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Abstract. We consider here the discrete time dynamics described by a trans-
formation T : M →M , where T is either the action of shift T = σ on the sym-

bolic space M = {1, 2, ..., d}N, or, T describes the action of a d to 1 expanding

transformation T : S1 → S1 of class C1+α ( for example x→ T (x) = d x (mod
1) ), where M = S1 is the unit circle. It is known that the infinite-dimensional

manifold N of equilibrium probabilities for Hölder potentials A : M → R is an

analytical manifold and carries a natural Riemannian metric associated with
the asymptotic variance. We show here that under the assumption of the exis-

tence of a Fourier-like Hilbert basis for the kernel of the Ruelle operator there

exists geodesics paths. When T = σ and M = {0, 1}N such basis exists.
In a different direction, we also consider the KL-divergence DKL(µ1, µ2)

for a pair of equilibrium probabilities. If DKL(µ1, µ2) = 0, then µ1 = µ2. Al-

though DKL is not a metric in N , it describes the proximity between µ1 and
µ2. A natural problem is: for a fixed probability µ1 ∈ N consider the proba-

bility µ2 in a certain set of probabilities in N , which minimizes DKL(µ1, µ2).

This minimization problem is a dynamical version of the main issues consid-
ered in information projections. We consider this problem in N , a case where

all probabilities are dynamically invariant, getting explicit equations for the
solution sought. Triangle and Pythagorean inequalities will be investigated.

1. Introduction

Recent developments about the analytic and geometric structure of the set of
normalized potentials for expanding linear maps on the circle and the shift of finite
symbols, reveal a rich, challenging context to explore classical problems of calculus
of variations in infinite dimensional Riemannian manifolds. The metric we consider
does not correspond (as explained in [27]) to the 2-Wasserstein metric on the space
of probabilities (where probabilities have no dynamical content).

In the first part of the paper (Sections 1-4) we consider a time evolution on
the space N of Hölder -equilibrium probabilities µ, which can be parameterized by
Hölder Jacobians Jµ : M → (0, 1) (see [27]). This provides the analytic structure
on N . We show the existence of geodesics for a natural Riemannian metric on N
(previously introduced in [27]). Given a probability µ ∈ N and a tangent vector (a
function) ϕ, the Riemannian norm ||ϕ|| is described by the asymptotic variance of
ϕ with respect to µ. In this sense this metric is naturally dynamically defined. This
Riemannian metric is related (equal up to a constant value) to the one presented
in [41] (also called the pressure metric in [7]).
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This point of view can be understood as a possible mathematical description
of non-equilibrium Statistical Mechanics, where a continuous time evolution is ob-
served in the space of probabilities (the geodesic flow). Given two Hölder equilib-
rium states, one can ask about an optimal (in some natural and dynamical sense)
path connecting these two probabilities; in this case, the path minimizing asymp-
totic variance of tangent vectors. A related but different setting appears in [33].

In the second part of the work (about Information Projections) we analyze issues
related to geometry on the space of equilibrium measures. More precisely, the study
of the minimization (or maximization) of the distance of a fixed probability µ0 to
a given compact set K ⊂ N (this set is convex when parameterized by Jacobians,
as explained in Section 5); the distance used (is not exactly a metric) is described
by the relative entropy (also known as Kullback-Leibler divergence). We present
analytic expression for critical points. Given a certain compact set K, we are
interested in minimizing (or maximizing) relative entropy µ ∈ K → h(µ0, µ) of µ ∈
K with respect to µ0; this can be understood as a problem in Ergodic Optimization
(see [5]) with constraints, where the potential to be minimized (maximized) is the
relative entropy µ→ h(µ0, µ) (see also the analytic expression (13)).

Information projections are important tools in Deep Learning (see [42], [46] or
[25]), in the study of the Fisher Information (see [1] and Section 5 in [38]), in the
understanding of the maximum likelihood estimator and in Information Geometry,
where the probabilities on the associated manifold do not have dynamical content
(see [1]). We quote F. Nielsen in [42]:

Information projections are a core concept of information sciences that are met
whenever minimizing divergences.

We consider such class of problems in a dynamical setting; in particular triangle
and Pythagorean inequalities.

Now, let us be more precise (in mathematical terms) about what we talked
about above. We consider the discrete time dynamics given by a transformation
T : M → M , where T is either the action of shift T = σ on the symbolic space
M = {1, 2, ..., d}N, or, T describes the action of a d to 1 expanding transformation
T : S1 → S1 of class C1+α ( for example x→ T (x) = d x (mod 1) ), where M = S1

is the unit circle. For fixed M , it is known that the setN of equilibrium probabilities
for Hölder potentials A : M → R is an infinite dimensional, analytic manifold and
carries a natural Riemannian metric (see [27] and [37]). We say that a potential
A is normalized, if

∑
T (y)=x e

A(y) = 1, for all x ∈ M (see [44] and [27]). Points

in N will be denoted indistinctly by normalized potentials A, or by µA, which is
the equilibrium probability for the topological pressure P (A) (this notation will
be used in Subsection 2.3). Equilibrium probabilities are sometimes called Gibbs
probabilities (they are the same here).

According to [27], given an equilibrium probability µA ∈ N , for the Hölder
potential A : M −→ R, the set of tangent vectors to N at µA is the set of Hölder
functions on the kernel of the Ruelle operator LA (see (5) for definition). The
Riemannian metric g acting on tangent vectors at the base point µA is the L2

inner product, gA(X,Y ) =
∫
X Y dµA, where A is a normalized Hölder potential,

as defined in [27].
A study of the sectional curvatures of N is made in [37], where it is given a

formula for the sectional curvatures in terms of an orthonormal basis of the tangent
space at each point. Equilibrium probabilities for potentials A : {0, 1}N → R
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that depend on the first two coordinates on the symbolic space M = {0, 1}N are
Markov probabilities on {0, 1}N. In this case, explicit examples show that there
exist pairs (X,Y ) on the tangent space to N where the absolute values of the
sectional curvatures may attain arbitrarily large numbers, in contrast with finite
dimensional Riemannian geometry. In [37] it is also shown that in this case the
sectional curvature for pair of tangent vectors inN can be positive, zero, or negative.
However, this two dimensional manifold has zero curvature at every point for the
Riemannian structure inherited from g (see [37]).

It is not known in the general case if the infinite-dimensional manifoldN endowed
with the Riemannian metric g is complete. These facts strongly suggest that the
study of geodesics in N might be a subtle issue.

The purpose of the article is twofold. First of all, we deal with the problem of
the existence of geodesics in N equipped with the L2 Riemannian metric described
in [27] and [37]. This is the content of the first three sections. The existence of
geodesics in an infinite dimensional manifold is not a simple task.

Definition 1.1. We say that the equilibrium probability µA ∈ N associated to the
Hölder potential A is Fourier-like, if there exists a countable orthonormal Hilbert
basis γn, n ∈ N, of the kernel of the Ruelle operator LA, and constants α > 0, β > 0,
such that,

I) the functions γn, n ∈ N, in the family B have C0 and L2(µA) norms uniformly
bounded above by the constant β > 0,

II) the functions γn, n ∈ N, in the family B have C0 and L2(µA) norms uniformly
bounded below by the constant α > 0.

We call such a basis a Fourier-like Hilbert basis (Fourier-like basis for short).

The existence of a Fourier-like basis for the kernel of the Ruelle operator plays
an important role and its existence is discussed in the Appendix Subsection 6.3.

One of our main result is:

Theorem 1.2. Given M , T and a Hölder normalized potential A ∈ N , suppose
there exist a Fourier-like Hilbert basis for the kernel of the Ruelle operator LA.
Then, there exists an open ball Br(A) around A such that for every Q ∈ Br(A) and
every unit vector X ∈ TBN , there exists a unique geodesic γX : (−ε, ε) −→ Br(A)
such that γX(0) = Q, γ′X(0) = X, where ε > 0 depends on A,Q.

When M = {0, 1}N and T = σ we show the existence of a Fourier-like Hilbert
basis for the kernel of the Ruelle operator and then it follows that geodesics exist as
described above.

Subsection 6.1 shows the existence of an explicit Fourier-type Hilbert basis for
the kernel of the Ruelle operator in the case of Markov probabilities. The functions
on this basis are constant in cylinder sets. A result of independent interest is
the existence of a Fourier-like basis for the space L2(µA) which is the purpose of
Subsection 6.2.

In Section 4 we give the expression of the geodesic system of differential equation
in some special coordinates (r, s) ∈ (0, 1) × (0, 1), for the two dimensional surface
of Markov probabilities associated to two by two row stochastic matrices

P =

(
r 1− r

1− s s

)
.

We will exhibit two pictures showing geodesics paths on (0, 1)× (0, 1).
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Secondly, in Section 5 we deal with a different kind of calculus of variations
problem in N : Information Projections for equilibrium probabilities. This problem
is relevant in the context of Fisher information Theory, which holds for probabilities
that may not be invariant by any dynamical system. Our main object of study is the
so-called KL-divergence, which is somehow considered a sort of distance between
probabilities. We consider the KL-divergence for probabilities on N (which are
all dynamically invariant). Let us comment briefly on some basic definitions and
properties of this functional.

The notation in [27] was: µA ∈ N denotes the equilibrium probability associated
with the normalized potential A. The function J , such that J = eA, is called the
Jacobian of the invariant probability µA. Here, in Section 5 it is more natural to use
the notation: given the Jacobian J , we denote by µJ the equilibrium probability
for the potential A = log J.

The KL-divergence DKL(µ0, µ1) (also known as relative entropy h(µ, µ1)) is
defined for a pair of probabilities µ0, µ1.

Given two Jacobians J0 and J1 and the equilibrium probabilities µ0 := µJ0 ∈ N
and µ1 := µJ1 ∈ N , its Kullback-Leibler divergence (or relative entropy) is given
by

(1) DKL(µ0 |µ1) =

∫
(log J0 − log J1) dµ0 ≥ 0.

DKL is not a metric in the space of probabilities, however, it provides a measure
of the proximity between µ1 and µ2. If DKL(µ1, µ2) = 0, then µ1 = µ2. A natural
problem in information theory is the following: given a fixed probability µ1, to
find the probability µ2 in a convex set of probabilities (not containing µ1) which
minimizes DKL(µ1, µ2). This kind of minimization problem is one of the main
issues in information projections.

A detailed study of the KL-divergence for equilibrium probabilities is described
in [38], [39], [17], [18] and [19].

We analyze in Section 5 in the present article the information projection problem
in the dynamical setting introduced in [38] based on Thermodynamics formalism.
In this case, all probabilities are ergodic and they are all singular with respect
to each other. In this setting, the basic tools of the calculus of Thermodynamics
formalism as developed in [27] apply to the study of both the Riemannian geometry
of N , as shown in [37] for instance, and to the study of the KL-divergence.

Moreover, the distance in N endowed with the L2 metric and the calculus of
variations of the KL-divergence, though quite different in nature, seem to be linked
by the so-called Pinsker inequality.

The Pinsker inequality (see [12]) claims that: if p, q are two probabilities on a
measurable space, then

δ(p, q)2 <
1

2
DKL(p, q),

where δ(p, q) is the total variation distance.
On the other hand if p and q are probability densities both supported on an

interval [0, 1], then the Györfi inequality claims that

DKL(p, q) ≤ 1

infx∈[0,1] q(x)
||p− q||22.
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So the KL-divergence is related with the L2 distance between probabilities, and
hence it is somehow related to the distance in N . Therefore, it seems natural to us
to try to investigate questions related to the minimization of the DKL divergence
of equilibrium probabilities in parallel to the study of geodesics in N . The second
part of our paper can be considered as a first attempt to tackle the subject.

Let us describe more precisely the main results concerning KL-divergence.
Denote by Ω = {1, 2, ..., d}N the compact symbolic space with finite symbols.

The Jacobian J = eA : Ω → (0, 1) has the following properties: J is a positive
Hölder function such that Llog J(1) = 1, where Llog J is the Ruelle operator for the
potential log J. To each Jacobian J is associated a unique shift invariant probability
µ = µlog J (denoted by µJ for simplification, as mentioned before), such that,
L ∗log J(µJ) = µJ , where L ∗log J is the dual of the Ruelle operator Llog J . In our
notation for Section 5 µJ is the equilibrium probability for log J .

Note that a convex combination of two distinct equilibrium probabilities µJ0 and
µJ1 is not of the form µJ , for some Hölder Jacobian J .

Given Hölder Jacobians J0 and J̃1, J̃1 6= J0, consider the Hölder Jacobian Jλ,
λ ∈ [0, 1], such that, Jλ = λJ̃1 + (1− λ)J0. In this case J1 = J̃1.

We denote by µJλ the equilibrium probability for log Jλ. The probability µ0 has

Jacobian J0 = J0 and µJ1
has Jacobian J̃1 = J1. Given a fixed J1 (corresponding

to µ1 = µJ1), we are interested in estimating the derivatives of the Kullback-Liebler
divergence (also known as relative entropy)

d
dλDKL(µJλ , µJ1)|λ=0 = d

dλ [
∫

log JλdµJλ −
∫

log J1dµJλ ] |λ=0,
and

d
dλDKL(µJ1 , µJλ)|λ=0 = d

dλ [
∫

log J1dµJ1 −
∫

log JλdµJ1 ] |λ=0.

This class of problems is related to the Pythagorean inequality

DKL(µJ̃1 , µJ1) ≥ DKL(µJ̃1 , µJ0) +DKL(µJ0 , µJ1).

One of our results in Section 5 is the computation:

Proposition 1.3.

(2)
d

dλ
DKL(µ1, µJλ)|λ=0 =

∫
(1− J̃1

J0
)dµ1.

Given a convex set Θ1 of Jacobians J̃ and J1 /∈ Θ1, we consider the related
problem: find J̃ = J0 ∈ Θ1 s. t. DKL(µJ0 , µJ1) = minJ̃∈Θ1

DKL(µJ̃ , µJ1). We also

consider: find J̃ = J0 ∈ Θ1 s. t. DKL(µJ1 , µJ0) = minJ̃∈Θ1
DKL(µJ1 , µJ̃).

The Second Law of Thermodynamics corresponds to the case (see [38])

d

dλ
DKL(µJλ , µJ1)|λ=0 > 0.

This means that the relative entropy DKL(µJλ , µJ1) is increasing infinitesimally
close to λ = 0. Note that we are not really in the realm of Thermodynamics of
gases.

