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OPEN BILLIARDS: INVARIANT AND CONDITIONALLY
INVARIANT PROBABILITIES ON CANTOR SETS*

ARTUR LOPESt AND ROBERTO MARKARIAN$

Abstract. Billiards are the simplest models for understanding the statistical theory of the
dynamics of a gas in a closed compartment. We analyze the dynamics of a class of billiards (the open
billiard on the plane) in terms of invariant and conditionally invariant probabilities. The dynamical
system has a horseshoe structure. The stable and unstable manifolds are analytically described. The
natural probability is invariant and has support in a Cantor set. This probability is the conditional
limit of a conditional probability ]F that has a density with respect to the Lebesgue measure. A
formula relating entropy, Lyapunov exponent, and Hausdorff dimension of a natural probability for
the system is presented. The natural probability # is a Gibbs state of a potential (cohomologous to
the potential associated to the positive Lyapunov exponent; see formula (0.1)), and we show that for a
dense set of such billiards the potential is not lattice. As the system has a horseshoe structure, one
can compute the asymptotic growth rate of n(r), the number of closed trajectories with the largest
eigenvalue of the derivative smaller than r. This theorem implies good properties for the poles of
the associated Zeta function and this result turns out to be very important for the understanding of
scattering quantum billiards.
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Introduction. The main purpose of this paper is to give a partial answer to a
question proposed by G. Pianigiani and J. Yorke [25] about probabilistic properties of
trajectories of billiards:

There is a variety of phenomena in which trajectories appear chaotic for
an extended period of time but then settle down. Consider a particularly
difficult problem of this type. Picture an energy conserving billiard table
with smooth obstacles so that all the trajectories are unstable with respect
to the initial data. Now suppose a small hole is cut in the table so that the
ball can fall through. We would like to investigate the statistical behavior
of such phenomena. In particular, suppose a ball is started on the table in
some random way according to some probability distribution. Let p(t) be
the probability that the ball stays on the table for at least time t and let
pE(t) be the probability that the ball is in a measurable set E after time t.
Does tend asymptotically to some constant #(E) as t goes to infinity?p(t)
And if it does, what are the properties of #? Does it depend on the initial
distribution?

We thank S. Martinez, who proposed to one of us to study the existence of quasi-
stationary measures and its limit laws for billiard systems. For a Markov process
analogous results were obtained first in [18] (see also [10]).
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652 ARTUR LOPES AND ROBERTO MARKARIAN

We will consider a class of billiards that we call open billiards. In this case we will
present mathematical proofs of the results that answer the questions proposed above.
For open billiards there is no small hole where the ball can fall through, but the ball
can get lost to infinity.

The first contribution in the direction of analyzing this type of problems in bil-
liards was done by Pianigiani and Yorke in their previously mentioned paper, where
they consider not billiards but a related problem for one-dimensional C2 expanding
maps on the interval. They show the existence of a density F that plays an important
role in the one-dimensional case. The measure #F F(x)dx associated with this
density is not invariant for the one-dimensional expanding map but is conditionally
invariant. This result generalizes the Lasota-Yorke theorem to the case where the
nonwandering set is a Cantor set. More recently Collet, Martinez, and Schmitt [6]
presented another nice result related to the one-dimensional C2 case. They showed
that the measure F obtained by Pianigiani and Yorke conditionally converges to a
certain invariant measure . We will apply these two results in the context of open
billiards. In fact the C2 case is not enough for our purposes, and we need a C1+
version, which will be proved in the appendix.

We are able to present a complete picture of the dynamical properties of the
billiards we analyze.

The dynamics of these billiards are basically that of a horseshoe (if one considers a
certain special metric). Stable and unstable manifolds can be precisely described, and
several results about a certain "natural" measure will be presented in the following
sections.

The setting and our main results will be briefly presented in the following para-
graphs.

The simplest example of the class of billiards we consider is that given by three
nonintersecting discs with equal radius and such that the centers of the disks are at
the vertices of an equilateral triangle. This is a good example for the reader to bear
in mind (even if most of the results that we obtain can be applied to more general
open billiards).

This billiard is not what is usually called a Sinai billiard [27], since in our case
most trajectories (in the Lebesgue sense) will go to infinity. The set of trajectories
that remain on the table in the past and in the future defines a Cantor set. The
main obstacles to extend the result presented here to a Sinai billiard (with a hole in
the table where the ball could fall through) are the singularities that appear in the
system due to the corners and the trajectories that are tangent to the boundaries of
such billiards. Therefore, we analyze open billiards where such pathologies do not
occur.

What we call the "natural" measure # (sometimes called the escape measure in
the literature) was previously considered by Grebogi, Ott, and Yorke (see, for instance,
[22, 5.6]) and has the following description: suppose that we are considering in the
plane a certain expanding map whose nonwandering set is a Cantor set with Lebesgue
measure zero. A natural generalization of the Bowen-Ruelle-Sinai measure in this
case is obtained in the following way. Given a set B contained in the Cantor set C,
we will define the value #(B). Consider a grid of squares with side e. Denote by b
the number of squares that intersect B and by c the number of squares that intersect
the Cantor set C. Now when e goes to zero, if the limit

lim b (B)
e---0 Ce
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OPEN BILLIARDS AND CANTOR SETS 653

exists and is independent of the grid for any Borel set B, then we say that # is a
"natural" measure. This procedure is quite natural from the point of view of an
experimental observer. Given what is left after n observations (this will produce a
slightly distorted grid with a value e inverse ly proportional to n), then one should
consider the proportion of what is left of the set that one wants to measure over the
full set that still remains. The role of the grid is to give a computable approximation
of the Lebesgue measure. We would like to have a procedure allowing to obtain # as a
limit involving the Lebesgue measure (or a measure equivalent to Lebesgue measure).

We will present a precise definition of the probability # as a Gibbs state [24, 29] of
the potential associated with the positive Lyapunov exponent, but the reader should
keep in mind the above procedure. (See [1, 2, 15, 19].)

We will also present a formula relating the entropy h, the positive Lyapunov
exponent X, and the Hausdorff dimension 5 of the transverse measure (to be defined
later):

h 5X.
For the general case of axiom-A systems, a proof of this formula appears in [13].

Our result is analogous to the one obtained by Chernov and Markarian [4] for hyper-
bolic billiards, with a correction term 5 due to the fractal structure of the Cantor set.

The Lyapunov exponent of a point x will be expressed in terms of the time
between bounces t(x) and k(x) (a continued fraction expression involving the time
t between bounces of the trajectory by x, the curvature K of the boundaries of the
billiard, and the angles of the collisions with the boundary of the trajectory by x).
More precisely, for x almost everywhere, the Lyapunov exponent X is as follows:

J log I1 + t(x)k(x)ld#(x).Xu

The precise definitions will be presented in the next paragraphs.
By definition, a function B is lattice if there exist an integer-valued function G,

a real positive constant 7, and a continuous function g such that B g o T g / G’.
The probability # can be defined as the Gibbs state associated with the potential

(0.1) (x) log I1 + t(x)k(x)l;

this potential is cohomologous to the potential given by minus log of the positive
Lyapunov exponent" -log flEl (where f is the billiard map to be defined in the next

section). It is therefore natural to ask if the potential is not lattice. We are able
to show that for a dense set of billiards, this is so (see 8). When one considers the
statistics of the periodic orbits, it is important to know whether the potential is lattice
or not [24].

As the system is axiom A, we are able to estimate the asymptotic growth rate of
n(r), the number of periodic trajectories (fk(x) X) with log I(fk’)E(x)(X)l smaller
than r. The value n(r) grows like ehr/(hr), when r goes to cx), for some h > 0. In a
related result, Morita [20] shows that t(x) is not lattice for a general class of billiards.

