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THE DIMENSION SPECTRUM OF THE MAXIMAL MEASURE*

ARTUR O. LOPESt

Abstract. A variety of complicated fractal objects and strange sets appears in nonlinear physics. In
diffusion-limited aggregation, the probability of a random walker landing next to a given site of the aggregate
is of interest. In percolation, the distribution of voltages across different elements in a random-resistor
network (see [T. Halsey et al., Phys. Rev. A (3), 33 (1986), pp. 1141-1151]) may be of interest. These
examples can be better analyzed by dividing certain objects in pieces labeled by indexes, but that leads to
working with-fractal sets and the notion of dimension [Halsey et al. (1986)].

The dimension spectrum of a system has been introduced and measured experimentally, and a substantial
literature in physics addresses this topic. In several important cases, rigorous proofs of the results presented
in [Halsey et al. (1986)] have been established.

Here, rigorous mathematical proofs of some results in this theory are given, specifically for the/maximal
entropy measure of a hyperbolic rational map in the complex plane. In this case the fractal object is the
Julia set (see [H. Brolin, Ark. Mat., 6 (1966), pp. 103-114], [A. Freire, A. Lopes, and R. Mané, Bol. Soc.
Brasil Mat., 14 (1983), pp. 45-62]), which has been extensively studied in the physics literature.
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AMS(MOS) subject classification. 58F11

0. Introduction. In recent years the role of the concept of dimension has been
investigated by several authors in trying to understand nonconservative dynamical
systems.

The possibility of an infinite number of generalized dimensions of fractals appears
in a natural way in the context of relevent physical problems of critical phenomena.
This topic is particularly active in the physics literature. Such problems appear in the
configuration of Ising models, percolation clusters, and fully developed turbulence.
In general, we can describe such models by dividing the object into pieces and rescaling.
In this situation we very often obtain several different values of dimension.

We are interested in developing the thermodynamic formalism for chaotic repellers
obtained from hyperbolic rational maps in the complex plane and its relation to the
spectrum of dimensions.

The same problem for attractors has been investigated in [9]. In general, an
attractor can have an arbitrarily fine-scaled interwoven structure of hot and cold spots
(high and low probability densities). By hot and cold spots we mean points on the
attractor for which the frequency of visitation to the region for typical orbits is either
much greater than average (a hot spot) or much less than average (a cold spot). In
these several different points we can have different local values of dimension, and the
aim of this theory is to understand the situation globally.

Now we will explain more carefully the situation we are going to consider. We
will analyze the dimension spectrum of the maximal measure (sometimes called the
balanced measure) [1], [8], [17] of a hyperbolic rational map f on the complex plane

fia=l)

Q(2)
where P and Q are complex polynomials.
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The dimension spectrum of a system was introduced and measured experimentally
by Halsey et al. [10], Hentschel and Procaccia [11], and Jensen et al. [12]. See also
[2]1, [51, [9], [26], and [27] for analyses of important cases.

In [2] and [27] the theory is applied to several different systems, among them
cookie-cutter maps, and it is related to the measure of maximal entropy. In [5] critical
mappings of the circle with golden rotation number are considered.

We will use thermodynamic formalism as in [27] and also classical large deviation
theory as in [5] to obtain our result for the maximal measure of a hyperbolic rational
map.

For each complex number z and positive real number ¢ denote by B(z, £) the
ball of center z and radius ¢ in the usual norm of R

We will say that a certain measure v has exponent a on z if

v(B(z )=~ ¢*

for ¢ small enough. (Here =~ means lim,_, (log v(B(z, £))/log £) = a.)

We will also say that z scales with exponent a.

Given a measure v, one of the main goals of the Dimension Spectrum Theory is
to understand the set of points that scales with exponent a.

For a fixed, the structure of such a set of points can be very complicated, and
this set can also have v-measure zero and two-dimensional Lebesgue measure zero.
The Hausdorff dimension gives more detailed information on how small the sets of
the plane with two-dimensional Lebesgue measure zero are. When the Hausdorff
dimension of a set is a noninteger number, we say that this set is a fractal. It is natural
to ask, in terms of Hausdorff dimension, how small these sets are with respect to the
variable a. ‘

Experimental results in [10] and [12] have suggested that the Hausdorff dimension
of such sets is a differentiable function of «, in the case of a certain measure of critical
mappings of the circle with rotation number equal to the golden-mean.

