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ABSTRACT. We present a briefl introduction to Ergodic Theory and equilibrium states of Ther-
modynamic Formalism. We also analyze Large deviation properties of the equilibrium states
defined in Thermodynamic Formalism. Several problems related to Statistical Mechanics are

consider.

1. Introduction

Our purpose in the first paragraphs of this text is to present the basic concepts
of Ergodic Theory in the most simple way. We introduce the Ergodic Theorem of
Birkhoff and the concept of entropy and pressure. Our final goal is to analyze sev-
eral important problems related to Statistical Mechanics in the setting of Ergodic
Theory.

We hope to present some of the main ideas of Ergodic Theory without too
many technicalities. The relation between the concepts of pressure and entropy
with the free-energy of Large Deviation Theory will be explored in the last para-
graphs. _

Given a space X, a probability P on X is a law that associates to each subset
B of X a real value P(B). The value P(X) is assumed to be one. We also assume in
the definition of probability that for any sequence By,n €N of disjoint subsets of
X (that is, By N Bm = 0 for m different from n), the union of such sets, UnenBhn,
satisfies P(UnenBan) = Yoo, P(Bs). Finally we require that P(A-B) = P(A)-
P(B) for any subsets A and B of X, such that B is contained in A.

Unfortunately, in most cases one can not have all the above properties defined
for all subsets of X. Therefore we define the probability P on a smaller family of
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subsets of X. In the present text this family of subsets is a o-algebra A. We refer
the reader to any book on Real Analysis [16] for the precise definition of o-algebra.
In all the situations we will face in this text, the subsets B of X for which we want
to assign a value P(B), will be elements of the family A. Therefore we will not
have problems with sets B whose probability P(B) is not well defined.

Ya. Sinai define Ergodic Theory in the following way “The basic problems in
Ergodic Theory consist of the study of the statistical properties of the groups
of motions of non-random objects”. The group of motions we are interested
in this text is the set of iterates of a map T from a metrical space X into it-
self, that is T, T2,T3,...,T",.‘... What properties one can expect for the iter-
ates of a general point x, in other words, what results can be stated for the set
{z,T(2), T*(z), T*(z), ..., T™(z), ...}? We will suppose there exist a certain prob-
ability P involved in the problem and we will be interested in properties that are
true for every x in X outside a negligible set A of probability zero (that is, P(A)
= 0).

2. Birkhoff’s Ergodic Theorem

Let O = {0,1}N be the set of sequences of 0’s and 1’s, that is, z € Q if z =
(20,21, 22, ... Zn, ...) where z; € {0,1} for all : € N.

We call this set the Bernoulli space. We can think of this set as the set of
events of tossing a coin infinitely many times, in which we associate head with
0 and tail with 1. For example, (0,1,0,1,0,1,...) is the event in which we have
alternatedly head and tail, beginning with a tail at time 0, that is, zg = 0.

A cylinder (or a parallepiped) A is a subset of  defined by a finite specification
of elements; the set A = {(0,1,1,0,1,25,26,..., 2n,...) | zi € {0,1}, ¢ > 5}, for
example, is a cylinder, which we denote by (0,1,1,0,1). In general a cylinder is
given by

(aO,al’""am) = {(a()’ala‘--7(Lm73m+]12m+27 ---azm+n7--~) i z; € {Oa 1} 3 1 2 m+1}’

where n is fixed and ag,as,...,am belonging to {0,1} are also fixed. We should

think of (0,1,1,0,1) as the event of tossing a coin and have successively head, tail,

tail, head and tail and no specification about the rest of the other tossings.
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We would like to define a probability on the set X = Q. First we will assign
values P(A) for the elementary subsets: the cylinders A. After that we will extend
this probability to more complicated subsets B, as countable unions and intersec-
tion of cylinders A, and then to more general and elaborated specifications. The
family of subsets B for which we will be able to assign the value P(B) will be called
later the o- algebra A.

The probability of having in order head, tail, tail, head and tail when we toss
the coin depends on the probability of having head or tail at each time.

Suppose that pg,p; are two numbers such that po, p1 >0and po+p = 1.
Suppose that each time we toss the coin we have probability po of having head (or 0)
and probability p; of having tail (or 1). If we suppose the tossings are independent,
the probability of having head, tail, tail, head and tail is pi p3. Therefore it is
natural to give probability p3 p} to the set A = (0,1,1,0,1).

In the same way we can define P(dg; a1, ..., Gn) = pe p* where ¢ is the number
of 0’s in the sequence {ag, a1, ...,a,} and m is the number of 1’s in the sequence
{ao,a1,...,ar}. In this way we obtain a well defined measure on any cylinder. We
define cylinders more generally by a finite number of specifications but perhaps not
in sequence, for instance {(0, z1,1, 23,0, 25, 26, 27, ...) | 21 € {0,1}, 23 € {0,1},z: €
{0,1},i > 5} is a cylinder. We will present the precise definition of the general
cylinder later. Using well known ideas of measure theory one can extend this

probability P to the o-algebra generated by all cylinders (see[13]).

In this way if we denote this o-algebra by A and the probability by P we
have (€, A ,P) as a well defined measure space. Note that P({l) = 1, because
1=po +p1 = P(0) + P(1) = P(Q). Remember that (0) = {(0, 21, 22,23,...) | 2i €
{0,1} for ¢ > 1} and (T) = {(1, 21,22, 23,...) | 2 € {0,1} for 1 > 1}. We say that
the coin is fair if pp = 0.5 and p; = 0.5. It is a well known observable fact that if
we toss the coin a very large number of times, like 200 times, we will obtain more
or less half times head and half times tail. It is also reasonable to suppose that if
the coin has probability pg.to obtain head (or 0) and p; of having a tail (or 1) then
if we toss the coin 200 times, we will obtain more or less 200 po times head and 200

p1 times tail. In Probability Theory this is known as the Law of Large Numbers [1].

The Ergodic Theorem of Birkhoff is a quite general theorem that will assure
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that the above result is true. We explain now more carefully the meaning of the
Ergodic Theorem.

Note first that P depends on py and p;. The Birkhoff Ergodic Theorem (it
will be formally stated later) claims that there exists a set A such that P(A)=1,

and such that for all z € A, where z = (20, 21, 29, ..., 2n, ...), we have that

1
po = lim — (cardinal of heads among zg, 21, -.., Zn—1)
n-+cO 71

and

1 .
p1 = lim — (cardinal of tails among zg, z1, ..., Zn—1)-
n—eo 1

‘The above result claims that the mean value of heads that appears in tossing
the coin n times converges to py. Before we state the Birkhoff Ergodic Theorem in
precise mathematical terms we need to introduce the concepts of shift and invariant
measure. '

The shift map ¢ from 2 to {2 is the map such that for

we have
CT(Z) = (21,22, 23y eeey End1, ...).

Therefore we can express the number of tails we have tossing the coin n times

(as expressed by z € Q) by
n—1
> Ia(@(2)),
=0

where I, is the indicator of A = (1), that is, I4(z) = 1 for z € (1) and I4(2) =0
for z ¢ (1); in other terms, I4(z) = 1if zp = 1 and Ia(z) =01if 29 = 0. In the
same way, 1

> Is(o7(2))

3=0
is the number of heads we have for the event z of tossing the coin n times; here
Ip(z) is the indicator of the set B = (0), that is, Ig(z) = 0if z ¢ (0) and Ig(z) = 1
if z € (0). ‘

B
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In this way we can see that the shift helps us to formulate the number of

heads and tails in a simple expression.

Definition 2.1. The set {z,0(2),02(2),...,0™(2), ...} is called the orbit of z under
the shift map o. The element o™(z) is called the nit iterate of z.

We will call the Borel o-Algebra of §) the o-Algebra generated by the cylinders.
The Borel o-Algebra of R is the o-Algebra generated by the finite intervals (see
[16]). We say that f from X to R is measurable if for each set A in the o-Algebra
of Borel of R, f~1(A) is in the o-Algebra of Borel of .

Given a certain measurable map ¢ : Q — R, the mean value of ¢ on z up to
the ntk iterate is 1 B

1 S oi(2)).

T 3 i)
In this way, for ¢ = I @) the mean value of I(E) on z, up to the nit-iterate is the
mean value of times we obtain a head, tossing the coin n times. In the case of the
fair coin, that is, pp = 0.5 = p;, and ¢ = IG5y, one should expect that the mean
number of heads should converge to 0.5 when n goes to infinity.

We will be interested in obtaining the limit of these mean values as n goes to

infinity, that is,

n—-1
lim T 3" 4(9(2))
=0

for P-almost all points z.

First we need to introduce the concept of invariant measure.

Definition 2.2. Given (X, A4, u), where X is a set, A is a o-algebra on X and
u is a measure on this o-algebra, we consider T' a measurable map from X to X
(that is T71(A) € A for all A € A), and say that p is invarient for T if for all
measurable sets A € A, u(T71(A)) = p(4).

Invariant measures appear very naturally in several areas of Mathematics as

for instance, in Hamiltonian Mechanics, Geometry and Number Theory.
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We now show that the probability P (depending on py and p;) introduced
before is invariant for the shift.

Proposition 2:1. The probability P is always invariant for the shift map
o: 0 — .

Proof. It is enough to show that P(T~!(A4)) = P(A) for the sets A that are
generators (the cylinders) of the o-algebra.

Consider A = (@g, a1, .-, @n) 2 cylinder, then

P(T"l(A)) = P((0,a0,a1,...,an) U (1, a0, a1, ...,an))
= P((0,a0,a1,...,an)) + P((1, ao,al,...,an))
Y Ime () Y Igye (Z)+p1 pOZ--o IGo (2) Z, o I’ ()

= Po Py b,
e 5o (2 ST Igyet (2)
=(PO+P1)POZ: =0 (0) Z, =0 “(1)
T - l T 1
o’ (z) al(z )
= Do = (0) Py (1) ((aovalv an))zP(A). B

Notation. We introduce the following notation: M(T) is the set of all invariant
probabilities u for the measurable map T': X — X.

Therefore M(o) denotes the set of all invariant probabilities for ¢. For each
Po,p1, such that po +p1 = 1, po,p1 > 0, we have that the corresponding P
belongs to M(o) as was shown in the proposition above. There exist of course
other probabilities ¢ € M(c) that are not of the form P.

The set of probabilities M(T") is a convex simplex in the set of all measures
on the o-algebra A of the set X. It is well known in Convex Analysis that the

points in the corners of the convex play a very important role.

Definition 2.3. A point z in a convex set C is called eztremal if £ cannot be
expressed as £ = Ay + (1 — A)z, where y and z are in C, z different from y and z
and 0 < A < 1.

It is possible to show that the probability measures that are extremals for the

set of invariant probabilities C = M(T') are the ergodic probabilities.




We define ergodic measures however by a different property.

Definition 2.4. We say that p € M(T) is ergodic if for all A € A such that
T—1(A) = A either p(A) =0 or p(4) =1.

The above definition means that for an ergodic measure the action of the
measurable map T on any non trivial set A € A (a trivial set being equal to 0
or X up to a set of y-measure zero) is so random that it can not leave the set A
invariant; in other words the set A has to spread around the set X under iteration
of T.

Note that the empty set § and the total set ) are always invariant, but they

have respectively measure 0 and 1.

Remark. It can be shown that the shift with the invariant probability P defined

above is ergodic [18].

In Ergodic Theory, most of the proofs of general results follow the recipe:
first prove the result for ergodic measures and then use the ergodic decomposition

theorem [13] to extend the result for other kind of measures.

Notation. Given a probability u on the set X, we will say that a property happen
p-almost everywhere, if there exist a subset A contained in X, such that p(A) =1

and the property is true, for all z in the set A.

Notation. We will denote by £(u) the set of measurable functions f from X to
R such that [ f(z)du(z) exist and is finite.

Now we can state Birkhoff’s Ergodic Theorem.

Theorem 2.1. (Birkhoff) - Let (X, A, 1) be a probability spaceand T : X — X a
measurable transformation that preserves u, that is, g € M(T) and suppose that

 is ergodic. Then for any f € £'(p),

Jm 1Y A1) = [ fe)dute) M
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for z € X, p-almost everywhere.

The above result essentially claims that for ergodic measures, spatial mean
(the right hand side of (1)) is equal to temporal mean (the left hand side of (1)) for
almost every point z. Therefore, in this case, in order to compute an integral, one
has to estimate the value of a series. In several practical situations this property
brings a simplification to the problem of estimating an integral.

When we consider T' = o, P = g and X = Q in the Bernoulli shift example

we mentioned before, then considering f(z) = I5,(z), we get

n—1

m =3 I (@) = [ I @dPe) = u0) =,
=0

(for P-almost every z), which we mentioned before in our reasoning. This theorem

therefore is a very general result that can, as a particular case, assure the validity

of the Strong Law of Large Numbers.

In the case pg = 0.5 = p;, the fair coin, the event of obtaining head every
time from 0 to infinity (that is, (1,1,1,1,1,...)) is rare (has P-measure zero). For a
set A of measure one the events (zg, 21, ..., 2n,..) € A are such that héad and tail
appear with the same frequency.