The class of billiards that we analyze here is a very important model considered
in the theory of quantum scattering (see [7, 8, 21, 22, 26, 28]). The asymptotic growth
rate of the number of periodic orbits is of indubitable relevance in this theory. The
nonlattice property is related with the distribuition of the poles of the associated Zeta
function (see [24]).
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654 ARTUR LOPES AND ROBERTO MARKARIAN

In [3], related results about quasi-stationary measures for horseshoe diffeomor-
phisms were obtained.

In [12] a good result for the wave equation associated with such billiards is pre-
sented.

Finally, we would like to point out that all the results (except that in 8) stated for
the billiard with three circles are true for the general case with several convex bodies
satisfying condition (M). The proofs are essentially the same that we present below.
We do not state the general case in the present paper for the sake of simplification of
the notation.

1. The billiard map. Consider a finite number of closed curves 5Qi (where
Qi, i 1, 2,... s, s > 2, are nonintersecting compact convex sets in the plane) that
can be either Cr+l, r > 2 with nonzero curvature, or real analytic. We will call this
system the open billiard.

We will say that the open ball billiard satisfies condition (M) (Morita’s and
Ikawa’s condition) if all curves are simple closed curves and the convex hull of 5QitbQj
does not intersect 5Qk for any triple of three distinct indices i, j, and k. We will assume
that all the billiards we consider here satisfy the condition (M).

We will denote by 5Q the union of all 5Qi, i 1,... s, and by n(q) the normal to
the curve tiQ at the point q. The normal will have norm one and point to the outside
of the curve.

Consider the dynamical system describing the free motion of a point mass in the
plane with elastic reflections on 5Q (angle of incidence with the normal to the curve
equal to the angle of reflection). The phase space of such a dynamical system is

M={(q,v); q e bQ, IvI=1, (v, n(q) >_ O}.
A coordinate system is defined on M by the arc length parameter r along 5Q

(therefore, the state space in these coordinates has more than three connected com-
ponents because s > 2) and the angle between n(q) and v. Clearly I[ <- r/2 and
<n(q), v> cos(C).

Consider the probability dA ccos()drd, where c 215QI -1 is just a normal-
izing factor and 15QI stands for the total length of 5Q.

Now we define the transformation map f in the following way:

f(xo) f(qo, vo) (ql, v),
with q the point of 5Q (if there exists such a point) where the oriented line through
(q0, v0) first hits 5Q and v the angle with the normal n(q) made by that line after
reflection on the tangent line through ql 5Q. Formally, Vi --VO- 2(/t(ql), vo)n(ql)
(see Fig. 1). This transformation map f may not be defined for all x0 M.

The measure is not globally invariant under f (any invariant measure is singular
with respect to Lebesgue measure), but if one considers small neighbourhoods around x
and f(x), then the image of the measure by f is preserved, f is a Cr diffeomorphism
in these small neighbourhoods. The Euclidean length t (or time) between q0 and ql

is denoted by to. Hence, q qo + toVo (a trajectory inside the billiard travels with
constant velocity equal to one).

The map f is called the billiard map. We are interested in analyzing trajectories
with infinite bounces. The trajectories that do not have this property are those that
in some finite (positive or negative) time escape to infinity.

We will denote by xi (qi, vi) M, i N, the successive hits of a trajectory be-
ginning at time 0, x0 (q0, v0), with the boundary tiQ, that is, f(q, v) (q+, V+l).
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OPEN BILLIARDS AND CANTOR SETS 655

n(qo)

q

FIG. 1.

We are interested among other things in properties for trajectories with x0 (q0, v0)
in a set of full p-measure (# stands for the natural measure).

Given a trajectory beginning at x0 (qo, vo) E 5Q, we will denote by Ki
K(xi), E N, the curvature of 5Q at qi. For instance, if one considers the model where
all Qi, i 1,... s, are disks, then the Ki are all constants. The angle between n(qi)
and vi will be denoted by bi, and finally, ti denotes the Euclidean distance between
the bounces qi and q+l, E N (see Fig. 1). The backward orbit xi (q, v), i E Z,
is analogously defined. In any case, the main property is f(xi) Xi+l, i E Z.

In the case that we are considering, if f is defined for x0 (q0, v0) E M, then it is
also defined in an open neighbourhood of x0 unless the trajectory through x0 hits the
image f(xo) f(qo, vo) (q, Vl) Xl in a position tangent to 5Q, that is, V /2
or Vl -r/2. In this case f is defined in an left or right open neighbourhood. When
we speak about neighbourhoods, we are considering any one of the possible cases
described above. The set of points x0 (q0, v0) E M whose forward or backward
trajectory is tangent to 5Q for some xi, E Z, has A-measure zero.

If 1 (1, 1) f(0) is defined for o (0, o), then for all xo (q0, vo) in a
small neighbourhood of 2o the derivative matrix is given by (see [27, 16])

to Ko+cos o to
(x0) cos 1 cos(1.1) f K1 tK+cs + Ko Kto 1cos 1 cos

Note that when the image of (q0, v0) by f is tangent to 5Q (that is, q r/2 or
q -r/2), then the entries of the above matrix become infinity.

2. The open billiard with three circumferences. We now consider a partic-
ular example where the hypotheses of all results presented in this paper are satisfied.
Consider three circular disks of radius one (Fig. 2) whose centers are located in the
vertices of an equilateral triangle of side a > 2.

The more natural system of coordinates to consider in this problem is to denote
by r the angle of the q coordinate in each circle.

In this case the phase space is given by three rectangles M, M2, and M3, where
each one is a copy of a rectangle with base 0 _< r _< 4r/3 and height -r/2 <_ <_ r/2
(see Figs. 2 and 3).

We will denote by 5Qi the circle corresponding to the set Mi, 1, 2, 3.
As an example notice that the point (r/2, 0) M1 is a periodic point with period

2, because f(r/2, 0)= (5r/6, 0) M2 and f(5r/6, 0) (r/2, 0) M1. There exist
several trajectories that are not periodic but have infinitely many bounces. The map
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656 ARTUR LOPES AND ROBERTO MARKARIAN

O

FIG. 2.

0
0 4r/3 0 4/3

FIG. 3.

f is not defined everywhere (see Fig. 3); for example, it is not defined at the point

In fact the map f and its inverse f- are not defined outside the dashed region
in Fig. 3. The horseshoe structure of the map f will be more carefully explained later.

Note that if a _< 2, then the billiard is an example of a classical Sinai billiard,
because different components of the boundary intersect with nonzero angle. The
statistical properties of this kind of billiards have been studied extensively.

If 2 < a _< 4/x/, then it is easy to see that for such open billiards the condition
(M) defined above is not satisfied. The case a 2 is extremely interesting but will
not be analyzed here.

The three-circle open billiard subject to the condition a > 4/v/- satisfies the
condition (M), and it is under the assumptions of the theorems that we will prove
later. It is the simplest example of such a class of open billiards. Apparently, the
results that we present in the following sections can be also extended to the case
2 < a < 4/x/. We will indicate why we believe that this is true (see the end of 3).

The dynamics of f in the case a > 4/x/ are the same as of a shift of finite
type. This can be seen as follows. Denote by 7r domain of f {1, 2, 3} the map
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OPEN BILLIARDS AND CANTOR SETS 657

that assigns to each x (q, v) E M the value i such that q E tiQi. Given a certain
sequence 0i {1,2,3}, i Z, such that for any i, 0i 0i+1, i Z, there exists a
unique xo (qo, Vo) such that

.(q,, o..
It is also true that r o f(x) a o r(x), where a is a shift of finite type on three
symbols (1, 2, 3}. In other words, r is a conjugacy of f with the shift a. Therefore,
the dynamics of f are that of a shift of finite type (remember that Oi i+1, but
this is the only restriction). This result was shown by Morita [20]. We will need
to analyze metrical questions and therefore will need more delicate properties and
estimates about the dynamics; the fact that f is conjugated to the shift a is not
enough. Among other problems, we will need to take special care when the entries of
the matrix (1.!) become infinity due to tangencies of the orbit, etc.

