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Abstract

A Large Deviation Principle (LDP) at level-1 for random means of the type

n—1

ZZij-l-l; n= 1727"' ’
Jj=0

1

M, = —

n
is established. The random process {Z,},>0 is given by Z,, = ®(X,) +&,, n=0,1,2,---,
where {X, },>0 and {{,}n>0 are independent random sequences: the former is a stationary
process defined by X,, = T™(Xy), Xo is uniformly distributed on the circle S*, T': St — S*
is a continuous uniquely ergodic transformation preserving the Lebesgue measure on S! and
the later {&,}n>0 is a random sequence of independent and identically distributed random
variables on S'; @ is a continuous real function.

The LDP at level-1 for the means M, is obtained by using the level-2 LDP for the Markov
process {Vi, = (Xn,&n, &nt1) }n>0 and the Contraction Principle. For establishing this level-2
LDP, one can consider a more general setting: 7' :[0,1) — [0,1) is a measurable preserving
Lebesgue measure, ® : [0,1) — IR is a real measurable function and &, are independent
and identically distributed random variables on IR (for instance, they could have a Gaussian

distribution with mean zero and variance o?).
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The analogous result for the case of autocovariance of order k is also true.

Keywords and Phrases: Large deviation, level-1 entropy function, level-2 entropy function,

contraction principle, ergodic transformations, Markov process.
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1. Introduction

Given a probability space (€2, F,P) and a measurable transformation 7' :  — Q, we

say that T is measure preserving if
(1.1) P(T7'(A)) = P(A), VA€ F.

We say that T is uniquely ergodic if there exists only one invariant measure for 7', in the
sense of (1.1).

We will parametrize points y = exp{2wiz} in the circle S* by x € [0,1) and we shall
identify z and y according to the convenience. In the sequel we will consider T : S* — S* a
continuous map. With this identification on mind, we point out that the main motivation of

this paper came from Time Series Analysis. In that context, the process
(1.2) Xn =T"(Xo),

where T :[0,1) — [0,1) is a continuous, measure preserving transformation and 7" is the
composition of 7', n times, is called signal process.

One of the examples of transformations we are interested in is T defined by
(1.3) T(z)=(zx+a)mod 1, ze€][0,1),

where « is irrational. It is well known that this transformation preserves the Lebesgue
measure A on ([0,1),5([0,1))), where B(A) is the Borel o-field of subsets of A; moreover,
T is uniquely ergodic (Durrett, 1996). For this example, the process {X,},>0 in (1.2)
is stationary if and only if X¢ is uniformly distributed on [0,1). We observe that this
process may be viewed as a Markov process with transition function p(z,A) = 04(T(z)),
A€ B([0,1)),

1, veA

5A(U):{07 v A,
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having the Lebesgue measure on [0, 1) as its unique stationary distribution. Other examples
of uniquely ergodic transformations appear in Lopes and Rocha (1994), Coelho et al. (1994),
and Lopes and Lopes (1995, 1996).

Let ® be any continuous real function on S* and {,},>0 a sequence of independent
and identically distributed random variables in the circle S', common distribution 7, and

independent of {X;,},>0. We define
(1.4) Zp=®(Xp) 4+ &, n=0,1,-.

When ®(z) = cos(2mz) and T is given by (1.3), the process Z, is called the harmonic
model.
The main goal in this paper is to establish a level-1 Large Deviation Principle (LDP) for

the random means

1
EZij+1; n=12--

e
=0

1
1.5 M, = —
(15) -
where Z,, is defined in (1.4) with 7" : [0,1) — [0,1) being a continuous, uniquely ergodic
transformation preserving the Lebesgue measure A (or a measure absolutely continuous with
respect to the Lebesgue measure). For simplifying the exposition we shall assume that T
preserves the Lebesgue measure. We refer the reader to Lopes and Lopes (1995,1996) for the

motivation of analyzing such process and where all results at level-2 LDP considered here are

applied. The strategy we shall follow consists in firstly to get a level-2 LDP for the process
(16) Vn = (Xn7€n7€n+1)a TLZO,].,Q,"' )

and then, using the Contraction Principle (see Ellis, 1985), to obtain the level-1 LDP for
(1.5).

The level-2 LDP is considered in §3 and §4. The assumptions on {{,}n,>0 and 7' may
be weakened in this case: the random variables &,, n > 0, may not have compact support
(the random variable &, can be Gaussian distributed) and the transformation 7' can be
discontinuous. In §5 we obtain the level-1 LDP for (1.5) when &, has compact support. In
86 we make some remarks about special situations and extension results. In Remark 6.5 we
point out that similar results are also valid for the autocovariance of order k, that is, for sums

of the form
1 n—=k
- > ZiZjx
j=0
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The level-1 LDP for the random means M,, asin (1.5) is not true when &, is a Gaussian

distributed random variable.
2. Statement of the Main Results

In what follows we introduce notations, definitions, and we state the main results of this
paper.
The random process {V, },>0 in (1.6) is a Markov process with phase space S = [0,1) x

IR? and transition function

(21) H((ac,y, Z)’ d(xlaylazl)) = 5T(w) (dwl)(s{z} (dyl) U(dzl)a (xvya Z) €5,

where the random variables &;,&s,--- are independent and identically distributed with com-
mon distribution 1 on IR.

