
first sum on expression (40) is given by

43 > (/axazayduf = (/aiazdu)2+(/a§azdu)2 = (/aiazdu)?
wordy

For a proof of this claim see expression (74) in section 9. This term in the sum
(40) is the part that contributes to the curvature to be more positive. The second
term in the sum (40) will contribute to the curvature becoming more negative (see
proposition 7.12).

Note that (43) does not depend on y. Note also that from expression (17) one
can get explicitly the values (43) as a function of (r, s).
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In Proposition 7.4 we show that if x is not a subprefix of z and z is not a
subprefix of z, we get that [ a2 a,du = 0. In this case the contribution of (43) for
the curvature will be null.

Proposition 7.10. When z and x do not share common subprefix the curvature
K(a.,a,) =0.

Proof. When z and = do not share a common subprefix, it follows that x is not a
subprefix of z and z is not a subprefix of x.

We will show that in this case K(a,,a,) = 0. Indeed, from Proposition 7.4 we
get that ([ a2 a, du)?+ ([ a2 a, du)? = 0. Fix the words z,  and consider a variable
word y. In order to estimate the second sum in expression (41) we have to consider
all different possible words y such that are subprefix of z and z. But there is no
such kind of y.

Therefore, K(a,a;) = 0.

See also Proposition 7.18, when r = 1/2 = s, for the computation of other
sectional curvatures. (]

Remark 7.11. Tt follows from Remark 7.8 that Y° .. [aZa,dp [aia,du is
a sum of a finite number of terms; because when estimating [ a2a, dp [ a2a, du
we do not have to take into account words y with length strictly larger than the
minimum of the lengths of x and z. It also follows from Proposition 7.10 that if
is not a subprefix of y and y is not a subprefix of z, we get that [ a2 a, du = 0.
Note that the above makes clear that in expression (40), the second sum has
nonzero terms only when y € Dz, z]. This justifies the simplified expression (41).

With all this in mind, in order to have explicit expressions, the next proposition
deals just with the words y with lengths smaller than or equal to the length of a
given word z.

Proposition 7.12. Assume that the length of x is larger or equal to the length of

y. Then we have:

a) [ a2 aydu =0, if y is not a subprefiz of x. This also includes the case where
x # y and length of x is equal to the length of y.

b.0) Assume that [x] = [x1, T2, ... Tk, Tha1, - Tn) C [y] = [21, 22, ..., 2x], where
n >k, and x41 = 0. Note that from (28) we get that |agz| = |ay|. Then,

/a aydp =

1 Py Ty )3/2 1 Ty )3/2 1 _

4P s ToPo) RO WP /i)

Ty )3/2 L _ Tz \3/2 1
W) VPl s = R

b.1) Assume, that [x] = [x1, T2, ... Tk, Thil, -, Tn] C [y] = |21, 2, ..., Tk], where
n >k, and xpy1 = 1. Then,
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/ﬁ%@:

1 Proo, [ Tay g0 1 Toy  \3/2 1 -
Iay|3 Pon ' MoPow  Ji0g])  MPra’ /uliy])
Ty 1 Te 1
(45) /P P, 0{ 1 3/2 +( 1 )3/2 }
R p(Oyl]) P, p([1y1])
b.2) Assume, [x] = [z1, 22, ...wn] = [y].
Then,
/Ezidyduz /did,uz
(46)
3/2 3/2 3/2 3/2
1 Ty 3/2 Pwi,l _ PII,O _ Taq 3/2 Pau{,l . Px,{,O ]

laal® w0 Poa, " /p(0y0])  /u(0y1]) miPra” /u([y0])  /u((Iyl])
b3) If x1 = 0, then

9 1 ™ Pio 78 Poo
47 /a2a du ~ + ~) =
47 0= v TR T TP

(s —1)(1 —2r + 2r?)

SRt (247 +9)

/a a[wd,u—O

When r = 1/2 = s we get that for any word x (with size bigger or equal to 1),
such that, x1 =0

(48) [ tydn = 2.

For the proof of this proposition see sections 8.1 and 8.2.

>0,

and

Remark 7.13.

e We point out that (44) and (45) do not depend on zjy2, ..., Tn_1, Zn.

e If y € D[z, z] — {z}, then, the product [aZa,du [ a2a,dp is non negative
for any choice of (r,s) (the product will not depend on = and z). This
follows from the expressions in b.0) and b.1). This shows (42).

e The term [ a2a.dp [ a2a.du may be sometimes negative.

We previously denoted by K the two dimensional manifold of Markov invariant
probabilities (the set of equilibrium probabilities for potentials depending on two
coordinates and parametrized by r, )

Given the Markov invariant probability p associated to the parameters r, s, the
set, of vectors which are tangent to /C at this point is the set of functions that depend
on two coordinates (z1,22). The ones that are on the kernel of £o4 5 are &?@] and

~1
a[w].
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Theorem 7.14. Given the two-dimensional manifold of Markov invariant proba-
bilities M, for any point in IC the sectional curvature for the pair of tangent vectors
to K is always zero.

Proof. Remember that Vi = m1P1 0100y — moFo0lpo and Vo = moPo11py —
71 P1,11)01) determine an orthogonal basis for the tangent space to K at p.

We claim that the curvature K(aj, a;) = 0.

Indeed, take X; = a., for some finite word z = (1, z2, ..., k). If we assume that
x1 = 1, then,

7T;E1 1 ka)l

Vo = I G o) Py 0000
- wPh (s ) e 2ol
(76 P50 (7?17;;:11,1:1 M([L]) _];z:; )2 1100110

T Po ( o ! ka’o)l/Q 1[121)1j00) ] = 0.