Morita [20] also shows that the ceiling function t(x) (the time between bounces) is
Hblder continuous and nonlattice. We will consider here another potential (different
from t) that is natural in the setting we are working in. We will also show that for
a dense set of values a > 4/x/-, the potential is not lattice. This allows one to
estimate the growth number of periodic trajectories subject to weights, as in [24].

3. Trajectories with infinitely many bounces. Our first goal is to analyze
geometrical and dynamical properties of the set of points that have infinitely many
bounces in the past and in the future. This subset of M will have the structure of the
product of two Cantor sets. We will begin considering the trajectories such that there
exist infinitely many bounces in the future. We need therefore to analyze the set

N f-j (Mij), ij ij+l, Vj N.
o_<i

We will carefully analyze the case a > 4//-, even if at the end of our reasoning,
we will be able to indicate why we believe it is also true for a > 2.

From the symmetry of the problem, it follows that we have to analyze the struc-
ture of the set M intersected with 0<jf-J (Mij), where i0 1, because for the other
connected components M2 and M3 the structure is basically the same (we have of
course to assume respectively that i0 2 or i0 3).

In Fig. 4, we represent some of the backward iterates.
Note that the line J(-- ((r,-r/2), r/3 _< r _< r/2} c M iterated by f goes

on the curve f(,4) c M2 shown in Fig. 4. The curve f(,4) can be also parametrized
by r, given by the projection (, r) --, r, over r/2 <_ r

_
4r/3 (see Fig. 4). We draw

two strips in M corresponding to the preimages f- (M2) and f- (M3) in Fig. 4.
There are also two other important strips, those corresponding to the images f(M2)
and f(M3) in M (see the first square in Fig. 3). In Fig. 4 we draw only the set f(M2)
in order to make more clear the other curves and sets that we will describe in the
sequel. The intersections of these four strips are four nonlinear rectangles in M that
correspond to the cylinders (with coordinates in the shift) (2, 1, 2}, (3, 1, 2}, (2, 1, 3},
and (3, 1, 3}.

Similar pictures can be drawn in M2 and M3. From this picture the reader can
realize the horseshoe structure of the dynamics of f (see also Fig. 3). It is important
to point out that the distortion could be very bad close to the boundaries, and this
requires a more delicate analysis. In other words we need extra care with the almost
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658 ARTUR LOPES AND ROBERTO MARKARIAN

2

A B Cv D

//
M2

F

FIG. 4.

tangent trajectories because in this case the expanding properties are not as good.
This question will appear in the fol)owing sections.

We draw the curve jt in the left square of Fig. 4 and its image f(jt) in the
right square of Fig. 4. To be more explicit about the dynamics of f we denote by
A, B, C, D, E, and F points in the curve A. Note the position of the images of these
points in the set f(Jt) in the right square in Fig. 4. Note also the curve B and
its image f(B) (see Fig. 4). The curve C represents positions (r0, 0) whose image
f(ro, 0) (rl, 1) will hit the circle 2 in a tangent position (1 -/2) (see Fig. 4).

The strip that appears in M1 between the two strips { 1, 2} and { 1, 3} corresponds
to the trajectories of M1 that are lost in the middle of the two circles M2 and M3.
The two other components in M1, external to {1, 2} and (1, 3}, correspond to the
trajectories that are lost between M1 and M2 or between M1 and M3. The cylinders
{ 1, 2, 1 }, { 1, 2, 3}, { 1, 3, 1 }, and { 1, 3, 2} correspond in M1 to four strips contained in
the two strips {1, 2} and {1, 3} (see Fig. 5). These four strips are strictly inside the
two previous ones.

Inductively, the cylinders {1,i1,i2,... ,i}, i i+1, j {1,2,... ,n-1}, corre-
spond to y=l nf-(Mi) and are 2n thin increasing strips going from the bottom
to the top of

These cylinders form a nested sequence of sets (see Fig. 5). It is easy to see from a
geometrical argument that each strip is strictly inside the previous one: note that for
a fixed q in My, if one considers all possible angles , then this will determine images
f(q, ) (q1(), 1()) in such a way that ql() is monotonical (when defined) and
1() also is monotonical. For a fixed q0, as ranges from -r/2 to r/2, half a horizon
will be covered by f(q0, ), and the part corresponding to hits in the other circles
is strictly inside this half horizon (when observed from the point q0). Clearly, the
boundaries of the cylinder {1, il, i2,.. in} are curves that correspond to trajectories
that at the nth bounce are tangent to 5Q.

Note the important geometrical property presented in Fig. 4, showing how the
set A goes by f into the curve f(A). The boundary of MI N f-lM2 goes by f into
the upper and lower boundary of M2. The correct understanding of the geometrical
position of all these boundaries and its images by f is essential for the following
sections.
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OPEN BILLIARDS AND CANTOR SETS 659

1,21
FIG. 5.

The intersection of an infinite sequence of nested sets is given generically by

j’-I

jEN,

and it is a curve coming from the bottom o the top of M1. (In order to prove this
property, which follows from expansiveness, we need to use an analytical expression
that will be shown in 4 and 5.) We will show finally that the union of all such
possible nested sequences of sets can be parametrized as the product of a Cantor set
by such curves.

The analysis that we have just made is valid for all open billiards satisfying
condition (M). But in the case of three circumferences, it seems to be true also if
2 < a < 4/x/-. We will briefly discuss this case in the next paragraph. Note that in
this situation there exist trajectories that are tangent to one disk, reflect at another
disk, and then escape to infinity.

As we have seen before, Fig. 4 (case a > 4/x/) describes the general picture of
the dynamics of f. The strip of points between f- (M2) and f- (M3) corresponds
to points that will not hit circle 2 or 3 but will cross between these two circles. More
less the same picture will be obtained for the boundary of the band of points x such
that f(x) escapes to infinity in the case 2 < a _< 4//-. The difference is that in the
present situation the two strips will collapse (see Fig. 6). Proceeding inductively, the
trajectories that remain on the table for infinite iterations are in "distorted rectangles"
in the same way as it happened in the case a >_ 4/x/ (see Fig. 4). In conclusion, the
general picture of the case a _< 4/ is basically the same as a > 4/f in topological
terms.

4. Analytical expressions. We will now obtain the analytical expression of
the differential equations satisfied by the invariant curves that generate the Cantor
set, which were mentioned in the last paragraph.
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660 ARTUR LOPES AND ROBERTO MARKARIAN

/

/

/
/

/
/

FiG. 6.

To illustrate our reasoning, we will first obtain the .equation of the curve B c M1
through x such that f(B) C M2 and f2(B) C M1, with 2 r/2 ,ddr 0. (We are
using the notation f(x) x (r, i).) This curve B contains the 2-periodic point
p121. It follows from [27] (see also [4, 16])that

d1 (x) K1 (x)T
cos1 (X)

dr t](x)

de0
odr
-(x) Ko(x) / cos 0(x)

The last equation describes the parametrization 0 of B.
Now, by induction, it follows that the boundary of the strips that successively

appear when we remove the trajectories that go to infinity at time n, is given by

de0 K0 + cos 0dro to + ’:..._L +1 tl + 2K

""+ 2K/

We omitted the reference to the point x in the above formula.
When n goes to infinity, the above equation will converge to the equation of the

parametrization of the curve of points y E M1 with the same future specification of
bounces Oi, i E N, as x.
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OPEN BILLIARDS AND CANTOR SETS 661

The continued fraction that appears multiplying cos0 is given by

(4.1) kS(x)

with

bl (x) + b.(x)+

2K(fk(x)) 2
(4.2) b2k(x)

cos b2k+ (x) t(fk(x)).