The questions that people in Probability and Ergodic Theory are concerned
with are not of deterministic nature. The statements that are relevant and perti-
nent, are the ones about events that happen with probability one. In other words,
the statements abouts sets A such that u(A4) = 1. Sets of measure zero are consider
negligible.

The Birkhoff Ergodic Theorem is one of the most celebrated theorems of
Mathematics and was inspired by Statistical Mechanics, more specifically by the
billiard ball model, which is a model for a particle reflecting on the walls of a closed
compartment [13].

We now state a more general version of Birkhoff’s Ergodic Theorem, without

the assumption that the measure is ergodic.

Theorem 2.2. (Birkhoff) - Let (X, A, 1) be a probability space and p € M(T),
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where T is measurable, T': X — X. Then for any f € £!(g) the limit

tim = 3 A(T(2))

=0

exists for z € X, p-almost everywhere. If the limit is denoted by

lim = 3" f(T(z)) = fiz),

i=0
then it is also true that

[ F@aut@) = [ fa)duta).

Note that the difference of the last result to the previous one is that in the
case the measure is ergodic f is constant o - almost everwalere.

The Bernoulli space 2 can be equipped with a distance dg : 2 x & — R
in the following way: for a fixed value 8 with 0 < § < 1, we define the metric
de(z,y) = 6", (where N is the largest natural number such that z; = y;, |i| < N)
if z is different from y. When z is equal to y then we define the distance to be
zero. If we define open sets (2 in the usual way (product topology) we have that the
o-algebra generated by the cylinders is the o-algebra of Borel, since the cylinders
form a basis for the topology of €.

As an example consider 4 = 0.3, z=(1,1,0,1,0,0,1,...) and e = 0.0081 = 0.3%,
then is easy to see that B(z,€) (the open ball of center z and radius €) is equal to
the cylinder (1,1,0,1).

Note that the indicator function I4 is continuous if A is a cylinder.

In the rest of this text we will consider a certain fixed value § and denote by

d the metric associated with it.

Definition 2.5. A map T from a metric space (X, d) into itself is ezpanding if
there exist A > 1 such that for any z, there exist € > 0 such that Vy € B(z,e€),
d(T(2), T(y)) > M(z,y).

Note that if do(z,y) = @, z,y € , then dg(a(z),0(y)) = af™! = 0~ dy(z,y).

Therefore the Bernoulli shift o is expanding with the value A = 6! in the notation

of above definition.
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It is also necessary to introduce the two-sided Bernoulli shift as the set
Q = {0,1}? of elements of the form

2= (e 2oy ey 28, 22, Z14 204 215 224 ooy Zny e )

The shift o : §2 — €2 is defined in the same way,

o(zi) = (zi41)

when z = (z;). For example for z = (z;) where z; = 1 for 7 even and z; = 0 for ¢
odd, o(z) = (zi+1) = (y;) where y; = 1 for 7 odd and y; = 0 for 7 even. Note that

0%(z) = z in this case.

Definition 2.6. For a general map T : X — X, the orbit of =z is the set
{z,T(m),Tz(m),...,T”(m),...}. We say z is periodic of period n if n > 1 is the

smallest possible natural number such that T"(z) = z.

Therefore in the example given above z is a periodic point of period 2. The
orbit of z in this case is {z,7(z)}. Note that the shift in the one-sided Bernoulli
space is not one-to-one, but the shift in the two sided Bernoulli space is.

Consider a finite set (an alphabet) of k symbols {0,1, ...,k — 1} and a proba-
bility 10 on this finite set, that is,

o(2) = pi

and
. k-1
i =0
Consider also the set of sequences of these symbols, that is, the set of sequences
z = (20,21, 22, ..., 2n,...) Where z; € {0,1, ...,k — 1} . We will again denote by Q the
set of all these sequences. Sometimes we denote by z : N — {0,1,....k—1}

an element of {2 and z(n) by z,. The shift on Q is defined in the same way

as before, o : & —  is such that for z = (z0,21,22,...; 2Znt1,...) € @, o(z) =
(21,22, 0y Zny - ) € S
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Definition 2.7. Given finite subsets Ag, Ay,..., Am of {0,1,...,k — 1} and j € N,
we define the cylinder C(j, Ag,..., Am) by

C(j,Av; o Am)={z€Q|z(j +1) € 4;,0< 1 <m}.

Disjoint unions of cylinders form an algebra that generates a o-algebra A on
Q. Moreover, given the probability pg on {0,1,...,k — 1}, there exists a unique
probability P on the c-algebra A (the product measure associated to o) such

that for every cylinder:

P(C(j, A, -y Am)) = [ ] ro(4:).
i=0

The above definition is the precise definition of a general cylinder we promised
before.

We define in Q a metric in the same way as always: for afixed 8, 0 < 6 < 1, we
define dg(z,y) = 6N where N is the largest N such that z; = y; forall 0 <i < N
for z different from y and zero otherwise. It is easy to see that dy has all the
properties of a metric.

These definitions, of course, extend the previous ones defined for the shift in
two symbols. The system defined above is also called the one-sided Bernoulli shift

on

Q= B(pO,pl, '“7pk-‘1)

" with probability P(pg,p1, ..., pr—1) on .

‘The two-sided shift is the set of all functions z : Z — {0,1,...,k — 1} and
in thé same way as before o(z)(i) = z(¢ + 1) is by definition the shift map on
this space. The cylinders are defined in a similar way: given subsets Ag, ..., An of
{0,1,....,k — 1} and j € Z (remember that j € N in the one-sided shift case)

C(j, A0y Am) ={z€Q|z(j+i) € 4;, 0L <m}.

~ In the same way as before we consider the o-algebra generated by the cylinders.
Moreover, given a probability o on {0,1,...,k — 1} such that po(?) = pi,i €
{0,....,k =1}, Zk"ol pi =-1, then we define P(C(j, Ao, ..., Am)) = 1% po(Ai). For

1=
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0 < 6 < 1 fixed, the metric we will consider on Q is dg(z,y) = 6 where N is the
largest N such that z; = y; for all ¢ such |i| < N if z is different from y and zero
otherwise.

We will call such system the two-sided Bernoulli shift on

Q= B(po,p1, s Pk-1)

with probability P(pg,p1,...,pr—1) on .
The main difference between the one-sided shift and the two-sided shift is that
the latter is one-to-one. With ‘the one-sided shift, any z € Q = B(pg,p1,---sPk—1)

has % preimages, that is, if z = (29, 21, ..., 2n, ...), then
Zg = (0, 2032100920, ),

Ty = (1, 203 %1ye0e9Zn, ),

and

ZTp—1=(k—1,20,21,.0, Zn,--.)

are such that o(z;) = z,7 € {0,...,k — 1}, that is, 071(2) = {zg, ..., Tk-1}.
More generally for z = (2q, 21,...), the set of solutions x of ¢*(z) = z is the

set of points x of the form

T = (Il:(),-'l:}, vees Tn—1,20, 21, "')

@, -7

where 2g,21,...,Tn—1 € {1,2,...A] are-arbitrary. Therefore the cardinality of the

set of such solutions x is k™.
Notation. We call the set of such points, the pre-images of z by o.

Periodic orbits for o are also easy to find. The set of all periodic orbits of
period n is obtained in the following way: take zg, z;, .., z,—1 in all possible ways
such that z; € {0,1}, ¢ € {1,2,...,n — 1}. For each one of these zg,21,...2n—1




)
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repeat the block infinitely many times, in order to obtain the set of all = such that

o™(z) = z, where
T = (ZOa 21349 %n—1,20,215--+3%n—1,20, 21, .-+ Tn—1, "')'

Remark. Note that the cardinality of the set of solutions z of 6™(z) = z and the
cardinality of the set of solutions x of ¢™(z) = z is the same and equal to k™. In

fact, the procedure of finding the set of solutions is quite similar in both cases.

Proposition 2.2. The set of all periodic points for the shift is dense in Q with
the dg metric.

Proof. Given z = (i )ieN, zi € {0,...,k — 1}, and £ > 0, take N such that 6V < £.

Now define z as the successive repetition of the string (zg, 21, ..., 2n5), that is,
T = (201 21,%2,--32N1 20, %1, %259 N1 20,21, %253 EN -")'

Then dg(z,z) < 8 < € and TN+1(z) = z, that is, z is a periodic point of period
at most (IV + 1) and £ close to z. This proves the proposition. H

Remark. A similar result for the preimages of a certain point z can be obtained
(the proof is basically the same), that is: any y € X can be aproximated by
preimages of z.

Note that the temporal mean f(z) of f (in Birkhoff’s Theorem) at a point z
belonging to a periodic orbit, is the mean value of f in the orbit of z. Therefore,
in most cases (but not all cases, as we can see below), the periodic orbits have to
be excluded from the set A of measure one mentioned in Birkhoff’s Theorem.

In an extensive number of cases in Dynamical Systems the periodic orbits are
dense in the region where the dynamics is concentrated [6]. Periodic orbits are
extremely important for understanding the dynamics and the ergodic properties
of a measure p even if they can have u - measure zero.

There exist invariant probabilities that are finite sums of Dirac measures in

M(T), but they have to be concentrated on periodic orbits because of the invari-

ance.




92

For example, the measure p such that:

£((001001001001...)) =1/3
©((010010010010...)) =1/3

£((100100100100...)) =1/3

is invariant and has support on a periodic orbit of period 3.
The space X we consider in this text will always be a compact metric space
with metric d. We also denote by C(X) the set of continuous functions on X

taking values in R. We will consider in C(X) the supremum norm, that is,

Il = sup {| f(z) ||z € X}.

Notation. We will denote by M(X) the set of all probabilities on the Borel
o-algebra of X.

Notation. A law 7 such that for each set A in the o-Algebra of Borel of X, (4)

is a real number (not necessarily positive) or is equal to oo, and such that:
o
a) n(UZ14:) =) n(A:)
i=1
when the 4; are disjoint (that is A;NA; =@ fori#j7),

b) 7(@)=0

&) n(A-B)=n(4)—n(B)

when B C A4, is called a signed measure. We denote by S(X) the set of all signed

measures on the Borel o-algebra of X.

- Example. For the set X = R, given a continuous function ®(z) (not necessarilly

positive and not necessarily integrable), the law n(4) = [, ®(z)dz is a signed-

measure on X.
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There exist signed-measures on X= R that are not of the above form.

Given a certain normed space V, the dual of V, denoted by V*, is the set of
all continuous linear functionals on V, that is, the set of all functionals £L: V — R
that are linear and continuous. The following theorem claims that the dual of the
set C(X) is the space S(X) [16].

Theorem 2.3. (Riesz) - Let £ : C(X) — R be a continuous linear functional.
Then there exists a unique v € S(X) such that £(f) = [ fdv(u) for any f € C(X).

Corollary 2.1. If £ is positive (that is, for any f € C(X), L(f) = 0if f > 0)
and if £(1) = 1, then there exists a unique probability p € M(X) such that
L(f) = [ fdp for any f € C(X).

Definition 2.8. Given T': X — Y measurable and v € M(X), we define T*(v) =
w as the unique measure w € M(Y) such that [(f o T)(z)dv(z) = [ f(z)dw(z)
for any f € C(X).

The measure w always exists and is well defined by Riesz’s Theorem applied
to L(f) = [(f o S)(z)dv(z). The measure w is usually called the pull back of the
measure v by the map S. '

It is easily obtained from well known properties about approximation of con-
tinuons functions by step functions (finite sums of indicators with different weights)
and vice-versa [16] that 1) and 2) below are equivalent:

1) for any Borel set A, A
v(STY(A)) = /(IA o S)(z)dv(z) = /IA(m)dw(q:) = w(A).
2) for any f € C(X),

[t e9)@av(a) = [ fieraua)

A particular important case is when X =Y and T': X — X. In this case

w = T*(v) is also a measure on X.
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From the above considerations we can state:
Proposition 2.3. - p € M(T) if and only if T*(¢) = p.

One would like to say that a sequence of measures p, converges to p if and
only if, for any Borel set A, the sequence p,(A) converges to u(A). This is almost
true. One has to suppose that the boundary of the set A has p - measure zero and
then the claim is true [16]. The more usefull definition of convergeﬁce is in terms

of the action of the measures on the continuous functions:

Definition 2.9. We say that a sequence u, € M(X) converges weakly to a

probability p if for any continuous function f : X — R we have that

Jm [ F@dun(e) = [ fe)dute).

If X is a compact metric space, the space M(X) of all probabilities is weakly
sequentially-compact, that is, any sequence pu, € M(X) has a convergent subse-
quence to an element p € M(X) [16]. The set M(T) is also weakly sequentially-

compact.

Definition 2.10. The Dirac Delta measure at the point z is by definition the
probability measure that associates measure one to each Borel set that contains z

and has measure zero otherwise. We will denote such a probability by 4..

It is well known that for a continuous function f and z € X, the value
J f(z)dé:(z) = f(2). ,
Given the above definitions, the Ergodic Theorem of Birkhoff can be stated

in the following way:

Theorem 2.4. Let (X, A, ) be a probability space, T : X — X a measurable

transformation that preserves p and suppose u is ergodic. Then

1 -1

p= lim — Z OTi(z) (2)
=0

n-—co 1
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for p almost every z.