We point out, as has been done in [5], that without some restrictions on the
measure v, nothing interesting can be said about the problem.

A given probability v is called invariant for a map f if

v(f~(E))=v(E)

for any set E, where the probability is defined.

If we are working in the context of statistical physics with problems in the
one-dimensional Z lattice, and in each position we have two possibilities of spin, let
us say + and —, then the natural space to consider is the Bernoulli model {+, —}Z.
As we do not have any reason to consider a distinguished position for the value zero
in our lattice, then in our problem we will consider only probabilities that are invariant
by the shift map (see [3] and [29] for more references). This is a simple motivation
for considering invariant probabilities in general problems.

In cases where f is a rational map, the support of any invariant probability is the
Julia set (see [4], [6], [8], [21] for definitions). In almost all the cases this set is of
fractal dimension [6], [14]. There are no smooth invariant measures to consider in this
situation.

Consider, for example, the map f; =z°+ ¢ when ¢ is small. In this case the Julia
set is a nowhere-differentiable Jordan curve for £ # 0. In fact, the Julia set is a fractal
Jordan curve for ¢ inside the main cardioid of the Mandelbrot set (and & # 0) [6].
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The Julia set can also be a Cantor set or even a combination of parts that are
locally disconnected and locally connected. The Julia set can even be the all complex
plane for some nonhyperbolic rational maps. In the case of hyperbolic rational maps
anyway, the Julia set always has two-dimensional Lebesgue measure zero.

There is an important conjecture that claims that the hyperbolic rational maps
are dense in the set of rational maps (see [21]).

In [8] and [17] it has been shown that among all invariant probabilities, there
exists a special one that obtains the maximal value of the entropy (see [19], [33] for
exact definitions). We will call this probability the maximal measure.

The entropy of an invariant probability is a measure of the degree of randomness
of the system given by the action of the map f and the invariant probability we are
considering. In this case the maximal measure is the more chaotic one.

Following the principle that in the absence of external thermal sources nature
tends to maximize entropy, we can see the maximal measure as some kind of Gibbs
state. If we must take into account external sources, we are then led to consider maximal
pressure probabilities (see [3], [29] for interesting considerations about this). In § Il
for some other reasons, we will have to consider maximal pressure probabilities.

We will denote by u the maximal measure for a hyperbolic rational map. We
pointout that, in [8] and [17], the results are for general rational maps, and hyperbolicity
is not assumed.

Here we will develop all the theory to show the following theorem.

TueorREM. Consider u the maximal measure of a hyperbolic rational map; then the
Hausdorff dimension of the set of points that scale with exponent « is a real analytic
Jfunction of the variable a.

We will relate these concepts of scaling exponents with the pressure, the Legendre
transform of the pressure, entropy, and large deviation. In fact, one of the main
ingredients of the proof is the close relation of pressure and free-energy (see § 1 for
definitions). This relationship is explored in a more general context in [16].

The analogous claim for nonhyperbolic rational maps is not always true. In [26]
an example of a quadratic polynomial is shown such that there exists a point @ where
there is no differentiability. In this situation we can say, using an analogy with statistical
physics, that phase transition exists. .

The theorem stated here can also be seen as a statement concerning the non-
existence of phase transitions for the maximal entropy measure of a hyperbolic rational
map.

A natural question to ask is, why do large deviation techniques appear in the
understanding of the problem? The reason is that there exists a certain & such that for
a u-almost-everywhere point z in the Julia set, the point z scales with exponent & (see
[22],[20]). This follows basically from properties related to the Birkhoff Ergodic
Theorem [19]. If we want to consider a certain fixed a different from the above-
mentioned & and look for the set of points z that scales with exponent a, then we are
in part not covered by the Birkhoff Ergodic Theorem. The above-mentioned theorem
is a result on mean values and, therefore, in considering deviations of the mean, we
must use large deviation techniques. We refer the reader to Ellis [7] for references
concerning large deviation. We can find the general theory of ergodic theory and
thermodynamic formalism in Walters [33], Mané [19], and Ruelle [29], [30].