Another issue is the study of the probabilities µλ that are equilibrium for the
family of potentials

(3) λ log(J̃1) + (1− λ) log(J0),

λ ∈ [0, 1]. We denote by Jλ the Jacobian of the equilibrium probability µλ for the

potential λ log(J̃1) + (1 − λ) log(J0) (Jλ is different from Jλ). The probability µ1

has Jacobian J̃1 = J1 and the probability µ0 has Jacobian J0 = J0.
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We will also compute in Section 5:

Proposition 1.4. Given µ1 = µJ1

(4)
d

dλ
|λ=0DKL(µ1, µ

λ) = −
∫

(log J̃1 − log J0)dµ1 +

∫
(log J̃1 − log J0) dµ0.

The inequality 0 ≤ d
dλ |λ=0DKL(µ1, µ

λ) is related to the Pythagorean inequality:

DKL(µ1, µ
0) +DKL(µ0, µJ̃1) ≤ DKL(µ1, µJ̃1).

We also describe what is the dynamical Bregman divergence for two probabilities
in N (see expression (35)).

2. Preliminaries for the study of geodesics in N

2.1. Basics of Riemannian Geometry. Let us start by introducing some basic
notions of Riemannian geometry. Given an infinite dimensional C∞ manifold (M, g)
equipped with a smooth Riemannian metric g, let T M be the tangent bundle and
T1M be the set of unit norm tangent vectors of (M, g), known as the unit tangent
bundle. Let χ(M) be the set of C∞ vector fields of M.

Given a smooth function f : N −→ R, the derivative of f with respect to a
vector field X ∈ χ(N ) will be denoted by X(f). The Lie bracket of two vector fields
X,Y ∈ χ(N ) is the vector field whose action on the set of functions f : N −→ R is
given by [X,Y ](f) = X(Y (f))− Y (X(f)).

The Levi-Civita connection of (N , g), ∇ : χ(N )×χ(N ) −→ χ(N ), with notation
∇(X,Y ) = ∇XY , is the affine operator characterized by the following properties:

(1) Compatibility with the metric g:

Xg(Y, Z) = g(∇XY, Z) + g(Y,∇XZ)

for every triple of vector fields X,Y, Z.
(2) Absence of torsion:

∇XY −∇YX = [X,Y ].

(3) For every smooth scalar function f and vector fields X,Y ∈ χ(N ) we have
• ∇fXY = f∇XY ,
• Leibniz rule: ∇X(fY ) = X(f)Y + f∇XY .

The expression of ∇XY can be obtained explicitly from the expression of the
Riemannian metric, in dual form. Namely, given two vector fields X,Y ∈ χ(N ),
and Z ∈ χ(N ) we have

g(∇XY, Z) =
1

2
(Xg(Y, Z) + Y g(Z,X)− Zg(X,Y )

− g([X,Z], Y )− g([Y,Z], X)− g([X,Y ], Z)).

A smooth curve γ(t) ⊂ N , for t in an interval I ⊂ R, is called a geodesic if it
satisfies

∇γ′(t)γ′(t) = 0

for every t ∈ I. The properties of the Levi-Civita connection imply that geodesics
have constant speed (see Subsection 2.7), so we can restrict ourselves to T1N to
study geodesics. In finite dimensional Riemannian manifolds, geodesics are solu-
tions of a system of second order differential equations in the manifold. This follows
from taking coordinates and writing explicitly the geodesic condition in terms of
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the coordinate vector fields. For infinite dimensional Riemannian manifolds, a
more analytic approach is needed. For Riemannian manifolds which are complete
as metric spaces, the so-called Palais-Smale method is often applied to prove the
existence of geodesics (see [34] for instance). We do not know if the manifold N
is complete when endowed with the L2 Riemannian metric. So we shall adopt an
alternative method to deal with the existence of geodesics based strongly on the
analytic properties of N .

2.2. Preliminaries of the analytic structure of the set of normalized po-
tentials. We recall for the reader the basic results that we will need later following
the content of the first sections of [37].

Definition 2.1. Let (X, |.|) and (Y, |.|) Banach spaces and V an open subset of
X. Given k ∈ N, a function F : V → Y is called k-differentiable in x, if for each
j = 1, ..., k, there exists a j-linear bounded transformation

DjF (x) : X ×X × ...×X︸ ︷︷ ︸
j

→ Y,

such that,

Dj−1F (x+vj)(v1, ..., vj−1) − Dj−1F (x)(v1, ..., vj−1) = DjF (x)(v1, ..., vj)+oj(vj),

where

oj : X → Y, satisfies, lim
v→0

|oj(v)|Y
|v|X

= 0

By definition F has derivatives of all orders in V , if for any x ∈ V and any k ∈ N,
the function F is k-differentiable in x.

Definition 2.2. Let X,Y be Banach spaces and V an open subset of X. A function
F : V → X is called analytic on V when F has derivatives of all orders in V , and
for each x ∈ V there exists an open neighborhood Vx of x in V , such that, for all
v ∈ Vx, we have that

F (x+ v) − F (x) =

∞∑
j=1

1

n!
DjF (x)vj ,

where DjF (x)vj = DjF (x)(v, ..., v) and DjF (x) is the j-th derivative of F in x.

Above we use the notation of section 3.2 in [40].

N can be expressed locally in coordinates via analytic charts (see [27]).

2.3. Fundamental formulae from Thermodynamic Formalism.

For a fixed α > 0 we denote by Hol the set of α-Hölder functions on M . For
a Hölder potential B : M → R in Hol we define the Ruelle operator (sometimes
called transfer operator) - which acts on Hölder functions f : M −→ R - by the law

(5) f → LBf(x) =
∑

T (y)=x

eB(y)f(y).

Given a potential B ∈ Hol and the associated Ruelle operator LB , consider
the corresponding main eigenvalue λB and eigenfunction hB (see [44] for the proof
of their existence). As mentioned before, µB denotes the equilibrium probability
for the topological pressure P (B). We say that the potential B is normalized if
LB(1) = 1. When B is normalized the eigenvalue is 1 and the eigenfunction is
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equal to 1. In this case, using the notation of [27] (as mentioned before) we get
L ∗B(µB) = µB . In the present section is more natural and didactic to use the
notation of [27].

The function

(6) Π(B) = B + log(hB)− log(hB(T ))− log(λB)

describes the projection of the space of potentials B on Hol onto the analytic
manifold of normalized potentials N .

The potential Π(B) is normalized.
We identify below TAN with the affine subspace {A+X : X ∈ TAN}.
The function Π is analytic on B (see [44] or [27]) and therefore has first and

second derivatives. Given the potential B, then the map DBΠ : TBN −→ TΠ(B)N
given by

DBΠ(X) =
∂

∂t
(Π(B + tX))|t=0

should be considered as a linear map from Hol to itself (with the Hölder norm on
Hol). Moreover, the second derivative D2

BΠ should be interpreted as a bilinear form
from Hol × Hol to Hol, and is given by

D2
BΠ(X,Y ) =

∂2

∂t∂s
(Π(B + tX + sY ))|t=s=0.

We denote by ||A||α the α-Hölder norm of an α-Hölder function A.
We would like to study the geometry of the projection Π restricted to the tangent

space TAN into the manifold N (namely, to get bounds for its first and second
derivatives with respect to the potential viewed as a variable) for a given normalized
potential A.

For an Hölder normalized potential A the space TAN is a linear subspace of
functions (the set of Hölder functions on the kernel of the Ruelle operator LA) and
the derivative map DΠ is analytic when restricted to it.

We denote by E0 = EA0 the set of Hölder functions g, such that
∫
gdµA = 0.

Note that EA0 is contained in TAN .
The claims of the next Lemma are taken from [37] and they are based mainly

on results of [27] (see also [40], [9]).

Lemma 2.3. Let Λ : Hol −→ R, H : Hol −→ Hol be given, respectively, by
Λ(B) = λB , H(B) = hB. Then we have

(1) The maps Λ, H, and A −→ µA are analytic.
(2) For a normalized B we get that DB log(Λ)(ψ) =

∫
ψdµB ,

(3) D2
B log(Λ)(η, ψ) =

∫
ηψdµB , where ψ, η are at TBN .

(4) For any Hölder potential A we have

DAH(X) = hA

∫
( [ (I −LT,A|EA0 )−1 (1− hA) ]. X) dµA.

If A is normalized, we have DAH = 0,
(5) If A is a normalized potential, then for every function X ∈ TAN we have

•
∫
XdµA = 0.

• DAΠ(X) = X.

The law that takes an Hölder potential B to its normalization A = Π(B) is
differentiable according to section 2.2 in [27].
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As a consequence of the analytic properties of the functions Λ, H we have the
following:

Proposition 2.4. Given a normalized potential A ∈ N and δ > 0 there exists
r > 0, such that, for every Hölder continuous function B in the ball Br(A) of
radius r around A, the norms of DBΠ and D2

BΠ restricted to the functions in TAN
satisfy

‖ (DBΠ) |TAN −I ‖≤ δ
‖ (D2

BΠ) |TAN +I ‖≤ δ.

In the above for linear operators we use the operator norm (in Hol we consider
the sup norm) and for bilinear forms, we use also the sup norm (see section 2.3 in
[27]).

2.4. On the Calculus of Thermodynamical formalism. The following result
proved in [37] describes a formula to calculate derivatives of integrals of vector fields.
This rule will be important to estimate the coefficients of the first fundamental form
of the Riemannian metric in N in order to deal with the problem of the existence
of geodesics.

Lemma 2.5. Let A ∈ N and let γ : (−ε, ε) −→ N be a smooth curve such that
γ(0) = A. Let X(t) = γ′(t), and let Y be a smooth vector field tangent to N defined
in an open neighborhood of A. Denote by Y (t) = Y (γ(t)). Then the derivative of∫
Y (t)dµγ(t) with respect to the parameter t is

d

dt

∫
Y (t)dµγ(t) =

∫
dY (t)

dt
dµγ(t) +

∫
Y (t)X(t)dµγ(t)

for every t ∈ (−ε, ε).

3. The existence of geodesics in N

Since the manifold of normalized potentials is an infinite dimensional manifold,
the usual way of proving the existence of geodesics via solutions of ordinary dif-
ferential equations with coefficients in the set of Cristoffel symbols does not follow
right away.

When M = {0, 1}N and T = σ we will show the existence of a Fourier-like Hilbert
basis for the kernel of the Ruelle operator and then it follows that geodesics exists
(see subsection 6.3). In the general case, Theorem 1.2 express in more precise terms
the main result we will get.

It is not clear that the Palais-Smale theory works in our case. However, what we
shall show is in some sense a weak Palais-Smale condition for our Riemannian man-
ifold: roughly speaking, we shall construct a sequence of approximated solutions of
the Euler-Lagrange equation having as a limit a true solution of the equation.

We would like to point out that we will not use any of the classical results on
Hilbert manifolds.

We shall develop a strategy to prove the existence of geodesics based on the
fact that there exist a (countable) complete orthogonal set ϕn, n ∈ N, on L2(µA)
according to Theorem 3.5 in [35] (see also [16]). Taking an order for the basis,
and subspaces σm generated by the first m vectors of the basis, we shall study the
system of differential equations of geodesics restricted to the submanifolds obtained
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by Π-projections of open sets of the subspaces σm in the manifold N . We shall be
more precise in the forthcoming subsections.

3.1. Good Coordinate systems for the manifold of normalized potentials.

Lemma 3.1. Let A be normalized potential, and let Br(A) is the open neighborhood
of A in N given in Proposition 2.4). Let en be an orthonormal basis of TAN . Then
we have,

(1) Let Q ∈ Π−1(Br(A)), and let ēn be an extension of en in the plane TAN
as a constant vector field. Then, the functions

vn(Π(Q)) = DQΠ(ēn)

form a basis for TΠ(Q)N and

| 〈vn(Π(Q)), vm(Π(Q))〉 − δnm |≤ δ,
where δnm is the Kronecker function : δnm = 1 if n = m, and 0 otherwise.

(2) There exists b > 0, such that, the map Π restricted to the sets

Um(b) = {
m∑
i=1

tiei, | ti |< b}

is an embedding into a m-dimensional submanifold Sm ⊂ N , for every
m ∈ N.

Proof. From Proposition 2.4, we know that DAΠ |TAA= I and that DQΠ |TAA is
close to the identity if B = Π(Q) ∈ Br(A). Hence, if we chose Q = A+

∑m
i=1 tiwi

in a way that ‖ B − A ‖< r then the vectors vn(Π(Q)) = DQΠ(en) will be almost
perpendicular at TBN . This yields that the vectors vn(B) are linearly independent
in TBN and therefore, the map Π has constant rank m in Um. By the local form of
immersions, the image Sm = Π(Um) is an analytic submanifold of N of dimension
m. �

3.2. A system of partial differential equations for geodesic vector fields.
A natural way to show that geodesics exist in N is to show that geodesics exist in
each analytic submanifold Sm ( of dimension m) and then take the limit as m goes
to +∞. On each submanifold Sm, a system Σm of partial differential equations will
arise from the restriction of the system of differential equations of geodesics. Our
strategy to solve an initial value problem for the geodesic equation is to solve the
initial value problem for Σm in each submanifold Sm, then take the limit of the
sequence γm of solutions as m → +∞, and finally, we have to show that the limit
gives rise to a geodesic of N solving the initial value problem.

The existence of a limit solution depends on uniform estimates of the coefficients
of the systems Σm. So the main goal of this subsection is to obtain an explicit
expression of the geodesic systems Σm in terms of the coordinates in Sm, and show
that their coefficients have uniformly bounded norms in an open neighborhood of
each normalized potential. Proposition 2.4 will be crucial for this purpose.

To get the expressions of the systems Σm, we apply the ideas of the finite di-
mensional case. So let A ∈ Sm, v ∈ TASm, and suppose that the solution of the
system Σm, γm(t), given by the initial conditions γm(0) = A, γ′m(0) = v exists. We
shall characterize γm in terms of a differential equation in the submanifold Sm that
has a unique solution. We would like to point out that the differential equations
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of geodesics in the finite dimensional case are written in terms of the Christoffel
coefficients. However, we shall avoid the use of Christoffel coefficients and obtain a
simpler, equivalent system for the geodesics, of partial differential equations of first
order.

Let X(t) = γ′(t), since it is geodesic, ∇XX = 0, where ∇ is the Levi-Civita
connection of the Riemannian metric in N . This implies that

(7) 〈∇XX,Y 〉 = 0,

for every Y ∈ Tγ(t)N . By the expression of the Levi-Civita connection in terms of
the metric (see the end of Section 2.2), we have

(8) 〈∇XX,Y 〉 = X〈X,Y 〉 − 1

2
Y 〈X,X〉 − 〈X, [X,Y ]〉,

where X(f) means the derivative of a scalar function f with respect to X.
In particular, the energy of geodesics is constant,

(9)
1

2
X〈X,X〉 = 〈∇XX,X〉 = 0.

So let us restrict ourselves to the energy level of vector field X with constant
norm equal to 1. In this case, the equation of geodesics and the expression of the
Levi-Civita connection in terms of the metric gives

0 = 〈∇XX,Y 〉 = X〈X,Y 〉 − 〈X, [X,Y ]〉,
or equivalently,

(10) X〈X,Y 〉 = 〈X, [X,Y ]〉,
for every vector field Y .