TPy p([12]) Pyt
Above we use the fact that 1914, 2,0) Lo = 0, etc.
Therefore, it follows that:

/ V2 a, dpu /V22dy dp = 0.
If we assume that z; = 0, then, in a similar way [ a. VZ# du = 0, and therefore,
[a, VEdu [a,Vidu=0.
Note that V1V, = 0. o o
Then, for any word y we get [ V; Vaa, dp = 0. In the same way [V Vo du =0
and [V2 Vi du=0.
Finally, we get,

@) Gl @R abdn? - [ @, dn) ([ @), dw) =0
(I

Remark 7.15. Recall that the expression of the Gauss sectional curvature K (X,Y)
of an isometric immersion (M, gas), submanifold of the Riemannian manifold (N, g),
at the plane generated by two orthogonal vector fields X,Y tangent to K, is given
by
Kn(X,Y) = K(X,Y) + (VxX,VyY)— || VxY |?

according to Gauss formula (see for instance [8]). Here, the operator V%Y is the
component of the covariant derivative VxY of the Riemannian manifold (N, g)
that is normal to (M, gar).

Notice that the sectional curvature

K(XY) =[| Vg X ||? ~(VgX,VyY)
includes all the terms of the normal component of the covariant derivative of X, Y.
By Theorem 7.14, all the components of the covariant derivative of a certain pair
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of orthogonal vector fields tangent to the surface of Markov probabilities vanish. In
particular, all the terms of the normal covariant derivative of X,Y vanish. There-
fore, Theorem 7.14 yields that the Gaussian curvature of the surface of Markov
probabilities vanishes, its intrinsic curvature as an isometric immersion of the man-
ifold of normalized potentials is zero. This is a remarkable fact, which implies for
instance that the surface would be totally geodesic in the manifold of normalized
potentials provided that geodesics exist. We won’t consider the problem of the
existence of geodesics in this article, we shall study this problem in further papers.

Proposition 7.16. When r = 0.5 and s = 0.5, we get that
(50) K(ay,a,) = —1/2,
for words x,y with size bigger or equal to 1

Proof. Tt follows from the above proposition that due to symmetry, when r = 0.5
and s = 0.5, we get [ a2a,dp [ a2a,dp = 0, for words with size bigger or equal to
1. Moreover, f a2 wdy = 0, for any a,. In this case, if z1 = 0 and z is a subprefix
of y, we get that for words with size bigger or equal to 1 (see (48)),

(51) K(ay,a,) = —1/4 /&i&?@]du /aga?@]dﬂ =-1/2.
O

Remark 7.17. From the explicit expressions we obtain (for fixed values of the
parameters (r,s)) the curvature K (a,,a,) can be very negative if both words z, z
have large lengths and have common subprefix y with large length. Indeed, for fixed
s, 0y, as [ a2a,dp [ aZa,dp is non negative for any common word y, in the calculus
of the curvature K(a,a,), we get a sum of several expressions [ a2a,du [ a2a,du.
Note that [ a2a,du [ aZa,dp does depend on y (but not on z and z). Note also
that for fixed = the expression (44) can be very large if the length of y is very large
(and, so p([ayd)), a,b = 0,1, is very small).

Proposition 7.18. The curvature K(d?m,do) =1/2, whenr =1/2 =s.

Proof. Note that (41) can be expressed as

0 - 1 .9 . 9 0 \2 -
K@y, o) = 51 [ adafydn? — [[adatydu [ (aty)? afy .

For any r, s, it is known from (47) that

9 1 m P o 73 Poo

52 azalydp = = 4 =) > 0.
(52) / 0 |a0|2|V1\( Py 7T1P1,0)

Note that

ViV =
(" PLotpo) + 7o Pootn0) X (1 Protpo) — moPbolpo) =
7T?Pf’,ol[oo] - ng(ioluoy
Then,

/ V2 Vi = 3P ou((00]) — w3 P opu([10]),

612

161 6
2 2

which is equal to — % %2 =0, in the case r =1/2 = s.
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Therefore,

0~ 1 .9 1 2
K(a?@],ao):Z(/a%a?@]duf:fﬁ =1/2>0.

In other examples, we used the software Mathematica for getting explicit com-
putations.

Example 7.19. Consider the case where z = (0,1,0) and = = (0, 1,0, 0).
asa,dp | aza,dp = 0, unless a, 1s such that
aZaydp [ a2a,dp = 0, unless a, i h th

y € D[(0,1,0),(0,1,0,0)] = {(0), (0,1),(0,1,0)}, or a, = afy.

Note that [ a2 ajy dp = [aaydp=0.

Using Mathematica and the formulas of Proposition 7.12, we made computations

when r = 0.1 and s = 0.3. In this case mg = 0.4375 and 7; = 0.5625 and from (21)

we get |a,1,0)] = [a0,1,0,0)| = 3.33.. and [V1| = 0.086... Finally, m = ﬁ =

_ 1 .
[az2lag] — JazIPlag] — 0.027...