Definition 2.11. The right hand side of the above equality is called the empirical

measure . [7]

Definition 2.12. The support of ¢ measure p defined on X is the set of points
z € X such that for any € greater than zero the measure p(B(z,€)) of the ball of

center = and radius e is strictly positive.

Given a measure p on X, in térms of Birkhoff’s Theorem, there is no important
information outside the support of the measure.

The above result shows that the support of two different ergodic measures
have to be disjoint.

3. Entropy

Let X be a compact metric space with ametricd: X x X - RandT: X — X a
transformation preserving the measure p € M(T") defined on the Borel o-algebra
of X. ’

The dynamic ball B(z,n,£), for z € X, n € N and £ > 0 is by definition the
set B(z,n,€) = {y € X | d(T7(2),T’(y)) < € for all 0 < j < n —1}. One could
think that one has a microscope that is able to detect that two points z,y € X
are distinct if they are £ appart, that is, d(2,y) > £. Therefore B(z,n, ) is the set
of points we are not able to distinguish from z performing n iterations. The value
w(B(z,n,€)) gives the amount of indeterminacy after we perform n — 1 iterations
of the map T on the point =.

For z and ¢ fixed and increasing n, the sets B(z,n,ﬁ) decrease, that is, for
m > n, B(z,n,€) D B(z,m,£). When n goes to infinity, B(z,n,£) converges to the
set {z} in the nice cases. In this case, if also p({z}) = 0, then p(B(z,n,¢)) will
converge to zero, when n goes to infinity. One would like in this case to express
the exponential velocity of decreasing in the form pu(B(z,n,§)) = A" for a certain
value A with 0 < A < 1, when ¢ is very small. Writing X as e™*(®), h(yu) will be

what we call later the entropy of p. The entropy of a measure will determine




96

therefore the exponential velocity of decreasing of the indeterminacy of the system

after iterations of the map T.

Theorem 3.1. (Brin-Katok) [4] - Suppose p is ergodic for the transformation T

on (X, A ,p) and consider d a metric on the compact set X. Then the two limits

£—0 n—oo N X

lim (—- lim sup 1 log y(B(z,n,f)» =%iné (— lim inf ;1; log ,u(B(z,n,ﬁ)) (3)
e n—od
exist and do not depend on z for p- almost every point z in X.

Remark. By definition, given a sequence (a»),n € N of real numbers we call
limsup,,__.,an, the supremum of the set of limits of convergent subsequences of
the sequence (a,). The definition of liminfis analogous. The reason for introducing
this definition is that not all sequences (a,) converge (therefore lim, .o @, has no
meaning), but for bounded sequences, the limsup and liminf will always exist. A
sequence (a,) converge, if and only if, the limsup and the liminf are equal (and off
course, they are equal to the limit). In the above theorem, not always the sequence

an = +log pu(B(z,n,¢€)) will converge. The limsup and liminf will exist in any case.

Definition 3.1. For an invariant ergodic measure u € M(T') we define the entropy

of p as the value

n—+oo Tt

1
h(p) = - lim (Hm sup — log u(B(z,n, 6))) )
where z was chosen in a set of measure one satisfying the above Theorem.

Note that we could define alternatively the entropy by the lim inf (see Theorem
3.1). '

Later on we will define the entropy of a measure p € M(T) when p is not
ergodic. )

Note that the larger the entropy of the measure, the faster will be the decreas-
ing of indeterminacy of the system. Therefore larger the entropy, more chaotic the

system is.
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Example. A trivial example where we can compute the entropy is the following:
consider a periodic point z of period n, and the probability p = Z;:ol L6ria)- It
is easy to see that this measure u is ergodic and that the entropy h(y) = 0.

The above exﬁmple is in fact not exactly random -or chaotic, but, in some

sense, totally deterministic.

Proposition 3.1. The entropy of the probability p = P(po,p1), with pg,p1 > 0
and pg + p1 = 1, invariant for the shift on Q@ = B(pg,p1), is

~po log po — p1 log ps. (4)

Proof. As we mention before, it can be shown that the probability P(po, p1) under
the action of the shift is ergodic (see Remark after Definition 2.4).

Consider z € Q in a set A of P-measure one satisfying the Birkhoff Ergodic
Theorem. That is, for any f € C(X), .

n—1
1 .
im = j -
Jm =Y 7)) = [ f@)aP).
=0
The intersection of A with the set of full measure of the Definition 3.1 will
also have measure one. Without loss of generality we can suppose that z is in this

intersection.

Fix € > 0. Remember that we consider on {2 the metric
dy(z,y) = 6~

where N is the largest integer such that z; = y; for any 0 < ¢ < N. Let ng be such
that §™° < £ and assume ng is the smallest possible such. Then, for n > ng we have
B(z,n,&) ={y € 2| dg(a'j(z),aj(y)) <§,0<j<n~1} = (%,21,22, - Zntno—1)
and therefore '

lim sup ;];— log P(B(z,n,£))

N OO

P Iy (0 (2)) pZ"*‘""”‘ Igy(e? (2))
1

1 . ;
= limsup — log pg'=° =0
n—oo N ’
1 ntng—1 ) 1 n-tng—1 )
= lim = Y Ig(e'(:)logpo+ lim ~ 3 Ig(o7())log pi.
=0 j=0
chS
O‘FRGQ oF B\B\-\O‘E c mh‘iﬁw
g1 | el
5\8\—‘0“"
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The limits in the last expression exist see because z was chosen satisfying
Birkhoff’s Ergodic Theorem, and therefore

1 n+4ng—1

lim ———— Z Iipy(0(2)) = / I5)(z)dP(z) = po

n—oo 4 ng—1

and
n+ng—1

im —— Z I(l)(a](z))—/I(l)(m)dP(m) D1-

n—+co n+ng—-1

Therefore

lim sup —log P(B(z,n,¢))

T~ OO
n-+ng—1

n+ng—1
n n

= po log po lim + p1log p; lim
-0 n—00
= po log po + p1 log ps.

Finally,

_.,

- hm (hm sup — log P(B(z,n {))) = —pg log pp — p1 log p1 -

and therefore
h(P) = —pglog po — py logp;. H
The next result can be obtained using a similar argument to the one used in

the proof of last Theorem:

Theorem 3.2. For the probability P(pi,pa,...,Pn), invariant for the shift ¢ in n
symbols, the entropy is: '

h(P)= Z pilog p;.

Note that from the definition of entropy in principle the value h(y) could

depend on the metric d we are using.
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Theorem 3.3. (Brin-Katok) [4] - Suppose pp € M(T) is an invariant measure,
not necessarily ergodic on X and consider d a metric on the compact set X. Then

there exist for p — a.e. point z € X the two limits:
h(z) = lim [~ lim sup ~ log u(B(z,n, €)) = lim ( liminf — log (B
z) = lim {~limsup —log u(B(z,7,¢))| = lim |~ liminf = og u(B(z,n,§)))| -
The function h(z) is integrable.

The difference between this result and the previous one for ergodic measures
is the function h(z). When the measure is not ergodic the “limit sup” can change
from point to point even in a set of full measure. When p is ergodic h(z) is constant

for all z p-almost everywhere.

Definition 3.2. The entropy of u € M(T) is the integral [ h(z)du(z) where h(z)

is defined in the above theorem.

This definition generalizes the previous one for ergodic measures.
Note that the concept of entropy was defined only for invariant probabilities on
M(T) and not for the general probability on M(X). The entropy of an invariant

measure is always a non-negative number.

4. Topological Pressure

The entropy of a system (T, X, 1) measures the randomness of the system. The
1arger the entropy, the more chaotic the system is.

The concept of entropy appears in Physics and is associated with the principle
that Nature tends to maximize entropy. That is, if one considers particles of a gas
concentrated at a corner of a closed box, at an initial time %,, then after some time
the particles will tend to an equilibrium where the particles are spread in a totally
random way. This means that after some time the gas will have a uniform density
_in the box. As the velocity of the particles is very large, in fact, this is the state
that will be observed. Therefore the state that will ocurr in Nature will be the one

that is most randomic among all possible states.
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A system of particles is much more random (has more entropy) if it is uni-
formily spread in the box than if it is concentrated at a corner of the box. Therefore
equilibrium is attgjned in maximum entropy arrangements.

The definition of entropy by Shannon was introduced with relation to In-
formation Theory. If one wants to transmit a message through a channel us-
ing an alphabet with n symbols {1,2,...,n}, each one with a certain probability
Pi,--sPns 9 iy Pi = 1 of being used, then the entropy of this system is the entropy
of the Bernoulli shift B(p1,pa, -..,Pn)- The entropy in this case is a very important

information of practical use (see [2]).

Historically the concept of entropy in Physics was defined in a different way

than the one introduced much later in 1948 by Shannon.

Our motivation here is associated with a more recent approach of Bowen-
Ruelle-Sinai, who, around 1960, proposed to use Shannon’s entropy as a.mathe-
matical tool for understanding Statistical Mechanics in one-dimensional lattices.
Soon we will show that this program includes the study of the Topological Pressure
(see definition below) for the shift. In fact these mathematicians proposed to study
a more general problem that includes not only the shift but also a larger class of
maps. This theory is known nowadays as the Thermodynamic Formalism [17]. The
Ruelle-Perron-Frobenius Operator (see next chapter) was introduced for a certain
class of maps (the expanding maps in the case one consider one-dimensional dy-
namics) in order to handle the problem of finding the measure of maximal pressure
(see [17]). Several important results in different areas of Mathematics as Geom-
etry, Number Theory, Dimension of Fractals, etc..., were obtained using results
r(—;_latéd to the above mentioned operator [17], which is a natural generalization (to
the space of continuous functions) of a Perron-Frobenius matrix acting on R" (see
[17] or example after Theorem 7.5). In the context of Physics the Ruelle-Perron-
Frobenius Operator corresponds to the Transfer Operator of Statistical Mechanics
[17].

Now we will follow the beautiful and simple motivation of the subject pre-

_ sented in Bowen. [3]

Consider a physical system with possible states 1,2,...,m and let the energies

of these states be Ey, Es, ..., En,, respectively. Suppose that our system is put in
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contact with a much larger “heat source”, which is at temperature T. Energy is
thereby allowed to pass between the original system and the heat source, and the
temperature T of the source remains constant, as it is so much larger than our
system. As the enérgy of our system is not considered fixed, any array of the states
can occur. The physical problem we are considering is not deterministic, and we
can only speack of the probability that a certain state, let’s say j, ocurr. That is,
if one performs a sequence of observations, let’s say 1000, it will be observed that
for a certain proportion of these observation the state j will ocurr. The relevant
question is to know for each j, the value of this proportion (probability) when
the number of observations goes to infinity. It has been known from Statistical
Mechanics for a long time that the probability P; that the state j occurs is given
by the Gibbs distribution: '
o—BE;
Pj = w, ] € {1,2,...,m},

=1
where B = g7 and k is a physical constant.
A mathematical formulation of the above consideration in a variational way

can be obtained as follows: consider

m

F(p1,p2, ey Pm) = Z —p;logpi — ZpiBEi,

i=1 =1

defined over the simplex in R™ given by

m
{(pl,pg,...,pm) |pi >0, 7€{1,2,...,m} and Zpi = 1}.
i=1
Using Lagrange multipliers, it is easy to show that the maximum of Fin the
simplex is obtained at

‘ e BE; .
P = ST -BE; j €{1,2,...,m},

=1 €
in accordance with the P; above.

The quantity

m

H(plap27 "':pm) - Z —Di ]‘ngi

=1
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is called the entropy of the distribution (pi,p2,...,pm). Let — Z:’;l p1 E; denote
the average energy E(py,p2, - Pm )-
Then we can say that the Gibbs distribution maximizes

H(p1,p2,--,Pm) — BE(p1,p2, .., Pm)-

The expression BE — H is called, in this context, free energy (in fact, there
exist several different concepts in Mathematics and Physics also called free energy).

Therefore we can say that Nature minimizes free energy. When the temper-
ature T' = oo, that is, E = 0, nature maximizes entropy. In this case the Gibbs
state is the most random probability, namely, P; = 1/m, j € {1,2,...,m}. Again,
using analogy with Classical Mechanics, E plays the role of potential energy and
H plays the role of kinetic energy.

Now, let us return to Gibbs measures. Generalizing the above considera-
tions, Ruelle proposed the following model: consider the one-dimensional lattice
Z. Here one has for each integer a physical system with possible states 1,2,...,m. A
configuration of the system consists of assigning an z; € {1,2,...,m} for each ¢ € Z.

Thus a configuration is a point = = {z;};c5 € {1,2,...,m}? = Q

Considering now on the space {2 the shift map

() ™ Cerrca)
o — s
Tiicz Titl jez

and M(o) the space of probabilities v such that for any Borel set A
v(4) = v(c71(4)),

one obtains the well-known Bernoulli shift model.