Let ei for i = 1, 2, ..,m be the orthonormal vector fields in TASm given in Propo-
sition 3.1, let Φ : Um −→ Sm be given by

Φ(t1, t2, .., tm) = Π(

m∑
i=1

tiei)

that is a coordinate system defined in an open neighborhood Um of 0 ∈ TASm,
whose image is the smooth m-dimensional submanifold Sm.

Let Xn = DΦ(en) be the coordinate vector fields tangent to Sm. Replacing in
the expression of the geodesic equation above we have

X〈X,Xn〉 = 〈X, [X,Xn]〉.
This set of equations might be used to show the existence of the geodesic vector
field. Let us write down the system explicitly.

Let X =
∑m
i=1 xiXi, and let x̄i = 〈X,Xi〉. The differential equation of the

geodesic vector field X is equivalent to

X〈X,Xn〉 = 〈X, [X,Xn]〉 = 〈X, [
m∑
i=1

xiXi, Xn]〉,

and we observe that

[

m∑
i=1

xiXi, Xn] =

m∑
i=1

[xiXi, Xn] =

m∑
i=1

(xi[Xi, Xn]−Xn(xi)Xi),

and since the vector fields Xn commute, we finally get
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[

m∑
i=1

xiXi, Xn] =

m∑
i=1

−Xn(xi)Xi.

Hence we can write the differential equation for X as

X(x̄n) = X〈X,Xn〉 = −〈X,
m∑
i=1

Xn(xi)Xi〉

= −
m∑
i=1

〈X,Xn(xi)Xi〉 = −
m∑
i=1

Xn(xi)x̄i.

In terms of d
dt ,

d
dtn

we obtain a system Σm of first order partial differential
equations

Σm :=
d

dt
(x̄n) = −

m∑
i=1

d

dtn
(xi)x̄i., n = 1, 2, ..,m.(11)

The above system of differential equations gives rise to a system of partial dif-
ferential equations for the functions x̄i. Indeed, let X = (x1, x2, .., xm), X̄ =
(x̄1, x̄2, .., x̄m), and let Mm be the matrix of the first fundamental form in the basis
vi, namely,

(Mm)ij = 〈Xi, Xj〉.
Then we have that X̄ = MmX, and replacing this identity in the initial system
(11) we get a system of first order, quasi-linear partial differential equations (see
chapter 7 in [8] for definition and properties) for the functions xi whose coefficients
depend on the entries of the matrices (Mm)−1 and d

dtn
((Mm)−1): let (Mm)−1

i be

the i-th row of the matrix (Mm)−1. Then we have

d

dt
(x̄n) = −

m∑
i=1

d

dtn
(< (Mm)−1

i , X̄ >)x̄i., n = 1, 2, ..,m,

where < (Mm)−1
i , X̄ > is the Euclidian inner product of the i-th row (Mm)−1

i and

the vector X.
Remark: Actually, the Christoffel coefficients of the Riemannian metric involve

the derivatives of the entries of the first fundamental form of the metric. So it is
not surprising that such derivatives appear in any formulation of the problem of
the existence of geodesics.

3.3. Uniform bounds for the PDE geodesic systems in a neighborhood of
a Fourier-like probability. In this subsection, we shall estimate the sup norm
of the coefficients of the system of partial differential equations obtained in the
previous section, in a neighborhood of a normalized potential corresponding to a
Fourier-like equilibrium measure for the shift of two symbols. The main result is
the following:

Proposition 3.2. Let A ∈ N be the normalized potential associated to a equilibrium
probability of two symbols. There exists an open neighborhood Br(A) ⊂ N and
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D > 0 such that the coefficients of the quasilinear systems of partial differential
equations

d

dt
(x̄n) = −

m∑
i=1

d

dtn
(< (Mm)−1

i , X̄ >)x̄i., n = 1, 2, ..,m

are uniformly bounded above by D.

Recall that a quasilinear system of partial differential equations of vector func-
tions xi(t1, t2, .., tm) ∈ R is a system of the form

F (ti, xj ,
dxj
dti

) = 0

where F is a quadratic function of the variables xj ,
dxj
dti

. The system in Proposition
3.2 is a particular case, resembling the usual system of differential equations for
geodesics obtained by using the Christoffel coefficients.

A family of probabilities that are Fourier-like is given by the following Lemma:

Lemma 3.3. Let A ∈ N be the normalized Hölder potential associated to an equilib-
rium probability µ on M = {0, 1}N. Then, there exist α, β > 0, and an orthonormal
basis of TAN given by continuous functions {en}, such that, the supremum of en
is C0 and L2(µ) bounded above by β, and below by α, for every n.

For the proof see Appendix Section 6.

The estimates for the coefficients of the systems rely in a crucial way on the
following result:

Corollary 3.4. Let A ∈ N be the normalized potential associated to a Fourier-like
equilibrium probability. Denote by en, the associated basis satisfying the conditions
I) and II) of Definition 1.1. Let ēn be the extension of en in the plane TAN as a
constant vector field. Then, there exists an open neighborhood U ⊂ N containing
A, and ρ > 0 such that

(1) For every B = Π(s1, s2, .., sm) ∈ Π(U), the family of functions

{Xn(B) = D(s1,s2,..,sm)Π(ēn)}
is a basis for TBN .

(2) The sup norm of each element of the basis Xn(B) is bounded above by ρ.

Proof. The corollary follows from Lemma 3.3 and Proposition 2.4. �

Let us consider the norm for matrices ‖M ‖sup= sup{|Mij |}.

Lemma 3.5. Let A ∈ N be the normalized potential associated to a Fourier-like
equilibrium probability µA. Then, there exists C > 0 such that the norms of the
matrices (Mm)−1, and the coefficients of d

dtn
((Mm)−1) are uniformly bounded by C

in the neighborhood Br(A).

Proof. The coefficients of the first fundamental form Mm at a point B ∈ Br(A) are

〈Xi(B), Xj(B)〉 =

∫
Xi(B)Xj(B)dµB .

By Lemma 3.1 and Lemma 2.4, the matrix Mm is a perturbation of the identity
at every point B ∈ Br(A). This yields that the matrix (Mm)−1 is close to the
identity and its norm is uniformly (in m) bounded above in Br(A).
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As for the derivative d
dtn

((Mm)−1) = (Mm)−1 d
dtn

(Mm)(Mm)−1, we notice that
at the point A we have Mm = Im, the m×m identity matrix, and the coefficients
of d

dtn
(Mm) are the derivatives of the terms 〈Xi, Xj〉. According to Lemma 2.5 we

have
d

dtn
〈Xi, Xj〉 =

∫
(
d

dtn
(Xi)Xj +Xi

d

dtn
(Xj) +XiXjXn)dµB .

Let us estimate the sup norms of each of these terms at a point B ∈ Br(A). First
observe that B = Π(s1, s2, .., sm) for some vector (s1, s2, .., sm) close to (0, 0, ..0).
Then we have

d

dtn
(Xi(B)) =

d

dtn
(D(s1,s2,..,sm)Π(ei)) =

d2

dtndti
(Π((s1, s2, .., sm) + tiei + tnen)).

The sup norm of such a term is bounded above by 1 + δ according to Proposition
2.4, therefore, the sup norms of the integrals

∫
d
dtn

(Xi)XjdµB and
∫
Xi

d
dtn

(Xj)dµB
are bounded above by 1 + δ.

Moreover, the term
∫
XiXjXndµB satisfies

|
∫
XiXjXndµB |≤| Xi(B)Xj(B)Xn(B) |∞,

and by Corollary 3.4, we have that | Xi(B)Xj(B)Xn(B) |∞≤ (ρ)3, where ρ is
the upper bound for the elements of the basis in Corollary 3.4. Joining the above
estimates we get that the coefficients of the first fundamental form Mm are bounded
above by 2(1+δ)+(ρ)3 for every B ∈ Br(A). Since the matrices Mm are uniformly
close to the identity, the matrices d

dtn
((Mm)−1) are uniformly close to d

dtn
(Mm) in

Br(A) thus proving the lemma.
�

The proof of Proposition 3.2 follows from Corollary 3.4 and Lemma 3.5.

3.4. First order systems of ordinary differential equations equivalent to
first order PDE’s. Let us start this subsection with some standard basic results
of the theory of first order partial differential equations. We follow Chapter 3 in
the book by L. C. Evans [23], but the subject is quite well known and there are
many other classical references.

Let F : Rn × R × Ū :−→ R be a C2 function where U is an open subset of Rn
and Ū is its closure. The system of first order, partial differential equations defined
by F is given by

F (Du, u, x) = 0

where u : Ū −→ R is the unknown. Let us write

F (p, z, x) = F (p1, p2, .., pn, z, x1, x2, .., xn)

and denote by

DpF = (Fp1 , Fp2 , .., Fpn), DzF = Fz, DxF = (Fx1
, Fx2

, .., Dxn)

the differentials of F with respect to the variables p, z, x. The theory of the
characteristics associates a system of first order differential equations to the sys-
tem F (Du, u, x) = 0 in the following way. We look for smooth curves x(s) =
(x1(s), .., xn(s)) for s ∈ I defined in some open interval, and consider the function
z(s) = u(x(s)). Let p(s) = Du(x(s)), where p(s) = (p1(s), .., pn(s)) is given by
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pi(s) = uxi(x(s)). Differentiating with respect to s we obtain the characteristic
equations

p′(s) = −DxF (p(s), z(s), x(s))−DzF (P (s), z(s), x(s))p(s)

z′(s) = DpF (p(s), z(s), x(s))p(s)

x′(s) = DpF (p(s), z(s), x(s))

This setting extends of course to smooth finite dimensional manifolds, by taking
local coordinate systems.

Euler-Lagrange equations in a Riemannian manifold, a system of second order
differential equations, is equivalent to a first order system of partial differential
equations in the tangent bundle of the manifold. The above procedure applied to
this system gives rise to the Hamilton equations in the cotangent bundle, a system
of ordinary first order differential equations.

Euler-Lagrange equations in the case of Riemannian metrics are expressed in
terms of the Levi-Civita connection by the system

〈∇XX,Xi〉 = 0

where X is the vector field tangent to a geodesic and Xi, i = 1, 2, .., n is a coordinate
basis of the tangent space of the n-dimensional manifold. This is exactly what we
did in the previous subsection for each submanifold Sm. The tangent space TN and
the cotangent space T ∗N of N are analytic manifolds as well, and we are looking
for solutions of Euler-Lagrange equations in finite dimensional submanifolds of TN .

Therefore, as a consequence of Lemma 3.5 and Theorem 3.10 in the last section,
we get a result on the existence of solutions for the partial differential equation of
geodesics under the Fourier-like condition.

Lemma 3.6. Let A ∈ N be the normalized Hölder potential associated to the
equilibrium probability µ on M = {0, 1}N. Then there exist ρ > 0, D > 0, such that
given a unit vector X(0) ∈ TAN there exists a unique analytic curve γ : (−ρ, ρ) −→
N such that γ(0) = A, and γ′(t) = X(t) is the unique solution of the equation (11)
whose initial condition is X(0). The solution X(t) is defined in an interval | t |≤ ρ,
and the norms of X(t), X ′(t) are bounded by D for every | t |≤ ρ. An analogous
result holds for every Q ∈ Br(A), where r > 0 is given in Proposition 3.2.

Proof. Let us show the statement for A, the statement for Q ∈ Br(A) follows from
the same arguments. By the theory of first order partial differential equations, the
system (11) that is a second order, partial differential system in the curve γ(t) is
equivalent to a system of first order ordinary differential equations d

dtY = Fm(Y )
where the function Fm depends on the first fundamental form A and its derivatives
with respect to the coordinates tn. These functions have uniformly bounded norm in
the neighborhood B(r) and are analytic. Then, Theorem 3.10 implies the existence
and uniqueness of solutions of the ordinary differential equations, namely, there
exists ρ > 0 such that the solution γm(t) of (1) with initial condition γm(0) = A,
γ′m(0) = X(0), is unique and defined in (−ρ, ρ).

d

dt
‖ Y ‖≤‖ F ‖‖ Y ‖

which yields that



16 ARTUR O. LOPES AND RAFAEL O. RUGGIERO

The uniform bound for the sup norm of Fm in B(r) implies that there exists
ρ > 0 such that the analytic solutions γm(t) are defined in (−ρ, ρ) and are uniformly
bounded in this interval.

Then Theorem 3.9 implies that there exists a convergent subsequence with limit
γ(t) analytic in the interval (−ρ, ρ). The function γ(t) is tangent to the curve of
vectors X(t) that s the limit of the convergent subsequence of the curves γ′m(t) =
Xm(t) in (−ρ, ρ).

Claim: The curve γ(t) is a geodesic.

Since Xm(t) converges uniformly to X(t) in the interval (−ρ, ρ) we have that
given ε > 0 there exists mε such that for every m ≥ mε we have

‖ Fm(X ′m(t))− Fm(X(t)) ‖∞≤ k ‖ Xm(t))−X(t) ‖∞≤ ε
where k is a constant depending on the (uniform) bounds of the first derivatives of
the functions Fm. So we get that X(t) is an approximate solution of the systems
defined by the functions Fm:

‖ X ′ − Fm(X) ‖∞ ≤ ‖ X ′ −X ′m ‖∞ + ‖ X ′m − Fm(Xm) ‖∞ + ‖ Fm(Xm − Fm(X) ‖∞
≤ 2ε

if we choose mε such that ‖ X ′m−X ′ ‖∞< ε for every m ≥ mε as well. Now, notice
that the equation d

dtY = Fm(Y ) is equivalent to the system 〈∇Y Y, vk〉 = 0, for
every 0 < k ≤ m, which means that

| 〈∇XX, vk〉 |≤ ε
for every 0 < k ≤ m. Since ε may be chosen arbitrarily, we conclude that
〈∇XX, vm〉 = 0 for every m, which implies that the vector field ∇XX is iden-
tically zero, because the collection of the vectors vm is a base for the L2 inner
product in TN . This yields that the curve γ(t) is a geodesic as we claimed.

�

3.5. On the existence and uniqueness of solutions of differential equa-
tions in N . Let us now proceed to the proof of Picard’s Theorem in our infinite
dimensional setting. We start with the Arzela-Ascoli theorem. We shall state
the main results for the shift and we claim that for the case of expanding maps
T (x) = 2x(mod.1) in S1 the results one can get are analogous.

Theorem 3.7. Let (X, d) be a second countable compact metric space (namely,
there exists a countable dense subset). Let F be a family of functions f : X −→ R
that is uniformly bounded and equicontinuous. Then every sequence in F has a
convergent subsequence in the set of continuous functions.