This continued fraction converges if K(fk(x)) > 0 and ’k=ot(fk(x)) oc
(see [5, 20]). For the open billiard that we consider here, this is the case because
g(fk(x)) 1 and t(fk(x)) > a- 2 for all k. Therefore, the curves that in the future
have infinitely many bounces are defined by the differential equation

de k8d--(x) g(x) + (x) cos(x).

We point out that this is also true for the billiards considered by Morita, when
the obstacles are convex and the condition (M) is true.

We will use the notation

(4.3) de8

k8 8dr (x) K(x) + (x) cos (x)

to emphasize that this differential equation determines the parametrization 8(r) in
the variable r of the stable manifold (r, 8(r)) through x0 (r0, o). Note that the
differential equation is nonautonomous because we take derivatives in r but k depends
on (r, ).

In an analogous way one can show that the curve through x0, given by the set of
points (r, ) with infinitely many bounces in the past (the unstable manifold passing
through x), is parametrized by (r, CU(r)), wth (r) given by

(4.4) deu kd---(x) g(x) (x) coseC(x),

where

(4.5) k(x) a (x) + a (x) +
a3 (;)t- a4 (x .{_...’

and

a2k(X) t(f-k(X)), k e N.

5. The hyperbolic structure: Stable and unstable manifolds. Consider
in the descending strip of type { 1, 2, 1 } the unstable manifold of the 2-periodic point
p p2 (7/2, 0)= f2(/2, O) E M. The stable manifold is given by

9/8(p) {z; 7(f2n(z)) 1, 7r(f(2n+)(z)) 2, Vn e N},
and the unstable manifold through p is given by

/U(p) {z; r(f-2n(z)) 1, r(f-(2n+i)(z)) 2, Vn e N}.
More generally, consider the 2-periodic points Piji in Mi, i j, i,j {1,2,3};

there is a total of six such periodic points of period 2.
Unstable manifolds are defined by graphs of decreasing functions and stable mani-

folds are described by graphs of increasing functions. This follows from the inclination
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662 ARTUR LOPES AND ROBERTO MARKARIAN

of the parametrizations given by the analytical expressions (4.3) and (4.4) of the
differential equations described in 4.

Let ’(piji) be the unstable manifold through piji intersected with the set Mi
and

(5.1) ./U(piji) f-(i).

Note that the curve .U(piyi) goes from the bottom to the top of Mi, but for
this is not true.

Denote by M’ [.Ji,kjMijk the union of the twelve quadrilaterals, where Mij
f(Mi) Mj f-(M). The dynamics of the trajectories that do not go to infinity
can be studied in M’. These quadrilaterals are far away from =t=r/2, and hence,

M’,for x e cos (x) > c > 0.
Now we define the p-length of a general curve /C M by

(5.2) p(,) cos Cdr.

More precisely, if is defined by (r, (r)), r0 _< r _< rl, then

p() cos(r)dr.
o

If - is any decreasing curve (’ (r) < 0), and f is continuous in /, then

(t(r)(K(r)-’(r))+l)cosCdr,(5.3) P(f(/)) coso

where t(r) t(x) is the distance to the next bounce beginning at x (r, (r)). Since
p() is of order cos 0dr (for small -), for small passing through x0 (r0, 0),

p(f(’)

is approximately equal to

1/
t(ro)(K(ro) ’ (r0))

cos( o)

with x0 E .
This property will lead us to define a kind of partial derivative 5f(xo) using the

p-length defined above.
DEFINITION l. Given a curve / through xo, we define the p-derivative of at x0

as the limit

5f(xo)= lira
P(f(9/))

p()-o p(-)

For decreasing curves parametrized by (r,(r)), the p-derivative of , at x0 is
given by

(5.4) 5f(xo) 1 + t(ro)(K(ro) ’ (ro))
cos(r0)
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OPEN BILLIARDS AND CANTOR SETS 663

Under the hypothesis considered here, the p-derivative of decreasing curves - given
by the last expression is uniformly bounded below by 1 + train, where the tmin a- 2
is the minimum of the distances between bounces.

Analogously, for the increasing curves 7 parametrized by (r, (r)), the p-derivative
of " on x0 (r0, 0) is given by

5f (xo)
i + t(ro,)(K(rl)+’(ri))

COS (1

In f-l(M1), any increasing curve - satisfies 0 < A < 5f(xo) < lUtmi

(4.4) it follows that for 3
, in M’ we have

< 1. From

5:f.(xo) 1 + t(xo)kU(xo) > 1 + tmina (X0) > 1 + 2tmi W > 1,

and from (4.3) it follows that 5f8 < 1/w. In conclusion, from the above reasoning it

follows that there exist K > w > 1 and < 1/w such that such for all x0 in M’
(5.6) w < 5fP (Xo) < K

and
1

< 5f .(xo) < w

These estimates will be important later.
From these last properties ((5.6) and (5.7)) and the way in which the Cantor set

structure of the nonwandering set appears (see 3), we can say that the dynamics of
f is that of a horseshoe diffeomorphism. Therefore, all the considerations in chapter 2
of [23] can be applied, and we conclude that there exist CTM foliations of stable and
unstable manifolds around the nonwandering set

i#j,kzez

It follows easily (see [23, Chap. 2]) that the projection along stable (and unstable)
leaves is CTM. This property explains why we will need in the future a CTM version
of the results of class C2 that were previously obtained by other authors [6, 25].

6. Expanding transformations and invariant measures. We will state in
this section the CTM results that we will need in 7. These results will be proved in
the appendix.

A piecewise continuous map T is transitive on components if for every two max-
imal sets B, C where T is continuous there exists n n(B, C) 6 N such that
TBNC#@.

We will say that a probability measure #, defined on the elements of a a-algebra
A of A, is conditionally invariant with respect to T A TA if #(T-1C) a#(C)
for every element C 6 jt for some positive constant a.

It results a #(T-1A). Hence # is conditionally invariant if and only if

#(T-I(C) NT-I(A))
#(T-I(A))

#(T-1C]T-1A) #(C).

This implies that an #(T-hA) for every n _> 0.
We will represent by #F the probability measure d#F Fd, where is another

fixed probability measure on A and fA Fd 1.
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664 ARTUR LOPES AND ROBERTO MARKARIAN

HYPOTHESIS A. Assume T" t R, B A g)T-1A, is such that
a) A Ji= Ai, where Ai are disjoint open intervals;
b) A C T(A) (strictly);
c) A N T(OA) ;
d) A is endowed with some metric d such that the derivative Td of T with respect

to this metric is well defined on B; i.e., there exists

(6.1) Td(x) lim
d(Ty, Tx)

--,x d(y, x)

for every x E B;
e) Td is 7-HSlder continuous on B; i.e., there exist k > 0 and 0 < 7 < 1 such

that ITd(x) Td(y) <_ kd(x, y) for every x, y B;
f) there exist M > > 1 such that inf{Td(x) x B) >_ and sup{Td(x) x

B} <_M;
g) TA is an homeomorphism for every i 1,..., k.
Let v be the probability measure induced by the metric d on Borel sets of A,

n--i1 [1/] < 1, P {A}k=, and Pn Vj=o T-JP.
LEMMA 1. There exists a constant kl > 0 such that
) I(T)()- (T)(U)I < ZlM-I,
b)

(Tn)a(w) d(T2 Tn)
<_ kl/r

for every z, w
Proof. a) Td satisfies the chain rule for derivatives. Then

n--1

I(Tn)d(X) (Tn)d(y)l

_
Mn-l kd(Tlx, Tly)

l=O

n-1

<_ Mn-lk Zn-ld(T2,T) <_ Mn-lk.
l--O

b) The bounded distortion property for expanding maps establishes that

(Tn)d(Z)/(Tn)d(W) <_ kl

(see, for example, [23, 4.1]).
From b) of Lemma 1, we can choose N _> 1 such that klg < 1. Since all our

results can be written in terms of Tg instead of T (subdividing Ai), from here we will
suppose that T satisfies the last inequality for N 1.