We will show that K (G(0,1,0),@(0,1,0,0)) = 35.9142....
We get the following values:

1

using (46) /dg&zdu = |a|3/a%0,1,0)a(0,1,0)d/1 = 107,51...,

1
using (44) /di&zdu: |/a?0}170)0)a(0’1’0)d/¢: 120.949...,

|az|?|a
(/ a2a.du)? = (/ %.1,0,0)0(0,1,0)dp)* = (16.93...)% = 14628.7...,
using (44) / a%.1.0,0)(0,1)dp = 38.2473...,

using (44) / afy.1.0)0(0,1)dp = 38.2473...

using (45) / (%y.1.0,0)0(0)dp = —1.34387...

using (45) /&%0’1’0)d(0)d,u = —1.34387...,

and finally, using (47)

1
~2 ~0 ~2 ~0 2
a aipdp = [ a apdp = ————— /a Vidu = 4.13241...
/ (0,1,0)%0) / (0,1,0,0)%10] la0.1.0)2 Vi (0,1,0) 1
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Using (47) and (32) (note that z; = 0), we get that the expression (41) can be

written in this case as

. N 1 N .
K(a0,1,0,0(0,1,00) = 1(/ a%O,I,0,0) a(0,1,0) dM)2
1

1
1

- 1[/ d%o,l,O,O)&(O) dp /&%0,1,0)&(0) dp]
1

Taking r = 0.8,8 = 0.5 we get K(&(07170),€L(0)170)0)) = —-3.17713...

1/2 = S we get K(&(OJ,O)a d(0’170)0)) = —1/2

- 1[/61’%0,1,0,0)&(0,1,0) dp /dfo,l,o)d(O,LO) du]

1[/5%%0,1,0,0)&(0’1) dp /&?0,170)6‘(0’1) dy]

-3 / 0,1,0,0) 000 A / @o.1,0)00p dp = 35.9142...

When r =

o

Example 7.20. Consider the case where z = (0) and « = (0, 0). Then, D[(0), (0,0)] =

{ao, d([)(b] }. Therefore,

F 1 (. .
K (), a0,0) = Z(/a%o,o) (o) dp)®
1. (.9 . A2 .
- Z[/ a%o,o)a(o) dp /a(Zo)a(O) du]

L[,
- 1/ 0.0/ d/‘/“«na[md

In this case, using Mathematica, one can show that K (G, G
values r,s € (0,1). For r = 0.1, s = 0.3, we will show that K(
—0.205714...

When, r =0.1,s = 0.3, we get

0) <

lag| = 3.333...,

Vi| = 0.086...,

1
~92 ~
a aepy dpp = —=
/ (0,0) %(0) a2
1
a2 Gy dpp = ———
/ ®*O la[?
1

a2 add —7/ Vid - 3.96.
/< O TN AR P

Finally, when r = 0.1, s = 0.3 we get K (d(o),G(0,0)) = —0.205714...

0, fo
)» (0

)

all
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8. COMPUTATIONS FOR THE INTEGRAL fXQY

Our purpose in this section is to evaluate the integral

(53) > / a2 ay, du / a2 a, dy,
word y
for any given pair of words x,z. This corresponds to the second term in the sum
given by expression (40).
We assume that x is different from z.
From proposition 7.5 if x is not a subprefix of y and y is not a subprefix of =z,
and x # y, then:
AQ a = 0.
In the same way, if z is not a subpreﬁx of y and y is not a subprefix of z, and
z # y, then:
a2 a, = 0.
If y has the same length as x but y 7é x, then a2 ay = 0.

In this way, for a fixed pair of words z, z, several words y do not contribute to
the sum (70).

8.1. The value of (aZ,a,) when length of z is larger or equal than the
length of y. We want to compute (a2,a,) = [a2a,dp in the case where the
length of z is larger or equal to the length of y.

Our computation is in fact for (a2, a,) and after that, of course, to get (a2, a,)
it will be necessary to divide by |a,|? |a,|.

We assume that [z] = [r1,%2,...Zk, Tht1, .-y Tn] C [y] = [21, T2, ..., k], Where
n > k (otherwise we get zero).

Note that these assumptions include the integral [ a3dpu, that is, the case v =y
(see III) below).

I) Case n > k - We will assume first that zx+1 = 0 in the word [z].

Given the words z = (v1,...,v:) and v = (V1,V2, ..., Vg, Vpp1, -y U ), ASSUINE
ve41 = 0, then, from (19) and (54)
1 P, 1 P
2 VU, 1 Vim,,0
C]Cle] = [777 Lo1,006,0,0642500,0m,0] T V15ee508,0,V8 42,000, Um, 1 ]
P (] P st O (] Py T st
1 Pvt,l Pvt,o ]
V1,...,0¢,0 .o, Ug,1
\/ Ur, [ - VA Y Wt, ]
1 P'Um71 1 P'Utvl
= (M ’U )( \/7 Ut 0 )l [v1,..,0,0¢42,.,0m,0]
1 PUm,O 1 Pvt’l
(54) +( )

,lL \/7 v 0) [V1,..,0,01 42,000, VU, 1]+
t

Note that in the above reasoning when going from the second to the third line
the term multiplying 1[,, ... ., 1] disappear because we assume that viy1 = 0.

We are going to apply the above when z = [0y], z = [ly],v = [0z],v = [lz],m =n
and t+1=k.

Then, from (23), (27), (54) and using the fact that

e? e =0,

[0,1,%2,.,k,0, T 42, ,Tn] C[L,71,72,..,2k]
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2 —
e[l,xl,xz,.4.,xk,07xk+2,4..,xn] €[0,21,22,..,x1] = 0,
we get
a = Ty o2 + Ty o2 ]
Y 7T0P0,z1 [0,21,%2,.,%1,0,Zp 42,0 ,Tn] 771P1,z1 [1,21,22,,Tk,0,Tk42,5.-, 0]

%
5

_v'n . _ VT e ]
\/T?om [O,wl,zg,.qwk] \/Em [1,11,932,‘.7:%]

1 Pwn,l 1 PIkJ

x|

_ T2y 3/2[( )l [020]
0,4, p([0z]) Pro " \/u([0y]) \| Pey.o
1 Pw 0 P:v 1
_"_( nH k> ) Ozl ]
Pyoa \/ Py,y0 ]
Tz \3/2 1 Pln71 1 Pcuul
(7T1P1,x1 [(#( (\/ ly Py, 0 ) *120]
1 Px 0 1 Py