It is worth to remark that, given a Markov process with phase space S, transition function
I1, and initial distribution u, the Kolmogorov Existence theorem (see Billingsley, 1995) allows
one to construct a measure P, on sequence space (ST, 0(C)) so that the sequence Y, (w) =
w,, w € SN, has the same distribution as the original Markov process.

From now omn, let us assume Q = S as being the space of sequences of elements of
S, 0(C) be the o-field generated by the cylinder sets, and IP, the probability measure on
(©2,0(C)) given by

(2.2) Pu[Ve € Aoy, Vi € Ay] = /,u(dvo)/ﬂ(vo,dvl) . /H(vn_l,dvn),
Ao Aq An

YAo, -, A, € B(S), where p is a (initial) distribution on (S,B(S)). If u(-) = d,(:), for
v € S, the above measure is denoted by IP, and the corresponding expectation by IE,.

If #n is the distribution of &, , it is not difficult to see that the product measure A x5 xn
on (S,B(S)) is the unique stationary distribution for the Markov process {V,},>0 (in the
sense that the only initial distribution that makes {V},},>0 a stationary processis Axnxn).

By the ergodic theorem (see Durrett, 1996), for any A x n x n-integrable function ¢,

(23) T LS o) = [90) 4k x @), Prsgey —as.
Jj=0 S



where Vj(w) = (Xj,&;,&+1)(w) = wj , for all w € Q. Moreover, the above convergence holds
P, —as., Yv €S (see Doob, 1953).

Let M;(S) be the space of probability measures on B(S); it is a Polish space (complete,
separable metric space) if we impose on it the weak topology (which is compatible with the
Lévy metric) (see Appendix in Dembo and Zeitouni, 1993). For measures in M;(S) we shall
introduce some definitions. By writing S = S; x Sz x Ss, for i € {1,2,3} let m; be the
projection of S onto S;, and m;; be the projection of S onto S; x S;, for i,j € {1,2,3},
defined by m;(s1,82,s3) = 8; and m;;(s1, 82, 53) = (84, 8;5) . If v is a measure in M;(S), then

define a probability measure m;v on B(S;) by requiring that, for each i € {1,2,3},
miv(F) = v(n7Y(F)) = v{(s1,52,53) €S :s; € F}, YF € B(S)).

The measure m;v is called the i-dimensional marginal of v. Similarly, define ;v as the

probability measure on B(S; x S;), for each 4, j € {1,2, 3}, given by

WijV(F) = I/(ﬂ'fl(F)) = I/{(Sl,Sz,Sg) €S: (Si,Sj) S F}, VF e B(S, X SJ)

)

The measure m;;v is called the (4,j)-dimensional marginal of v. We also define, for each

v € M;(S), a new measure vT~! in M;(S) by requiring
VI H(AxBxC)=v(T'(4) x BxC),

for all measurable rectangle A x B x C'.

Let us introduce the empirical means

1E 1=
(2.4) == Z = =D 00 ) (). () ()
j=0 j=0
we SN n=1,2--. Clearly, for each w € SV, L,(w,-) € M;(S). Moreover, L, is

o (C)-measurable:
LY (A) ={weQ: Ly(w, ) € A} € 0(C), YA€ B(M,(9)).
The distribution of L, on B(M1(S)) is Qn,u(-) given by

(2.5) Qnu(A) = Pu[L7 (A)], VYA€ B(Mi(S)),
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where p is a distribution on (S, B(S)) . In particular, if pu(-) = 6,(), for v € S, we shall use
the notation Qp 4(:)-
Since
1
9(0) L, o) =+ 3 (V)
s J=0
it follows from (2.3) that
Ly(w,")=>Axnxn IP,—as., Yv€ES,

and then
lim Qnv(4) =0

n-r00
if Axnpxn¢gA A€ B(Mi(S)), where A is the closure of A. Hence, the sequence
{@Qno(-) :n=1,2,---} converges weakly, when n goes to infinity, to the unit point measure
Oxaxnxn on Mi(S). We shall show that the sequence V,, obeys a LDP at level-2 (see Ellis,
1985), with the entropy function I(v), v € M;(S) (this statement is equivalent to that the
family {@n(-) : n > 1} obeys a LDP with entropy function I(v)).

In §3 and §4 we prove that I(v) is given by

glnmﬂmdu, if v e My andg‘lnmﬂm‘ dv < +00

(2.6) I(v) =
400, otherwise
where
(2.7) Mo={veMi(S):mv =\ maov=mavT™", v<Axnxnl,
dv
m(z,y,2) = m(%yaz)
and
(28) mia(ey) = [mle, . 2n(dz).
R
We may say that
m(@,y,2) _
——=—= =m(z/x,
(e 1) (z/2,y)

is the conditional density of m3v/mav, with respect to the measure 1.
Now we state the main result in this paper (the level-2 LDP) which will be proved in §3
and §4.