Proof. The proof follows from the same steps of the usual version of the theorem
for compact subsets of Rn. �

The above implies:

Lemma 3.8. Let Σ = {0, 1}N, endowed with the metric

d({an}, {bn}) =
1

2

∞∑
i=0

| ai − bi |
2i

.
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Let HolC,α(Σ) be the set of Hölder continuous functions f : Σ −→ R with constant
C and exponent α endowed with the sup norm. Then, every subset of HolC,α of
uniformly bounded functions is precompact.

Proof. First of all, observe that (Σ, d) is a compact metric space with a countable
dense subset, the set of periodic sequences of 0’s and 1’s. Then Theorem 3.7 holds,
and since the set of functions in HolC,α is equicontinuous, every uniformly bounded
subset has a convergent subsequence. �

Next, let us study the precompactness of the set of analytic curves of normalized
potentials γ : (a, b) −→ HolC,α(X) endowed with the sup norm. By analytic we
mean that γ(t) depends analytically on the parameter t ∈ (a, b).

Proposition 3.9. Let ΓC,α([a, b],Σ) be the set of curves γ : [a, b] −→ HolC,α(Σ) of
normalized potentials which are analytic in (a, b) and continuous in [a, b], endowed
with the sup norm. Then every family of functions in ΓC.α([a, b],Σ) that is uni-
formly bounded and equicontinuous has a convergent subsequence. Namely, there
exists a continuous function γ∞ : [a, b] −→ HolC,α(Σ) that is analytic on (a, b) and
a sequence of functions in ΓC.α([a, b],Σ) converging uniformly to γ∞.

Proof. Let γn ∈ ΓC,α([a, b],Σ) be a sequence of uniformly bounded curves. For
simplicity, let us suppose that a = −r, b = r for some 0 < r ≤ 1, and let us center
the series expansion at t0 = 0 (for different center of expansion the argument is just
analogous). This implies that we get an expression in power series for each γn(t)
of the form

γn(t) =

∞∑
m=0

anm(p)tm

where anm : Σ −→ R are functions in HolC,α(Σ). Since the functions γn are uni-
formly bounded by a constant L > 0 in (−r, r), we have that ‖ an0 ‖∞≤ L for every

n and by Lemma 3.8 there exists a convergent subsequence a
n0
i
o whose limit is a

function A0. Since the radius of convergence of all the series is r, we have that
lim supn(| anm(p) |) 1

n = 1
r and therefore

‖ anm ‖∞≤
1

rm

for every n,m. So the family of functions Fm = {anm} is uniformly bounded and
we can apply again Lemma 3.8. So there exists a subsequence n0

n1
j

of the indices n0
j

such that the functions a
n0
j
m converge to a function A1 ∈ HolC,α(Σ). By induction,

we get a subsequence γNk of the functions γn such that the first k + 1 coefficients
of their series expansions converge to functions A0, A1, .., Ak in HolC,α(Σ).

Consider the function

γ∞(t) =

∞∑
m=0

Am(t).

By the choice of the Am’s, the above series converges with the same convergence
radius of the functions γn. Moreover, it is easy to check that γ∞(t) is a curve of
functions in HolC,α(Σ), and we have that the sequence γNk converges uniformly on
compact sets to γ∞ in the sup norm. Indeed, let [a, b] ⊂ (−r, r), since the functions
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γn are uniformly bounded given ε > 0 there exists mε > 0 such that for every
n ∈ N, k ≥ mε we have

|
∞∑
k

ank (p)tk |≤ ε

for every p ∈ Σ. The same holds for the series γ∞. This yields

‖ γ∞(t)− γn(t) ‖∞ ≤
mε∑
m=0

‖ Am − aNkm ‖∞ tm+ ‖
∞∑

mε+1

(Am − aNkm ) ‖∞ tm

≤
mε∑
m=0

‖ Am − anm ‖∞ tm + 2ε.

Since the functions aNkm converge uniformly to the function Am, we can chose k
large enough such that ‖ (Am − aNkm ) ‖∞≤ ε

m , and therefore

‖ γ∞(t)− γn(t) ‖∞≤ 3ε,

for every t ∈ [−r, r], and since ε can be chosen arbitrarily we get the lemma. �

Now, we can state Picard’s Theorem for differential equations in N .

Theorem 3.10. Let F : [x, y] × U −→ HolC,α(Σ) be an analytic function in t ∈
(x, y) and in HolC,α(Σ), where U is an open subset of (HolC,α(Σ))n. Then, given
(t0, f1, f2, .., fn) ∈ (x, y)×U there exists a unique solution of the differential equation
d
dtX(t) = F (t,X(t)) defined in a certain interval X : (t0 − ε, t0 + ε) −→ U that is
analytic and satisfies X(t0) = (f1, f2, .., fn).

Proof. The proof mimics the usual proof of Picard’s theorem applying the idea of
contraction operators. The operator

L(g)(t) = (f1, f2, .., fn) +

∫ t

t0

F (s, g(s))ds

is defined in the set of continuous curves g : [x, y] −→ (HolC,α(Σ))n that are analytic
on (x, y). According to Lemma 3.9, this set of curves endowed with the sup norm
is co-compact. Now, as in the proof of the usual version of Picard’s theorem, there
exists a small interval (t0 − ε, t0 + ε), where ε > 0 depends on the sup norm of the
first derivatives of the function F , where the above operator restricted to curves
defined in (t0 − ε, t0 + ε) is a contraction. Therefore, by Lemma 3.9, there exists a
unique fixed point X(t) that must be the solution of the equation claimed in the
statement. The solution is analytic since the function F is analytic. �

3.6. Geodesic accessibility of the set of potentials associated to Fourier-
like equilibrium measures on symbolic spaces with two symbols. The
purpose of the subsection is to show:

Theorem 3.11. Let A ∈ N be the potential associated with a equilibrium probability
of the shift of two symbols, and let B ∈ N . Then, there exists a geodesic of N
endowed with the variance Riemannian metric joining the two points.

The idea of the proof is inspired by the Palais-Smale condition: we shall construct
a sequence of analytic curves joining two points whose lengths converge to the
distance d(A,B) in the Riemannian metric. Then, we show that the sequence has
a convergent subsequence, in the set of analytic curves joining the two points, to a
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curve γ : [0, 1] −→ N , and by the general theory of geodesics this curve is a critical
point of the length and thus a solution of the equation ∇γ′(t)γ′(t) = 0.

We start by considering the curve c(t) = A(1 − t) + tB, c : [0, 1] −→ Hol. The
potentials c(t) might be not be normalized of course, even though they have nice
regular properties.

(1) The functions c(t) are Hölder with constants bounded above by the max-
imum of the Hölder constants of A and B, say Q; and Hölder exponents
bounded below by some ρ > 0 depending on A,B.

(2) The projection c̄(t) = Π(c(t)) is an analytic curve of the variables A,B, t,
because the eigenfunctions hc(t) and the eigenvalues λc(t) are analytic func-
tions of c(t).

(3) The curve of normalized potentials c̄(t) is a curve of Hölder functions with
constants bounded by some Q̄ and exponent bounded below by some δ.

(4) The radius of convergence of the series expansions in terms of t of the
functions c̄(t) around any t0 is bounded below by some D > 0 for every
t0 ∈ [0, 1]. This is because the radius of convergence of the series depends
continuously on the parameter t0 ∈ [0, 1], so the compactness of [0, 1] im-
plies that there is a positive lower bound for the radius of convergence.

Let HolC,α(Σ) be the set of Hölder normalized potentials in Σ = {0, 1}N with
Hölder constant C, whose exponents are bounded below by α, and let ΓC,α,ν be the
family of curves υ : [0, 1] −→ HolC,α(Σ) depending analytically on t ∈ [0, 1], such
that, the radius of convergence of the series expansion of the curves are bounded
below by ν > 0. By Proposition 3.9, we know that the family of functions ΓC,α,ν
endowed with the sup norm is pre-compact.

Proof of Theorem 3.11

Given A,B ∈ N , we showed that the set of curves ΓC,α,ν is nonempty for certain
values of C,α, ν: the curve c̄(t) = Π(c(t)) is in ΓC,δ,ν . Therefore, either c̄(t) has
minimal length in ΓC,α,ν , and it is the geodesic we look for, or there exists a curve
c1 : [0, 1] −→ HolC,α(Σ) in ΓC,α,ν with strictly smaller length. By induction, either
we find a geodesic cn in this process or we find a sequence ck of curves in ΓC,α,ν
whose lengths converge to the infimum of the lengths of all curves joining A,B. By
Proposition 3.9 there exists a convergent subsequence whose limit is a continuous
curve γ∞ : [−r, r] −→ HolQ,δ , that is analytic in t ∈ (−r, r), whose length attains
the minimum of the lengths of curves joining A,B.

The curve γ∞ minimizes length in the family ΓC,α,ν .

Claim: γ∞ is a true geodesic.

To show the Claim we apply the local existence results of the previous sections.
We know that there exists an open ball Bρ(A) around A such that every nonzero

tangent vector X ∈ TAN determines uniquely a geodesic γX : (−ρ, ρ) −→ N such
that γX(0) = A, γ′X(0) = X. This local geodesic is an analytic curve of Hölder

continuous functions whose Hölder constants are bounded above by a certain Ĉ and
whose exponents are at least α̂. So if we replace C by the maximum of C, Ĉ, and α
by the minimum of α, α̂, we get a precompact family of analytic curves ΓC′,α′,ν that
contains the curve γ∞. Moreover, since γ∞ restricted to the ball Bρ(A) is a local
minimizer in the family ΓC,α,ρ, Picard’s Theorem 3.10 and hence, the existence and
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uniqueness of local geodesics implies that γ∞ has to be one of the solutions of the
geodesic equation in the open ball Bρ(A).

This proves the Claim in an interval [0, ρ) of the domain [0, 1] of γ∞. If ρ ≥ 1
then we have shown that the curve is a geodesic as we wished. Otherwise, let us
consider a local coordinate system at P = γ∞(ρ) and let us look at the functions

fY (t) = 〈∇γ′∞(t)γ
′
∞(t), Y (γ∞(t))〉

where Y is an analytic vector field locally defined in the coordinate neighborhood
of P . Since we know that γ∞(t) is analytic in t, as well as the Riemannian metric
and the vector field Y , we have that the function fY (t) is analytic in t. Since γ∞
is a geodesic in the interval t ∈ (0, ρ), fY (t) = 0 for every t ∈ (0, ρ), so we have by
continuity that fY (ρ) = 0. The analyticity of fY (t) then yields that there exists
δ > 0 such that fY (ρ + s) = 0 for every | s |< δ. This shows that the curve γ∞
must be a geodesic in the whole interval [0, 1] as claimed.

4. On the surface of Markov probabilities depending on two
parameters

We shall devote this section to the problem of the existence of geodesics on the
surface of Markov probabilities. In the previous article [37], a detailed study of
the Markov surface revealed remarkable geometric properties. Two of them are
that the surface is totally geodesic in N , and that its Gaussian curvature is zero
everywhere. Let us recall the definition of the Markov surface and some of the main
results about the intrinsic geometry of the surface in N obtained in [37].

ConsiderM = {0, 1}N and denote byK the set of stationary Markov probabilities
taking values in {0, 1}.

Given a finite word x = (x1, x2, ..., xk) ∈ {0, 1}k, k ∈ N, we denote by [x] the
associated cylinder set of size k in Ω = {0, 1}N.

Consider a shift invariant Markov probability µ obtained from a row stochas-
tic matrix (Pi,j)i,j=0,1 with positive entries and the initial left invariant vector of
probability π = (π0, π1) ∈ R2. We denote by A the Hölder potential associated
to such probability µ (see Example 6 in [38]). There exists an explicit countable
orthonormal basis, indexed by finite words [x], for the set of Hölder functions on
the kernel of the Ruelle operator LA (see [37]).

Given r ∈ (0, 1) and s ∈ (0, 1) we denote

(12) P =

(
P0,0 P0,1

P1,0 P1,1

)
=

(
r 1− r

1− s s

)
.

In this way (r, s) ∈ (0, 1) × (0, 1) parameterize all row stochastic matrices we
are interested. The following statement is proved in [38] and describes a special
coordinate system for the surface K of Markov probabilities.

Theorem 4.1. The Markov surface K is totally geodesic in N . Moreover, there
exists a pair of unit vector fields X1, X2 tangent to K which are orthogonal every-
where and satisfy the following properties: at a point of the stochastic matrix with
coordinates (r, s) we have

(1) ∇X1
X1 = Γ1

11X1 where

Γ1
11 = − (2r − 1)(s− 1)

2(−2 + r + s)

1

(− (−1+r)r(−1+s)3

(−2+r+s)3 )
1
2

.
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Figure 1. Numerical simulation - geodesics emanating from the
point (1/2, 1/2) on parameter coordinates (r, s) ∈ (0, 1) × (0, 1)
which describes the set of Markov probabilities.

(2) ∇X2X2 = Γ2
22X2 where

Γ2
22 = − (2s− 1)(r − 1)

2(−2 + r + s)

1

(− (−1+s)s(−1+r)3

(−2+r+s)3 )
1
2

.

In particular, the vector fields X1 and X2 are geodesic vector fields, namely,
their integral curves are geodesics of N .

(3) ∇X1X2 = ∇X2X1 = 0, in particular, the vector fields X1, X2 commute and
define a isothermal coordinate system for the Markov surface K.

Proof. The Theorem is essentially proved in [38]. The only thing that deserves to
be explained is the fact that the vector fields X1 and X2 are geodesic. This is a
well known result in the theory of geodesics: if a smooth vector field X satisfies
∇XX = fX, for a smooth scalar function f , then the integral orbits of X are
geodesics (see for instance [15] 1979 Edition, Chapter 8, Lemma 3.1). �

 1
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Figure 2. Numerical simulation - geodesics emanating from the
point (0.35, 0.15) on parameter coordinates (r, s) ∈ (0, 1) × (0, 1)
which describes the set of Markov probabilities.

The existence of an isothermal coordinate system is quite exceptional, and sim-
plifies a great deal the system of differential equations of geodesics in the surface.
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Moreover, it is easy to show that a surface with an isothermal coordinate system
whose integral curves are geodesics is flat. Notice that the coefficients of the covari-
ant derivatives in Theorem 4.1 are just the Christoffel coefficients of the coordinate
system. In particular, item (1) implies that Γ2

11 = 0, item (2) that Γ1
22 = 0, and

item (3) that Γ1
12 = Γ1

21 = Γ2
12 = Γ2

21 = 0. The system of differential equations of
geodesics in this coordinate system is then given by (see [15] for instance )

d2u1

dt2
(t) = Γ1

11(u1(t), u2(t))(
du1

dt
(t))2

d2u2

dt2
(t) = Γ2

22(u1(t), u2(t))(
du2

dt
(t))2

where γ(t) = (u1(t), u2(t)) is the expression of a geodesic γ(t) in the corresponding
coordinates. Note that the geodesics are not straight lines (one exception is the
horizontal line through r = 1/2). In figures 1 and 2, using Mathematica, we were
able to show parts of several geodesic paths with the initial position taken at the
points, respectively, (1/2, 1/2) and (0.35, 0.15) .