A continuous function ¢ : Q — R, in this setting, contains the information of
energy and temperature.

The problem here is to find a way to obtain the Gibbs distribution in the
infinite one-dimensional lattice in a similar way as it was obtained before for the
finite case.

For instance, for Spin-lattices, one can consider a positive spin + and a neg-

ative spin — in each site of the one-dimensional lattice Z and consider a certain
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probability p of arrangements. In this case we have to consider the Bernoulli space
in two symbols Q = {4+, —}% and probabilities p on .

Note that it is natural to consider just probabilities p € M(o), because there
is no natural reason to consider a certain distinguished point of the lattice as the
origin 0 in Z.

Given a certain continuous function ¢ : £2 — R (¢ will contain the information
of temperature, energy, magnetic-field, etc...), consider the following variational

problem:

Definition 4.1. For a continuous function ¢ consider

(e )) (o + [ st

where h(p) is the entropy of the probability p. We call such a supremum the
Topological Pressure (a better name would be Free Energy, but we follow here the
terminology of Ruelle) associated with ¢ and denote it by P(¢).

Remark. There exist an analogous definition of Pressure for invariant measures

for T instead of o.

Example. A good example to have in mind is the following: consider
Q = {+, -} (+ is positive spin and - negative spin) and ¢ is constant in each
one of the four cylinders (+,+),(+,—),(—,—) and (—,+) . Consider go,q1 >
0,q0 + g1 = 1 and define ¢ in the following way:

a) ¢(z) = qo,Vz € (+, 1)
b) ¢(z) = @1,Vz € (+,—)
¢) ¢(z) =1,z € (—, +) and
d) ¢(z) =0,Vz € (—,—).
In this case, we assume that in the lattice Z there exist a probabilility go of
having a + at the right of a + and a probability ¢; of having a - at the right of a
4. We also assume by c) and d) that at the right of a - there exist always a spin
+. One would like to find a probability p, defined in the ‘all space §2 such that

the above mentioned property happen. This probability ¢ will be called later the
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equilibrium state associated to the potential ¢. The equilibrium state p will be
defined by means of a variational formula (see Definition 4.2). In the case of the
present example, the solution can be obtained by means of the theory of Markov
Chains and Perron-Frobenius operator (note that we introduce a stochastic matrix)
and this will be explained in section 7 (see example after Theorem 7.5).

- The solution for the case of a general ¢ (not constant in cylinders) will require
a more sofisticated version of the Perron-Frobenius theorem that will be presented

on section 7.

Most of the time we will use the word pressure instead of topological pres-
sure. It is natural to ask which properties does a probability p which attain such

supremum have.

Definition 4.2. We will call the probability u that attains the above supremum
(in the case there exists one such u) the Gibbs state (or equilibrium probability for

¢) for the one-dimensional lattice with potential function ¢. In other words:

B(s) + / 8(=)du(z) = P(¢)
w0+ [ #eduz) 2 ) + [ o)an(a)
for any v € M(T).

Notation. Sometimes we will denote this probability p by p4 in order to express
the dependence of p on ¢.

For expanding systems the probability that attains the above supremum is
unique, and therefore equilibrium states do exist (see paragraph 7). Non-unique-
ness of the probability that attains the supremum is related with Phase Transition
of spin-lattices [9],[10],[12]. D.Ruelle [17] was able to obtain a certain function ¢

that represents interactions of a certain special kind and such that the probability

~ that attains the above supremum P(¢) is exactly the “Gibbs state” in the lattice

Z that, with other procedures, people in Physics already knew a long time ago.

Therefore the terminology of Gibbs state that we introduced above is quite proper.
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The analogy of the above setting in the lattice Z with the finite case we
mention before is transparent.

If we assume a wall effect, then we have to consider the lattice N, that is the
one-sided shift. '

The setting we presented above is suitable for analyzing problems in Statistical
Mechanics of the one-dimensional lattice Z. For the two-dimensional case Z? (or
for the three-dimensional case Z?), one should consider actions of Z? (or Z*) and
the situation is much more complicated (see [17] for references).

Entropy is defined for measures and Pressure for continuous functions. The set
of measures and the set of continuous functions are dual one of the other. In fact
these two concepts are related one to the other by means of a Legendre Transform
[8]. Some of these properties will be consider in the last part (see section 7) of
these notes.

We refer the reader to [7] [8] [5] [11] for a complete description of the above
results.

When two different ¢ and 3 determine the same equilibrium state p 7 That
is, when pg = py 7 This is an important question that will be analized more
carefully later. The following proposition is an easy consequence of the properties
of the probabilities v € M(T).

Proposition 4.1. Criterium of Homology - Suppose ¢ and ¢ are two continuous

functions such that there exist a continuous function g and a constant k satisfying

¢—tp=goT —g+k, then pg = py.

Proof. For any v € M(T), J(g o T(z) — g(2))dv(z) = 0 by definition, therefore
h(v)+ [ ¢(z)dv(z) = h(V)+f1,b(z)dy(z)—Fk for any v € M(T'). Therefore P(¢) =
P() + k and pg = pry-

Note that if k=0, then P(¢) = P(¥). B

Definition 4.3. In the case ¢ = 0, we have

P(¢)= sup h(p),
PEM(T)
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and this value P(0) is called the topological entropy of T . We will denote such
value by h(T).

We refer the reader to [3] [15] [17] [18] for results about Pressure and Ther-
modynamic Formalism.

In the case T = o it can be shown that k(o) = logd (see Definition 4.3) if
(0,9) is the shift in d symbols.

More generally, if an expanding map T has the property that for any
a € X,#{T(a)} = d, then h(T) = logd.

From Theorem 3.2 the entropy of the shift ¢ of d symbols, under the probabil-
ity P(1/d,1/d,...,1/d) is equal to log d. Therefore, in this case we can identify very
easily the equilibrium state for ¢ = 0, it is the probability yo = P(1/d,1/d, ...,1/d).
This measure will be called later the mazimal entropy measure .

In paragraph 7 we will consider very precise results on the existence of equi-

librium states for expanding maps.

5. Large Deviation

In this paragraph and in the next one, we will consider T a continuous map from
a compact metric space (X,d) into itself, 4 an ergodic invariant measure on (X, .A)
and f a continuous function from X to R™. Some of the proofs will be done for
m = 1 in order to simplify the notation.

The Ergodic Theorem of Birkhoff claims that for an ergodic measure p €
M(T) and a continuous function f from X to R™, for py-almost every point z € X,

tim 23 579 = [ o))

-t 00 7}

The typical example of application of the Ergodic Theorem, as we said before,

is the situation where we toss a fair coin 1000 times. One can observe that among

~ these 1000 tossings, more or less 500 times appears a head and the same happens

for tails. The event of obtaining head all the 1000 times is possible, and has P-

probability (0.5)!%%°. This number is very small but is not zero. This event is
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a deviation of the general behaviour of the typical trajectory. It is very relevant
in several problems in Probability, in Mathematics and in Physics to understand
what happens with the trajectories that deviate of the mean. We will show later
mathematical examples of such phenomena.

For each time n the data 1 E;:Ol I5(07(z)) are spread around the mean value
1/2, but when n goes to infinity, the data are more and more concentrated (in terms
of probability) around the mean value. The main question is: how to estimate
deviating behaviour? For the fair coin, the typical trajectory will produce, in the
limit as n goes to infinity, the temporal mean 1/2. Suppose we estipulate that a
mistake of € = 0.01 is tolerable for the distance of the finite temporal mean to the
spatial mean )

123 B(e ) - [ B@)ip@) |
j=0

but not more than that.

For n=1000, there exists a set B,(e) with small P=P(1/2,1/2) probability
such that the temporal mean of orbits has a temporal mean outside the tolerance
level. For example the cylinder with the first 1000 elements equal to 0 is contained

in B,(e), because

999

1 ; 1 1 1

— {7 — e =] = =

- -EOIO(U (z)) 2-1 53 > 0.01.
J:

for z in the above mentioned cylinder.

We will be concerned here with the problem of estimating the velocity with
which p(Ba(€)) goes to zero when n goes to infinity.

From a practical point of view, the Ergodic Theorem would not be very useful,
if (Bn(€)) goes to zero too slowly. For a given e of tolerance and a fixed n (any
practical experiment is finite), we choose at random a point z in X, according to
P(1/2,1/2). If the velocity of convergence to zero of the sequence p(Bn(¢)) is very
slow, then there is a very large probability of choosing the point z in the bad set
Ba(e).

The area of Mathematics where such kind of problems are tackled is known

as Large Deviation Theory (see [7] for a very nice and general reference).
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Let’s return now to the general case of a measurable map T from X to X,
leaving invariant a measure y. We will be more precise about what we want to

measure.

Definition 5.1. Given ¢ greater than zero and n € N, then by definition Q,(¢)
is equal to:

n-—-1

> ) - [ f@)duta) 12 9

=0

Q9 =plz ] -

Proposition 5.1. Given ¢,
lim Qn(e) =0.
k{ Saude v

Proof. For a given value € denote
1 n—1 )
A= {2115 ) - [ f@dua) 12 o
=0

We will show that lim,—.co p(Ar) = 0.
Consider the set ¥ = N, U, Aj. For each z € Y, the seéuence an =
1 Z;:OI f(T7(2)) has a subsequence with distance more than € from [ f(z)du(z).

n

Therefore, for any z € Y the above defined sequence a, does not converge to
J f(z)du(z), and hence Y has measure zero by the Ergodic Theorem of Birkhoff.
As the sequence D, = UR  A; is decreasing and u(Y) = 0, then

lim p(An) < lim p(Dp)=p(Y)=0

Therefore the proposition is proved. H

Corollary 5.1. Given ¢ > 0

dm e 112 Y AT - [ faute) 1S ) =1

=0
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One would like to be sure that the convergence to zero we consider above in
Proposition 5.1 is at least exponential, that is: for any €, there exists a positive M

such that for every n
1 n—1 )
pla 123 FTE) - [ Fe)du(e) [2 ¢ < eMn
=0

Under suitable assumptions we will show that this property will be true (see
Prop. 6.8).

It is quite surprising that in the case g is an equilibrium state (see Def. 4.2)
this result can be obtained using properties related to the Pressure (see paragraph
7 and 8). We will return to this fact later, but first we need to explain some of the
basic properties of Large Deviation Theory. 4

The relevant question here is how fast, in logarithmic scale the value Qy(€)
goes to zero, that is, how to find the value

.1
lim —~ log Qn{e).

n—oo

The above value is an important information about the asymptotic value of
the i -measure of the set of trajectories that deviate up to € of the behaviour of
the typical trajectory given by the Theorem of Birkhofl.

More generaly speaking, for a certain subset A of R™ one would like to know,

for a certain fixed value of n, when the values z are such that:

=S T € A

=0

In the situation we analyze before (corollary 5.1)

A={yeR™| Iy—-/f(w)d#(w) >

Definition 5.2. Given a subset A of R™ and n € N we denote

Quld) = | 23 A1) € 4).

J=0
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In the same way as before one would like to know the value
.1
lim =~ log @n(A).

Remark. If the set A is an open interval that contains the mean value [ f(z)du(z),

then the above limit is zero because lim,,_. Q@n(A) =1 (see corollary 5.1).

First, we will try to give a general idea of how the solution of this problem is
obtained, and then later we will show the proofs of the results we will state now.
There exists a magic function I(v) defined for v € R™ (the set where the

function f takes its values) such the the above limit is determined by:
lim ! log @a(A) inf {I( )}
Zlog Qa(A) = — ,
nl»oo n & tlIEA v

when A is an interval.

The function I it will be called the deviation function. The shape of I is
basically the shape of | v — [ f(z)du(z) |?, v € R™, that is, I(v) is a non-negative
continuous function that attains a minimum equal to zero at the value [ f(z)du(z).

The properties we mentioned before are not always true for the general T, p
and f, but under reasonable assumptions the above mentioned properties will be
true. This will be explained very soon.

The natural question is: how can one obtains such a function I? The function
I(v), v € R™ is obtained as the Legendre Transform (we will present the general
definition later) of the free energy c(t), ¢ € R™ to be defined below.

Definition 5.3. Given n € N and t € R™ we denote

1 -
calt) =~ log / e LUEHITE T ST N> gy )

Definition 5.4. Suppose that for each t € R™ and n € N, the value c,(t) is finite,
then we define c(t), the free energy , as the limit:

c(t) = lim cu(2),
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in the case the above limit exists.
Remark. Note that ¢(0) = 0.

Remark. The function c(t) is also known in Probability as the moment generating
function. For people familiar with Probability Theory and Stochastic Processes,
we would like to point out that the random variables f(T"(z)),n € N are not

independent in general.
Definition 5.5. A function g(t) is convez if for any s,t € R™ and 0 < A < 1,
g(As + (1 = A)t) < Ag(s) + (1 — A)g(t)

We say g is strictly convez , if for any 0 < A < 1 the above expression is true with
< instead of <.

It is easy to see that a differentiable function g(t) such that its second deriva-
tive satisfies g (t) > 0 for all ¢ € R is convex.

Proposition 5.2. The function c(t) is convex in ¢t € R".