Several results are known for the maximal measure [1], [8], [13]-[15], [17], [18],
[20], [22]. In particular, the moments of this measure can be obtained by a three-term
relation from the coefficients of the rational map (see [1], [13]). The three-term relation
is a consequence of the functional equation that the complex potential generated by
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the maximal measure satisfies around infinity [13]. This functional equation is known
as the Bochner equation in the case of polynomial maps [1]. In the case where the
rational map is not a polynomial, the functional equation has another form (see
[13],[14]). There are several connections of such results with Classical Potential Theory
[31],[4], [13]. In particular, [4] and [13] show that this maximal measure is the charge
distribution in the Julia set if and only if f is a polynomial.

The degree of the rational map f will be denoted by d. We will also denote by J
the Julia set. The entropy of the maximal measure is log d [8], [17].

We will show here that, in fact, the set of points that scale with exponent a can
be considered as the support of another measure (different from u, and we will not
lose dimensionality with this procedure (see the proof of Theorem 4)). We refer the
reader to [9]-[12] and [26] for some applications of the spectrum of dimension theory
to statistical mechanics.

It is worthwhile mentioning the following heuristic analogy. In problems of physics,
when we can apply renormalization techniques, in general, it is because we have some
good self-similar properties. We can take a partition of the object we want to consider,
and from this partition, by some well-defined procedure, we can obtain another with
some additional coarse information. Now, the procedure is repeated with the new
partition. If we have some good self-similar properties, we can expect to have with
this procedure microscopic information from the macroscopic information. In this
case, scaling properties appear in a natural way. The spectrum of dimension techniques
are suitable for application in this situation. Perhaps one reason this theory works well
for a rational map f is because we can think of the inverse branches of f as a natural
way to obtain new partitions. Because these inverse branches are holomorphic, we
have good self-similarity properties that come from the conformality and from the
Koebe Distortion Theorem (see [8]).

Here is the structure of this paper. In § 1 we will introduce the main properties
of ergodic theory and large deviations that we will use. In § 2 we will present the main
theorem and give an outline of the proof. In § 3 we will give the formal proof of the
main theorem.

1. Ergodic theory and large deviation. Let M (f) be the set of invariant probabilities
for f, that is, the set of measures v such that v(f~'(A)) =v(A) for any set A in the
Borel sigma-field of R®. The support of all these measures is J.

DeriNiTION 1. For a Holder continuous g:J - R and ve M(f), we will define
the pressure of v with respect to g by

h(v)+J’ g(z) dv(z)

where h(v) denotes the entropy of v. We will denote such an expression by P(v, g).

DeriNiTION 2. We will call P(g) =sup {P(v, g)|ve M(f)} the topological pressure
of the function g.

In the case where f is hyperbolic, there exists a unique measure that attains such
supremum. This measure is ergodic. These measures are sometimes called Gibbs
measures [3], [29], [30]. There éxist examples of C* maps such that this supremum
is not attained (see references in [19], [33]).

DEeFINITION 3. In the case where there exists a unique probability in M(f),
denoted by v(g), such that P(g) = h(v(g))+ | g(z)d(v(g))(z) we will call this measure
the maximal pressure measure for g:J - R. When f is hyperbolic, this is always the
case [3], [28].
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DEeFINITION 4. For g constant and equal to zero, the maximal pressure measure
is called the maximal measure.

Let z, be a point in the Riemann sphere, and for each neN, let us denote by
z(m, i, zy), i€{1,2, - -,d"} the d"-solutions (with multiplicity) of the equation

f(z)=z,.

We denote the delta Dirac measure on z by 8(z).
Let u(n, z,) be the probability

4 3 8(z(n, i 20).

In [8] and [17], it has been shown that for any z, (but at most two exceptional

points), and independent of z,, there exists the weak limit
lim u(n, z,) =u,

and the measure u is the maximal measure of the rational map f. Hyperbolicity is not
assumed to obtain this result. Also, u is ergodic and has entropy log d. We will denote
z! the z(n, i, z,) for a certain fixed z,.