Theorem 2.1. For I(v) given in (2.6) and for any (z,y,z) € S,
(a) Lower Bound: for all open set G C M1(S),

1
(29) 11_1’11 —1In Qn,(w,y,z)(G) > - inf I(V)

n—oo 1t reG

(b) Upper Bound: for all closed set F C M1(S),

— 1
(2.10) lim —InQ, (4,y,.)(F) < — inf I(v).

n—oon veFr
(¢) Compactness of the Level Sets: Vs > 0, {v € M1(S) : I(v) < s} is a compact set in the
weak topology.

A corollary (see Theorem 4.3.1 in Dembo and Zeitouni, 1993) of this theorem is that if

¥ is a bounded real-valued weakly continuous functional on M, (S), then

1 o
3 _ n,(x,y,z) n¥(v) | — _ 3
nhrn - In IE9 {e } = ue/lertlf(s)[w(y) + I(v)].

To prove Theorem 2.1 we use the same approach of Donsker and Varadhan (1975a):

starting with the functional

(2.11) I(v) = _d}g\// ln%du,
S
where
(212) H¢($;y;2) = /w(xlaylazl)ﬂ((w7yaz)7d(wlaylazl))a
S

with II defined in (2.1) and

W ={¢:S — IR : is continuous, Ja,b such that
(2.13)
0<a<y(z,y,z) <b< oo, V(z,y,2) € S},
we prove that I(v) in (2.11) coincides with I(v) in (2.6) and then we show that {Q, (") :
n > 1} obeys a Weak Large Deviation Principle with entropy function I(v) (i.e., Theorem
2.1 is valid but the upper bound holds only for compact subsets of M;(S)). To extend the
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upper bound to closed sets, it is enough that {Q, .(-) : n > 1} be exponentially tight, which
is proved in Lemma 4.1 of §4. If the distribution of &, has compact support then M;(S) is
compact which implies that the Weak LDP is in fact the LDP for the process.

It is important to observe that the functional I(-) in (2.11) is lower semicontinuous in
the weak topology of M1 (S) and convex. Moreover, I(v) = 0 if and only if » is the invariant
measure of II (see Lemma 2.5 in Donsker and Varadhan, 1975a).

Now, returning to the means (1.5), we have
ZjZjp1 = [2(X;) + GlR(T(X;)) + &l
If g: S — IR is defined by
(2.14) 9(@,y,2) = [®(x) + y][2(T(2)) + 2],

we may write

[

n—

S|

(2.15) LS 4 = 13 g)w) = [g)dLateo)
=0 :

J= S

Assuming that 7' is continuous and the distribution 7 has compact support (which is true
if the random variables &, have distribution on S!), the function g is continuous and

bounded. Therefore, the operator G : M;(S) — IR, such that G(v) = [g(v)v(dv), is weakly
5

continuous. Using the Contraction Principle (see Ellis, 1985), the LDP at level-1 for (1.5) is
obtained taking into account (2.15): the level-1 entropy function Iz(:) is given by

Iz(r)= inf I(v)=inf{I(v):ve Ml(S),/g(v)V(dv) =r}

(v.g)=r
S

where I(-) is the level-2 entropy function for {@n(-) : » > 1}. In this way the LDP at
level-1 follows from the LDP at level-2.

3. Level-2 Large Deviations: Lower Bound

The goal here is to prove part (a) of Theorem 2.1. For proving it we need some lemmas.
First we consider the random process {X,},>¢ introduced in (1.2); it can be seen as

a Markov process with transition function p(z, A) = §4(T'(z)), = € [0,1). Throughout this
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section and §4 T is not assumed to be a continuous transformation and the support of the
random variables &, is not compact, necessarily. As T is uniquely ergodic and preserves the
Lebesgue measure, the uniform distribution on [0,1) is the unique stationary measure for the
process X, = ¢poT",

Let

n—1 n—1
1 1
LSLI)(xa ) = E Z 6Xj(w)() = E ZéTJ(z)()a HAS [01 1)
j=0 j=0
The ergodic theorem says that

L(l)(g;7) = /\()7 VSEE[O,].),

n n—oQ

where A is the Lebesgue measure on [0,1).
Let Q,(zl)x() be the distribution of L,(zl)(x, ) on B(M;(][0,1))). Notice that, once the

initial point x is fixed, the process {X,},>0 is deterministic as well as Ly (x,-). The next

lemma follows from this observation.

Lemma 3.1.

(a) For all open set G C M1([0,1)),

1
lim = In QWM (G) > — inf 1M
Jim = nQne(G) 2 - inf I'V(v),
and
(b) for all closed set F C M;([0,1)),

T QU (F) < - inf 10(),
, in

n—+oon
where the entropy function at level-2 I™V)(v) for the process {X,}n>0 is given by

0, ifv=2A

](1)(,/) - { +oo, Iifv#A

Secondly, we consider the Markov process {V,,},>0 introduced in (1.6). Its transition
function 1II is given in (2.1) and its phase space is S =[0,1) x IR%. Let I(-) be the entropy
function defined in (2.11).