Proof. The Holder inequality [16] claims that

/ | ki | du(a) < ( / | h(z) P dyu()) /7 ( / | k(z) |7 du())/,

where h and k are respectively on L,(p) and L4(p) and p and q are such that

1/p + 1/q =1. :

Consider s,t € R®, h(z) = e<Aa/ @+ AT N>
k(z) = e<U=Ns,f(@)+.+fT"H=)> X € (0,1), and then define p=1/) and
q=1/(1- A). Now, using the Holder inequality:

/e<As+(1~A)t,f(z)+f(T(r))+...+'f(T(“‘”(I)>dﬂ(z) <

(/ 6<8’f(1)+"'+ﬂT(n—1)(1))>d,u(.’l:))'\(/ e<t,f(z)+...+f(T(""1)(1))>d‘u(m))l—/\.
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Therefore, taking 2 log in each side of the above inequality, one obtains that:
ca(As + (1 = A)t) < Aen(s) + (1 = Aea(?),

and hence c(t) is convex, because it is the limit of convex functions. H

Definition 5.6. The deviation function I(v), v € R™, is by definition the Legen-
dre transform of the function c(t), ¢ € R™, that is

I(v) = t?ﬁ%k t,v > —c(t)}.

The deviation function I is well defined in the case c(t) is strictly convex.
In order to simplify the argument, let’s consider the one dimensional case

m=1. When c is differentiable, then it is easy to see that
I(v) = sup{tv — ¢(t)} = tov — c(to),
teR

where ¢ is such that ¢ (¢) = v (see proposition 6.1). Such a g is well defined if ¢
is strictly convex and differentiable. In this case the deviation function I(v) is also
differentiable in v, as it is easy to see. If c(t) is piecewise differentiable (with left
and right derivatives), then I(z) has also this property.

In more precise mathematical terms one should say that the deviation function
I(v) of c(t), t € R™, takes values v in the dual of R™. The dual of R™ ijs R™
 itself, and therefore, in the finite dimensional case (m finite) there is no problem to
define the Legendre transform in the way we did above. We will need to consider
Legendre transforms in infinite dimensional vector spaces soon. This will require
some small changes in the definition of Legendre Transform. Before that, we will
consider the main properties that are true in the finite dimensional case. The
key property is the differentiability of the free energy c(t). Assuming piecewise
differentiability (with the existence of right and left derivatives for c(t), ¢t € R),
most results we will state below will be true (Theorem 6.2 and Proposition 6.8

require that the free energy be differentiable).
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The main result we want to prove in the next paragraph is:

Theorem 5.1. Assume the free energy c(t), t € R™ is well defined and also that

¢ is differentiable, then for an open paralepiped A contained in R™

1 .
Jim ~log Qn(4) = ~ inf {I(»)}.

The above result is true for much more general sets A contained in R™, but
we will state and prove the general result later.

The main results for the finite. dimensional case will be proved for n=1. The
general case is not very much different from the case n=1. The infinite dimensional

case is however much more difficult than the finite dimensional case [7].

6. Free Energy and the Deviation Function

We will need to develop some elementary properties of Legendre Transforms in

order to prove the Theorem we stated above.

Definition 6.1. Given a convex piecewise differentiable map g(y), y € R™, the
Legendre transform of g, denoted by ¢*(p),p € R™, is by definition

g*(p) = sup {<py>-g(y)}
yeR™

Proposition 6.1. Suppose g(y) is defined for all y € R and that the second
derivative is continuous. If there exists e > 0 such that, g(y)>a>0,y€R,

then g*(p) = pyo — 9(yo) where gl(yo) = p-

Proof. In the case there exists a value yg such that g'(yo) = p, then clearly
g*(p) = yop — g(yo). Therefore, all we have to show is that g'(y) is a global
diffeomorphism from R to R.

Note that for a positive h, g (z + h) — g (z) = f;+h g (y)dy > ah. Therefore
the map ¢ is injective. The map g is open (that is, the image g'(A) of each open
set A is open) because g (z + k) — g (z) > ah. The map g is closed (that is, the

image g (K) of each closed set K is closed), because it is continuous. We claim

]
gFReS o a\B:\‘ng R L

% WMAS
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that ¢ is sobrejective. This is easy too see: the image by ¢’ of the open and closed
set R, is an open and closed interval and therefore equal to R. The conclusion is
that gl 1s bijective from R to itself. H

Proposition 6.2. Suppose g(y) defined on y € R satisfies g"(y) > O forall y € R,
then g* satifies g*"(p) > 0 for all p € R.

Proof. We will use the following notation: for each value p denote y(p) the
only value y such that %(y(p)) = p. As we saw in the last proposition g*(p) =
y(P)p — g(y(p)). Taking derivatives with respect to p,

%%;(p) - %mp +y(p) - —Z:‘y’i@(p))j—i(p) - (—‘j%w +(p) - p-j%@) _—

Hence g*"(p) = ¢ (p)
Now, as for any p, p = %%(y(p)), taking derivatives in both sides with respect
top,1 = g“(y(p))y/ (p) = g"(y(p))g*" (p). Thus g*” is positive, if g” is positive. H

Remark. We will assume that all maps g to which we apply the Legendre trans-
form satisfy the condition ¢”(y) > @,y € R for a certain fixed. positive value o.
When we consider piecewise differentiable maps (with left and right derivatives),
then we will also suppose that the left and right derivatives satisfy the same con-

dition in «.

The’ geometric interpretation of the Legendre transform of g in terms of the
graphic of g is shown in fig 1.

Now we will prove a key result in the Theory of Legendre Transforms:

Proposition 6.3. Suppose f(z) and f*(z) are stricly convex and differentiable
for every x, then the Legendre Transform is an involution, that is, f** = f.




115

—

Figure 1.

Proof. We will show that if g denotes f*, then g™ = f.
For a given p € R denote by z(p) the value x such that sup,cg{pz — f(z)}

attains the supremum. Since f* = g, then g—’;(m(p)) = p and ¢g(p) = pz(p)— f(z(p))-

For a certain fixed value zg and for each z € R define A(z) as the value A
obtained by the intersection of the line (y, 2(y)) = (v, f(z) + f (2)y) with the line
T = zq (see fig 2). It is easy to see that f=)=8 f'(z), and therefore

Az) = f(z) —zf (z) + f (z)zo.

Given p, g(p) = pz(p) — f(z(p)) where x(p) is such that g— (x(p)) = p-
Therefore, if we write A in terms of p, then

Alp) = Aal(p)) = Az) = f(a(p)) = 2(p)p + P20 = —g(p) + P0-

Note that
sup A(p) = sup{pzo — g(p)} = ¢%(z0)-
PER PER

From fig 2 one can easily see that sup A(p) is attained when p = f (o) and

the supremum value of A is f(zq). Therefore we conclude that g*(zo) = f(zo)-
H
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Figure 2.

Definition 6.2. We say that f is conjugated to g if f* = g.
The last result claims that if f is conjugated to g, then g is also conjugated to f.

Definition 6.3. Suppose g is a convex function on R™. We say that y €« R™ is a
subdifferential of g in the value z, if g(z) > g(z)+ < y,z — = > for any z € R™.
We denote the set of all subdifferentials of ¢ in the value z by ég(z). .

This definition allows one to deal with the case c(t), t € R, piecewise dif-
ferentiable (it is differentiable up to a finite set of points ¢;,i € {1,2,...,n}). In
the values t where c is differentiable there is a unique subdifferential ¢ (t) = éc(2),
but in the values ¢; where c(t) has left and right derivatives (we assume in the
definition that this property is true) respectively equal to u; and v;, then Se(t;) is
the interval [ wi,v; ]

The next result shows a duality between the subdiferentials of conjugated
functions. ‘

Proposition 6.4. y € ég(z) if and only if x € §g*(y).

Proof. By definition y€ §g(z) is equivalent to

g(z) 2 g9(z)+ <y,z—z >
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forall z € R.

The last expression is equivalent to
<y,z>—g(z) <<y,z > —g(z)

for all z € R.

Therefore y € &g(z) is equivalent to say that z realizes the supremum of
<y,z > —g(z).

We also obtain from the above reasoning that y € ég(z) is equivalent to
¢*(y) =< y,z > —g(z), and thus equivalent to < z,y >= g*(y) + g(=).

Applying the same result for ¢ = g¢*, and interchanging the role of x and
y, that is, x=y and y=x, we conclude that z € 6g*(y) is equivalent to < y,z >=
g**(z)+g*(y). The last expression is equivalent to < y,z >= g(z)+g*(y), because
from the last proposition ¢g** = g.

Hence y € §g(z) is equivalent to = € ég*(y) B
Using this proposition one can show the following result:

Proposition 6.5. I(v) = 0, if and only if, v € 6¢(0). The function I is non-

negative and has minimum equal zero in the set 6¢(0).

Proof. First note that as I = ¢*, then from the last proposition v € §¢(0), if and
only if, 0 € 6I(v). In this case,

I(z) 2 I(v)+ < 0,z—v>=I(v) =0

for any z € R. Therefore, I(z) has infimum in the set 6¢(0).

Proposition 6.4 claims that < #,v >= c(t) + ¢*(v) = ¢(t) + I(v), if and
only if, v € 6c(t). Now, using this proposition for the case ¢ = 0, one obtain
I(v) = —¢(0) = 0. The final conclusion is that I(z) > I(v) = 0 for v € 6¢(0) and
zeR. B '

The proof of the main Theorem 5.1 is done in two separated parts: the upper

large deviation inequality and the lower large deviation inequality. First we will

'
i }
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show the upper large deviation inequality. This inequality is true in a quite general
context, even without the hypothesis of full differentiability of c(t) [7]. In the
second inequality we will use differentiability of the free energy.

Proposition 6.6. (Upper large deviation inequality) Suppose c(t), t € R is a well

defined convex function, then i

n—1

. 1 ; . . 1 , .

hmsup; log ,u{z/lgg f(T(z)) e K} = hTLlrisolip; logQn(K) < — z%l}f{ I(z) (5)
j:() ,

T—r OO
@
where K is a closed set in R.

i Proof. Let’s first recall Tchebishev’s inequality: let g be a measurable function
s from X in R and h from R to R a non-negative, nondecreasing function such that !
" J h(g(z))dp(z) is finite. In this case, for any value d such that h(d) is positive
i ' J b(g(2))dp(z)

3; kol o(e) 2 d) < SEEE

g We refer the reader to [7] for the proof of Tchebishev’s inequality. ‘
Denote 6¢(0) = [ug,vo] (it is very easy to see that 6¢(0) is an interval).
n We will show first the claim of the theorem for semi intervals [a, 00, ) where

a is larger than the right derivative vy of ¢ at t=0. For such a and any ¢ > 0,

Tchebishev’s inequality for

-1
My) =, g@) =~ 3 [(T(@)), d=a,

=0

(Remark- we require ¢ > 0 in order h(y) being non-decreasing) implies that !

n-1 ;
Qn([a,oo)) < e—nta/et Zi:o f(TJ(z))ﬂ(m) = g~ nta=ca(1))

Therefore taking limits when n goes to infinity, one concludes that

limsup — log Qu([a, 0)) < ~supf{ta— c(t)}. (©)

N
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Now we need the following claim:
Claim. sup,yo{at — ¢(t)} = I(a) = sup,cg {at — c(?)}.

Proof of the Claim. c(t) is convex, hence ug, the left derivative of c at 0, satisfies
ug < #,t < 0. Therefore,

ta — ¢(t) = t(a — —C%Q-) < t(a — up).

The last term is negative because a' > vg > ug.
The conclusion, is that I{a) = sup,cg {ta — c(t)} = sup,sq{ta — c(¢)}.

Hence the claim is proved.

Before we return to the proof of Theorem, we will need first to prove another

claim.
Claim. I(a) =inf.5, I(z).

Proof of the Claim. From Proposition 6.5, I(z) is equal to 0 on [ug,ve] = 6¢(0).
We claim that for z > vg the function I is monotone nondecreasing. This is so
because, if there exist two values z; and z» larger than vy, such that I (z1) = I(2z2),
then there exists z € [21, z2] with 0 € 6I(2) (this follows at once from the convexity
- and the definition 6.3 but do not require differentiability).

This means, by proposition(6.5), that z € §¢(0), but this is false because z is

not in [ug, vg]. Therefore I(a) = inf.>, I(z), and the second claim is also proved.

Now, from equation (6) and using the two claims stated above, we obtain the

desired conclusion

1 :
limsup —log Q. {K} < — inf I(z) (N
n—oo T z€K

when I = [a,00) and a larger than vy, the rigth derivative of ¢ at 0.
The proof for intervals K of the form (—o0,4a], a < ug is similar.

Now we will prove the claim of the theorem for a general closed set K.

- i amTETar




EE aEu wrEamaTTeas

———8——trr T T

120

First note that if K intersects the set §¢(0) = [uo,vo], then the claim is trivial
because inf.cx I(z) = 0 (remember that v € 6¢(0), if and only if, I(v) = 0, by
proposition 6.5).

Hence, we will suppose that K does not intersect the set [ug, vo].