DerINITION 5. For any real teR we will denote P(t)=P(g), when g(z)=
~tlog |f'(z)]-

From [23] and [24] it is known that P(?) is convex and real analytic in the variable
t when f is hyperbolic.

DeFINITION 6. For a given probability v we will call the Hausdorff dimension of
the measure v, denoted by HD(v), the value inf {HD(A)|v(A) =1, A a Borel set in J}.
Here HD(A) is the Hausdorff dimension of the set A.

DEerFINITION 7. For any real t€R we will denote u(t) as the maxxmal pressure
measure for g(z)=—1tlog|f'(z)|.

It also follows from [20], [22], and [24] that if f is hyperbolic, then

P'(t)= ~I log |f'(2)ld(u(1)(2) = —h(u(t)) - (HD(u(1)))™".

THeOREM 1[20]. Let fbe a rational map and let v e M(f) be an ergodic probab:llty,
then there exists a Borel set A such that v(A)=1, and for all z€ A,

lim log v(B(z, r))
r=0 lOg r

- h(v)(f log |£'(2) dv(z))_ — HD(v)

where B(z, r) denotes the disk of radius r and center at z.
TueoreMm 2 [28]. If fis a hyperbolic rational map, then

P(t)= llrgo-log Z [(f™) (2™
In § 2 we will explain why we need the pressure in this formulation.
Let W={W,:n=1,2,3,---}bea sequence of random variables that are defined
on probability spaces {(7,, %,, P,),n= - -} and that take values in R, where 7,
is a set, #, a o-field, and P, a probablllty
Here we will consider 7, =J, and %, the Borel o-field on J, ne N.
DerINITION 8. For each ne N define

c,(t)=n""log E,{exp tW,}

where E, is the expected value with respect to P,.
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We will consider in this case the weak topology in the space of signed-measures
in J.

The following hypotheses are assumed to hold:

(a) Each function ¢,(t) is finite for all teR.

(b) c(t)=lim,. c,(2) exists and is finite for all teR.

(c) c(t) is differentiable as a function of t€R.

THEOREM 3 [7]. Assume hypotheses (a), (b), and (c) hold, and denote for each
compact Borel set K in E

Q.(K)=P,{zeJ|nT'W,e K} and I(z)=sup{zt—c(t)}, zeR.

teR
Then the following conclusion holds:

lim n7"' log Q,(K)=—inf {I(z)}.
n->co ze K

DerINITION 9. The function ¢(t) is called the free energy of W,.

DEerFINITION 10. The function I(z) is called the deviation function of the process
[7]. In fact it is the Legendre transform of c(t). The function I(z) contains information
about the deviations of the mean of the process.

2. An outline of the proof of the main theorem. Some ideas presented here were
adapted from ideas in [5] and [27]. _
It follows from [8] that in the hyperbolic case, for any ze€J (this is not a
u-almost-everywhere statement), there exists
lim lim n™' log u(B(z, n, )) =—log d
e=>0 n—»>
where B(z,n,e)={yeJ|je{0,1, -, n=1},|f (y)—f(2)| <e}.
It is also true in the hyperbolic case that the diameter d(z, v, £) of B(z, n, €) is
of the order |[(f")'(z)|™", for any z € J, for n large and ¢ small [8], [22].
Therefore, if we ask whether z is such that u(B(z, £)) = £°, it is natural to consider
the above definition.
DEerINITION 11. Let J(a) be the set of points z € J( f) such that there exists the limit
lim n” "' log |(f")'(2)|™* = —log d.
In this case, u(B(z, n, g)) is of order d(z, n, €)“. When we use argumenfs of [20] it
follows that this is equivalent to requiring that z satisfies

i log u(B(z £))
= =
£-0 log ¢

DEerINITION 12. Let § (a) be the Hausdorff dimension of the set J(a).

THEOREM 4. Suppose f is a hyperbolic rational map and u the maximal measure.
Then for a given a, there exists a unique t € R such that P'(t)= —logd/a, and f(a)=
HD(u(t)), where u(t) is the maximal pressure measure for —t log|f’(z)|. The function
§ is real analytic on a.