Lemma 3.2. I(v) < +oo if and only if v € My and the density m(z,y,z) of v with

respect to A X i X 7 satisfies

x ya
3.1 /
(3.1) \ e

where mi2(x,y) is given in (2.8) and M is the set introduced in (2.7). Moreover,

m(z,y, 2)(A x 0 x 7)(d(@,y, 2)) < +o0

m12 x y)

fln m(w,y z) v(d(z,y,z)), ifve Mo and (3.1) holds
(3.2) I(v) =

+oo, otherwise.
Proof: Suppose that v € My and that (3.1) holds. Let

dv

m(wayaz): (z,y,2) €S

m(x,y,z) =
and

d7T13V

mia(a,2) = [mia,pn(dn) = G2, 2).

Since m3vT (A x B) = mzv(T*(A) x B), for all A € B([0,1)), B € B(R), and T is
A-preserving, we get

dﬂ'lgl}T_l

T (z,2) = mlg(T_l(a:),z).

Taking into account that mov = w3071, we have mya(z,y) = mi3(T1(x),y). Let

l= /m (%,y, 2 m(@,y, z) n(dz)n(dy)dz.

m12($ DK

By hypothesis, [ < +oo. Notice that, for ¢ € W,

1“ (2, 7 m/¢ du) — Iz, y,2), ¥(2,9,2) € 5.

So, if we show that, for all ¢ € W,

//Fﬁw mimﬁ@mw@_

[0,1) R

—/mm%am¢m%amwmwwmz—z
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then I(v) <1, I(-) being the functional in (2.11).
Recall that the marginal density of mv is my(x) =1, for all = € [0,1), so that, for
each z € [0,1), m(z,y, z) is a probability density (with respect to 7 x n) of some measure

pe on B(IR?). For each z € [0,1), let us define A, = {(y,2) € R* : m(z,y,z) > 0}. Clearly
pe(Az) = 1. Let B, = {y € R : mys(x,y) > 0}. Since the first marginal MS) of p, has

density mia2(z,y) with respect to 7, u( )(Bm) = 1 which means that

1—/m12wy (dy) = / /mxy, dz}n(dy).

Hence, p,(B, x IR) = 1 and we may identify A, with B, x IR, in terms of integration.
Then,

Iz/mazy,z ) It (a, y, 2) n(dz) n(dy) da = // (e, 9, 2m(e, v, =) n(dy) n(dz) de =

[0,1)
[0,1)
/ // [mlf i’,y } m(z,y, z) n(dz) n(dy) dz.
[0,1) Aa

But, for each (z,y) € [0,1) x R with mys(z,y) > 0, % is a density with respect to
7 for some probability measure on B(IR). Using Jensen’s inequality in the first integral on

the right hand side of the last equality (this is possible if one substitutes A, by B, X IR),

I< //m l/¢xy, ]mlz(x,y)n(dy)dx-l-l.

[0,1) R

we obtain

Since miov = msvT ™! and A = AT'~!, we may write
b

= //m /tb(way:Z)n(dZ)] mas(T~(x), y) n(dy) dT " (x) + 1 =

oHR LR
= //m /w dz)] myz(v,y) n(dy) dv +1
[0,1)B
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and we get (3.3).
Now suppose that I(v) < +oo. Let I(v) =1 for v € M;(S). Then,

(3.4) / lln /w(T(x),z,u)n(du)] msv(d(z, z))—
R

[0,1) IR

—/lnw(:n,y,z)l/(d(a:,y,z)) >—l, YVypeW.
s
From Lusin’s theorem (see Rudin, 1974), (3.4) also holds for all nonnegative measurable
functions on S, bounded away from zero and infinity. We denote this set by W*.
Let v € W* be defined by (z,y,2) = 1(z)2(y)Ys(z), where 9, is any continuous
function with ¢4 (z) >0, Vo €[0,1), ¥ =1, and

%(Z)Z{k, Zz€eA

1, ze€ A
where k> 1 and A € B(IR). For such v, (3.4) implies that
(3.5) mor(A)Ink < I +1In[ky(A) +n(A9)] + / In o (T () mov(da) — / In iy (2) w0 (de).
[0,1) [0,1)

Suppose that mv # A. From Lemma 3.1, we know that for all M > 0, there exists a

positive continuous function ; on [0,1) such that

In “T(@)) mv(dx) < —M.

¥1()

[0,1)
So, we may choose M, 91, and k in such a way that (3.5) implies that
mav(A)Ink <l+In[kn(A) +n(A°)] - M <0

which is a contradiction, if M is large enough. Therefore, mv = X.

Now take ¢(z,y,z) = ¥1(2)2(y)s(z) with

k, (.’E,y) € A1 X A2
17 (.’E,y) g Al X A?a

12
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where 4, € B([0,1)), As € B(IR), and 3 = 1. Notice that

Y1(T(2))h2(y) = k & (z,y) € T~ (A1) x Ay.

Hence (3.4) implies that, for £ > 1,

l
7T12V(A1 X Ag) — 71'13V(T71(A1) X Az) S m
By making k£ — oo, we get

7T121/(A1 X Ag) S 71'131/T71(A1 X Az),

from what follows the equality of measures m2v and w3071, if one takes the complement
of the set.