The proof of the next two theorems for the case C + will be made in the appendix.
THEOREM 1 (see Pianigiani and Yorke [25] for the case C2). Let T -, R

satisfy Hypothesis A a)-g). Then
i) there exists a 7-HSlder continuous function F" A -- R,

(
F E IC G C(A) inf G > 0, supG < oc, [

xEA xEA J
Gdv= 1}

such that F is absolutely continuous with respect to the measure and conditionally
invariant with respect to T;
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OPEN BILLIARDS AND CANTOR SETS 665

ii) if T is also transitive on components, then there exists a unique F E 1 such
that #g is conditionally invariant with respect to T;

iii) if, furthermore, T" is transitive on components for all n E N, then for every
gEE

lira
Pg

-o F.

Here II II1 means the L norm on LI(A,u) and P1 LI(A,u) LI(TA,) is the
Perron-Frobenius operator defined by

(6.2) Pig(x)- E (Td(y))-lg(y) d(#g T-1)
d

y:T=x

We consider PI: LI(A,) --* LI(A,) by taking the restriction of Plf to A.
Then fA f’(g o T)du fTA(Plf)gd for f E LI(A,), g E LI(TA,), and

T-n(A)
f.(g o Tn)dv fA(Pf)gd

for every f, g E L (A, u).
Note that P1F oF if and only if #F is conditionally invariant with a

#F(T-1A). (This follows from the last expression taking f- F and g 1.)
We now define the operator Q:LI(A,) -. Li(A, ) by

(6.3) Qg(x) [F(x)]-lPl (gF)(x),

where a #F(T-1A) fT_I(A) Fd. Since PIF aF, we have Q1 1.

The reader familiar with thermodynamic formalism (see [24]) will recognize the
operator Q as the Ruelle-Perron-Frobenius operator obtained from the potential

log,
ITdI-(x)F(x)
F(T(x))

This potential is cohomologous to the potential -log ITd(X)l. The procedure of
defining Q by (6.3) above is usual in thermodynamic formalism when one knows the
eigenfunction F and the eigenvalue c. This procedure is sometimes called normaliza-
tion of the operator.

We refer the reader to [24], where the theory of thermodynamic formalism devel-
oped initially by Bowen, Ruelle, and Sinai is carefully described.

In terms of the variational problem of the pressure the two cohomologous poten-
tials will determine the same Gibbs state.

The reader should take care with the different domains where the two operators
are defined: the Perron-Frobenius operator of Lasota-Pianigiani-Yorke is defined over

L1 functions, and the Ruelle-Perron-Frobenius operator of thermodynamic formalism
is defined over Hhlder-continuous functions. The most surprising property of the
Pianigiani-Yorke result is the existence of the derivative of F in a full neighbourhood
of the Cantor set under the C2 hypothesis. Under the C1+ hypothesis, we will show
in the appendix that F will be Hhlder continuous.

Now we will need another result related to Theorem 1.
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666 ARTUR LOPES AND ROBERTO MARKARIAN

THEOREM 2 (see Collet, Martinez, and Schmitt [6] for the C2 case). Let T" ft R
satisfy Hypothesis A a)-g) and suppose that Tn is transitive on components for all
n E N. Then

i) Qng(x) -- #(g) for every 7-Hb"lder-continuous function g on A. #(g) defines a
probability measure #, with support on K n>0 T-hA;

ii) the conditional probability measure of staying in A, when the evolution occurs
with probability #F, is #F(C[T-nA) --* #(C) when n ---, +cx for every Borel set
CcA;

iii) # is Gibbsian with potential--logTd(x), i.e.,

c-l[(Tn)d(Z)]-lo-n -- # [nlk/=0 f’-l(it)] - c[(rn)d(z)]-lO-n

for every io, in-1 e {1,2,..., k}, every n e N, and some z
So (A, T, jr, #) is a Kolmogorov system and satisfies the property of exponential

decay of correlations, and

log

is an invariant probability measure},
where hv(T is the entropy of T with respect to

Now we will make some comments about different properties claimed by the above
theorem.

The precise meaning of the limit in property i) will be explained later in the
appendix. The conditions above allows one to apply the Riesz theorem, defining in
this way a probability # such that #(g) f g(x}d#(x). The measure # is invariant for
T, and therefore the support of # is the nonwandering set of T (having in this case a
Cantor set structure on the line). The property ii) is the more important one. It claims
that if we calculate #F(YlT-n(d)), the part of Y NT-n(A) in T-n(A) (T-n(A) is the
subset of A that still remains in A after n iterations), then when n goes to infinity, the
system will determine in the limit a certain measure #(V). The analogy of the natural
measure that we mention before and the measure # we just defined (and satisfying
property ii)) is transparent.

Property iii) is also very important because a Gibbsian measure has several nice
properties" the system is Kolmogorov (therefore ergodic), there exists exponential
decay of correlation, and so on (see [24]).

Both theorems can be formulated for T A R,A UA, where A
are disjoint connected uniformly arcwise-bounded sets. This means that there exists
a number b such that any two points in each A can be joined by a polygonal line of
lengt at most b (see [24]).

7. Measures for open billiards: Invariant and conditionally invari-
ant. Now we will return to the considerations of 5 and show how the results of 6
can be applied to the open billiard.

Note, for example, that for the point (r/2, 0) e M1, f(r/2, 0) (5r/6, 0) e M2
and /(5r/6,0)= (r/2,0) e M1. Therefore the 2-periodic orbit (r/2,0) e M1 and
(5r/6, 0) M2 has an unstable manifold with two components. Since there exist three
pairs of 2-periodic orbits, we will consider six small pieces of unstable curves around
these six periodic points.
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OPEN BILLIARDS AND CANTOR SETS 667

Formally, let piji the 2-periodic point such that p(f2,(piji)) i and p(f2n+l(piji))
--j, where n E Z. The local unstable manifold of piji is defined by

7U(pji) {z e Ui;p(f-2’(z)) i, p(f-(2n+l)(z)) j, Vn e N}.
Let us write "yij 7

u (piji) fq f- (Mj); therefore, as we have seen in (5.1),

Note that the image of each one of the 7ij six small pieces of unstable manifold is the
full unstable manifold (from bottom to the top) through another 2-periodic point.

Denote also by Hk Mj fq f-(Mk) 7jk the projection along stable fibers; as

we mentioned before, this projection is C+’. (This is the reason for the need of C
theorems in the present paper.)

THEOREM 3. Consider the system described in 2. Let A be the set t-Jj7j. We
define T on fi as a continuous extension of its values on the 12 connected pieces of
curves 7i/fqf-2(Mt), j. On these curves, T is defined by T(x) f(x) iyf(x) e

n; y(x) iy k # i.

Then T" A T(A) satisfies Hypothesis A and also the hypotheses of Theorems 1
and 2.

Remark 1. Note that A is now a union of pieces of curves in R2 and not a union
of intervals in R az in Theorems 1 and 2, but the proof of the analogous result is the
same.