Consider a, b two real values such that (—o0, a]U[b, o0) is the smallest possible
set such that K C (—o0,a]U[b,0). As the set K is closed, then (¢ = —ooora € K)
and (b = oo or b € I). Suppose for simplification of the notation that a,b € K
(the other case can be easily handled by the reader). From the first part we know
that inf.e(—co,a) I(2) = I(a) and inf ¢ 00y I(2) = I(b). Therefore inf.epx I(z) =
min {I(a), I(b)}, because a,b € K.

Finally from the first part(7):

lim sup _le log @, (X) < limsup -TI—L log(@Qn(—00,a] + Qrn[b,00)) <

n—oo

lim sup = (log Qn(~o0, ] + log @alb, 00)) < ~I(a) — I(b) <

Tt OO

—inf{I(a),I(b)} = ;gf{ I(2).
Therefore the Proposition is proved. B
Proposition 6.7. If c(t) is differentiable at t=0, then ¢ (0) = [ f(z)du(z).

Proof. We know from the last proposition that I(z) > I(v) = 0 for z € R and
v € 6¢(0) = {c'(0)}.

Note that if ¢ is differentiable at 0, we have uniqueness of the z such that
- I(z) = 0, this value being equal to v = ¢ (0).
’ The proof will be do’ne by contradiction. Suppose c’(O) is different from
[ f(z)du(z). Given €= I (0)—f£(z)dﬂ(z)’ > 0, consider

K = (=oc0,c (0) = ] U [c (0) + ¢, 00)

and M = inf.cx I(z) > 0. Proposition 6.6 assures that for suficiently large n € N:

WS AT € K) = (=] 23 1T - 0) 12 9 < e, ()

j=0 7=0
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From the last inequality, p-almost every point z has the property that its
temporal mean converges to ¢ (0), and from the Theorem of Birkhoff, this value
¢ (0) has to be the spatial mean [ f(z)du(z). Hence we obtain a contradiction

and the proposition is proved. H

Definition 6.4. We say that the p-integrable function f from X to R has the
ezponential convergence property, if for any € > 0, there exist M > 0 such that:

n-—1

by 1> STW) - [ Fe)dua) [z ¢ < e

j=0

for n large enough. A
vy
Proposition 6.8. Suppose c is differentiable at ¢t = 0, then f has the exponential

convergence property.

Proof. As we have just shown that ¢ (0) = [ f(z)du(z) and v = ¢ (0) is the only
value that I(v) = 0, then given ¢, there exists

M= inf I(2),
€[ f(2)dp(z)—e, [ f(2)dn(z)+e]

such that
n-—1 )
w1 Y AT - [ f@)du@) [z <. B
j=0
‘We will need the very well known definition of distribuition in order to simplify

the notation in the proof of the next theorem:

Definition 6.5. Given a p-integrable function f : X — R, (a random variable)
then the measure uf defined on the real line R, such that for any continuous

functiong: R —= R
[ g0 sautz) = [ s@an' @)

is called the distribuition function of the p-integrable function f.




Such a measure p/ always exists (using the notation of the first chapter f :
X =Y (or f: X — R), then py it is the pull-back of the measure y by the map
f as introduced in Definition 2.8).

Remark. Note that for any interval (a,b) contained in R,

1/ ((a,8)) = p{y | F(y) € (a,b)}.

As a practical rule, remember that each time one wants to integrate
J 9(z)dp’ (=), one substitutes the variable x by f(z) and integrates with respect
to p, that is: [ g(f(2))du(z).

The proofs of all results we obtained before are quite general and can be easily

extented (the proofs being absolutely the same) to the following case:

Theorem 6.1. For each value n € N, let X, be a p-integrable function on X such
that ‘X—"nﬁ € R,z € X has vp(z),z € R as distribuition function, that is, using

0

the notation that we introduced above for distribuiticilﬁ}nction, Vp = #L"n_. Define
(4
c(s) = lim 1 e*Xn(2)dpu(z) = lim 1 e’ dv,(z)
n—o0 1N n-—-+00 1 ™

Xn

the free energy of the sequence ==.

Suppose ¢(s) is differentiable at s = 0, then there exists a positive M such that

Wz 11 22() = €(0) 2 f < e ©)

for n large enough.

The value M is obtained in the following way:

M= inf (D),
1€(—o00,c' (0)—€)U(c' (0)+€,00)

where for each value I, I(I) = sup;cgr {s! — ¢(s)}, is the Legendre transform of c(s).

~ Remark. Note that it follows from the above theorem that

nlirzgo Va((~00,¢ (0) — € U [c (0) + e, 00)) =0




and therefore that
lim va(B(c'(0)),€)) =1 (10)

(see last remark and the definition of distribuition function).

The last theorem can be seen as a generalization of the results we obtained
before by making the measurable function X,(z) defined above play the role of
the function Z;:OI f(T¥(z)) that we previously considered.

Now we will use this last result to prove the lower large deviation inequality:

Theorem 6.2. (Lower large deviation inequality) Suppose that the free energy
c(t) is differentiable for every ¢ € R, then for any open set A:

1
liminf — | 2(A4) > — inf I(2).
iminf - log Qn(4) 2 — Inf I(2)

Proof. We will assume that for any real value z € R there exists a value t such
that c'(t) = z. If we suppose that ¢”(¢) > a > 0, then this assumption is satisfied
as we saw in Proposition 6.1.

The above hypothesis is not necessary for the proof of the theorem, but in or-

der to avoid too many technicalities, we will prove the result under this assumption.

Consider z in the open set A and r such that B(z,7) = (z—r, 2+7) is contained
in A. Denote by t a value such that ¢ (t) = z (there exists such a t by hypothesis).
Now we will need to use the concept of distribuition of a y-measurable function
that we introduce before.
_ e 130 KT )
We will denote by ™ the distribuition on R such that p® = pm 4vi=0
(see the notation introduced after definition 6.5).

Therefore, given a set (a,b) C R,

- n-1 ’
n n 1 ]
[, @) =) = e | L AT € @b} = Qnl(a )
a, j=0

Denote Z,(t) = [e'"*du™(x) = ™) (see definition 5.3 and remember the
practical rule mentioned in the remark after the definition 6.5 of distribuition). The
reader familiar with Statistical Mechanics will recognize the Partition function in

the definition we introduced.




For each value ¢ € R and n € N, we will now denote by ul the probability
on R given by

ent:z:

Za(t)

dp}(2) = o dp™(a). (11)

Note that for a fixed t and n,

1

LI | N
Zn(t) — enc,,(t) — /ent; =0 f(T)(I))d[l(l‘) — /etnzd#n(m),

and therefore the term Z,(t) = e»(!) appears only as a normalization term in the
definition of the probability p? (it does not depend on z).

This one-parameter family of probabilities u},t € R, will play a very impor-
tant role in the proof of the theorem. )

One should think of the measure 7 in the following way: for t=0 the measure
u™ = p}. From the Theorem of Birkhoff, the measure p” = u} focalizes on (or
has mean value) v = [ f(z)du(z) = ¢ (0), that is,

limsup ™ ((¢'(0) = &, (0) +€)) = limsup Qu((< (0) — &,¢'(0) +¢)) = 1.

For the given value z € A, we choose ¢ such that ¢ (¢) = z, and then the

measure p?, will focalize on (or has mean value) z = ¢ (t) as will be shown:
Claim. Suppose ¢ (t) = =z, then for any r:
lim pf((z=r,z+r)) =1 (12)
n-—cd

Proof of the Claim. For the value t and n € N, let X, be 2 measurable functions
such that 2‘;} has distribuition function p¥ (such measurable functions always exist
by trivial arguments). Now we will use the last theorem and the fact that z = ¢ (0).

Define the new free energy
c(s) = lim llog e X (2)du(z) = lim —l—log e’ dui(z)
n—+co N n—oo 11 t

as was done in the last theorem.




One can obtain ¢;(s) from ¢(s) in the following way:
: 1 snz t H 1 nz:(3+t)
oi(s) = Jim g [ e dut (o) lim Zlog [ S dut(a)

— 1 }_ nz(s+t) 7, n 1 1 en(t)n
= lim log/e du™(z) nlglgonloge

= ¢(t + s) — ¢(t).

Hence, if c is differentiable on ¢, then ¢(s) is differentiable at s = 0 and
de(t) = dc‘ “(0). Now, as the hyphotesis of differentiability of the last theorem is
satisfled, the conclusion follows (see remark after theorem 6.1):

lim s, (B(e(0),m) =1
Using the fact that we choose ¢ in such manner that c,(0) = ¢ () = 2, we conclude
that:
lim p7((B(z,r)) =1

and the claim is proved.

Note that introducing the parameter t in our problém (defining the: one-
parameter family of measures u?, n € N), has the effect of translatmg by t the
free energy c(s) (on the parameter s), that is,

cy(8) = et + ) — e(t).

In other words we adapt the measure uf in such way that this new measure
has mean value z.

.. Now we will return to the proof of the theorem.

For any point = € B(z,r), —tz— | t | 7 < —tz. Therefore:

Qu(4) > Qu(B(z,7)) = / dp™(z)

(z,7)
= 2u(t) [ eeui(e) 2 eMen 0= (B, ),
B(z,r)
Hence

hmmf log Qn(A) 2 c(t) —tz—71 | 1] +11m1nf- log p3(B(z,7))
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From the claim we know that the last term in the right hand side of the above

expression is zero. Hence, as ¢(t) — tz = —I(z), because ¢ (t) = z, then
liminf = log Qn(A) > —I £
im inf ~log Qn(4) 2 (z)=r|t].
As r was arbitrary and positive, we conclude finally that
o1
liminf — log Q.(4) > —I(z2).
n-—oo N
Now as z was arbitrary in the open set A, we obtain that
liminf = log Qn(A) > — inf
iminf Zlog @n(4) 2 ~ 1pf 1),

and this is the end of the proof of the theorem. H

As I(z) is assumed to be continuous (because ¢(t) is assumed to be differen-

tiable), the final conclusion is:

Theorem 6.3. Suppose c(t) is differentiable in t, then for a given interval C (open

or closed)

.1 .
Jim —log Qn(C) = ~ inf I(2).

Now we will want to relate the results we obtained above with the Pressure

of Thermodynamic Formalism.
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7. The Ruelle Operator

In this chapter we will present several results related to the pressure of expanding
maps. For such a class of maps the Ruelle Operator will produce a complete solu-
tion for the problem of existence and uniqueness of equilibrium states. Theorem
7.2 will explain how to obtain in a constructive way the equilibrium states. We
point out that the Bernoulli shift is a very important case where the results we
will present can be applied. In this section we will consider only maps that have
the property that for each point z € X, {T71(2)} is equal to a fixed value d > 1,
independent of z. Therefore the results will aply directly to the one-sided shift
but not for the two-sided shift (see section 2 for definitions). The results presented
here can be extented to the two-sided shift, but this require a certain proposition
that we will not present here (see [15]).
Recall the definition:

Definition 7.1. A map T from a compact metric space (X, d) to itself is ezpanding
if there exist A > 1 such that, for any z € X there exist € > 0 such that Vy &
B(z,¢€),d(T(z), T(y)) > Md(z,y).

Example. Consider ¢ = 0 < a3 < a2 < a3 < ... < ap—; < ap = 1 a sequence
of distict numbers on the interval [0,1]. Suppose T is a differentiable (C*°) by
part map from [0,1] to itself such that |T'(z)] > A > 1, for all z different from
ao, @y, ...an. Suppose also that for each ¢ € {0,1,2,..n — 1} , T([a;, ait1]) = [0,1].
We will also suppose that T has a C* extension to the values a;,7 € {0,1,2,...,n}
with the same properties. This map is expanding and is one of the possible kinds
of maps where the results we will present in this section can apply. In fig 3 we

show the graph of a map T where all the above properties happen.

Notation. We will use the following notation: for ¢ € C(X) and v € M(X) or
(8(X)) we denote the value [ ¢(z)dv(z) by < ¢,v >.

Definition 7.2. For a given operator £ from C(X) to itself, the dual of L is
the operator £* defined from the dual space C(X)* = S(X) (the space of signed
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measures) to itself defined in the following way: L£* is the only operator from S(X)
to itself such that for any ¢ € C(X) and v € S(X)

< L($),v >=< ¢, L(v) > .

Figure 3.

Remark. Such an operator £* is well defined by the Riesz Theorem. This is
so because for a given fixed ¥ € §(X) the operator H from C(X) to R given by
H(¢) =< L(¢),v >= [ Lé(z)dv(z) satisfies the hypothesis of the Riesz Theorem.
Therefore, there exists a signed-measure g such that [Lé(z)dv(z) = H(¢) =
[ ¢(z)du(z) =< ¢, >. Hence, by definition, L*(v) = p.

We will assume in the next theorem that the map T has a fixed degree d, that
is, that for any a € X, #{T"'(a)} = d. For such a map kind h(T) = logd (see

definition 4.3).

Definition 7.3. Define u,(z) € M(X) by

#n(m)z'gl,{ z by,

T (y)=x

where d = #7T~!(a) independs on a € X.