5. KL-divergence and dynamical information projections

Let us start with the second part of the article, focused on information pro-
jections in a dynamical context. First, we shall remind some preliminaries about
KL-divergence and information theory.

5.1. Introduction. Through this section, the set M = Ω = {1, 2, ..., d}N, will be
the compact symbolic space equipped with the usual metric d.

Recall that a Jacobian J : Ω → (0, 1) is a positive Hölder function such that
Llog J(1) = 1, where Llog J is the the Ruelle operator for log J. The potential

x = (x1, x2, ..., xn, ...)→ log J(x1, x2, ..., xn, ...)

is normalized. Remember that for each Jacobian J is associated a probability
µ = µJ , such that, L ∗log J(µJ) = µJ . The set of all possible µJ constitutes the set
N .

A particular more simple example: if µ is a Markov shift invariant probabil-
ity measure taking values in {1, 2}, associated to a row stochastic matrix P =
(Pi,j)i,j=1,2, we get that the corresponding Jacobian J satisfies J(x) = Pj,i, for
each x in the cylinder i, j ⊂ {1, 2}N (see Example 6 in [38]). In this particu-
lar example the Jacobian J depends only on the first two coordinates x1, x2 of
x = (x1, x2, x3, ..., xn, ...) ∈ Ω = {1, 2}N.

The relation J ⇐⇒ µJ ∈ N is bijective. It is natural to parameterize the
Hölder equilibrium probabilities µJ ∈ N by the associated Jacobian J . We will not
distinguish between naming J and µJ .

The probabilities on N are ergodic for the action of the shift in the symbolic
space Ω and hence they are singular with to respect to each other. This property
results, in some cases, in a certain difference when comparing our results and proofs
with the non-dynamical ones (as described in [1], [2], [43] and [46]).

Remember that we denote by Hol the set of Hölder functions f : Ω→ R.
Here we are interested in the Kullback-Leibler divergence (KL-divergence for

short) of shift invariant probabilities (see (17) in [39])
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Given two Jacobians J0 and J1 and the associated equilibrium probabilities µ0

and µ1 in N , its Kullback-Leibler divergence (or relative entropy) is given by

(13) DKL(µ0 |µ1) =

∫
(log J0 − log J1) dµ0 ≥ 0.

The above value is zero if and only if µ0 = µ1 (which is the same as saying
that J0 = J1). In some way, the relative entropy behaves like a kind of metric in
the space of probabilities but the triangle inequality is not always true (see [42]).
Moreover, the KL-divergence is not symmetric. DKL is convex in both variables.

Using the Riemannian structure of [27] and also [32] it was shown in Section 5
in [38] that the Fisher information is equal to the asymptotic variance (see [44] for
the definition). A result taken from [38]:

Proposition 5.1. Assume that ξ is a tangent vector to N at µ2, then, for µ1 ∈ N

(14) DKL(µ1, µ2 + dξ) = −
∫
ξdµ1 +

1

2

∫
ξ2dµ2 + o(|dξ|2),

where
∫
ξ2dµ2 is the Fisher information.

Given Jacobians J0, J̃1 ∈ Θ1, J0 6= J̃1, consider the Jacobian Jλ, λ ∈ [0, 1], such
that,

(15) Jλ = J0 + λ(J̃1 − J0).

We denote by µJλ the equilibrium probability associated to Jλ. In this case

J1 = J̃1.
The probability µJλ corresponds in [42] to the concept of mixture distribution.

In [24] Bayesian Hypothesis Tests are considered for the family described by (15).
Note that in our dynamical setting the problem of considering a convex combi-

nation of probabilities is different from the problem of considering convex combi-
nations of Jacobians like in (15). As a non trivial convex combination of ergodic
probabilities is not ergodic, it is more natural - under the ergodic point of view -
to consider the family of probabilities µJλ as described above in expression (15).

It follows from [37] that the function J̃1−J0
J0

corresponds to a tangent vector to
the analytic manifold N at the point µ0.

The inequality

(16)
d

dλ
DKL(µJλ , µ1)|λ=0 > 0

implies that the relative entropy of µJλ with respect to µ1 is infinitesimally increas-

ing on µ0 in the direction of J̃1 − J0. This can be consider a manifestation of the
Second Law of Thermodynamics (see [11] and Section 5 in [38]). Issues related
to the derivative (16) will be analyzed under the domain of what we will call the
Second Problem.

Given µ1 with Jacobian J1, when µ2 = µJ̃1 , µ0 are such that

(17)
d

dλ
DKL(µJλ , µ1)|λ=0 < 0

we say that this triple is under the fluctuation regime. The use of this terminology
is in accordance with section 3.4 in [11]. In the case (16) is true we say that the
triple µ0, µ1, µ2 = µJ̃1 is under the Second Law regime (a terminology borrowed

from gas dynamics).
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From a Bayesian point of view, the probability µ1 describes the prior probability
and µJλ plays the role of the posterior probability in the inductive inference problem
described by expression DKL(µJλ , µ1) (see Section 2.10 in [11], [39] and [21]). The
function log Jλ − log J1 should be considered as the likelihood function (see [24]).

Given µ0 = µJ0 , µ1 = µJ1 , µ2 = µJ̃1 , the inequality

(18) DKL(µ2, µ1) ≥ DKL(µ2, µ0) +DKL(µ0, µ1)

is called the Pythagorean inequality (see Theorem 11.6.1 in [20]).
Given µ1 with Jacobian J1, expression (18) is equivalent to

(19)

∫
(log J̃1 − log J1) dµ2 ≥

∫
(log J̃1 − log J0) dµ2 +

∫
(log J0 − log J1) dµ0.

Interesting questions related to the Pythagorean inequality and information pro-
jections appear in Game Theory, Statistical Mechanics, Information Theory and
Geometry (see [29] [22], [48], [35], [28] and Section 12 in [46]).

A source of inspiration for our work is the following theorem presented in [20]:
given the probabilities P = (P1, P2, ..., Pd) and Q = (Q1, Q2, ..., Qd) on the set
{1, 2, ..., d}, denote the KL divergence of P and Q by

D(P‖Q) =

d∑
k=1

Pk logPk −
d∑
k=1

Pk logQk.

Consider the probabilities P j = (P j1 , P
j
2 , ..., P

j
d ), j = 0, 1, 2, on {1, 2, ..., d}, and

denote Pλ = P 0 + λ(P 2 − P 0), λ ∈ [0, 1]. Theorem 11.6.1 in [20] claims that if

d

dλ
D(Pλ, P1)|λ=0 =

d

dλ
[

d∑
k=1

P kλ logP kλ −
d∑
k=1

P kλ logP 1
k ]|λ=0 > 0,

then is true the Pythagorean inequality

(20) D(P 2‖P 1) ≥ D(P 2‖P 0) +D(P 0‖P 1).

In the case d
dλD(Pλ, P1)|λ=0 ≤ 0 then the triangle inequality D(P 2‖P 1) ≤

D(P 2‖P 0) +D(P 0‖P 1) is true.
Probabilities on {1, 2, ..., d} have no dynamical content. Analogous results to

the ones obtained in a non dynamical setting, when considered with respect to
the dynamical setting of ergodic probabilities on {1, 2, ..., d}N, are not always true.
The above probabilities P j , j = 0, 1, 2 are all absolutely continuous with respect
to each other. The probabilities µj , j = 0, 1, 2, described above are all singular
with respect to each other. This makes a big difference when we want to demon-
strate in our setting some analogous result which is known for the case of proba-
bilities on {1, 2, ..., d}. Expression (20) for the probabilities P j = (P j1 , P

j
2 , ..., P

j
d )

on {1, 2, ..., d}, j = 0, 1, 2, corresponds in the dynamical setting to independent
Bernoulli probabilities on Ω = {1, 2, ..., d}N. Example 5.13 in Section 5.3.1 shows
that for a slightly more complex case, that it corresponds to consider Markov prob-
abilities on {1, 2, ..., d}N, the analogous result to Theorem 11.6.1 in [20] is not true.

Given µ0 = µJ0 , µ1 = µJ1 , µ2 = µJ̃1 , the alternative inequality to (18) is

(21) DKL(µ2, µ1) ≤ DKL(µ2, µ0) +DKL(µ0, µ1),

which is known as the triangle inequality.
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A natural question to ask is when these inequalities appear when considering
some extremality property regarding a fixed convex set of probabilities (like ex-
pression (23) in the First problem to be defined next).

Consider Θ1 ⊂ Hol a convex compact set of Hölder Jacobians J : Ω → (0, 1).
Note that given the Jacobians J0, J1, the convex combination

(22) λJ0 + (1− λ)J1

is also a Jacobian. From the bijective relation J ⇐⇒ µJ ∈ N one can see Θ1 as a
subset of N .

Note that given the Jacobians J0, J1, the convex combination λ log(J0) + (1 −
λ) log(J1) is not of the form log J , for a Jacobian J .

First problem: given the fixed Hölder Jacobian J1 /∈ Θ1 (associated to a
probability µ1 = µJ1) assume that the Jacobian J0 ∈ Θ1 minimize Kullback-Leibler
divergence, that is, µJ0 = µ0 satisfies

(23) DKL(µ1, µ0) = min
J̃∈Θ1

DKL(µ1, µJ̃).

A J̃ = J0 minimizing (23) will be called a solution of the minimizing first
problem (Chapter 3 in [26] also investigate similar problems). We analyze here
the information projection problem for equilibrium probabilities.

One can also analyze the related maximizing problem

(24) max
J̃∈Θ1

DKL(µ1, µJ̃).

with similar methods.

A J̃ = J0 maximizing (24) will be called a solution of the maximizing first
problem.

Given J0, J̃1 ∈ Θ1, J0 6= J̃1, we denote by Jλ ∈ Θ1, λ ∈ [0, 1], the function

(25) Jλ = λJ̃1 + (1− λ)J0,

where we denote by µJλ the equilibrium probability associated to the Jacobian Jλ.
When J0 ∈ Θ1 minimize the Kullback-Leibler divergence in problem (23), and

Jλ satisfies (25), we get for any J̃1 ∈ Θ1

(26)
d

dλ
DKL(µ1, µJλ)|λ=0 =

d

dλ
[

∫
log J1dµ1 −

∫
log Jλdµ1 ] |λ=0 ≥ 0.

When J0 ∈ Θ1 maximize (24) we get for any J̃1 ∈ Θ1

(27)
d

dλ
DKL(µ1, µJλ)|λ=0 =

d

dλ
[

∫
log J1dµ1 −

∫
log Jλdµ1 ] |λ=0 ≤ 0.

A more useful information is the exact estimate of the value in (26) and (27)
given by (28) (to be obtained in section 5.3.2).

Proposition 5.2.

(28)
d

dλ
|λ=0DKL(µ1, µJλ) =

∫
(1− J̃1

J0
)dµ1.

The above value can be positive or negative in different cases. Note that taking
J̃1 and J0 more and more close to each other will imply that the derivative at λ = 0
is closer and closer to zero.
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Remark 5.3. Assume Θ1 is a convex simplex generated by Jr, r = 1, 2, ..., w,
in the maximization problem (24). We can ask how to characterize an optimal
J0. As DKL is convex in both variables, the Jacobian J0 (one of the possibles
Jr, r = 1, 2, ..., w ) should be in the boundary of Θ1

In this way it is natural to consider

(29) Jrλ = λJ0 + (1− λ)Jr r = 1, 2, ..., w,

and the associated µrJλ .
From (28) and (24) we get that in the second maximization problem the Jacobian

J0 should satisfy the equations

(30)

∫
(1− J0

Jr
)dµ1 ≥ 0, r = 1, 2, ..., w.

In this way we have just a finite number of inequalities to check.

Consider a fixed probability µ1 with Jacobian µ1. It is also natural to analyze
the first type of problem on Θ2. In this way one should a consider the probability
µλ, λ ∈ [0, 1], that is the equilibrium probability for the potential

(31) λ log(J̃1) + (1− λ) log(J0),

λ ∈ [0, 1]. We denote by Jλ the Jacobian of the equilibrium probability

µλ for the potential λ log(J̃1) + (1 − λ) log(J0) (Jλ is different from Jλ). The

probability µ1 has Jacobian J̃1 = J1 and the probability µ0 has Jacobian J0 = J0.
In this case the minimization of DKL(µ1, µJ̃) will be considered over the set of

J̃ ∈ Θ2.
Note that the Riemannian manifold of Hölder equilibrium probabilities N is not

flat (see [27] and [37]). Adapting the terminology of [42] for our dynamical setting,
it is natural to call log Jλ the linear interpolation of µ0 an µ1 at λ on the logarithm
scale.

The pressure problem for potentials of the form (31) is considered in expression
(3.27) in [24] (where a different notation is used). More precisely, in the notation
we consider here set

(32) P1(λ) = P (λ(log J̃1 − log J0) + log J0),

where λ ∈ [0, 1] and P (A) denotes the pressure of the potential A (see [44]). In this
case P1(0) = 0 = P1(1), and from expression (3.30) in [24], we get

(33) P ′1 (0) =

∫
(log J̃1 − log J0) dµ0.

The function λ → P1(λ) described by expression (32) corresponds here to the
integral-based Bregman generator (see (156) in [43])

Taking E = 0 in expression (3.36) in [24] we get (in the present notation) the
deviation function (a Legendre transform)

(34) P ∗1 (η) = sup
λ∈[0,1]

{λ η − P1(λ)}.

Following the reasoning of [42] it is natural to call

(35) BP1 = P1(1)− P1(0)− (1− 0)P ′1 (0) =

∫
(log J0 − log J̃1) dµ0 > 0

the Bregman divergence for µ0 an µ1 (which is this case is equal to DKL(µ0 |µ1)).
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We will show in Section 5.2.1 that

Proposition 5.4. Given µ1 = µJ1

(36)
d

dλ
|λ=0DKL(µ1, µ

λ) = −
∫

(log J̃1 − log J0)dµ1 +

∫
(log J̃1 − log J0) dµ0.