We will now give an outline of the proof of Theorem 4 as we mentioned in the
Introduction.

The proof is divided in two parts; this is very characteristic of large deviation
results [7]. We must deal with the lower bound and the upper bound in separate cases.

In the first part, we show f(a) = HD(u(t)), where ¢ satisfies a Legendre condition
of the form P’(t)= —log d/a. This part can be seen as an application of the formula
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HD(v) = h(v)/flog|f'(z)|dv(z) (that is true for any invariant measure v [20], [22])
and the Manning-McCluskey picture, which means in our case that { () is the Legendre
transform of the pressure [24].

The pressure contains information about u(t) in the form

P'(t)= —J log | f'(2)ld (u(1))(z).

This information is about the Lyapunov number of u(¢). Using this information
we obtain a set with dimension HD(u(t)) such that for any point z on it, the measure
u scales with exponent « in z. This set is the support of the measure u(¢). In this way
we show § (a)ZHD(u(1)).

Now, in the second part, it is more difficult to show that f (a)=HD(u(1)).

We will try to give a heuristic idea of the proof, even under the risk of oversimplify-
ing some more difficult and subtle parts of the demonstration. First, to have a
geometrical picture of the problem, consider for simplification f(z) = z’+ ¢z, when ¢
is small. In this case d = 2. Note that zero is a fixed point of f The main ideas of the
proof are presented in this simplified case. The Julia set in this situation is a nowhere-
differentiable Jordan curve. This curve is very close to.the unitary circle and the
dynamics of f is very similar to that of 2> on the unitary circle (they are in fact
topologically conjugated). Now consider a nonself-intersecting curve v3, from zero to
00, cutting the Julia set in the unique fixed point in this set. Taking pre-images of this
curve, we obtain the new curves y| and 7y5. The Julia set without these two curves has
two connected components denoted by A} and A}, each one with u-measure d ' =3.

Now consider 2, y2, y2, and y2, the pre-images of the curves y; and y;. Now
the Julia set without these four curves has four connected components denoted by Al
A2, A2, and AZ. Each of these components has measure d =277, Repeating the
procedure inductively, we obtain at level n, a total of d" =2" curves y{, y3, ", ¥a"
The Julia set without these 2" curves has 2" connected components denoted by
A}, AS - -+, A% each one with u-measure 27" =d ™" If we select an initial point z,
not in ¥, then we can suppose that in each A}, i€{1,2, - -, 2"} there exists one and
only one z(n, i, z,) (see the notation in § 1).

Now we look at level n, which has the elements of the partition A, A7, -, AJ»
that contains elements z such that |f"(z)|™* is of order d~". By the Koebe Distortion -
Theorem (see [8]) we conclude (in fact, we have to consider subsets of the A,
ie{1,---,2"}, but we do not want to be too technical here in § 2) that if A7 contains
a z such as the one above, then the z(n, i, z,) contained in A} also has this property.

Note that from the Birkhoff Ergodic Theorem (concerning mean values) and the
Shannon-McMillan-Breiman Theorem (about entropy of partitions), almost all the
z(n, i, zy) should satisfy

|f " (z(n, i, 29))| 7"

and be of order d". This is a simplified way to look at the formula

B h(u)
D) = Tiog 17" (2) du(2)’

Therefore, the large deviation here appears to give information on how many elements
z(n, i, z,), i€{1,2, " - -, 2"} deviate from the mean and satisfy that |(f")'(z(n, i, 27"
is of order d ™"
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Here it becomes clear why we must consider the pressure P(¢) in the formulation
given by Theorem 2. We must consider the random variable given by —log |f™(2)| in
the pre-orbits of z, at level n. At this moment the close relation of ¢(¢) and P(t), which
we will explain in § 3, is essential.

The diameter of each element A" of the partition is of order |f"(z(n, i, z,))| ",
where z(n, i, z,) is the only pre-image of z, at level n in A].