Theorem 7.1. Let T : X « be an expanding map of degree d. There exists
u € M(T) such that p = limp_.co pin(z) for any z € X. Moreover pu satisfies:
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(1) p is ergodic and positive on open sets;
(2) h() = log d;
(3) h(n) < logd for any n € M(T), n # v.

Remark. Remember that P(0) = logd = h(T") and therefore p is the equilibrium
state for 1 = 0 (see definition 4.3). The maximal measure for the one-sided
shift in d symbols can be obtained also as the Probability P(1/d,1/d,...,1/d) (see
definition 2.7 and remark in the end of section 4).

Definition 7.4. The above defined measure p is called the mazimal measure.

Definition 7.5. Suppose that T : X « is a continuous map and ¢ : X - Risa
continuous function. Remember that we denote by C(X) the space of continuous
functions on X. Define Ly : C(X) « by

Lyd(z)= Y e*Pg(y)

yeT~1z

for any ¢ € C(M) and z € M. We call this operator the Ruelle- Perron-Frobenius
Operator (Ruelle Operator for short).

It is quite easy to see that:

" 6(z) = z ew(y)+¢(T(y))+1/J(T2(y))+...+¢(T""1(y))d,(y)_ (13)
yeT™(z)

A function v is called Holder-continuous is there exist v > 0 such that Vz,y €
X; d(T(z), T(y)) < d(z,y)Y. We will require in the next theorem that the function
1 be Holder and without this hypothesis about 1 the results stated in the theorem
will not be necessarily true (see [10] for a counter-example).

Now we will state a fundamental theorem in Thermodynamic Formalism.

Theorem 7.2. (see [3] for a proof) - Let T : X «+ be an expanding map and

. : X — R be Hoélder-continuous. Then there exist h : X — R Hélder-continuous

and strictly positive, v € M(X) and A > 0 such that:
(1) [hdv=1;
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(2) Lyh = Ah;

(3) Lyv =Av;

(4) 1 A7 L3¢ — h [ ¢dv ||c(x)— O for any ¢ € C(X). ;

(5) h is the unique positive eigenfunction of Ly, except for multiplication by
scalars ; .

(6) The probability py = hv is T-invariant (that is, gy € M(T)), ergodic,

has positive entropy, is positive on open sets and satisfies
tog = h(us) + [ wdus
(7) For any n € M(T), 1 # py;

1%A>Mm+/¢m;

In order to explain how one can obtain the equilibrium states p, associated

to 1 in a more appropriate way, we will need to consider a series of remarks.

Remark. It follows from (6) and (7) of Theorem 7.2 that P(¢) = log A and that
Ky is the unique equilibrium state for ¢. Therefore the pressure is equal to log A,
where )\ is an eigenvalue of the Ruelle Operator. In fact, it can be shown that A is
the largest eigenvalue of the operator Ly [3] [15]. The remaider of the spectrum of
Ly is contained in a disc (on C) of radius strictly smaller than A. The multiplicity
of the eigenvalue A is one.

Note that py € M(T'), but v is not necessarily in this set.

Remark. The value P(1)) can be computed in the following way: fix a certain
point zo € X and consider ¢ constant and equal to 1 in (4) of Theorem 7.2. As h
is bounded (being continuous on a compact space) then from (4) Theorem 7.2

1 L31(zo) _o

lim =1
neon O AW

that is,

lim ! log L}1(z0) = log A = P() (14)

n—o0 N
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or
lim ~ log z ¥ WFHTE+-FUT™"NW) = p(yp). (15)
yET™(z0)
Remark. The éigenfunction 2 can be obtained with the following procedure:
consider ¢ constant equal 1 in (4), then

£
h(z) = lim "’Afm)

(16)

Remark. In order to obtain p, we just need to obtain v. The probability v can

be obtained from Theorem 7.2 (4): consider a certain value z and 6,,, then from

(4)

Ln* 51
h(zo)v = lim —‘/’-—(n——‘i)= lim >

1
—o0 A n—sco
Tr(z)=z¢

V(D) FU(T(2))+ ... +$(T" " (z))
An

6. (17)
Therefore v can be obtained in the above mentioned way.

In this way we can obtain v by means of the limit of a sequence of finite sum
of Dirac measures on the preimages of the point x. In the case of the maximal
measure (¢ = 0, P(0) =logd, A = d,h = 1,v = p = p,), the weights in the points
z such that T"(z) = 2, are evenly distribuited and equal to d~". For the general
Holder continuous map 1, it is necessary to distribute the weights in a different
form as above. There is a more apropriate way to obtain directly the equilibrium
measure py, that will be presented later.

Remark. If one is interested in finding an invariant measure p for the map
T, given in the example after Definition 7.1, and that has also a density p with
respect to dx, that is du(z) = p(z)dz, then one should consider the potential
Y(z) = —log|T'(z)|. In this case, it is not difficult to check that Theorem 7.2
gives A = 1 and h(z) = p(z) (see [13]). The equilibrium probability dy (satisfying
(6) Theorem 7.2) will be in this case the measure p(z)dz.

Let us see now how Theorem 7.1 follows from Theorem 7.2. Take % = 0 and
let A, h and v be given by Theorem 7.2. Then

Lyl(z)= Y 1y)=dl

yET-1¢
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Because of part (5) of Theorem 1.2, d = A and h = 1. Also, part (4) of
theorem 7.2 shows that

-31;; > so(y)~—>/<pdv

yeT—"z

for any ¢ € C(X). This proves Theorem 7.1.

Definition 7.6. A continuous function J : X — R is the Jacobian of T with
respect to p € M(X) if

W) = [ Tdu

for any Borel set 4 such that T' |4 is injective.

It is easy to prove that such a J exists (use the Radon-Nykodin Theorem) and
it is unique (in the apropriate sense). The Jacobian is the local rate of variation of
the measure p by means of forward iteration of the map. Some ergodic properties

of i can be analysed through J.

Theorem 7.3. Suppose that J (the Jacobian of an invariant measure y) is Holder-

continuous and strictly positive. Then

(a) h(w) = [log Jdp;
(b) p is ergodic.

Consider now the question of finding a T-invariant probability with a given
Jacobian J > 1. It is easy to prove that every function J > 1 that is the Jacobian

of T with respect to some T-invariant probability must satisfy

1 :
2 7] (18)

T(z)=y

for any y € X. This condition is also sufficient.

 Theorem 7.4. Let T : X « be an expanding map and J : X — R strictly

positive and Holder-continuous, the Jacobian of € M(T'). Consider 1 = —log J,
then the equilibrium state iy = 7, h is constant equal 1 and P(—log J) = 0.
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Proof. From (18) and condition (2) of Theorem 7.2, h = 1 and A = 1 in the last
theorem. Hence P(—logJ)=0. B

Theorem 7.5. Suppose v is Holder continuous, py is the equilibrium state asso-
ciated with 3 and h is the eigenfunction associated with A in Theorem 7.2, then
the Jacobian Jy of the probability uy is given by:

Jy(z) = /\e"’"(z)h—z(? (19)

Remark. It follows from the last expression that
P(z) — (—log Jy(z) = log(h 0 T(z)) — log h(z) + A (20)

That is 1 and —log Jy satisfies the homology criterium (Proposition(4.1)) and
therefore they determine the same equilibrium state, that is gy = p_105,. Re-
member that P(—log Jy) =log A =logl = 0.

It follows from the last claims and from
Jm L% 5,() = [ $@)dueo)

(see (4) in Theorem 7.2) that the equilibrium state py can be obtained in the

following way:

[y = nlinéo Z e~ log Ju(y)—log Jy (T(y))—...~log J¢(T"“(y))5y (21)
Tr(y)=z
T n—1 ~1 9
gng(hwh@M%h@ ()t (22)
n(y)=z .

Hence from A and % one can obtain gy as the limit of a sum of weights placed

in the preimages of a point z € X (Jy is given by (19)).

Example. We will consider now the example mentioned in section 4, just after

Definition 4.1. In fact we can analyze a more general example where we will be

able to show explicitely the equilibrium probability. Consider p(+,4+), p(+,-),
p(-,+) and p(-,-) non-negative numbers such that p(+,+) + p(+,-) = 1 and p(-,+)
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+ p(-,-) = 1. These numbers p(i,j), 1,j € {+,—} express the probability of having
spin j at the right of spin i in the lattice Z.

Consider the matrix

=08 123)

It can be shown [15] that this matrix A has the value 1 as the larger eigenvalue (this
result is known in the usual textbooks on Matrix Theory as the Perron-Frobenius
Theorem) and we will denote by (p(+),p(-)) the normalized eigenvalue associated
to the eigenvalue 1, that is: '

A(p(+),p(=)) = (p(+),p(=)) » p(+) +p(=) =1

Now we can define a measure p on cylinders (and then extend to the more

general class of Borel sets) by:

)U‘(i(h il ) i‘Zv seeey Zn) - p(iOa ZI)P(ZI 1 i?)"'p(i(n-—l)1 Zn)p(ln)a

n € N ,i0,%1,%9, ... in € {4, —}. It quite easy to see that considering in Theorem
7.2 the potential ¢ constant in each one of the four cylinders given by:

2) (=) = log p(+,+) ¥z € (F, ),

b) ¢(z) = logp(+,—) Vz € (+,—),

¢) $(2) = log p(—, +) V= € (5, F) and

d) ¥(z) = logp(—,—) Vz € (=, —),
then the eigenfunction h is constant equal 1 and A equal 1. It is not difficult to
see that the measure u given above satisfies the equation (3) in Theorem 7.2 (see
also Definition 7.2), that is Lju = p (first show that L3, u(B) = p(B), for the
cylinders B depending on the two first coordinates, and then depending on three
coordinates, and so on...). Therefore p is the equilibrium state for the 9 given
above.

This example shows that the Ruelle Operator is in fact an extension of the
Perron-Frobenius Operator of Matrix Theory (finite dimension) to the infinite

dimensional space of functions.
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The Jacobian of the measure p is constant by parts and is constant in each -

cilinder (see Theorem 7.5)
J(2) =" =p(,)7, V2 € (1), 4.5 € {+, -}

The above described example includes the one we mention before in section
4.

Theorem 7.6. Suppose T is a continuous map from X to X, X is a compact
metric space and h(T') is finite.. Consider v a finite signed measure on the Borel

o-algebra of X. Then the following properties are equivalent:
(a) v € M(T)
and -
' (b) V4 € C(X) ,< ¢,v >< P(4). (23)
Proof. (a) — (b)
By definition of Pressure, < ¢,v >< P(¢), because v € M(T") and h(v) > 0.

(b) — (a)

Suppose v satisfies (b), then we will show first that v is a measure, that is,
for any non-negative continuous function ¢, < ¢, v >> 0.

Consider ¢ € C(X) such that ¢(z) > 0,Vz € X, then given n € N and § > 0

/ (6(2) + 6)ndv(z) > —P(—(¢ + 6)n)

by assumption (b). By definition of pressure and from the fact that ¢ is nonegative

_P(—(4+8)m)=— sup {h()— / (6(z) + S)ndu(z)} >
peM(T)

—(A(T) — inf {(¢(z) + &)n}) 2 —h(T) +nd

For large n the last expression is positive. As § was arbitrary, it follows that
J ¢(z)dv(z) =< ¢,v >> 0. Hence, v is a measure. Now we will show that v is a
probability, that is that, ¥(X) = 1.
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For n € Z n[dv(z) = [ndv(z) < P(n) = h(T) + n, therefore v(X) <
MT) 4 1,ifn>0,and v(X) > 2D 11 n <0

Now letting n go to co in the first expression and n to —oco in the second we
conclude that v(X) = 1.

This means that v is a probability. Finally we will show that v € M(T), that
is, we will show that for any ¢ € C(X), [ ¢(z)dv(z) = [ ¢(T(z))dv(z). In other
words we have to show that < ¢go T — ¢, v >= 0.

For agivenn € Z, n < ¢ of-¢,v >< P(¢oT — ¢)n by assumption (b). Now
using the criteria of the homology we have that the last term is P(0) = h(T'). Hence

<¢poT—¢,u><MD ifpn > 0,and < o T — ¢,v >> HD 5rp <0,

Now letting n go to co in the first expression and n to —oo in the last expression
we conclude that < ¢ o T — ¢, v >= 0. Thus the Theorem is proved. H

The Pressure P(v) is a continuous function of 1 (see[18]); one could ask if
the entropy h(v) is continuous in ¥ € M(T'), that is, wheter

wn, € M(T)

converging weakly to v (see definition 2.9) implies limy o0 h{wn) = (V).

An equilibrium state uy can be obtained as a limit of finite sums of Dirac
measures on periodic orbits of arbitrarily large period. We did not prove this
fact, but from the expression (17) in this paragraph (in fact expression (17) is for
preimages and not for periodic orbits) it is quite reasonable to believe that the
above claim is true (see remark before Proposition 2.2).

Another reason supporting the above claim is the fact that for an expanding
map the periodic orbits are dense in the support of any invariant measure(see [13])
(see proposition 2.2 for a proof in the case T is the shift).