Remark 2. To be more precise, we will need to consider fN, a high iterate of f,
as having the hypotheses of Theorems 1 and 2 satisfied, but this is no problem for our
purposes, as will be explained later.

In Fig. 7, we represent schematically the graph of T.
Proof of Theorem 3. The verification of conditions a) and b) follows immediately

from the definition. Condition c) follows from 5.
Condition d) can be seen as follows: let d(x, y) P(7), where 7 is the curve

contained in 7ij which joins x, y 7j. Recall that if T’ (x0) is the rate of expansion
under the Euclidean norm (dl v/dr2 + de2) of f at x0 on unstable directions, then

(7.1) IT’(xo)[=SfP cs(x) (l +h2(f(x)))
-/2

cos (/(x0)) 1 + h2(x0)

where h(y) dd- (y) (see, for instance, 5 in [4]). Note that log IT’I and log
are cohomologous. Condition d) is now a consequence of the following considerations:
Td(XO is either 5fP,(xo) or [Sf,(xo)] p[5(IIjk). (f(x0))].

Now comes the crucial point" Hk is a CTM function in the Euclidean metric, and
this metric is equivalent to the p-metric on unstable manifolds because these are not
too close to the vertical lines and therefore cos is bounded away from zero.

T is an expanding map if

min{i(Hk)P(y); y e M f f-(Mk)} m > 1/w.
If this condition is not satisfied, we must consider f instead of f, with N E N such
that wNm > 1. Note that m is positive because H is a diffeomorphism.

The topological mixing property included in the definition of transitivity is sat-
isfied because of the considerations made at the end of 3 about the angles varying
monotonically and covering half horizons.

Therefore all the conditions listed above are true for our system.
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668 ARTUR LOPES AND ROBERTO MARKARIAN

FG. 7.

Remark 3. Note that T’ (x0) If(xo)l and the potential- log If()l is coho-

mologous to (x) (see (0.1), 4, and (7.1)).
As a direct consequence of Theorems 1 and 2 (and the fact that the measures

induced by p and F are absolutely continuous with respect to the Lebesgue measure
on unstable fibers), we obtain a conditionally invariant probability F absolutely
continuous with respect to the Lebesgue measure on A, with density F a positive
HSlder-continuous function.

Furthermore, from Theorem 2, there exists a measure such that for any Borel
set V C A,

lim
#F(T-n(A) N V)

n--, #F(T-,(A)) = #1 (V),

where #1 is Gibbsian with potential log IT’d(X)l. The support of #1 is the Cantor set
K1 T--n

’n=0 (A), the intersection with A of the set of points whose trajectories have
infinitely many bounces in the future (do not escape to infinity). #1 is an invariant
measure for T.

In an analogous way, we can apply to f-1 the same reasoning we did before for f.
Consider C t2iCj’i; then applying Theorems 1 and 2 to f-1 on C, we are able

to find a HSlder-continuous function G defined on C such that c is conditionally
invariant. More precisely, let S denote the induced map for f-l, using projection
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OPEN BILLIARDS AND CANTOR SETS 669

along unstable fibers on the stable manifolds of periodic points of period two; then
there exists 3 such that #G satisfies #G(S-I(D)) #G(D) for every Borel set D.
It also follows from Theorem 2 that the measure # conditionally converges to an
S-invariant measure #2 whose support is in K2 fqn=0S-n(C).

Now we will construct the natural two-dimensional measure for the open billiard
problem. Remember that M’ t-Ji,k#jMijk.

THEOREM 4. Consider the system f M’ - M’ described in 2 and 5. Then
there exists a conditionally invariant positive measure #+ and a measure #+ such that

lim #+(V[f-n(M’)) #+ (V)
n--(x)

for every Borel set V C M. The measure #+1 is invariant under f, supported on

K1 x K2, and (M’,f, lz+ is a K.system.
M’Proof. We begin by constructing the measure #+ on that extends the 1-

dimensional measure #F. First of all we define a probability measure #0 over the
a-algebra B (IIiSj)-l(A) where Jt is the Borel a-algebra on .. For a set D E B we
define #0(D) #F(IIi(D)).

Define the measure #n on fn(B) by #n(E) a-’#o(f-n(E)). It is easy to see

M’ fnthat f-(B) C/ if we restrict the range of f-1 to Therefore (B) c (/3)
for every n N, and we conclude that #n+l(D) #n(D) holds for D f’(B).

This last equality allows one to define a finitely additive measure #o on the
algebra O<_nfn(i) by /z(D) Izn(D) if D e fn(l). Note that (AO<_nfn(]) is
an algebra because if D f’(B),E fm(B),m <_ n, then D E fn(B) and
#(DfqE) a-’#o(f-n(Df’lE)). The measure #o satisfies #o(f-1(C)) a#o(C)
because if C e fn (/), then f- (C) e fn-- (j) and

#o(f-i(c)) #n_l(f-l(c)) o-n+llzo(f-n+lf-i(c))
-n+l#o(f-n(c)) -n+lcn#n(C)

The rest of the construction is exactly the same as that for an Anosov system (see, for
Mexample [14, Chap. III, Thm. 2.3]). Therefore, the measure #+ on is conditionally

Minvariant: #+(f-l(D)) a#+(D) for every Borel set D c
Now we will analyze the limit of the conditioned measure. If D fk (B) for some

fixed k N, then as n goes to infinity,

#+(O f3 I-"(M’)) #o(y-k(D f’l I-"(M’))
Ol.n olnq k

,(II’I-(D T-"(A))
ol.n+k #1 (T-k(IIS(D)))

M’If/z+ is the measure constructed on by extending #1 (following the same
procedure we used to construct #+ given #f), we have proved that

lim #+(Dlf-nM’) #+ (D)
n--o

for all Borel sets D in M’. #+ is an invariant probability measure whose support is

contained in K1 K2. Since #1 is Gibbsian, (A, T, #1) is a Kolmogorov system, and
therefore the same is true for (M’, f, #+) (see [14]).

The same procedure applied to the stable conditionally invariant probability #a
MIallows one to construct a measure/z- on such that tz_(f(D)) atz_(D) In the

case that we analyze here, we cannot compare the two measures #+ and #-, but for
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670 ARTUR LOPES AND POBERTO MARKARIAN

Anosov systems it is possible to show that the two measures are equivalent to the
Lebesgue measure in R2 (see [14, 13]).

Now considering S C T(C) and f-1 instead of, respectively, T and f, we
obtain in a similar way the Kolmogorov system (M’, f, #). The support of # is
contained in K1 K2.

The set of trajectories in M having infinite bounces in the past and in the future
is K1 K2 F (see 5).

The dynamical system (M, f, #1+) is ergodic, and one can apply the formula for
computing the entropy of the f-invariant probability #+ (see [11, 12]):

(7.2) h iX+.
In this way, we are able to obtain the measure theoretical entropy h of f with respect
to #+ in terms of.i, the Hausdorff dimension of the transverse measure #+ and X+,
the Liapunov exponent of the measure #1+. The Pesin formula is a similar expression
(not involving dimension), but for the case when the natural probability is equivalent
to Lebesgue measure (see, for instance, [14]).

We point out that from (7.1), X, the integral of log IT’ log[flE[ with re-

spect to the invariant measure #, is equal to -f (x)d#(x). (The two potentials are
cohomologous.)

Note that the Hausdorff dimension of the measure # (Gibbsian for log IT’ I) has
nothing to do with the Hausdorff measure of the nonwandering set. The Hausdorff
measure of the nonwandering set of a one-dimensional expanding system T has a
density with respect to the Gibbsian measure of the potential -s log IT’ I, where s is
the Hausdorff dimension of the nonwandering set (see remarks in [13]).