+(M( :vn, )(\/T a:kO) [lzl]]'

Finally, as the matrix P is row stochastic

2 1 3/2 Ty,l T, Ty,0 wk,l
/azaydu = (

01,4, V 1([0y]) m,) (\/ ([0y]) | Prx.0

_( Ty )3/2 Pacn, Ptkl) Pq:m Prk,l)]
T1 P10, v u([ly]) Py 0 \/ (1Y) Py, o0
7Tzl 1
= (Px77,71+Px \/ Py, 1{ 3/2[ ]
1([0y0])
_ Ty 3/2 1 ]} —
TPz, 1([1y0])
Tz1  \3/2 1 Tz \3/2 1
55 P, - R
55) VPl s R s )

IT) Case n > k - If we assume zj; = 1 in the word [z], then we get in a similar

way as before
/ aZa,dp =

P, o —(—e1 y3/2 1 Mo y3/2 !
(56) VP o{—( ) #([Oyl])Jr(mle) u([lyﬂ)}

Tl 2,

Indeed, given the words z = (vi,...,v:) and v = (v1, V2, ..., V¢, Vg1, vy Un )y AS-
sume v;41 = 1, then, from (19) and (54)

2 e = [ I Py.a 1 L o + L Py.0 1 L 1]
[v] [Z] M([U]) Pvm70 [’Ul,...,vt, JUt42,eees Um s ] M([U]) Pvm/71 [’Ul,...,vt, JUt42,e0ns VUm s ]
1 R;,,,l 1 PU{,,O

l[vl7"~)vty1]]

N P ™ i P
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1 PU,,,,,]. Pvt70
= - )

1
,LL vm, \/7 vt, ) [V15.eey 1,v¢42,..., vm,O]]

1 P ””.)0 1 P 70
(57) +< u ) ( Ut ) l[ul ..... 1,0¢42,...y Vi, 1]+
[L \ v, 1
We are going to apply the above when z = [0y], 2 = [1y],v = [0z],v = [lz],m =n
and t =k + 1.
Then, from (23), (27), (57) and using the fact that
2
Cllw1, 20,0 p, 1,y 2,eeszn] El0@1,20,. 28] = 0,
6[0 ©1,T9se s, 1, T 0,eesmn] L1, @2, 2] = 0,
we get
2 77 2 7T 2
Uy Oy = N [0,21,22,.,Tk,1,Tp 42, Tn] 5 6[171317$27---7lk71;17k+27--<71n]]

7'1'0F)0’3[;1 771P1,1:1

x[iﬁml e _ o VTm e ]
\/TTO\/m [0,z1,22,..,7k] \/Fl\/m (1,21,22,..,2]

_ _ 71',@1 3/2 1 mel 1 kao 1
7TOPO,11 [( ( xn, )(\/ Oy a:k, ) [0910]
1 PE 0 1 sz 0
+ - =) 1[0z
( ;cn, \/ Oy xk, [01] ]
7T$1 3/2 1 Pxnal 1 ka70
+ 1Mz
(mPl,zl (u( )( il \ P 1) [120]
1 P 1 Py,

T M,”W 020

Finally, as the matrix P is row stochastic

2 o Tz 3/2 P:vn 1 Pmk 0 P:rn 0 ka 0
as0ydy = —
/ yoH (T‘-OPO,wl \ Oy wk, ) (\/ Oy wk,
+( Ty 3/2 ( Pznl kao) P’L‘W,O P"ck,() }7
7T1P1,:Jc1 \ 1y zk, v i 1y a:k,
P 0{_( Ty 3/2 xn1+Px ,0 Ty 3/2[ ;cn,l +P:c O]}:
T oo, 1([0y1]) TP, n([1y1])
7r 1 e 1
58 Px _ Tl 3/2 + 1 3/2
R T i) Y PRy

I1I) Case n = k - We assume [z| = [z1, 22, ...7,] = [y], otherwise [ aZa,du = 0.
Then, one can show that

(59) [ ain = [ atin -

3/2 3/2 3/2 3/2
Tz1  \3/2 Pra Peno Tz1  \3/2 P Povo

TPoe . \/up(020)  /p(02l)  mPre /u([La0]) /(L))
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Indeed, note first that from (54), v = [v1,va, ..., Up,]

2 [ 1 Pv'm.)l 1 1 vamo ]
€€l = =77 % V1 yeeeyUin s VZIETY V1yeeey Vs
)= ) P T ) By e
1 P’Um,l l Pvm ,0 l ]
\/7 [V1,0000m,0] T \/7 [V, ,0m;,1]
1 PUmyl P'Unnl
= ( ) Ul,...,vm,o]
w(] ‘/
1 P, 0 1 Py, 0
(60) —( ) ( )1

/_,L([U}) Pv"“l ILL([U]) Pvm,l [1)17...,1)77“1].