The inequality 0 ≤ d
dλ |λ=0DKL(µ1, µ

λ) is equivalent to the Pythagorean inequal-
ity:

DKL(µ1, µ
0) +DKL(µ0, µ2) ≤ DKL(µ1, µ

2),

where µ2 = µ1

Second problem: given the fixed Hölder Jacobian J1 /∈ Θ1 (associated to

a probability µ1 = µJ1) assume that J̃ = J0 ∈ Θ1 minimize Kullback-Leibler
divergence, that is, µJ0 = µ0 satisfies

(37) DKL(µ0, µ1) = min
J̃∈Θ1

DKL(µJ̃ , µ1).

A J0 minimizing (37) will be called a solution of the minimizing second problem.
A J0 maximizing

(38) DKL(µ0, µ1) = max
J̃∈Θ1

DKL(µJ̃ , µ1).

will be called a solution of the maximizing second problem.
Given µ1 = µJ1 with Jacobian J1, related to the minimizing second problem we

have the following inequality: given a Jacobian J̃1 ∈ Θ1 and Jλ as above

(39)
d

dλ
DKL(µJλ , µ1)|λ=0 =

d

dλ
[

∫
log JλdµJλ −

∫
log J1µJλ ] |λ=0 ≥ 0.

In this case, we are in the Second Law of Thermodynamics regime.
The second problem is harder than the first one. In Section 5.3.1 we estimate

the value in (39):

Proposition 5.5. Given µ1 = µJ1 with Jacobian J1

(40)
d

dλ
DKL(µJλ , µ1)|λ=0 =

∫
(log J0 − log J1) (

J̃1 − J0

J0
)dµ0

Remember that the function ξ = J̃1−J0
J0

corresponds to a tangent vector to the
analytic manifold N at the point µ0.

A natural question is the following: for J0, J1 fixed, is there a direction J̃1−J0
J0

where the derivative d
dλDKL(µJλ , µ1)|λ=0 is maximal? This requires explicit ex-

pressions for this derivative.

Via a counterexample in section 5.3.1 we will show that not always the inequality
d
dλDKL(µJλ , µ1)|λ=0 ≥ 0 implies the Pythagorean inequality

DKL(µ2, µ0) +DKL(µ0, µ1) ≤ DKL(µ2, µ1),

when µ2 = µJ̃1

Once more it makes sense to analyze the second type of problem on J̃ ∈ Θ2,
considering the family µλ, 0 ≤ λ ≤ 1, which is the equilibrium probability for the
potential λ log(J̃1) + (1− λ) log(J0).
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In Section 5.2.2 we show that

Proposition 5.6. Given µ1 with Jacobian J1

d

dλ
DKL(µλ, µ1)|λ=0 =

∫
(log J0 − log J1) ( log(J̃1)− log(J0) ) dµ0.

One can also analyze the related problem

(41) max
J̃∈Θ1

DKL(µJ̃ , µ1).

with similar methods to the ones used below.

When investigating properties related to

(42) λ→ Jλ = λJ̃1 + (1− λ)J0,

we say we are considering a J-case.

On the other hand when investigating properties related to

(43) λ→ λ log(J̃1) + (1− λ) log(J0),

we say we are considering a log J-case.

Given the Hölder potential A, in this section we denote by αA and ϕA, respec-
tively, the main eigenvalue and the main eigenfunction of the Ruelle operator LA.
Using the notation of [27], remember that we denote by Π the normalization map

(44) Π(A) = A+ logϕA − (logϕA ◦ σ)− logαA.

The equilibrium probability µA for A has Jacobian eΠ(A). It is know that µA =
µΠ(A). We are interested in the perturbed potential A + ξ for very small ξ. The

entropy of µA is equal to −
∫

Π(A)dµA (see Corollary 5.3 in [27]).
Given the Hölder potential A the function DΠ(A)(ξ) is the projection of ξ in

the kernel of LA. Moreover,

DΠ(A)(ξ) = ξ −
∫
ξdµA + u− (u ◦ σ),

for some continuous function u : Ω→ R (see (5) section 4.2 in [27])

An important property that we will use here is the following: denote ht the
entropy of µA+tξ. From section 7.3.1 in [27] we get that

(45)
d

dt
ht|t=0 = −

∫
DΠ(A)(ξ) dµA −

∫
Π(A) ξ dµA = −

∫
Π(A)ξdµA.

Below we summarize the most important relationships that will be used next.

I. In order to show the type-1 Pythagorean inequality, we have to show that
given µ1 = µJ1 , µ2 = µJ2 , µ0 = µJ0

DKL(µ2, µ0) +DKL(µ0, µ1) =

∫
(log J2 − log J0)dµ2 +

∫
(log J0 − log J1)dµ0 ≤

(46)

∫
(log J2 − log J1)dµ2 = DKL(µ2, µ1).

When µ2 = µJ̃1 , this is equivalent to

0 ≤
∫

(log J0 − log J1)dµ2 −
∫

(log J0 − log J1)dµ0 =
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(47)

∫
(log J0 − log J1)dµJ̃1 −

∫
(log J0 − log J1)dµ0.

II. In order to show the type-2 Pythagorean inequality, we have to show that

DKL(µ1, µ0) +DKL(µ0, µ2) =

∫
(log J1 − log J0)dµ1 −

∫
(log J0 − log J2)dµ0 ≤

(48)

∫
(log J1 − log J2)dµ1 = DKL(µ1, µ2),

where µ2 has Jacobian J2.
When µ2 = µJ̃1 , this is equivalent to

(49) 0 ≤
∫

(log J0 − log J̃1)dµ1 −
∫

(log J0 − log J̃1)dµ0.

III. The type-1 triangle inequality

DKL(µ2, µ0) +DKL(µ0, µ1) ≥ DKL(µ2, µ1)

is equivalent to ∫
(log J0 − log J1)dµ0 ≥

∫
(log J0 − log J1)dµ2.

IV. The type-2 Pythagorean inequality is

DKL(µ1, µ0) +DKL(µ0, µJ̃1) =

∫
(log J1 − log J0)dµ1 −

∫
(log J0 − log J̃1)dµ0 ≥

(50)

∫
(log J1 − log J̃1)dµ1 = DKL(µ1, µJ̃1).

The above is equivalent to

(51) 0 ≤
∫

(log J0 − log J̃1)dµ1 −
∫

(log J0 − log J̃1)dµ0.

5.2. The log J case.

5.2.1. First problem. Θ2 denotes the convex set of Hölder potentials J̃ that were
defined in Subsection 5.1. Consider an Hölder Jacobian J0 associated to an Hölder
potential A0 ∈ Θ2, and µ0 the associated equilibrium probability. Denote At =
log J0 + t ξ, where ξ is a tangent vector at µ0 and t ∈ R. We assume that ξ is such
that At belongs to Θ2, for all t ∈ [0, 1]. When ξ = log J̃1 − log J0, the associated
Hölder Jacobian is denoted by Jt and µt is the associated equilibrium state for At
(or, for log Jt).

A minimization problem: suppose µ1 with Jacobian J1 is fixed and J1 /∈ Θ2.
Suppose that J0 is the Jacobian of a certain special potential A0 in Θ2.

Here the probability µt, λ ∈ [0, 1], is the equilibrium probability for the potential

(52) t log(J̃1) + (1− t) log(J0),

t ∈ [0, 1]. We denote by Jt the Jacobian of the equilibrium probability µt

for the potential t log(J̃1) + (1− t) log(J0).
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We will assume that J0 satisfies an extremality property described in the fol-
lowing way: given any Jacobian J̃1, associated to a potential A2 in Θ2, denote
g : [0, 1]→ R by

(53) t→ g(t) = DKL(µ1, µ
t),

when ξ = log J̃1 − log J0. Under our hypothesis At belongs to Θ2, for t ∈ [0, 1].
Note that g(0) = DKL(µ1, µ0) and, as µ1 = µJ̃1 , g(1) = DKL(µ1, µ

1)

The extremality property for J0 is that g(t) has a minimum at 0. This implies
that

(54)
d

dt
|t=0DKL(µ1, µ

t) =
d

dt
|t=0(

∫
log J1dµ1 −

∫
log Jtdµ1) ≥ 0.

The above means that in some sense we are taking as µ0 the DKL-closest prob-
ability to µ1 in Θ2.

There exist ϕt and λt ∈ R, such that, the Jacobian Jt satisfies

(55) log Jt = log J0 + t ξ + logϕt − logϕt(σ)− logαt,

where logαt = P (log J0 + t ξ).
It is known (see [44]) that for a continuous function ξ : Ω → R (not necessarily

satisfying
∫
ξdµ0 = 0)

(56)
d

dt
logαt|t=0 =

d

dt
P (log J0 + t ξ)|t=0 =

∫
ξdµ0.

From the invariance of µ1

0 ≤ d

dt
|t=0DKL(µ1, µ

t) =

d

dt
|t=0 [

∫
log J1dµ1 −

∫
(log J0 + θ ξ + logϕt − logϕt(σ)− logαt)dµ1] =

d

dt
|t=0 [

∫
log J1dµ1 −

∫
(log J0 + t ξ − logαt)dµ1] =

(57) −
∫
ξdµ1 +

∫
ξdµ0.

Therefore, taking ξ = log J̃1 − log J0

0 ≤ d

dt
|t=0DKL(µ1, µ

t) =

(58) −
∫

(log J̃1 − log J0)dµ1 +

∫
(log J̃1 − log J0)dµ0.

This is equivalent to the type-2 Pythagorean inequality:

DKL(µ1, µ0) +DKL(µ0, µ
1) =

∫
(log J1 − log J0)dµ1 +

∫
(log J0 − log J̃1)dµ0 ≤∫

(log J1 − log J̃1)dµ1 = DKL(µ1, µ
1).

A maximization problem for J̃ ∈ Θ2: a similar problem will produce the
triangle inequality. Suppose µ1 with Jacobian J1 is fixed and log J1 /∈ Θ2. Now,
we assume that J̃ = J0 satisfies a different extremality property described in the
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following way: in the same way as before take a Jacobian J̃1 associated to a potential
A2 in Θ2, and denote g : [0, 1]→ R by

g(t) = DKL(µ1, µ
t),

when ξ = log J̃1 − log J0.
The new extremality property for J0 is that g(t) has maximum at 0. This implies

that

(59)
d

dt
|t=0DKL(µ1, µ

t) =
d

dt
|t=0(

∫
log J1dµ1 −

∫
log Jtdµ1) ≤ 0.

The above means that in some sense we are taking as µ0 the more DKL-distant
probability to µ1 in Θ2.

Using (57) one can show the triangle inequality

DKL(µ1, µ0) +DKL(µ0, µ2) ≥ DKL(µ1, µ2),

where µ2 = µ1.

5.2.2. Second problem. In this section we consider the family

(60) λ log(J̃1) + (1− λ) log(J0) = log J0 + λ( log(J̃1)− log(J0) ),

where λ ∈ [0, 1].
Note that

d

dλ
[ log(J0) + λ( log(J̃1)− log(J0) ) ] = log(J̃1)− log(J0) .

Remember that Jλ is the Jacobian of the equilibrium probability for λ log(J̃1)−
(1− λ) log(J0).

We denote by µλ = µJλ the equilibrium probability for log Jλ. The Shannon-
Kolmogorov entropy of µλ is −

∫
log Jλdµλ.

We want to estimate
d

dλ
|λ=0DKL(µλ, µ1).

From Theorem 5.1 in [27] we get

Proposition 5.7. Denote by Jλ the Jacobian of the equilibrium probability for the
potential λ log(J̃1)− (1− λ) log(J0). Then,

(61)
d

dλ

∫
log J1 dµJλ |λ=0 =

∫
log J1 ( log(J̃1)− log(J0) ) dµ0.

From (45) we get

Proposition 5.8. Denote by Jλ the Jacobian of the equilibrium probability for
λ log(J̃1)− (1− λ) log(J0). Then, the derivative of minus the entropy of µJλ is

(62)
d

dλ

∫
log Jλ dµJλ |λ=0 =

∫
log J0( log(J̃1)− log(J0) ) dµ0.

From (62) it follows

Proposition 5.9.

(63)
d

dλ
DKL(µλ, µ1)|λ=0 =

∫
(log J0 − log J1) ( log(J̃1)− log(J0) ) dµ0.
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In the case d
dλDKL(µλ, µ1)|λ=0 > 0 we get that

(64)

∫
(log J0 − log J1) ( log(J̃1)− log(J0) ) dµ0 ≥ 0.

5.3. The J case.

5.3.1. Second problem. In this section we consider the family of Jacobians

(65) Jλ = λJ̃1 + (1− λ)J0,

λ ∈ [0, 1]. The probability µJλ is the one with Jacobian Jλ. We use the notation
Jλ to distinguish from Jλ, which was used in last subsection.

We will show that

d

dλ
DKL(µJλ , µ1)|λ=0 =

∫
(log J0 − log J1) (

J̃1 − J0

J0
)dµ0.

Note that for any x ∈ Ω

(66) Llog J0(1− J̃1

J0
)(x) = 1−

∑
a

J0(ax)
J̃1(ax)

J0(ax)
= 1−

∑
a

J̃1(ax) = 1− 1 = 0

Then, the function 1− J̃1
J0

is in the kernel of the operator Llog J0 , and

(67)

∫
(1− J̃1

J0
)dµ0 = 0.

Therefore, the function 1− J̃1
J0

is a tangent vector to the manifold N at the point

µ0 (see [27]).
Note that

d

dλ
log Jλ =

J̃1 − J0

Jλ
.

The type-1 Pythagorean inequality

DKL(µ2, µ0)− (DKL(µ2, µ0) +DKL(µ0, µ1)) ≥ 0

is equivalent to

(68)

∫
(log J1 − log J0)dµ0 +

∫
(log J0 − log J1)dµ2 ≥ 0.

The type-2 Pythagorean inequality is equivalent to

(69) 0 ≤
∫

(log J0 − log J̃1)dµ1 −
∫

(log J0 − log J̃1)dµ0.

From Theorem 5.1 in [27] we get

Proposition 5.10. Denote by Jλ the Jacobian Jλ = λJ̃1 − (1− λ)J0. Then,

(70)
d

dλ

∫
log J1 dµJλ |λ=0 =

∫
log J1

(J̃1 − J0)

J0
dµ0

and

(71)
d

dλ

∫
log J1 dµJλ |λ=1 =

∫
log J1

(J̃1 − J0)

J0
dµJ̃1

From (45) we get
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Proposition 5.11. Denote by Jλ the Jacobian Jλ = λJ̃1 − (1 − λ)J0. Then, the
derivative of minus the entropy of µlog Jλ

(72)
d

dλ

∫
log Jλ dµJλ |λ=0 =

∫
log J0(

J̃1 − J0

J0
)dµ0

and

(73)
d

dλ

∫
log Jλ dµJλ |λ=1 =

∫
log J̃1(

J̃1 − J0

J̃1

)dµJ̃1

From (70) and (72) it follows at once

Proposition 5.12.