The entropy of an invariant measure with support on a periodic orbit is zero
(see example after Theorem 3.1), therefore as the entropy of an equilibrium state

is positive (theorem 7.2 (6)), one concludes that the entropy is not continuous.

~ The entropy can jump up in the limit.

The entropy however can not jump down in the limit as it is stated in Theorem

7.8. We need first to state more precisely what we mean by that.
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Definition 7.7. A function F on a space M is upper-semicontinuous at v if for

any convergent sequence w, € M,n € N such that lim,—o wn = v € M, then

lim_ F(w,) £F@).

Theorem 7.7. (see [18] for a proof) Suppose T is a continuous map from X to X,
where X is a compact metric space, and that h(T) = sup, e () {R(v)} is finite.
For a given probability v € M(T') the following statements are equivalent:

(a) h(v) = infyec(x){P(8)— < ¢,v >} ;

(b) the entropy is upper-semicontinuous at v.

Theorem 7.8. (see [18] for a proof) For expanding systems the entropy is upper-
semicontinuous at any probability v € M(T).

Remark. From the two results presented above one can conclude that a measure
v is invariant for an expanding map T, if and only if

h(v) = ¢€igfx){P(¢)— < ¢ v>}=-— ¢€Sg%:>x){< é,v > —P(4)}. (24)

Therefore the entropy is minus the Legendre Transform of the Pressure. ‘
Remember that the dual of C(X) is S(X) and that Pressure is defined for
continuous functions and entropy for elements of M(T) C S(X).
Proposition 6.3 claims that in the finite dimensional case the Legendre trans-
" form is an involution, that is, f** = g. Therefore, one could also expect that
the Legendre transform of minus the entropy should be the P ressure. This is so
because, by definition,

P(¥)= sup ){< b,v > —(=h()}.

veM(T
The disturbing point in the above expression is that we are taking supremum
in a smaller set M(T') and not in the dual of C(X), that is in the set S(X). If we
define the entropy of a signed measure 7 by

W) = it (PW)= < 91>}
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as in (24), then h(n) < 0 for € (X)) — M(T') (see theorem 7.6).
Hence we finally can state that:

P(y)= sup {<9,v>—(-h(»))}, (25)
veS(X)

because the entropy of non-invariant measures will not interfere in the supremum

and the analogy with the finite dimensional case is complete.

For results about Large Deviation properties in this setting (level-2 large de-
viation) we refer the reader to [8]. In the next paragraph we will consider large
deviation properties, but in another setting (the level-1 large deviation). The ter-
minology of level-1 and level-2 is explained in more detail in [7]. The reference
[7] is an excelent source of results for large-deviation, but does not consider the
entropy (Kolmogorov-Shanon entropy) and presure as we are doing here.

We will repeat definition 6.3 but now for the infinite dimensional case.

Definition 7.8. For a given convex function K from C(X) to R, we call a signed
measure 4 € S(X) (the dual of C(X)) a subdifferential of I at the value 7 and
write u = 6K (n), if the following is true: for any ¢ € C(X),

K@) 2 K+ < —nu>.

Notation. As the pressure P(¢) is convex in % we can consider the above defini-
tion for the pressure and we will denote the subset of signed-measures i that are
subdifferential of P at the value by #(7). In other words,

Hn) = 8P() = {1 € 5(2) | P(#) 2 P(n) + [ (9(&) —n(@))dua), v € C(X)).
E (26)
Remember that for a continuous function 1, the set of probabilities p such
that P(¢) = h(p) + [¥(z)du(z) is called the set of equﬂibrium measures. The
main Theorem stated in the beginning of this section is that for an expanding map

T and a Holder continuous function i, equilibrium states exist and are unique.

Theorem 7.9. (see [18]) Suppose T is an expanding map such that h(T) is finite.

If ¢ is a continuous function on X, then #(¢) is the set of equilibrium states for 1.
The set (1) is not empty.
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The next result improves the claim that for expanding systems the subdiffer-
ential of the pressure P at ¢ is py (that is, 6P(%) = py).

Theorem 7.10. Suppose that T is an expanding map. Given f and g Holder

continuous functions, the function

p(t) = P(f +1tg)

is convex and real analytic in t. The value p (¢) is equal to [ g(z)dpsi1g(2).

Proof. We refer the reader to [15] [17] for the proof of the differentiability of p(t).
We will assume that p is differentiable and we will show that p(t) = J 9(z)dpifyg-

We will reduce the question to its simplest form in order to simplify the
argument.

First note that it is enough to show that %P(f +tg)lt=0 = [ gduy. For the
general case consider P((f + tg) + sg) and take derivative at s = 0.

Another simplification is that we can substitute f by —log J where J is the
Jacobian of y. In fact (see the Remark after theorem 7.5)

(f +tg) — (—log J +tg) = P(f) +log(h o T) — log h,

and therefore f +tg and log J + tg are homologous. Hence pifi1y = fimlog J41g and
furthermore P(f +tg) = P(—log J +tg)+ P(f). Taking derivative with repect to

t in both sides of the last expression:
2 p(—log J +tg) = LP(f +tg)
g’ VBT T g 9

Note that from (22), for any ¢ the ihtegral

n—-1 :
/ ¢d“-—log J = hm Z ¢(y)e_ E,‘:n log J(T7 (9)) (27)
T2 00
T (y)=zo
= 111}_{%0‘6?- log J ¢($0) (28)

where z¢ is a certain point in X.

We will use the above property very soon.
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One of the Remarks after Theorem 7.2 states that (see (15))
ne1l .
P(—log J +1g) = lim ~log T X les (T )
n—oo 7
T (y)=zo

hence, derivativiﬁg term by term (the fact that this is possible is a crucial step
that will not be proved here [15][17]) one obtains:

"~ 1(—log J+1g)(T?
iP(—lo J+1tg)= lim EZT"(ZI)=$0 Z]~o g(TJ(y))eZ’=°( 8 oW
at gJ i) = S, (—log J+19)(Ti ()

2

-0 T

2Tn (y)=z0 ©

Now in the last expression considering ¢ = 0 we obtain

n— . = S Nog J(T (1))
P( log J + tg)li=0 = lim 1 Xrn()=zo Lm0 9T (@))e S
BTt h=0 = e Yo log J(T (1)

ZT"(y)=1‘o
(29)

Claim. ZT,,(y)___IO = 2550 les (T (w) =1,YneN,Vzo € X

Proof of the Claim. The proof is by induction. The claim is true for n = 1 by

(18). Suppose the claim is true for n, then we will prove that the claim is true for
n+1.

In fact
e D olog J(Ti(v)) _
T+l (y)=zq
Z o~ log J(2) Z — Y leg J(TH (y) _ Z e—log ()] =1
T(z)=x¢ T (y)== T(z)=zo

In the last two equalities we used the fact that the claim is true for n and 1.
This is the end of the proof of the claim.

Now, we return to the proof of the Theorem. It follows from the claim and
(29)(27)(28) (taking ¢ = g o T7) that:

n—1
P( log J +tg)|i=0 = hm = Z Zg(TJ(y))eZ' —log J(T¥ (v))
T”(y) z j=0

(30)

= Im — Z'Cn logJ(g(T )) ‘TO)

n—oo N
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As the convergence in Theorem 7.2 (4) is uniform (and the eigenfunction h of
theorem 7.2 is constant equal 1 for 1 = —log J by Theorem 7.4), then for an y e,
there exist N > 0 such that for any n € N,n > N and z € X,

£-tos.19(2) ~ [ a(@)norog ()l < e

Therefore, from (30), considering z varying under the form T (zo)

%P(—logJ+fg)|t=0 = /g(m)d#~log ().

Finally, we conclude that:

%P(f +tg)|i=0 = %P(—logl +tg)l=0 = / 9(z)dp—10gs(z) = / 9(z)dps(z)

(31)
and this is the end of the proof of the Theorem. H :

Theorem 7.11. (see [18]) Suppose T is an expanding map on X and h(T) is
finite, then there exists a dense subset B of C(X), such that for ¢ in B, there
exists just one equilibrium state for 1, that is, the cardinal of #(z) is 1.

8. Pressure and Large Deviation

In this paragraph we will show a result relating large deviation with pressure. It
is possible to obtain very precise results about the deviation function for Holder

functions and the maximal measure of an expanding map.

Notation. Let zg be a point of X, and for each n € N, denote by 2(n,1,20),
i € {1,2,3,...,d"} the d" solutions of the equation

T"(z) = Zg.

We know that the maximal entropy measure (see theorem 7.1) p can be ob-

tained as "

p=lm A S

i=1
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Notation. In this section we will will denote by  the maximal entropy measure

(see theorem 7.1).

Given 0 < v < 1, denote by C() the space of Holder-continuous real-valued
functions in X endowed with the metric

| 9(z) — g(y) |
g 1=l g llo +sup —5———2-
lgll=llgllo e p—

where || g o is the usual supremum norm.

Theorem 8.1. Let T be an exﬁanding map, and g € C(y), then

P(g) = lim n~ [1og [ew (Z g(Tf<z>>> du(z)] +logd.

where g is the maximal measure.

Proof. Let g be a Hélder-continuous function on the compact set X.

Let us consider a fixed 29 € X and denote by z(n,%) the 2(n,4,2), » € N and
i€{1,2,3,...,d"}.

For a given n € N,

n-1 am n—1
/ exp (Z g(Tf(z») dp(z) = lim d™™ )" exp (Z g(Tf(z(m,z‘)»)

j=0 =] j=0

am=" 4" n—1
= n}l—{noo dm Z Z exp (Z g(Tj(z(na i? (z(m —n, k)))))) .

k=1 i=1 j=0
From [3] (in this moment the hypothesis about expansivity and Holder-conti-

nuous are essential), there exist constants C1, ¢; such that for n large enough

d" n—1 d" n—1
c1 ) exp (Z 9(T?(z(n,1, 2)))) <D exp (Z 9(T?(2(n, 2')))>

i=1 j=0 i=1 J=0

d" n-—1
<G ZeXp (Z g(Tj(Z(n,i,Z)))> (1)

i=1 7=0
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for any z € X.

Therefore,

4" n—1
d Y e (Z o(Ti((m, i))))

i=1 j=0

dam=" 4n n—1
<d™ > exp (Z 9(T7(2(n, i, (2(m — n, k))))))

k=1 i=1 j=0

an n-1
< Crd™™d™ ™y exp (Z (T (=(n, i)))) :

=1 Jj=0

From this, it follows that

Jim ™ log [exp <i g(Tf(z))> e

=0

d” n—1
= nli_{réo n""log Z exp (Z g(TI(z(n, z)))) —logd.

i=1 7=0

Now from the expression of the pressure that appears as a Remark after theorem

7.2 (see expression 7.15) the claim of the theorem is proved. ||

Remark. Consider the free-energy c(t) of a continuous function g and the maximal
measure g. Suppose g is Hélder-continuous, then from the definition 5.3 of the free-
energy c(t),t € R one concludes from the last theorem that P(tg) = c(t) + logd.
Rernember that the free-energy depends on the function and on the measure we

are considering,.

Theorem 8.2. The free-energy c(t) for a Hélder-continuous function g and the

maximal measure u satisfies
c(t) = P(tg) —logd. (32)

Therefore c(t) is differentiable and g has the exponential convergence property.

S
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Proof. If ¢(t) is differentiable, then g has the exponential convergence property
for y (see proposition 6.8). Since c¢(t) = P(tg) + logd (from last theorem) and
P(tg) is differentiable (theorem 7.10), the results follows. B

It is quite natural to ask if one can obtain the deviation function
I(v) = sup{tv — c(¢)}
teR

from results of Thermodynamic Formalism. The next theorem answers this ques-

tiom.

Theorem 8.3. Suppose g is Holder-continuous, p is the maximal measure and
p(t) = P(tg),t € R. Then the deviation function is

I(v) = logd — h(jteyy), BG:)
where p14,, = py is the equilibrium state for ¢ = tog and o satisfies p (f¢) = v.
Proof. By definition
I(v) = sup{tv — c(t)} = sup{tv — (P(tg) — logd)} = sup{tv — p(t)} + logd.
tER teR teR

It is easy to see that p(t) is convex and from theorem 7.10 p(t) is also dif-
ferentiable. Suppose #g is the unique value such that p’ (to) = v, then from last
theorem and the definition of pressure

I(v) = sup{tv — p(t)} +logd = tov — p(ty) + log d
teR .
= tov = (ts) = [ t0g(e)diney(z) + logd.

Now from Theorem 7.10 v = p'(¢g) = J 9(2)dps,4(z), and the claim of the Theorem
follows. H

In conclusion, for ¢ € C(y) and the maximal measure p one can obtain the
value of I(v), v € R by I(v) = logd — h(p4,,) where t, satisfies p' (to) = v.
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Remark. More general results about large deviations and free-energy of Holder
functions g and equilibrium states p; can be obtained, but we will not consider
such questions here. We refer the reader to [5],[8],[9] for interesting results in this
subject. Theorem 3 in [8] is not correctly stated, but is not necessary for the proof

of Theorem 7, the main result of [8].
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