Then, from

X[ ———= o e _ VT, ]
ﬁm [Oa$1a1727~7$n] \/Fl\/m [17$1a$2a~7$n]
— (o yszy 1 P””"’l 1 Pwn,l

Loz
( xm ) /701. acn, ) [0z0]

- P“’”’O)( L £20) 30
xn, acn, Ozl]

()2 L140)
7T1P17x1 ,U, xn, 1/ l.TC zn, ‘

1 meo
—( ) (

Pr. 1 % P 1[17:1] ]

m0LP0 2,

Therefore,
2 _ Ty 3/2 Py, 1 Pxn,l Py, 0 meO
asazdy =
/ N K (7T0Po,x1) \/ Ox Py 0 )- \/ Ox ) ]
—( Ty 3/2[( Py, 1 beml) ( Py, 0 Pﬂﬂmo)]i
7TIPl,wl v i 133 w",O \ W 1.T a:,L,

3/2 3/2 3/2 3/2
71-1;1 3/2 PInxl _ Pwnyo 7Tx1 3/2 P1n7 ( Pwn7

(Wopo,am) [\/u([OxO]) \/u([Oxl])]_(Wlpl,zl) Vv u([120]) Vu([1z1])

(61)
p3/2 p3/2 p3/2 p3/2

Tz \3/2 Tp,1 5,0 Tz \3/2 Tp,1 5,0

M0Poa  /u([020])  /u(0e]) | mPre’ L /ul([1a0)  /u(lad])

The above reasoning shows III).

Given the word [z] = [z1, ®2, ...Tk, Tk+1, ..., Tn] We get n words y, such that, the
cylinder [z] C [y] = [z1, %2, ..., k], where n > k.
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Given z and z, with length larger than y, then [a2a,du [ a2 a,dp will be
nonzero only for the subprefixes y which are common to both z and z (see Propo-
sition 7.5). If there are no common subprefixes for « and z, then the contribution
[ a2 aydp [ % ay,du, for words y of length strictly smaller than the length of x and
z, in the sum (41) is null.

8.2. The values of <d§,d'[3m> and (di,d[lw when z is a finite word. Denote
[z] = [%1, 22, ..., x,]). We assume that n > 2.

In fact, we will compute (a2, Vi) and (a2, V). In order to compute (a2, &?@]) and
(a2, agy) it will be necessary to normalize.

I) Case (a2, V1)

We will consider first the case x1 = 0.

Denote y = (y1,¥2, --, yx)- If we assume y; = 0,yo = 0, then, from (54)
1 Py 1 P

2 Yk,0
e aaVi=l—Fw5 1 +—= 1
A L By M T G By )
><[7T1P1,0 10,0 — moFo,0 1[1,0]] =
1 Py 1 Pyo
(62) M([y]) Pj:o ™ Pl,O l[y17y27-“7yk7o] + /J([y]) PZ: 1 m Pl,O l[ylvy%-“vykvl]'

If we assume y; = 1,y2 = 0, then, from (54)
1 Py 1 P

2 Yk,0
e Vi=—F—=5"1 + 1
A L By M T G By )
x[m1P1o 10,00 — m0Po,0 1p1,0] =
1 P, 1 1 P, o
63 — [ =2 70 Poo 1py,; 40 ot =270 Poo 11y, .4 1l
( ) [M([y]) Pyk,O 0470,0 Ly1,y2,...,yx,0] M([y]) Pyk,l 040,0 y1,y 7"'1yk71]]
As we assume that x1 = 0, then, from (23), (27), (57) we get

e .
2 _ 1 2 1 2
a;Vi = [W0p07m1 €0,21,22,..,2k,0,k42,..,Tn] + TPl o, 6[179017902,~~~7$k70,91k+2,~~7$n]]

x[m1 P10 10,00 — T0Fo,0 1[1,0]] =

71'951 ]. szl P ]. P:z:n,O
T £1,0 10,21,22,...,2n,0]

-~ moPog, w([0z]) Pr, o

1([0z]) Py, 1

T PLo 1(0,21,22,...20,1])F

Ty 1 P:r 1 1 Pr 0
L FPoo1 — "1 P .
T Pry ) Payg 100 M S Gy T P00
Therefore,
[ vid—
Ty 1 Pac 1 1 Px 0
= P 0,x,0] + ~— 7 P 0,x,1] |+
ToPorm, (02 Paro " P10 MO 0 ey T P 0]
7'('%1 1 Pm 1 1 Px 0
= 1o B 12,00 + ———=—">=m F, 1,2,1]] =
T Prny 1)) Prng " T #L Ot gy oy o oo il 1
Ty T
[Py, 1mPiog +Py,0omPio] + [Py, 1m0 Poo + Pu, om0 Poo] =
00,2, TP e,

Ty

7Tx1
m P + mo Pojo-
ToFPo 2, 11 0y
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As we assumed that x1 = 0 we get

o 1 m Pio 75 Poo
64 dp = ’ ’
(64) /a U= 7 TRy, B

IT) (a3, V2)
Now we will compute [ a2Vadpu.
Denote y = (y1,y2, .-, yx). If we assume y; = 0,yo = 0, then, from (54)
2 1 Pyk,l 1 Pyk,o
ey V2 = |

1,Y25e0s R + — Ly o, )
w(ly)) P, k.0 Lly1,y2,...,y%,0] 1([y]) Pya [Y1,925--,Uk 1]]

x[moPo,1 11,1 — T P11 10,1y = 0.

If we assume y; = 1,92 = 0, then, from (54)

1 P 1 P

2 )1 Yi,0

€y V2 = =[—= w(y]) P, jk Ly1,yo,eyn0) T 1(ly]) ij ) 1y yar..yko1])
Yi,0 Yk

x[moPo1 11,1 — ™1 P 1p0,1y] = 0.
As we assumed that x; = 0, then, from (23), (27), (57) we get
2 Ty 2 Ty 2
V =
a 2 [WOPO,xl [0,21,22,..., Tn] 771P1 o e

)

x[moPo,1 11,1 — T P11 10,17 = 0.
Therefore, if 1 = 0 we get

(65) / azagy dp = 0.

The case x1 = 1 is left for the reader.