From the considerations above, we can cover the set of points that scale with
exponent a with a controlled number of elements of the partition, and we also have
control of the diameter of the elements of the partition that we are using to cover the
set J(a). This partition can be obtained with a diameter as small as we want. The
value HD(u(t)) (it appears here as information that comes from a Legendre transform)
is exactly the value that we must consider for the Hausdorff measure to be finite. In
this way we prove finally that §{ (a)=HD(u(1)).

The above explanation is not exactly as the proof will be done, but it gives a good
idea of the main ingredients of the demonstration.

3. Proof of the main theorem. Here we will show the proof of the following
theorem.

THEOREM. Suppose f is a hyperbolic rational map and u is the measure of maximal
entropy. Then for a given a, there exists a unique t € R such that P'(t)= —logd/a and
f (a) =HD(u(t)), where u(t) is the maximal pressure measure for —tlog|f'(z)|. The
function § is real analytic in the variable a. '

Proof. (a) { (@)= HD(u(1)).

For a given «, from the convexity and analyticity of P(t) (see [28]), we have that
there exists a unique ¢t such that P’'(¢t) = —log d/a. For this value of t, consider u(t)
the maximal pressure measure for the function g = —t log | f’|. From the ergodic theorem
we have that for a set A such that u(t)(A)=1, for all z€ A,

lim + log |(f")(2)| " = - J log |£'(2)|d (u(1))(2) = P'(1) = —282

n—-»oo

a
Therefore

lim n™'log |f"(z)|"* =—log d

n->oo

and Ac J(a).

As the Hausdorff dimension of u(t) is infimum of the Hausdorft dimension of all
sets of measure zero, we have § ()= HD(u(t)).

(b) §(a) = HD(u(1)).

Now we will use a large deviation property as introduced in § 1.

Consider for each n e N the measure u(n, z,) as defined in § 1.

We will denote z] the z(n, i, z,) to make the notation simpler. To apply Theorem
3, consider 7, = J, %, = Borel o-field on J, and P, = u(n, z,). Consider also the random
variable W, = —log |f"(2)|.

From Theorem 3 we have that

dn
lim n~'log ¥ [f"(z0)|™" = P(1)
i=1

n->oo

= sup {h(v)—tjlog [f'(2)]| dv(z)}.

veM(f)
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Therefore

c(t)=1lim n"'log E,{exp t W,}

n->oo

i
= lim n~'log d'"( Y |f"'(z,7')|_'> = P(t)—log d.
n—->oo i=1
This relation of pressure and free energy is essential for the rest of the proof.
From the differentiability with respect to t of P(t) [16], [19], we have that for
any BeR and £€>0

lim n”" log P,{n"'W,e(B-¢ B +&)}

n—->aoo

is almost equal to —I(B), where I(B) =sup,cr {8 —c(s)}.

Therefore for 8 = —log d/, we have I(8) =18 —c(t), where c'(t)= —logd/a.

As P'(s)=c'(s) for any s€ R, we remark that ¢ is the same one obtained in part
(a) of this proof.

Therefore, I(B)=—t [log|f'(z)|d(u(t))(z)~ h(u(t))+tflog If'(2)ld (u())(2)+
log d =log d —h(u(t)).

Therefore

lim log P,{n"'W, e (—logda™' — ¢ —log da™'+ £)}

is approximately equal to h(u(t)) —log d. In this case
d"#{z)ie{l,- -, d"}, n " log |f"(z)| e (~log da™' — £ —log da”' + £)}
is of order exp ((h(u(t)) —log d)n), and finally

#{z?|ie(l,-”,d"} and |f?'(2?)|_‘€(exp(( e 5) ) exp ((_1_<>§_d+§)n)>}

is of order

(*) exp (h(u(t))—(log d)n) exp (log d") =exp (h(u(t))n).

As mentioned in § 2, this information allows us to control the number of points with
a certain deviation of the mean.

Now we will state some properties of hyperbolic rational maps that are proved
in [8] and [18].

Considering perhaps a finite iterate of f, we know from [18] that there exists a
curve & containing all the critical values of f such that:

(a) u(8)=0.