To show that ¥ < X x i x 7 first we show that w307 ! < A x 5. Choose ¢ € W*
such that ¥(z,y,z) = ¥1(z, 2)Y2(y), Y2 =1, and for A € B([0,1) x IR),

k, (xz,z) € A,

Ve, 2) = { 1, (x,2) € A°.

By Jensen’s inequality and (3.4) we get

In //zpl n(du)dz — //lnz/)l z, z)mav(d(z,z)) > —L.

[0,1) [0,1)
Since A = AT~!, the last inequality implies that
mgv(A)Ink <I+In[(k —1)(A xn)(4) + 1].

If (Axn)(A4) =0 we have
— 0, when k — +o0.

Hence, m3v < A x 1. Consequently, 30T ~1 < X x 5 since

7T131/T_1(A X B) = 7T131/(T_1(A) X B)

13



and we conclude that

dmi3v _ d7T131/T71

(z,y) = mis(T ™~ (2), ).

Using this fact and that T is A-preserving, (3.4) may be written as

(3.6) // 1n/¢(x,z,u)n(du) muT—l(d(x,z))—/1n¢(x,y,z)u(d(x,y,z))z—z.
) R

[0,1) R s

Finally, for having v < X x 1 x 77 it suffices that v < w307~ x 1. To prove this last

statement, choose ¥ € W* as

k? (:L'Jy?Z) E A

¢(x7y’ z) = { ]_7 (x,y,Z) 6 AC’

where A € B(S). Jensen’s inequality and (3.6) imply that

v(4) < ﬁ + ﬁ In {k[mzvT " x n](A) + [mzvT ™! x 5](A9)}

from what we conclude, by taking k& — +oo, that v < msvT ! x 1.
It remains to show that (3.1) holds. By defining

m(z,y,z) 1 1
n(,y,2) = ———=V =] An=(a(z,y,2) V—=)An, n>1
wnoo2) = (PEEE L) A= (ate2) V)

and following the same arguments as in the proof of Lemma 2.1 in Donsker and Varadhan
(1975a), we get (3.1). In what follows we outline the main steps.

From the Dominated Convergence theorem,

n—oQ

(3.7) lim / (2, 9, 2 (2, ) — m(, 4, 2)] (A x 1 X 1) (d(z, 9, 2)) = 0.
S

But I(v) =1 < 400 implies that (3.6) holds for all ¢» € W and then from Lusin’s theorem it

also holds for 1 € W*. Hence, for 9 = u,, and using Jensen’s inequality, we get from (3.6),

(3.8) / I (1, 2)0(d(z,, 2)) < In / (2§, 2)maa (@, y)n(dy)n(dz)de +1;
S S
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for obtaining the above inequality we also used the fact that m3vT ! = muv. Since
m(x,y,z) is a probability density with respect to A x 5 x 5, it follows from (3.7) and (3.8)
that

(3.9) lim | Inuy,(z,y,2)v(d(z,y,2)) <L

n—00
S

By the Monotone Convergence Theorem

/(lnun)*du 0 (lna)~dv = /a (In @)™ d(m2v) dn < 400

n—oQ

S S S

and then (3.9) implies that

lim [ (Inw,)Tdv <1+ /a (Ina) d(mav)dn < +oc.

n—oQ

S S

Hence

/| Inaldv < 400

which is (3.1). Moreover,

/mxy, MU Y:2) () sy ) d(,y,2)) < 1= I(0).

mlz(v’ﬂ Y)

From the whole proof we also conclude that, if I(v) < +oc then

/mxy, 0 U0 0 ), 2)
so we have (3.2); besides, (2.11) and (3.2) are equal.
|
For proving the lower bound (2.9) in Theorem 2.1 we shall consider a new Markov process
with transition function II' absolutely continuous with respect to II.
Let us introduce the set

dv

MQZ{I/EMOCW

(x,y,2) =m(z,y,z) and
Jd¢,d such that 0 < ¢ <m(x,y,2z) <d < +oo, YV(z,y,2) € S}.
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Let v be in M, with density m(z,y,z). Define

m(z1,y1,21)

(3.10) ' ((z,y,2),d(z1,91,21)) = maz (a1, y1)

H((wayaz);d(wlaylazl))a
with II as in (2.1).

Lemma 3.3. Under the above conditions, v is the only invariant measure for II'.

Proof: Clearly I(v) < 400 which implies, from Lemma 3.2, that v € M. It is not difficult
to show that

/ I (2,9, 2), A1 % Ay X Ag)o(d(z,y,2)) = v(A x Ay x Ag),
S

for any measurable rectangle A; x As x As.

Lemma 3.4. Let G be an open subset of M1(S). Then

inf I(v) = inf I(v).
= L)

Proof: This lemma can be proved as Lemma 2.9 in Donsker and Varadhan (1975a) so we
omit it.

|

Lemmas (3.2)-(3.4) allow one to prove the lower bound (2.9) by using the same arguments

as in Donsker and Varadhan (1975a). In what follows, we outline the main steps of the proof.
Proof of the Lower Bound

Let v € M» and, for simplifying the notation,

m(z,y, z)
W(z,y,z) =ln —————= =1Ina(x,y, 2), T,y,2) €5,
(z,y,2) 12 (2.) (z,9,2), (2,9,2)
where m is the density of v with respect to A x  x . Then I(v fs W dv.