8.3. The value of (a?,a,) when length of y is strictly larger than the length
of z. Now we want to estimate (a2,a,) = [ a2 a,du in the case that the length of
y is strictly larger than the length of 2. We will show that [ a2 a,du = 0.

We assume that [y] = [x1, %2, ...k, Tht1, ..y Tn] C [2] = [21, T2, ..., k], Where
n > k (otherwise we get that [ aZ a,du is zero from Proposition 7.5).

In fact, we will show that [ a2 a,du = 0.

I) If we assume xp41 = 0 in the word [y], then, from (54)

1 P 1 P
2 Zk,l 21,0
ee, = g w0l + ——— iy o
2Cy [M<[ZD Py 0 [Z1,..0,2k,0] ’u([z]) Py, 1 (@150, k;l]]
1 Pxn,l 1 P;cn 0
X[m ﬁl[m,...,wk,O,wk+2,...>zm0] \/7 zl,...,zk,O,zk_*_g,m’wml]]
_ 1 P(Ek,l 1 P:Dn,l
= ( )l[rl,...,zk,O,zk+2,...,mm0]
/J“ xk’ \/7 xn;
1 ng ,1 1 meo
(66) _( k )

~~~~~ 25,0,T 42, Zn,1]
w([ Py 0 Py, 1

Note that above, from the second to the third line, we use the fact that

Lzy,.zp, 1]z, 2,0, 2002, 20,0] = 0
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Lo,z 1] ey, 2,0, 2042, @0, 1] = 0.

Then, from (23), (66) and (27)

2 1 Tz 2 Ty 2
axay = [WOPO,zl €10,21,22,..,x] 7T1P1’II [11-7"1;"527~7-'15k]]
X[$ 6[011 T2,..,Tk,0,Tr12 o L e[lxl T2 T1,0,Tk12 T ]]
m 7 T1,T2,- 3Tk ,0,T k42,0, 0 \/m S 1,225, T k0,042, T
o e e e
70 P02, Py 0 v/ [ Oy Py 0 [0y
—( 1 Pmk’l Pxn,O) 1[oy1] ]
Py, 0 \/ Oy [0y1]
— 7Txl 3/2 1 P'L'k: 1 ) 1 Pxnal [1 0]
TPz, /J Py, 0 v/ ly v
—( ! ka’l /71 Px"’o) 1[1y1 )-
#’ ZL’)C O Y
Finally,
/agaydu
T m 1 / / m 1 / /
— (TrOPOI 3/2 k> Oyo :67, _ k Oy r.,,,
@1
Ty 3/2 a:k, \/T wk, \/—\/7
7T1P17;t1 In, Tn,0
—P \/7{ 7Tx1 3/2[\/Pwn71P0>11P$n;0 _ \/Pw'/uOPwalPajn;l ]
el 7ToPo ey 1([020]) 1([020]
(67) +P 1( Tz 3/2 [_ Pzn,1P1,a:1Pxn,0 Pxn,OPI,xIPzn,l ]} —0.
vy u([120) W([120))

IT) If we assume z;4+1 = 1 in the word [y], then, from (54)

1 P, 1 P
eley = [M([Z]) P:r::(j ay,ozi,0) T mpwi? @1, zi1])
X[ ! Bt [£110es e, Lyl 2yeesn,0] — . Pz"’o [#1,estis Lz hszseszn,l])
1([y]) \| Pra.o V(D) Proa ’
1 ka 0 1 Pzn,l
= (M Poy 1t \/7 Pe. o )l[xl,...,ack,l,ackJrg,...,xn,O]
(68) S P g B et

Then, from (23), (68) and (27)

Ty 2

2 _
[Wopo,zl

aya, =

€10,21,22,..,zx]

Ty 62 ]
TP g, [L,z1,22,.,2k]
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Ty Tzq
X|—F—— €[0,21,22,...,x x cnn] T T /————— €[1,z1,x2,...,x,0,x R
[\/WOTM [0,21,22,..,2k,0,T % +2,...,2n] m 1,z1,22,.,2k,0,Th42,- s nﬂ
_ Ty 3/2 ( 1 Pﬂ@k 0)( 1 PIml ) 1{0y0]
700 2 Pra 7 /u([0y]) [0y
—( 1 ka,o 00 Px"’o) Lioy1] ]
xk 1 Oy zn, Y
R s ) e 5 3
771P17w1 /’L wk 1 \/T wm Y
( 1 P:rk 0 ( 1 Pxn 0) ]
- 1 1] -
/’L wlm \/ 1y "En7 y ]
Finally,
/aiaydu
Ty ,0 ’I‘
7TOP() Il 02’1
+(7T ﬂ;l 3/2 Ik7 v lyo zn: wk’ \/ 1y1 V $7n
141,22
-p \/7{ Uen 3/2[\/P$n71P07-7U1P37n;0 _ \/P.’,Cn70PO,.’/C1Px”,1 ]
o 7ToPo 1 1([021]) p([021]
(69) +P 1( Ty 3/2 V ‘Lnalpl 1 1n7 leuoplﬂilp-"«'nyl ]} — 0
M P, p([121]) p([121])

9. COMPUTATIONS FOR THE INTEGRAL [ XY Z
Our purpose on this section is: given x and z we want to compute for all y

> ([ ety

word y

(70)

which corresponds to the first term in the sum given by expression (40).
Remember that from Corollary 7.12 if x is not a subprefix of z and z is not a
subprefix of x, we get that for any y

/@@%@:&

Without loss of generality, we assume that z is a subprefix of = (see Proposition
7.4). The only possible nonzero value for (70) is [ a2 a, dp. This justify the first
term in the sum (41).

We assume first that:

[y] = [xlvaa -'-xkaxk+17 ---7xn7xn+l7--
[2] = [x1, 22, ..., %], where j > n > k.

We will show in all cases that [ a, ay,a. dp = 0. This includes the case

/agaxd/;:&

.,J)j} (- [33] = [1‘1,33‘2,...xk,$k+1,...,$n] C

(71)
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I) First we assume that xp+1 =0 = 2,41.
Then,
Ay Gy Ay =

[ Vi o VAT en
Vo Poz, el T T, e
X[ — TL1 €[0,z1,22,..,x;] L'EI €1,z1,22,.. x]]
71_0 P07m1 L1y L2,.-505 /771_1 Pl,;pl sy b1,L2,y..505
X[ T €10,x1,22,.,xn] ki €[1,21,z ]]
o Fom, sl T e v

UER 3/2 1 Pmmlpzk,lpzj,l
ToPoe " /u((02])p([02])u([0y]) "\ Prw0Por0Pe;0

]

L{oyo]
. Pwn,lpxk,lpzj,o 1 ]