(74)
d

dλ
DKL(µJλ , µ1)|λ=0 =

∫
(log J0 − log J1) (

J̃1 − J0

J0
)dµ0

and

(75)
d

dλ
DKL(µJλ , µ1)|λ=1 =

∫
(log J̃1 − log J1) (

J̃1 − J0

J̃1

)dµJ̃1

From convexity we get that d
dλDKL(µJλ , µ1)|λ=0 ≤ d

dλDKL(µJλ , µ1)|λ=1.

In the case d
dλDKL(µJλ , µ1)|λ=0 > 0 we get that

(76)

∫
(log J0 − log J1) (

J̃1 − J0

J0
)dµ0 ≥ 0.

Note that from the inequality 1
x − 1 ≤ − log x we get from above that

d

dλ
DKL(µJλ , µ1)|λ=0 =

∫
log J0

J̃1 − J0

J0
dµ0 −

∫
log J1

J̃1 − J0

J0
dµ0 ≤

(77)

∫
log J0

J̃1 − J0

J0
dµ0 −

∫
log J1 log

J0

J̃1

dµ0.

Example 5.13. We will present an example where the analogous result to Theorem
11.6.1 in [20] is not true.

Consider the shift invariant Markov probabilities µJj = µj , j = 0, 1, 2, associated
to the line stochastic matrices

(78) Pj =

(
P 11
j P 12

j

P 21
j P 22

j

)
.

Using the notation we considered before the Pj is associated to Jj , when j = 0, 1,

and P2 is associated to J̃1. (and therefore µ2 = µJ̃1).

Remark 5.14. Given a fixed j, when P 11
j = P 21

j and P 12
j = P 22

j , we get the i.i.d

Bernoulli process with probabilities (P 11
j , P 12

j ).

In this case the Jacobian Jj is constant in the cylinder r, s, r, s = 1, 2, and takes
the value P srj . The initial vector of probability is

πj = (π1
j , π

2
j ) = (

−1 + P 22
j

−2 + P 11
j + P 22

j

,
−1 + P 11

j

−2 + P 11
j + P 22

j

).
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The entropy of µj , j = 0, 1, 2 is

−
∑
r,s

πrj P
rs
j logP rsj = −

∑
r,s

πrj P
rs
j logP srj = −

∫
log Jjdµj .

For different choices of P 11
0 , P 22

0 , P 11
1 , P 22

1 , P 11
2 , P 22

2 the value

d

dλ
DKL(µJλ , µ1)|λ=0

can be positive or negative. In this way the Second Law regime and the fluctuation
regime can occur for these triples.

Taking P 11
0 = 0.2, P 22

0 = 0.2, P 11
1 = 0.15, P 22

1 = 0.92, P 11
2 = 0.9, P 22

2 = 0.12, we
get that d

dλDKL(µJλ , µ1)|λ=0 = 0.362455 > 0, but

d

dλ
DKL(µJλ , µ1)|λ=0 = 0.2750 > 0

and ∫
(log J1 − log J0)dµ0 +

∫
(log J0 − log J1)dµJ̃1 = −0.3578 < 0.

There are values of P 11
0 , P 22

0 , P 11
1 , P 22

1 , P 11
2 , P 22

2 such that d
dλDKL(µJλ , µ1)|λ=0 >

0 and
∫

(log J1 − log J0)dµ0 +
∫

(log J0 − log J1)dµJ̃1 > 0.

If we assume that all three probabilities are i.i.d Bernoulli (see Remark 5.14) we
get that

d

dλ
DKL(µJλ , µ1)|λ=0 =

∫
(log J1 − log J0)dµ0 +

∫
(log J0 − log J1)dµJ̃1 =

DKL(µ2, µ0)− (DKL(µJ̃1 , µ0) +DKL(µ0, µ1)) =

(79) (P 11
0 − P 11

2 )(log[1− P 11
0 ]− log[P 11

0 ]− log[1− P 11
1 ] + log[P 11

1 ]).

The above expression shows why Theorem 16.6.1 in [20] is true but the analogous
results are not true in the dynamical setting.

5.3.2. First problem. Assume that J1 /∈ Θ1 (associated to µ1) and µ0 (associated

to J̃ = J0 ∈ Θ1) satisfy

(80) DKL(µ1, µ0) = min
J̃∈Θ1

DKL(µ1, µJ̃).

Consider the Jλ ∈ Θ, λ ∈ [0, 1] such that

Jλ = λJ̃1 + (1− λ)J0,

where J̃1 6= J0.
We denote by µJλ the equilibrium probability associated to the Jacobian Jλ

Proposition 5.15.

d

dλ
|λ=0DKL(µ1, µJλ) =

∫
(1− J̃1

J0
)dµ1.
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Proof. Denote Dλ = DKL(µ1, µJλ). Then,

dDλ

dλ
|λ=0 = − d

dλ

∫
log Jλdµ1|λ=0 = −[

∫
d

dλ
log(J̃1λ+ (1− λ)J0)dµ1|λ=0] =

−
∫
J̃1 − J0

Jλ
dµ1|λ=0 =

∫
(1− J̃1

J0
)dµ1.

�

Proposition 5.16. Suppose the type-2 Pythagorean inequality is true

DKL(µ1, µJ̃1) ≥ DKL(µ1, µ0) +DKL(µ0, µJ̃1).

Then,

d

dλ
|λ=0DKL(µ1, µJλ) ≥ DKL(µ0, µJ̃1) > 0.

Proof. As 1− 1
x ≥ log x, we get from Proposition 5.15

dDλ

dλ
|λ=0 =

∫
(1− J̃1

J0
)dµ1 ≥

∫
(log J0 − log J̃1)dµ1 =

∫
(log J1 − log J̃1)dµ1 −

∫
(log J1 − log J0)dµ1 =

DKL(µ1, µJ̃1)−DKL(µ1, µ0) ≥ DKL(µ0, µJ̃1) > 0.

�

Proposition 5.17. Suppose

d

dλ
|λ=0DKL(µ1, µJλ) < 0,

then is true the type-2 triangle inequality

(81) DKL(µ1, µJ̃1) < DKL(µ1, µ0) +DKL(µ0, µJ̃1).

Proof. Note that

DKL(µ1, µJ̃1)−DKL(µ1, µ0) =

(82)

∫
(log J0 − log J̃1)dµ1 ≤

∫
(1− J̃1

J0
)dµ1 =

d

dλ
|λ=0DKL(µ1, µJλ) < 0,

Then

DKL(µ1, µJ̃1) < DKL(µ1, µ0) < DKL(µ1, µ0) +DKL(µ0, µJ̃1).

The above is equivalent to

DKL(µ1, µJ̃1)−DKL(µ1, µ0) > DKL(µ0, µJ̃1) > 0,

which is a contradiction to (82).

�
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6. Appendix - On Fourier-like Hilbert basis

Consider M = {0, 1}N and a equilibrium probability µA = µlog J on {0, 1}N
(notation of [27]), associated to a Hölder potential A = log J , where J is a Jacobian.

Given a finite word x = (x1, x2, ..., xk) ∈ {0, 1}k, k ∈ N, we denote by [x] =
[x1, x2, ..., xk] the associated cylinder set in Ω = {0, 1}N.

For each n denote by Cn the set of all cylinders [x] of length n which is a partition
of M . The lexicographic order � on M = {0, 1}N makes it a totally ordered set.

Denote by Ŝ : M → M a function such that for any x ∈ M , we get Ŝ(1, x) =

(0, x), and moreover, Ŝ(0, x) = (1, x). We denote by S = Ŝ|[1].
Note that a function ϕ in the kernel of the Ruelle operator µJ is determined by

its values on the cylinder [0]. Indeed, if ϕ is in the kernel, we get that for all x

ϕ(1, x) = −J(0, x)ϕ(0, x)

J(1, x)
.

This is equivalent to say that ϕ can be expressed as

(83) ϕ = ϕ 1[0] −
(J ◦S) (ϕ ◦S)

J
1[1].

Initially, we will present a simple example of Fourier-like basis which will help
to understand more general cases which will be addressed later.

Example 6.1. In this example µ is the probability of maximal entropy which is
associated to the potential − log 2. In this case the functions ϕ in the kernel of the
Ruelle operator can be expressed as

(84) ϕ = ϕ 1[0] − (ϕ ◦S) 1[1].

First, we will present a natural Fourier-like basis for L2(µ) (and later for the
kernel of the Ruelle operator).

We order the cylinder sets in Cn using this order. For example, when n = 2 we
get

(0, 0), (0, 1), (1, 0), (1, 1),

and n = 3 we get

(85) (0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1).

By abuse of language we can say that (0, 1, 1) � (1, 0, 0) and also that (0, 1, 1) �
(1, 1, 0).

Given Cn, we say that the cylinder [x] ∈ Cn is odd (respectively, even) if occupies
an odd (respectively, even) position in the above defined order of cylinders. For
example, in (85) the cylinders (0, 0, 0) and (0, 1, 0) are odd and (0, 0, 1) and (0, 1, 1)
are even.

We say that the cylinder [x] ∈ Cn has the cylinder [y] ∈ Cn as its next neigh-
borhood at the right side if [x] � [y], and there is no cylinder [z] ∈ Cn, such that,
[x] � [z] � [y]. In this case we say that [x], [y] is a neighborhood pair of cylinders.

We will define an orthonormal family F = {αm, βn,m ≥ 2, n ≥ 1} of linear
independent continuous functions in L2(µ), which is uniformly bounded on L2(µ)
(all elements have L2 norm equal to 1) and also on C0.

For a given n ≥ 2 we consider the function αn which is constant in each cylinder
[x] = (x1, x2, ..., xn) of Cn, taking the value 1, if in the ordering of cylinders in Cn
the cylinder [x] it occupies an even position, and taking the value −1, if in the
ordering of cylinders in Cn it occupies an odd position.
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For example, α2 = 1(0,0) − 1(0,1) + 1(1,0) − 1(1,1).

The functions αn have L2 norm equal to 1. It is easy to see that < αn, αm >= 0,
n 6= m, m,n ≥ 2. It follows from (84) that the functions αn, with n ≥ 2, are
orthogonal to the kernel of LA.

In a little different procedure, for a given n ≥ 2 we consider the function βn
which is constant in cylinders [x] in Cn in the following way: in the cylinder [0] we
define βn = αn, for all n. For y on the cylinder [1] we define βn(y) = −αn(S(y)).

For example, β2 = 1(0,0) − 1(0,1) − 1(1,0) + 1(1,1) and

β3 = 1(0,0,0) − 1(0,0,1) + 1(0,1,0) − 1(0,1,1) − 1(1,0,0) + 1(1,0,1) − 1(1,1,0) + 1(1,1,1).

We define β1 = 1(0) − 1(1).
The functions βn are in the kernel of the Ruelle operator for the potential − log 2.
The functions βn have L2 norm equal to 1. One can show that < βn, βm >= 0,

n 6= m, m ≥ 2, n ≥ 1. Moreover, < αn, βm >= 0, for all m,n.
The functions αm and βn, m ≥ 2, n ≥ 1, are Hölder continuous for the usual

metric on M = {0, 1}N. The family F is the union of all functions αn and βn,
m ≥ 2, n ≥ 1.

Remark 6.2. One can show that the sigma algebra generated by the functions in
F is the Borel sigma-algebra in M . Indeed, one can get any cylinder set on {0, 1}N
as intersection of preimages of open sets for a finite number of functions in F . In
order to illustrate this fact note that the cylinder [0, 0, 0] can be obtained as

[0, 0, 0] = α−1
3 (0, 2) ∩ β−1

3 (0, 2) ∩ α−1
2 (0, 2).

It follows that F = {αm, βn, n ≥ 2,m ≥ 1} is an orthonormal basis for L2(µ),
where µ is the measure of maximal entropy.

Remark 6.3. Using a similar reasoning one can show that the family F0 =
{βm,m ≥ 1} is an orthonormal basis for the kernel of the Ruelle operator L− log 2.
The family F0 is a Fourier-like family.

�

6.1. A Fourier-like basis for the kernel in the case of Markov probabilities.
Consider M = {0, 1}N and denote by K the set of stationary Markov probabilities
taking values in {0, 1}. In this section, we will present explicit expressions for a
Fourier-like basis of the kernel of the associated Ruelle operator. The functions on
the basis are constant in cylinders.

Consider a shift invariant Markov probability µ obtained from a row stochas-
tic matrix (Pi,j)i,j=0,1 with positive entries and the initial left invariant vector of
probability π = (π0, π1) ∈ R2. We denote by A the Hölder potential associated
to such probability µ (see Example 6 in [38]). There exists an explicit countable
orthonormal basis âx, indexed by finite words [x], for the set of Hölder functions
in the kernel of the Ruelle operator LA (see [37] or the paragraph after expression
(89)).

Given r ∈ (0, 1) and s ∈ (0, 1) we denote

(86) P =

(
P0,0 P0,1

P1,0 P1,1

)
=

(
r 1− r

1− s s

)
.

In this way (r, s) ∈ (0, 1) × (0, 1) parameterize all row stochastic matrices we
are interested.
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The explicit expression for µ is

(87) µ[x1, x2, .., xn] = πx1
Px1,x2

Px2,x3
... Pxn−1,xn .

Recall that in the Markov case the family of Hölder functions

e[x] =
1√
µ([x])

√
Pxn,1
Pxn,0

1[x0] −
1√
µ([x])

√
Pxn,0
Pxn,1

1[x1],(88)

where x is a finite word is an orthonormal (Haar) Hilbert basis for L2(µ) (see [35]
for a general expression and [16] for the above one). The integral of the functions
ex is equal to zero. To be more precise we need to add to this family the functions
1[0] and 1[1] in order to have a basis.

Theorem 6.4. For any two by two stochastic matrix P there exists an orthogonal
basis of the kernel of the Ruelle operator LA, denoted by B = {γn, n ∈ N}, and
constants α > 0, β > 0, such that

I) the functions γn, n ∈ N, in the family B have C0 and L2(µA) norms uniformly
bounded above by the constant β > 0,

II) the functions γn, n ∈ N, in the family B have C0 and L2(µA) norms uniformly
bounded below by the constant α > 0,

Proof. From [38] it is known that for each finite word (x1, x2, .., xn), the function

ax =

√
πx1√

π0

√
P0,x1

e[0,x1,x2,..,xn] −
√
πx1√

π1

√
P1,x1

e[1,x1,x2,..,xn]

=

√
πx1√

π0

√
P0,x1

1√
µ([0x])

[

√
Pxn,1
Pxn,0

1[0x0] −

√
Pxn,0
Pxn,1

1[0x1]]

(89) −
√
πx1√

π1

√
P1,x1

1√
µ([1x])

[

√
Pxn,1
Pxn,0

1[1x0] −

√
Pxn,0
Pxn,1

1[1x1]].

is Hölder and in the kernel of the Ruelle operator. When x ranges in the set of finite
words we get that âx = ax

|ax| is an orthonormal Haar basis for the Hölder functions

on the kernel of the Ruelle operator LA associated to µ (see [37]). In order to be
more precise we need to add two more functions to the family to get a basis (see
[37]).