Let S(v;e) be the sphere with center v of radius ¢ > O, in the weak topology on
M (S). Define E, , . = {w: L,(w,-) € S(v;e)}. One may show that

QnU[S(VE / H mi2 wjay.ﬂ dﬂj{),

m(z;,Yj,25)
ETLIJE
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where P! is the probability measure in Q = SV induced by the transition function II' (v, du)
defined in (3.10).

For each &' > 0, define

Fn’,,75/ = w .
n

W (Vo)(w) + -+ W(Va 1) (w) / W dv| < &
S

Then
Qnw [S(Ww;e)] > exp{—n[l(v) + €} P, [Eype N Fyue].

By Lemma 3.3, v is the unique invariant measure for II'. From the ergodic theorem
(see Doob, 1953),
Lyp(w,")=>v, P —as., YveS,

so that, Ve >0, Ve’ >0,

lim P)[E,,:]=1 and lim P)[F,,.]=1.

n—+oo n—-+4o0o

Hence,

lim 1 InQno[Sv;e)] > —I(v), veMo.

n—+ooT

Now, let G be an open subset of M;(S) and take v € GN Ms. Since G is an open
set, there exists ¢ > 0 such that S(v;e) C G. By using the last inequality and Lemma 3.4
we get (2.9).

4. Level-2 Large Deviations: Upper Bound

Following the same ideas as in Donsker and Varadhan (1975a), one can prove the upper
bound in (2.10) for compact sets. Since the measure i has not compact support, M;(S) is
not a compact set. So, the inequality for closed sets does not follow as a consequence.

Proof of the Upper Bound

Let v € W, u=1Iy, and e~ =4 /u. Notice that W = InIl¢) —In+) is bounded and

continuous. From the Markov property it follows that

E, {exp{-[W(o) + -+ W[ V1) Ju(Vp-1)} =¢(v), YveS, n>1,

17



where V,, = (X,,, &0, &ut1) as before. Then
Ey {exp{—[W (Vo) + -+ + W(Vao1)]} < M,

for some constant M > 0. This inequality may be written as
E® "+ { exp —n/W du <M
s

where p € M;(S) is the integration variable.
First, take F' C M;(S) as being any measurable set. From the above inequality we get

Quo(F) < Msup [ 1n (@> dp, VibeEW,

per 'QZ}
S
and then

— 1 II
lim —InQp(F) < inf sup/ln <—¢> dpu.

n—+007n YeEW LeF

Secondly, for any F C U¥_| F;, for F; measurable sets,

1 II

lim —InQ,(F) < inf sup inf sup /ln <_¢> dp.

n—+oomn Fr0 Pl 1<i<k YEW ueF; (0
Fcuk_ F;

Now, if F' is a compact set it can be shown (see Donsker and Varadhan, 1975b) that
the expression on the right hand side of the above inequality is equal to

. 1Ty .
sup inf [ In(— ) du=—inf I(u).
uezg YEW ( " > H Jud, ()

Up to now, (2.10) holds for compact sets F'. Therefore, {Qn(-) : n > 1} satisfies a
weak LDP with rate function I(:) given in (2.11). But Lemma 4.1, to be proved below, tells
us that this family of measures is exponentially tight, so (2.10) holds for closed sets F as
well (see Lemma 1.2.18 in Dembo and Zeitouni, 1993).

|

Relying on Lemma 1.2.18 in Dembo and Zeitouni (1993), since the lower bound in (2.9)
holds for all open sets and the family of measures {@Q,(-) : n > 1} is exponentially tight,
then I(:) in (3.2) is a good rate function, that is, the level sets {v : I(v) < s} are compact
in the weak topology. Moreover, this property is carried out to the rate function Iz(-) for

the process M, in (1.5).

18



Lemma 4.1. The family of measures {Qp (z,y.-)(-) : 7 > 1} is exponentially tight.

Proof: We shall prove that VL > 1, there exists a compact set Cr, C [0,1) x IR? such that
— 1
lim —In Qn7(w7y7z)(02) S —L.

n—oon

For each ¢ € YW and t > 0 define the functional

U,y (v) = exp [nt/@bdu] , v e My(S).
s

Then

b

Wiy (La(w, ) = exp lt S (Vs (w))
j=0

where (V,)n>0 is the random process in (2.6) and L, (w,-) is defined in (2.4). Besides,

(4.1) EQn‘(m‘y‘z)\Ilw(.) = / exp lnt/d)du} Qn7($7y7z)(dv) = E(,.y.z) exp {tnzlw(Vj)} ,
s

M1 (S) 3=0

where JE@~ (=% is the expectation corresponding to the measure Qn.(2.y.2)-

For each 4 > 0, define

Using (4.1), we get

n—1

(4-2) Qn,(z,y,z)(Aé) < eXp{_nt‘S}E(z,y,z) exp [t Z ib(V])