Pw,,HOP:Ek,OPLEj,l [Oyl]
7Tz1 3/2 1 P:cn,lpxk,lpxj,l
LEREE Vi(aDp([LD)u([Ly]) ) Pea0Por0Ps;0

Px,l,lpmk,lpzj,o 1 ]
(1y1] J-
Pzn,Oka,Oij,l

L{1y0]

Note that for all j

(72 T (0900) =\ Pay Pey o (100) = 4| 52 tfow).

and

Py,
(73) B2 n(Y0) = [ Peyt P o (1) F u([1y1))
;Cj,O QLJ,

Finally, from (72) and (73)
/aac Qy a dp =

Ty 3/2 1 Pzn,lpa:k,lpxj,l
T0Pos, /020D u([0y]) '\ Pen0Prr0Pas 0

Pacn,lpack,lpzr

, 5,0
P et 50 oyl
Py oPooPos 1([0y1]) ]

1([0y0])

Ty 3/2 1 Pmn,lpmk,lpzj,l
T1 P12, \/u([lm})u([lz])u([ly]) Py, 0Pz, 0Pz, 0

p([1y0])

Uen 3/2 1 ﬂfn,lpxkl\/ zj,1 O 0
YN (7 PGS TGO \/ noPeco | P
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P, Ika 1 Py, 0
_ 79 ) J 0 1
\/ Pt [ o))
T 1 Py 1Poy [Pun
—(=—5—)Y? [ e ~—pu([1y0])
P10, Vo)) (L) u(y]) "\ PeaoPero | Prjo
Pe aPe1 [Pr0
Y R ST 2 u([1y1]) ] =0—0=0.
¢&m&m %NMMD]

IT) Now we assume that 511 =1 = z,41. In a similar way as before

/aw ay a; dp

Ty 3/2 1 PZMHOPﬂJk,OPI

= 1([0y0])
70Poar /a0 a(02D)([09]) *\| PPy Pry 0
Pa: Osz OPz- 0
—y | = u([0y1
Py PaprPos 1([0y1])]
. 1 Py, 0Pz, 0P
() w0 0Tl [140])

mMPra " /p(la)p(L))p(1y]) | PenaPoriPe0
Pac OP:Ek OPx- 0
———= 7 ([1yl
Py PaprPos n([1y1])]
_ ( 7Tx1 )3/ \/ ([OyO]) x;,1 [ PZE,HOPI _ Pw,,L,OP:vk,O ]
00,2, V ([02])u([02]) "\ Prn1Pogn Py, 1P
Ty )3/ \/ ([1y0])PIJ [ Pzn OP:L’ _\/Pa:n,Osz,O } —0—0=0.

T P10, (Mz])u([12]) "\ Prp1 P Py 1Py 1

III) Now if we assume that zx41 = 0 and z,+; = 1 or that xx41 = 1 and
Tp4+1 = 0, we get that in a similar way that

/%%@wzo

After all these computations, for fixed a, and a,, we want to compute K (G, d, ).
In this direction we have to consider (70) which is the first sum in expression (40)

We wonder for which y we have that ([ G, a. a, du)? # 0. We assumed without
loss of generality that z is a subprefix of . In this case, the length of z is strictly
larger than the length of z.

Considering first the case where the length of y is larger than z and z, it follows

from the above that
> Q/amaaym02:o.

word y with length larger than x and z

Now we consider the case where the length of y is strictly smaller than the length
of z and =z.

For the case where the length of y is strictly smaller than z and = we need to
assume that y is a subprefix of z (otherwise a,a, = 0 and we get ([ @y G, a, du)? =
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0). If y is a strict subprefix of z and z is a strict subprefix of s we get from the
above that ([ a, a. a, du)* = 0.

Finally, we assume that the length of y is strictly smaller than x and strictly
larger than z. In this case we have to assume that x is a subprefix of y and y is a
subprefix of z (otherwise by Proposition 7.4 we have [ a, a a, du* = 0). It follows
from the above that also in this case ([ a, a. a, du)? = 0.

Therefore, in the estimation of expression (70) it follows from our reasoning that
all elements in this sum are zero up to expressions ( [ 2 a, du)? and ([ a2 a, du)?,
that is, the cases where y = z or y = z. From Proposition 7.5 we have to assume
that x is a subprefix of z or vice versa. The explicit expressions for these two cases
were analyzed in sections 8.1 and 8.3.

If the length of z is larger than the length of z, then, from (69) we get ([ a2 a, du)?
0.

The final conclusion is that
(14 > (/amazayduﬁ = (/aiazdu)2+(/a§azdﬂ)2 = (/aiazdﬂ)?

word y
10. APPENDIX

We recall that L7 4 = £ 4 denotes the Ruelle operator for the a-Holder potential
A: M — R, A4 its main eigenvalue, v4 its eigenprobability and h 4 the associated
normalized eigenfunction for A. Remember that we say that the potential A is
normalized if £4(1) = 1. If A is normalized then ps = v4.

Remember that E()4 denotes the set of Holder functions g, such that, f gdu s = 0.

For a non normalized potential A the operator £4 = )\Zlﬁ 4 denotes the renor-
malized Ruelle operator. Note that E(hA) = hy4. Moreover, if Ag is normalized,
then £ Ao = L4, Note that I — £ 4 is not invertible, but is invertible when restricted
to B3