8. The nonlattice property of the potential $. This section is the only one
that we really need to assume that the billiard is given by three circles with center in
the vertices of a equilateral triangle. The results in other sections are true for general
billiards satisfying condition (M).

From the introductory section, we recall that by definition a potential B is lattice
if there exist an integer-valued function G, ’ a real positive constant, and a continuous
function g such that B g o T g / G/.

When one wants to prove asymptotic growth-rate properties of the periodic orbits
(see [24]), the results (and proofs) are different for the lattice and nonlattice potential.
It is possible to obtain such properties by means of Tauberian theorems combined
with Fourier series arguments (in the case of lattice potentials) or Fourier transforms
arguments (in the case of nonlattice potentials). The lattice potentials appear only in
very special situations. One should expect that in general the potentials that occur in
mathematical problems are nonlattice. This is the claim of the main theorem of the
present section.

In this section we will show that for the billiard given by three circles of radius one
centered at the corners of an equilateral triangle with side a, the Lyapunov exponent
potential is not lattice for a dense set of possible values a. This claim is equivalent
to showing that the potential defined before is not lattice, because these potentials
(up to a minus sign) are cohomologous as shown in (7.1).

THEOREM 5. Consider the system f M’ --, M’ described in 2 and 5. For a
dense set of parameters a > 4/x/, the potential is nonlattice.

From this result we obtain the asymptotic growth of (fk’)(x) on periodic orbits

fk(x) x, which was mentioned in the introductory section. Indeed, the nonlattice
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OPEN BILLIARDS AND CANTOR SETS 671

property for is equivalent to the weak mixing property of the suspension flow f (see
M’,[24]) defined on the suspension space Me {(x y)’x E 0 <_ y <_ (x)} with the

identification (x, (x)) (f(x), 0). The function f is defined by f,t(x, y) (x, y+t)
for small t (see [24, Chap. 6]).

The weak mixing property for f implies that the Zeta function _(s) has a
nonzero analytic extension to Real(s) _> 1, except for s 1. In s 1, it has a simple
pole. We recall the definition of

1 e-8(x)_(s) expE
,=1

sEC,

where Cn(x) is the sum of the potential around the orbit of the n-periodic point x.
In the present situation this function is well defined, nonzero, and analytic for Real
s>l.

Theorem 6.9 of [24] (see also Chap. 9) implies the following corollary.
COROLLARY. For the system defined in 2 and 5, there exists a dense set of

parameters a > 4/x/- such that {periodic orbits x, fk(x) x, log(f’()(x) <_ r}
grows like ehr/(hr) as r --. cx) and where h > 0 is the topological entropy of f.

Proof of Theorem 5. The claim is equivalent to showing that there is no continuous
function g such that g o T-g + GT, where G is an integer-valued function and /
is a real positive constant.

Suppose there exists such a g, G as above; we will arrive at a contradiction as

follows. If there exists such a G, the sum of the values of the function along a

periodic orbit is always of the form n/, with n N depending on the orbit.
We will show that for a dense set of values a > 4//, the open billiard with

this parameter a is such that the period-two and period-three orbits do not have the
above-mentioned property. The values a will be rationals of the form

2p2 2
a

p2 q2 1
P, q N.

(P/q)

From the continuity of the function

2

it is easy to see that the set of such values a is dense in a > 4/x/.
Denote by t2 and t3 the length between bounces for, respectively, the period-two

and the period-three orbit (see Fig. 2). Denote also by k2 and k3, respectively, the
expressions kS(x2) and kS(x3) (see (4.5)), where x2 and x3 are, respectively, points
on orbits of period two and three.

We want to show that there are no n2 and n3 such that

(8.1)

and

2 log(1 + t2k2) n29/

(8.2) 3 log(1 + t3k3) n3"y.

Equivalently, we will show that there are no n2 and n3 such that

(8.3) (1 + t2k2)2n3 --(1 + t3k3)3n2.
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672 ARTUR LOPES AND ROBERTO MARKARIAN

From simple geometrical arguments (see Fig. 2), it is easy to see that t2 a- 2 and

t3 - a- vf.
Now we will analyze the value k2. From (4.5) (the continued fraction expression

of k) it follows that a 2-periodic point x2 satisfies the property

2 1
k(x) k: +

cos 0 t2 +
and therefore k2 satisfies

(8.4) k22 2k2 2/t O.

2pAs t2 a- 2 and a p,q., it follows from the quadratic formula that k2 1 / p/q
is rational. Therefore (1 + t2k2)2ha is rational.

We will show that up to a finite number of values a 6 Q, the value (1 / t3k3)3-
is not rational, from which Theorem 5 will follow.

Now we will analyze k3. From the symmetry of the orbit of period 3, it follows
from (4.5) that k3 satisfies

2 1
k(xa) k +

cos r/6 ta +
and therefore k3 satisfies the quadratic equation

4 4
=0.a 3

Theorem 5 follows at once from the next lemma.
LEMMA 2. Let a Q, a > 2, and let be the positive root of

(8.6) x2 (4/x/)x 4/(ax/-- 3) 0.

There exists a finite set S C Q such that if 2 < a Q-S, then (1+(a-x/))m
(1 + t3)m is not in Q for any m N.

Proof. Remember that a number a is called algebraic if it is a root of an equation

x + ax-1 +... + a, O, ai Q, n >_ 1.

We may assume that this equation is irreducible over Q. We refer the reader to [11]
for general properties on algebraic structures that will be used in this section. Denote
by a a solution of the above equation. The equation above is uniquely defined in this
situation, and all roots are different. The set of solutions of such an equation is called
the set of conjugates to a. Therefore, a has n conjugates and a also is conjugate to
itself. The degree of the extension Q[a]/Q is equal to n. Any automorphism of C
leaves fixed each rational number and transforms a in a conjugate of a. Any conjugate
of a is the image of a by some automorphism.

An algebraic number a is called totally real if a is real and all its conjugates are
also real.

CLAIM. Let a be an irrational algebraic totally real number. Suppose that there
exists m N such that a" Q. Then Q[a] is of degree 2 over Q, and the conjugates

of a are a and-a.
Proof of the Claim. Let al,... a be the conjugates of a. Since a" Q, we have

a? am, because an is conjugate to am. Therefore, (aj/a)m 1. Since aj/a e R,
we have that aj/a is equal to 1 or -1. Hence, any conjugate of a is equal to
But a is not in Q, thus n >_ 2, and therefore n 2, proving the Claim.
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OPEN BILLIARDS AND CANTOR SETS 673

Proof of Lemma 2. The lemma will follow from the four properties listed below.
i) is totally real. This is so because any conjugate of is a root of (8.6) or of

x2 + (4/xfl)x + 4/(ax/- + 3) 0, since any automorphism of C takes to xfl or--. Therefore, all conjugates of are real.
ii) 1+(a-/-) is totally real. Any conjugate oft is of the form (l+(a-v/))

or (1 / (a + xfl)), where is conjugate to . Therefore, any conjugate of r is real.
iii) Suppose (8.6) is irreducible over Q[x/]; then ’ is not in Q for all rn E N

and for all a E Q, a > 2.
The proof of iii) is by contradiction. Suppose that there exists rn N such that

m Q. From the Claim above, [Q[] Q] _< 2. Since (a-vr) -1 Q[],
(a- v/) is a root of an equation of degree 2 over Q; assume that

x2 + rx + s 0, r,s Q,

is such an equation. Then is a root of the equation

r 8
(8.7) x: +x+ 0.

a- (a- x/-) 2

Therefore, we conclude that (8.6) and (8.7) are both equations with coefficients
in Q[x/] with a common root . Since we are assuming that (8.6) is irreducible over
this field, equations (8.6) and (8.7) are the same. In particular,

4 r

and therefore, -4a + (4 r)x/- 0. But r E Q; hence a 0, which contradicts the
fact that a > 2.

iv) Now suppose that (8.6) is reducible over Q[v/]; then there exists a finite set
S c Q such that if a Q, a > 2, and a is not in S, then m is not in Q for all rn N.