=0

Choose {K,,} as a sequence of compact subsets of IR for which n(Kg) — 0 as
m — 4o00. Define K,, =[0,1) x K2

m>

m > 1. Clearly K,, is a compact subset of S and
Kp, =10,1) x (K,)" =[0,1) x {(K5,)? U (K5, x Kn) U (K x K}
=[0,1) x (B}, U B2, UB2).
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Let us introduce the functions v, = Xz., m > 1, and the sets
AP = V:/wmdl/Z(S ={v:v(K:) > 6}.
s
Then, by using (4.2),

3
Qn,(z,y,z)(Agn) < ZQH7($7y7Z)({V : V([0> 1) X B:n) > 6/3}) <

i=1
(4.3) , ) ,
< exp{—nt6/3}ZEexp tZXBin(fj:fj—i-l) = exp{—nt6/3}2]i,
i=1 j=0 i=1

where IE is the expectation corresponding to the independent and identically distributed
random process &, & =y and & = z with probability one.

One can see that

n—1

L = / exp  t > Xy (25, 2541) p 1(dzn) - -n(dz2),

R*—1 Jj=0

where zp = y and z; = z. Since
n—1 n—1
> Xy (25,241) < D Xie, (2j11)
j=0 j=0
we get, for any 0 < € < 1 and for m large enough such that z € K,,,

n—1

I < /exp{tXK:n (v)} n(dv) < le'n({v : Xicg, (v) > e}) + e n({v : X, (v) <eh)]" "
R

Now, for each £ > 0 we choose m so large that
e'n({v: Xge (v) >e}) < 1.

This is possible because X’k. (-) converges to zero as m goes to infinity in 7-measure.
Besides, 0 < € < 1 being arbitrary, we choose ¢ so small that e’ < 2. Hence, for m large

enough and depending on ¢, I; < 3™
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Similarly, there exists m sufficiently large and depending on t such that I, < 3™ and
I3 < 3". Therefore, V¢t > 0, I3m = my > 0 such that I + I> + I3 < 9" which implies by
(4.3) that

Qn(a,y,)(A5") < exp{—ntd/3}9".

Let L>1.Forl>L,taked =1/l and t =31 (I+1n9+1). Then, by writing m; = my

(44) Qn ey (A7) <e " vn>1, vi> L.

Let

Ccr=) {,, v(Kp,) >1— %} C My(9).

I>L

This set is relatively compact. By Prohorov’s theorem (see Appendix of Dembo and Zeitouni,

1993, page 319), Cr, is compact in M;(S). Since

ci = v iw(&Es,) > 1}
I>L

we get, from (4.4),
Qny(2,9,2)(CL) <e ™, VL>1.

5. Level-1 Large Deviations

In this section we assume that 7" is a continuous transformation and 7 has compact
support.

The rate function that governs large deviations for the means

1 n—1

szzj'l'l: n= 1127"'
j=0

M, ==
n

introduced in (1.5) is obtained by using the level-2 large deviations for {V,},>0 in (1.6).
Since Z; = ®(X;) + &;, we have

ZiZjy1 = [®(X;) + §I@(T (X)) + &l
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If g: 5 — R is defined by
9(z,y,2z) = [B(2) + y][®(T'(2)) + 2]

and taking into account (2.15) the ergodic theorem implies that

lim M, =

n—-+00

g(v) (A x n x n)(dv) =

CI)\

I
iy
s
=
=
&

IS8

8
+

—
—
iy
&

IS
=

IS
&

IS8

8
+

In particular, if £, has zero mean, then

lim M, = /@(u)@(T(u)) du, Py, ) — as., VY(z,y,2)€S.

n—+00
[0.1)

In §3 and §4 of this paper we established a full LDP for the family of distributions
Qn.(2.y,2)(*) of Ly(w,-). Taking into account (2.15) and using the Contraction Principle (see
Ellis, 1985), the entropy function for {4, },>1 is given by

(5.1) Iy(r)= (u,i;l)f:rl(y) =inf< I(v) : v € M1(S), /g(v) v(idv) =7,
s

where I(-) is the level-2 entropy function for the process {V,,}n>0. Clearly I;(r) =0 if and
only if r = [¢ g(v) (A x 17 x 17)(dv) because I(v) =0 if and only if v = A xnxn. If & has
zero mean then Iz(r) =0 if and only if r = f[O,l) D (u)® (T (u)) du.

6. Some Remarks

Remark 6.1: Large deviations for the empirical pair measures

1 n—1

n Z 5(Ej,€j+1)(')

Jj=0
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may be studied similarly to what was done in §3 and §4. One can prove that its entropy

function is given by

ffln%u(d(az,y)), ifreM
@)= 5= ™
400, otherwise,

where

m(z,y)
my ()

v(d(z,y)) < oo},

M={ve Mi(IR*) : mv=mv, v<nxmn, //‘ln
R2

with m(z,y) = dgin(x,y) and my(z) = ﬂj;m(ac,y) 7(dy) -

Remark 6.2: Let Y, = (X,,,&,), n >0, and consider the empirical measures

1 n—1
ﬁ Z 5Yn ()
7=0

Large deviations for the family of distributions of the above empirical measures is governed

by the entropy function

[ Wm(z,y)v(d(z,y)), ifveM
](2)(,,) ={ [01)xR

+oc, otherwise,

where
M={re Mi([0,1) x R) : mrv=2A, v<Axn,

dv
d\ xn

m(z,y) =

(@), / |1 m(z, 9)|v(d(z, 1)) < +o0}.