The L2 norm of ax does not depend on the finite word x. Note that this family
is not Fourier-like because the C0 norm of ax is not uniformly bounded when x
ranges in the set of all finite words.

Note that the values
√
πj

√
π0

√
P0,j

,
√
πj

√
π1

√
P1,j

,

√
Pi,j√
Pm,n

, i, j,m, n = 0, 1, are bounded

above by a constant β > 0 and below by a constant α > 0.
We denote by V the subspace of L2(µ) generated by the span of the functions

ax, where x is a finite word. If ϕ in V , then the extension of LA to V is such that
LA(ϕ) = 0.

Denote by Cn the set of all cylinders of length n which is a partition of M . The
sets of the form [0x0], [0x1], [1x0], [1x1], where x ranges in Cn, is also a partition of
M (defines the set Cn+2).
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Note that for a fixed n and a fixed cylinder x = (x1, x2, .., xn) ∈ Cn√
µ(x0)√
µ(x1)

=

√
πx1 Px1,x2 ...Pxn−1,xnPxn,0√
πx1 Px1,x2 ...Pxn−1,xnPxn,1

=

√
Pxn,0√
Pxn,1

and, for fixed µ, this value is bounded above and below by a bound which is
independent of n and the cylinder x.

Given x set bx as √
µ(x0)ax = bx.

The function bx is continuous and uniformly bounded in the C0 norm. The L2

norm and also the C0 norm of bx are uniformly bounded above by a constant β > 0,
when x ranges in the set of all cylinders. Note also that the values of the norm
|bx(y)|, y ∈ M , are uniformly bounded below by a constant α, independent of the
finite word x.

In a more explicit form: for x = (x1, x2, .., xn), we get

bx =

√
πx1√

π0

√
P0,x1

e[0,x1,x2,..,xn] −
√
πx1√

π1

√
P1,x1

e[1,x1,x2,..,xn]

=

√
πx1√

π0

√
P0,x1

[

√
Pxn,1
Pxn,0

1[0x0] −

√
Pxn,0
Pxn,1

1[0x1]]

(90) −
√
πx1√

π1

√
P1,x1

√
Pxn,0√
Pxn,1

[

√
Pxn,1
Pxn,0

1[1x0] −

√
Pxn,0
Pxn,1

1[1x1]].

Given x, the possible values attained by bx in the cylinders [0x0], [0x1], [1x0], [1x1]
are in a finite set, when [x] ranges in the set of all possible cylinders with different
sizes. Note that for a general stochastic matrix P some of these possible values can
coincide (but not for a generic - on the parameters (r, s) ∈ (0, 1) × (0, 1) - matrix
P ). But his will not be a problem.

Given n, note that the support of the functions bx are all disjoint when [x] ranges
in the set Cn. The union of the supports is the set M . Remember that for a fixed
n, when x ranges in the set of all words of length n, the cylinders [i, x, j], i, j = 0, 1,
determine the partition Cn+2 of M .

For each n we are going to define a function γn of the form γn =
∑
x∈Cn sx bx,

where all sx > 0 are close to 1 in such way that the function
∑
x∈Cn sx bx has C0

and L2 norm smaller than β > 0, and L2 norm larger than α > 0. Moreover, we
get that |sxbx| > α, for all word x of any length.

For each n, we set γn as the continuous function γn =
∑
x∈Cn sx bx. The family

γn, n ∈ N, is orthogonal, C0 and L2(µA) uniformly bounded, but not orthonormal.
Dividing by the norm we get an orthonormal family F0 (and for simplification we
will also denote its elements by γn)

We claim that the sigma algebra generated by γn, n ∈ N, contains all cylinders
of all sizes. This claim can be obtained from a tedious procedure following the
reasoning of Remark 6.3 of Example 6.1 and is left for the reader.

As the sigma-algebra generated by all γn, n ∈ N, is the Borel sigma algebra,
the span of the family of all γn, n ∈ N, contains the set of Hölder functions on the
kernel of the Ruelle operator. From this follows that F0 is an orthonormal basis
of the kernel of the Ruelle operator in the case of Markov probabilities. F0 is a
Fourier-like basis. �
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6.2. A Fourier-like basis for the space L2(µ) in the general case of equilib-
rium probabilities on {0, 1}N. We point out that a similar (but more complex)
procedure as in Theorem 6.4 allows one to get a family ρn, n ∈ N, which is a Fourier-
like basis of the space L2(µ), where µ is a equilibrium probability on {0, 1}N for a
Hölder potential A = log J .

It follows from [16] (using results from [35]) that the family of Hölder functions
(called Haar family)

(91) ex =

√
µ([x1])

µ([x0])µ([x])
1[x0] −

√
µ([x0])

µ([x1])µ([x])
1[x1],

when x ranges in the set of all finite words with letters in {0, 1}, is an orthonormal
basis of L2(µ). But this basis is not Fourier-like (it is not C0 uniformly bounded).

We will produce a Fourier-like basis from this Haar basis.
Bowen formula for a equilibrium probability µ with Jacobian J (see Definition

1.1 in [30] o in [6]) claims that there exists K1,K2 > 0, such that for all n, all
cylinder x = [x1, x2, .., xn] and any y ∈ [x1, x2, .., xn]

(92) K1 <
µ([x1, x2, .., xn])

Πn−1
j=0 J(σj(y))

< K2.

Given n, when x ranges in C(n), the cylinders [x, 0] and [x, 1] determine the
partition C(n+ 1).

We claim that the quotients

(93)
µ([x0])

µ([x1])
,

when x ranges in C(n), are bounded above and below by positive constants which
are independent of n.

For the proof of the claim, for a fixed x ∈ C(n), take initially y[x,r] ∈ [x1, x2, .., xn, r],
r = 0, 1, and it follows from (92) that

(94) K1 <
µ([x1, x2, .., xn, r])

Πn
j=0J(σj(y[x,r]))

< K2.

Note that y[x,r] ∈ [x], for r = 0, 1.
There exists C1, C2 > 0, such that

(95) C1 <
Πn
j=0J(σj(y[x,0]))

Πn
j=0J(σj(y[x,1]))

< C2.

Indeed, from (92) applied for the case [x] = [x1, x2, .., xn]), and r = 0, 1, we get

(96) K1 <
µ([x1, x2, .., xn])

Πn−1
j=0 J(σj(y[x,r]))

< K2.

Note also that Πn
j=0J(σj(y[x,r])) = Πn−1

j=0 J(σj(y[x,r])) J(σn(y[x,r])), for r = 0, 1.
Therefore,

Πn
j=0J(σj(y[x,0]))

Πn
j=0J(σj(y[x,1]))

=
Πn−1
j=0 J(σj(y[x,0])) J(σn(y[x,0]))

Πn−1
j=0 J(σj(y[x,1])) J(σn(y[x,1]))

<

K2

K1

µ([x1, x2, .., xn])

µ([x1, x2, .., xn])

J(σn(y[x,0]))

J(σn(y[x,1]))
=
K2

K1

J(σn(y[x,0]))

J(σn(y[x,1]))
,
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and this shows the existence of C2 > 0 in the last inequality in (95). The proof of
the other inequality in (95) is similar. Then, (95) is true.

Finally, from (92) and (95)

(97)
µ([x1, x2, .., xn, 0])

µ([x1, x2, .., xn, 1])
<
K1K2 Πn

j=0J(σj(y[x,0]))

Πn
j=0J(σj(y[x,1]))

< K1K2 C2

The proof for the lower bound in (93) is similar showing that (93) is true.

Now we are going to define for each n a function ρn whose support is the set M .
For fixed n and each finite word x ∈ C(n) take

(98) c[x] =
√
µ([x]) ex =

√
µ([x1])

µ([x0])
1[x0] −

√
µ([x0])

µ([x1])
1[x1],

When x ranges in the set of all words of length n, the cylinders [x, j], j = 0, 1,
determine the partition Cn+1 of M .

For each n, set ρn as the continuous function

(99) ρn =
∑
x∈Cn

c[x]

From the above and (93) is easy to see that the family ρn, n ∈ N, is an orthogonal
family for L2(µ), which is uniformly C0 and L2 bounded above and bounded away
from zero.

In order to show that is a basis it is necessary to show that the family ρn, n ∈ N,
generate the Borel sigma-algebra on M . This can be achieved following the same
line of the reasoning of Remark 6.2 in Example 6.1.

Therefore, the family ρn, n ∈ N, is a Fourier-like basis for the space L2(µ), where
µ is the equilibrium state for the Hölder potential A = log J.

6.3. A Fourier-like basis for the kernel of the Ruelle operator in the
general case of equilibrium probabilities on {0, 1}N. In this section we will
exhibit a family ρ̂n which is a Fourier-like basis for the kernel of the Ruelle operator
µJ .

For the general case, a typical function ψ on the kernel of LA, where A = log J,
can be obtained in the following way: take a Hölder continuous function ϕ and
consider first ψ defined on the cylinder [0], where we set ψ(0, x) = ϕ(0, x), which
therefore it is well defined for all x ∈M . On the other hand, on the cylinder [1] we
define ψ : [1]→ R in such way that for y = (1, x) ∈ [1]

ψ(y) = − (J ◦S)(y) (ϕ ◦S)(y)

J(y)
1[1](y).

It is easy to see that ψ is on the kernel of LA. Indeed, given x we get

LA(ψ)(x) = J(0, x)ψ(0, x) + J(1, x)ψ(1, x) =

J(0, x)ϕ(0, x)− J(1, x)
J(S(1, x))ϕ(S(1, x))

J(1, x)
1[1](1, x) =

J(0, x)ϕ(0, x)− J(0, x)ϕ(0, x) = 0.

The function T taking ϕ : M → R to ψ : M → R in the kernel is defined by

ψ = T (ϕ) = ϕ 1[0] −
(J ◦S) (ϕ ◦S)

J
1[1]
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We claim that T is a linear projection onto the kernel, that is T (ϕ) = ϕ, for all
ϕ on the kernel. Moreover, if ϕ is on the kernel, we get that for all x

ϕ(1, x) = −ϕ(0, x)J(0, x)

J(1, x)
.

Remark 6.5. Note that the function (J◦S) (ϕ◦S)
J (which is defined on [1]) is linear

on ϕ (a function defined just on [0]).

We consider the family âx : [0]→ R (see(98)) where

(100) âx := c[0x] =

√
µ([0x1])

µ([0x0])
1[0x0] −

√
µ([0x0])

µ([0x1])
1[0x1],

where x ranges in the set of all finite words x. For fixed n, the pair of cylinders [0x0],
[0x1], where x ranges in Cn, describes a partition of cylinder [0] by the cylinders in
Cn+2 (using just the ones contained in the cylinder [0]).

Any given Hölder function f with support on [0] can be written as an infinite
sum f =

∑
x rxâx. Indeed, taking f1[0] + 01[1], and expressing it in the basis (98),

we will just need to take elements of the form c[0x].
For any finite word x consider the function ax (defined on M) which in the

cylinder [0] coincides with âx, and in the cylinder 1 the function ax is given by

(101) ax = − J ◦S
J

[

√
µ([0x1])

µ([0x0])
1[1x0] −

√
µ([0x0])

µ([0x1])
1[1x1] ] .

Each function ax is in the kernel of µJ . It follows from (97) that the functions
ax, where x is a finite word, are uniformly bounded below and above in the C0 and
L2 norm.

Note that
∑
x rxâx restricted to the cylinder [0] coincides with the f given above.

It follows from the above and Remark 6.5 that any function on the kernel can
be written as a infinite sum

∑
x rxax.

We denote by τ0 : M → [0] the inverse of σ|[0] and τ1 : M → [0] the inverse of
σ|[1]. The functions τ0 and τ1 are called the inverse branches of σ.

Lemma 6.6. Given a function ϕ : [0]→ R we get that

(102)

∫
[0]

ϕdµ =

∫
M

ϕ(τ0) J(τ0)dµ.

In a similar way, function φ : [1]→ R we get that

(103)

∫
[1]

φdµ =

∫
M

φ(τ1) J(τ1)dµ.

The above Lemma which characterizes the Jacobian J as a Radon-Nykodin de-
rivative is a classical result in Thermodynamic formalism (see (5) in [38] or [49]).

Lemma 6.7. Given a continuous function f : [0]→ R, then

(104)

∫
[0]

fdµ =

∫
[1]

(J ◦S)(y)) (f ◦S)

J(y)
dµ.
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Proof. First note that S = τ0 ◦ T.
In (103) take

φ =
(J ◦S) (f ◦S)

J(y)
=
J((τ0 ◦ T )(y)) f((τ0 ◦ T )(y))

J(y)
.

Then, from (103) and (102) we get∫
[1]

φdµ =

∫
M

(φ ◦ τ1) (J ◦ τ1)dµ =

∫
M

J((τ0 ◦ T )(τ1(y))) f((τ0 ◦ T )(τ1(y)))

J(τ1(y))
(J ◦ τ1)dµ =∫

M

J(τ0(y)) f(τ0(y))dµ =

∫
[0]

f dµ.

�

Lemma 6.8. Given different words x and y we get that

(105)

∫
ax ax dµ = 0.

Proof. First note that it follows from orthogonality of the family of functions of the
form e[0x] (where x is a finite word) that∫

[0]

ax ax dµ =

∫
[0]

âx âx dµ = 0.

Now, on Lemma 6.7 take f = âx âx. Then, it follows that∫
[1]

ax ax dµ = 0.

As ∫
ax ax dµ =

∫
[0]

ax ax dµ+

∫
[1]

ax ax dµ

the claim follows.
For each fixed n ∈ N we get that the support of each function ax, where x ∈ Cn,

is [0x0] ∪ [0x1] ∪ [1x0] ∪ [1x1]. When x ranges in x ∈ Cn this defines a partition of
Cn+2.

In a similar way as in the other cases we have considered before, we can produce
a Fourier-like basis from the Haar basis ax, where x is a finite word. Indeed, for
each n ∈ N take

ρ̂n =
∑
x∈Cn

ax.

From Lemma 6.8 this family is orthogonal. Dividing each element by its L2 norm
we can get an orthonormal family which will be also denoted by ρ̂n, n ∈ N. Now,
collecting all the claims we proved before we get that the family ρ̂n is a Fourier-like
basis for the kernel of the Ruelle operator µJ .

�

We thank the referee of this work for the valuable suggestions for several changes
on the text and for the careful reading.
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