(b) X=C-68isa topologlcal disk. N

(c) There exist branches ¢;: X->C,i=1, -, d, of f7'| X that are injective and
f(X) X where X, = @b, (X)

(d) The set X =(N pzof "(Mpmzof" (X°))) has u-measure zero, and satisfies

[fix)=x

(e) Set X;= )2',-ﬂX; then the disjoint union X = U, X; is such that if n=1,
1=si=d,j=1,---,n, wehave d" sets of the form (ﬂ};,f"'(X,-j)). Let us denote each
such set by A{', lE{l, <ox d"}
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From [18] we have u(A7)=d".

(f) We can suppose there exists just one z; in each A} because we can obtain u
as lim,_ u(n, z,) and this limit does not depend on z,.

Now let us return to the proof of the theorem. First we will show that J(a) N X
has dimension smaller than HD(u(t)), where X depends on the curve 8. Then we
move the curve & a little and we obtain the same result. By the injectivity (c) we have
that these J(a)N X cover J(a) when we consider several different disjoint curves 4,
and from this it follows that f(a)=HD(u(?)).

Now we will show that J(a) N X has dimension smaller than HD(u(t)) for any
curve 8. This will be obtained in the following way. Consider a conformal representation
¢:X~>D, and X(r)=¢"'(D,) (where D,={zeC||z|<r}, 0=r=1). Consider also
for each A7, ie{1,2,-- -, d"}, the corresponding A(r) such that A7(r)=f""(X,) for
some branch f~" and A}(r)< A7, and assume é(z7)=0.

We will first show J(a) N {N =0 f "(X(r))} has dimension smaller than HD(u(t)).
Note that J(a) is invariant by f. In this case, using the same proof presented in [32]
for Theorem 4 and in [25] for Theorem 1.1, we conclude that lim,., HD(J(a)N
(N ,,;of'"()?(r)))) = HQ(J(a) N X)=HD(u(t)). Therefore, it is enough to show that
HD(J(a)N (N 20 f "(X(r)))=HD(u(t)), and we will show this now.

From the distortion theorem for univalent functions [8], there exist c,, C, > 0 such
that for n large enough

(%*) & <|(f" YOI <C

for any ¢, z in A](r). It also follows from [8] that for any £> 0, there exists K>0
such that for n large enough, if D(n,i, &) is the ball of center z; and radius
K|(f")(z))| 77, then

(*%%) D(n, i, £)> A].

Consider Y =J(a)N X. Then for each ze YN f "(£(r)) such that |(f")'(z)|™* is
of order d " we have that z is in a certain Aj(r) and therefore from (*x)

I(f™)(zH)|™ and |(f")'(z)|”* are of order d™".

The cardinal of such possible z{ is of the order exp (h(u(t))n) from (%). It is also ~
true that such z is in D(n, i, £) from (**x).
Now let us remember some properties of HD(Y). From each T> 0 consider

HD{(Y)=lim HD;5(Y)= inf Y (diam B,)"
&5-0 Y<UB;
diam B; =8

where B; are balls in C.

We also know that if for all T>HD(u(t)) we have Hy(Y) finite, then HD(Y) =
HD(u(1)). :

Now observe that for each n €N, Y is contained in exp (h(u(t)n)) balls of radius
K|(f")'(z)]~®, and |(f")'(z")|™" is of order exp (—logd- n- a™'). For each n the
sum

Y (diam D(n, i, e))" = K exp (h(u(t))n)exp (-Tlogd-n-a”'(1—¢))
=K exp (h(u(t))—Tlogda"'(1—¢)n).
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For
T> HD(u(t)) = h(u(1)) (I fag lf’(t)ldu(t))— — B ()P (1)

=h(u(t)) - a(logd)™"

we have that the above sum is uniformly bounded. As the diameter D(n, i, &) goes to
zero [8] because f is hyperbolic, we have

HD(J(a)ﬂ< N f“"(ﬂr))))éHD(u(t))

n=0

and finally the theorem is proved.

The analyticity of §(«) follows from the analyticity of P(¢) [23], [28].

As we have mentioned in the Introduction, no dimensionality is lost by considering
the support of u(¢) instead of J(a) because, as we have just shown, the two sets have
the same Hausdorff dimension.
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