[0,1) xR
This result may be obtained similarly to §3 and §4 of this paper.

Remark 6.3: One can generalize level-2 large deviations by considering the empirical pair

measures corresponding to Y, = (X,,&,), n > 0. Let

1 n—1

1
D B0 Yia ) () = = D 0061041 () €5 ). () )
j=0 j=0

61)  Liw)=

n
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Clearly, for each w € STV, L, (w,-) € My(S), where S =1[0,1)? x R?.

The ergodic theorem implies that
L,(w,") = XA xnxn, Py —as., Y(@y,2,t) €8,
where A is a measure on B([0,1)?) defined by
MA; x Ay) = MA1NT 1 (4s)), VA, 4s € B([0,1)).
For each v € M;(S), we define the measure vT—! € M;(S) by

VI ' (AxBxCxD)=v(T"'(A) xTYB) xC x D),

for any measurable rectangle.

Let us define
Mo = {I/ S Ml(S) I Mol = 5\, v KL A X 7 X1, T3V = 7T1241/T_1} .

If v € Mo, let m(z,y,2,t) be the density of v with respect to A x n x 1, mia3(z,y,2)
be the marginal density of w937 with respect to A % 7 and mio4(z,y,t) be the marginal

density of 71247 with respect to A x i7. The definition of 712471 tells us that

dmoavT 1 _ _
1%4 (‘Tayaz) = m124(T 1(‘T)1T l(y)az)a (‘Tayaz) € [07 1)2 x IR.

dA X 1
Moreover, from the condition 7230 = w1241 1, we have

mia3(z,y,2) = miaa(T™H2), T (y),2), (x,y,2) €[0,1)? x R.

One can prove, as in §3 and §4 of this paper, that the level-2 large deviations for L, (w, -)

in (6.1) is governed by the entropy function

mi23

In-dy, ifve Mpyand [|In-2-|dv < 400
T e

400, otherwise.

Remark 6.4: Returning to the process {V,,}n>0 in (1.6), let us define

1 n—1
A() = lim —In | sup [E, exp Zw(VJ) ,
vES :
7=0
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where [E, is the expectation corresponding to the measure P, on (S%,o(C)), introduced
in (2.2). Let B(S : IR) be the set of bounded measurable real functions.
Let

A*(v) = sup /"(/)dl/ —A@W) ¢ € B(S: R)
s
By Lemma 4.1.36 in Deuschel and Stroock (1989), A*(v) = I(v), v € M1(S), where I(v)

is defined in (2.11).

Remark 6.5: The results for random means {My},>1 in (1.5) may be extended to

n—k

> ZiZjk, n>k, k>1
j=0

1

n

(6.2) M, =

When {Z,},>0 has zero mean they are called the autocovariances of order k of the process
L.

The level-1 LDP for the random means (6.2) follows from the level-1 LDP for the corre-
sponding autocovariances of order 1, in (1.5). To see this, let us consider first the case k = 2.

One can verify that the process {M,,},>2 in (6.2) has the same distribution as the process

P MY + a0 MP ) n>1,

where
1 n—1 1 n—1
M = - FZO YiYj and M = - J;O WilWj+1,

{Ya}n>o and {Wy}n>0 are independent random sequences with the same distribution as
the process {Z,}n,>0 given by (1.5), with T2 instead of T, since T? is a uniquely ergodic

transformation, where T' is given by (1.1). The sequences {aS)}nzl and {a(n2)}n21 are real

. 1 . .
sequences converging to 5 as n goes to infinity.

Since {a%l)}nzl and {a,(f)}nzl are deterministic sequences their entropy function is

~ 0, if r =
I(r) = :
+o00, ifr#

SR NI

The level-1 entropy functions for MY and MY are equal and coincide with I z(r) in (5.1).
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Relying on the independence of the sequences a,(zl), ag), Mr(ll), Mr(f) and using the
Contraction Principle (see Dembo and Zeitouni, 1993), we obtain the level-1 entropy function

for o'l MY (which is the same for a'? Méz)):

1Y (y) = inf {f(1/2) +Iz(s)

nf :u} =17(2u), u € R.

s
2
Hence, the level-1 entropy function for a,(zl) M,(ll) + aﬁf) M,(f) is given by

1(t) = inf {I0(u) + 1) utv=1}=
u,ve

= u7ivneij{IZ(2u) +Iz(2v):v=t—u}=

= 321%{]2(%) +1Iz(2(t—w))}, forte R.

Similarly, for each k > 1, the level-1 entropy function for {M,},> in (6.2) is

k k
F) gy — s A _
I, (t)—mlnka {Zfz(kui).;uz—t}, for t € IR.
1=

i=1
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