For the proof of the next Proposition we will use results from [6]. The explicit
expression (75) does not appear in [6]. The proof is based on the reasoning of an
old arXiv version of [6]. The authors in these papers considered the a-norm, but
here will need just the C° norm.

Proposition 10.1. The map A+ H(A) = ha € C°(M,R), where A is Holder, is
differentiable. Furthermore, given a potential Ay and a function X € Hol,

(1) DagHOO) =hay [ ([0~ Laylgg) ™ (1 hag) ). X,

Moreover, when Aq is normalized we get va, = pa, and Da,H = 0.

Proof. Let Ag € Hol be fixed. It is known from Proposition 3.8 in [6] that A" L7 (1)
converges C° uniformly to h 4, with respect to A, in some sufficiently small neigh-
borhood W of Ay.

Consider the family of functionals F,, : W — Hol given by F,(A4) = A" L7%(1).

Claim: the derivative of F}, is given by

DaF, - X =A"Dal%(1)- X —nX ;"™ Ln1-Dara- X

(76) = Zrlg(ﬁj};i(l)~X)—n£’},(1)-/hA-XdVA].
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The claim requires an outline of the proof. We follow closely a suggestion of the
referee of our paper. Proposition 4.1 in [6] states that

(77) DAL ( Zﬂ L),
and Proposition 4.5 in [6] claims that

(78) DA/\A'XZ)\A/]’LAXCZVA.

Using the derivative product rule we get
DuF, - X =Da(MN"L%(1))- X
= A" DAL (1) - X —n A ") L0 (1) - Dadg - X
From (77) and (78), we finally derive

DaF, X =)} Zﬁ (X - £071) —nA, " en )\A/hAXduA

(79) = ZZQ(X L7 —n L%(1) /hAX dva.

This shows the claim.

We will show that the latter expression is uniformly convergent in the C° norm
(with respect to A and {X € Hol : || X|lo < 1}) to the series h4 - (L (1) -
X —ha - X) dva. Note first that,

n—1 n—1
hA~Z/(£f4(1)-X—hA~X) dv s =hA-/Z£g(1—hA)-XdyA.
i=0 i=0
This expression converges uniformly (by the spectral gap property of Theorem 3.7

n [6]) to ha- [[(I—La 5,) "(1—=ha)] - X dva, as n tends to infinite. Note also
that, using (76)

DFn(A)-X—hA.nZ/[ZiA(l)-X—hA.X] dva

:i W Laix - 2 /hAXdVA—hA/,C” (1 - ha)X dva),
which car? be written in the form
(50) > Liy(6na).
where -
(81) &= LYH(1)X — Zg*iu)/hAX dvg —ha /(Z’;ﬁ(nx —haX) dvy.
As L%(va) = va, it follows that [ L% *(1)dva = 1 and, consequently,

(82) /fn)idVA = f/zz_i(l)dVA/hAXdl/A+/hAXdVA =0

are mean zero observables.
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From Theorem 3.7 in [6] we deduce that there exists C' > 0 and 7 € (0, 1), such
that,

(83) 125 (0) — ha / wdvallo < C7 [,

for all n > 1 and all a-Holder function ¢, where h4 is the unique fixed point
for £ 4, such that f hadvy = 1. We will use this uniform estimates to provide
uniform bounds for the approximation (in the supremum norm) of the expression
(80). Indeed, from (81) and (83) we get that there exists C' > 0 and 0 < 7 < 1 such
that

n—1 n
IDFA(A) X —ha S / (E4(1) - X = ha - X] dvallo = | 3 £ (€ni)llo
1=0 =1

<Y oLy )X - L) / haX dva — ha /(Ejz;i(ux —haX) dvallo
=1
<Y CHIET X o) —ha [ 257 (X 0T dvalg

i=1

LS o) /hA "X dva —ha- /hA X duallo.
=1

Using (83) and the fact that for each 1 <i <mn
(X (T () = X(T" ()] < | X lad(T" 7 (2), T" 7 (y))* < [|X || diam (M)

the norm of the first summand above can be uniformly bounded by

Y CTILT (X o T" ) — ha / L3 (X o) dvallo
i=1

< C?*n1"|| X || diam (M),

which is convergent to zero.

The second term is bounded uniformly by Y7, C?7™||X||o|/halo, which tends to
zero as n tends to infinity. In the last estimates we used the facts that f hadvag =1,
| [ha-X dvallo < || X|o|lhallo and |£%7(1) — hal| < C'7"~ (which follows from
(83)). As in all of the above estimates, the convergence is uniform with respect to
A and the a-Holder function X, where || X ||, < 1, we get the proof of our claim.

Now we can finish the proof of the proposition by estimating
DFn(A) - X = / [(I — EA |E64)_1(1 — hA)] - X dvy - hay,

uniformly with respect to A and the Holder function X, where || X ||, = 1. Finally,
we get

DAOH(X) = hAo -/[(I—,CAO |EA0)_1(1 _hAo)] - X dVAo-
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