If (8.6) is reducible, then Q[fl]. Hence Q[v/-]. For the proof, we suppose
that there exists rn E N such that r" Q and prove that a must be contained in
some finite set S C Q: From the last claim, Q or -r is conjugated to r. Write

u+ v,u,v Q; then

r (1 + au- 3v) + (av u)x/-,
and therefore, either r/ Q and we have

(8.8) av "a O

or else -r is conjugate to and we have

(8.9)

Suppose that (8.9) is true.
Equation (8.6) is equivalent to

1+ au- 3v O.

hence

1+a and therefore,Then v 3

x/rx2 4x
4(a + x/-)

0,a2--3

2 1 + au x/-) 4(a + v/-)
04-

3 a 3

D
ow

nl
oa

de
d 

12
/3

1/
12

 to
 1

52
.3

.1
02

.2
42

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



674 ARTUR LOPES AND ROBERTO MARKARIAN

Since a, u E Q, we should consider the set of two equations:

1 2)u2 2
(8.10) 1 + -a -au- 1

and

a2 3

4a
(8.11) 2au2 2u

a 3
O.

=0

If there exist infinitely many values a such that the two equations (8.10) and
(8.11) have a common root, the result of these two polynomials would be identically
zero. (The coefficients of this polynomials depend on a.) In particular, for a 1 there
would be a common root, but this is not true.

Hence, there exists a finite set $1 c Q such that if a is not in Q, then (8.10) and
(8.11) do not have a common root. Therefore, if a is not in $1, 1 + au- 3v 0, and
this is a contradiction to (8.9).

Now assume alternatively that (8.8) is true; that is, av- u 0. In this case
av vx/-. Proceeding as before, we obtain

(8.12) v/-(av vxfl) 9 4(av vxfl) 4(a + x/-)
a_3

=0

and therefore the system of equations

4
(8.14) (a2 + 3)v + 4v

a, 3
0.

Analogously, as in the case (8.9), the fact that these two equations do not have a
common root if a 1 implies that there exist a finite set $2 c Q such that av- u 0
if a is not in $2.

Finally the set S is obtained as the union of S and $2, proving iv). This ends
the proof of Lemma 2, and therefore Theorem 5 is proved.

Appendix. The CTM theorems. In this appendix we will prove Theorems 1
and 2 for the case C+c, adapting the proofs in [6] and [25].

Proof of Theorem 1. a) Let

d(z,y)
"x,yA, xCy <

be the set of 7-HSlder-continuous functions defined on A. For every nonnegative
function in C(A), we define its regularity as

R(o)-sup{ [(y) (x)’ }d’(x, y)o(x)
x, y e A, p(x) > 0

Define H- {o e C(A)’o > 0, R(0) < cx, f d.- 1} and Hp {o
p} for every p > 0. Let P, the normalized Perron-Frobenius operator, P" LI(A,
L(A, .), be defined by

(z)

P() pl()lll fT-A od

and

2
(8.13) 3v2+2v+a:_3 =0
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OPEN BILLIARDS AND CANTOR SETS 675

b) We claim that there exists a p > 0 independent of a such that

limsup R(Pn99) <_ p

for all E H.
We begin by evaluating R(P). Since TIA is an homeomorphism, we can consider

the local inverses Si TA Ai such that T o Si Id, and if TWl Ai, there exists Sj
such that Sj o T(w) w. We suppose that wi and zi are, respectively, the preimages
of y and x in the same "inverse branch," i.e., wi, zi Ai, Twi y, Tzi x.

Then

d (x,

Td(oi) Td(,)

d’(x, Y) 2i ((zi)(Td(zi)) -1

max
d(x,

--[- max

(We have applied Lemma 4.1 of [22]:

max
ai

for any real numbers ai, bi, bi > 0, 1,... q.)
As was remarked immediately after the statement of Lemma 1,

Td(Wi) d--i y)

_
]1 ,k < 1;

then the first term of the last expression is less than AR().
The second term is less than

=M.

So we have that R(P) <_ M + AR(qa), and iteration of this inequality yields
R(Pnqa) <_ M(1 +/ +.-. + ,kn-l) + )nR() and finally

M
limsupn__, R(P) <_

(1 A)
p"

c) For the value of p that we have just defined, it results that Ho is invariant
under p, since R(Pa) <_ M + Ap p if a Hp.
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676 AI=tTUR LOPES AND ROBERTO MARKARIAN

d) Hp is convex because if e Hp,

R(c /) <_ sup
dr(x, y)(c(x) + (x))

<supmax{l(x)-(Y)l I(x)-(Y)l} <p.
dr (x, y)(x) dr (x, y)(x)

(We have once again applied Lemma 4 of [25].)
e) H is compact. If E H, we have

I (Y)I < 1 + pdT(x y)

for every x, y E A and
L-l(x) <_ (y) <_ L(x).

In particular either is zero on A or infxeA (x) > 0. Furthermore

(A.1) sup (y) < L inf (x)
yEA xEA

and infxEA (x) < c independent of because fA du 1. Then H is equibounded;
(y) <_ Lc.

From the equiboundedness and the definition of R() it follows that Hp is e-
quicontinuous I(x) (Y)I -< Pd(x, Y)(Y) <- pLcd(x, Y); given e there exists

such that if d(x,y) < 5, then I(Y)- (x)l < ;
It is also closed because there is a uniform Hhlder constant equal to pLc, and all

the inequalities hold for the limit functions.
f) Then we can apply the Schauder fixed-point theorem [9] and obtain a function

F Hp such that PF F. The measure #g defined by d#g Fd, satisfies the first
assertion.

g) The proof of the second assessment is almost the same of that of Theorem 2
in [25].

We remark that if and/n() IIP{()111, then SUPn
is the supremum norm in C(fi.)) as a consequence of the following observation. Since
the functions Pn() are in Hp, from (A.1) it follows that sup IIpn(1)ll < oc. We also
have that B(1)infEA (x) _< n() _< n(1) _< Bn(1) supxEA (X), and

pn()(x) <
sup
inf Bn(1)

sUpCpn(1)(x).
inf

Then

sup P()(x) < sup. sup P(1)(x),
xEA inf xEA

and finally sup IlPn()llo < oo.
This remark is used in the proof of Proposition 1 of [25].
h) Our assessment iii) is exactly the same as that of Theorem 3 in [25].
Proof of Theorem 2. The proof of Theorem 2 will be divided into three lemmas,

as was done in the proof of the C2-case [6].
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OPEN BILLIARDS AND CANTOR SETS 677

LEMMA 3. IfI e Pn, denote by SI A I the inverse branch ofTn TnoSI Id,
and if z E I, then Si o Tnz Z. itce Qn (onF)-lpn(Fcfl), we have that
Qn (onF)-I (Td o SI)-IF o (I ) o I.

In C A consider the norms

"" sup{ ’(x) (y)’ }d(x,y)
,x y,x,y A

and ]]]B +. Then B { e C(A): ]]]B < } in a Banach space.
An operator Q acting on a Banach space is quasi-compact if there exists a compact

operator H such that ]]QN H]] < 1 for some N N.
LEMMA 4. Q i8 a quasi-compact operator on B. Consider the operator Ln defined

by

nn (nF)-I (Td o SI)-IF o SI dp.
In

y l(z) 1 for z I and zero is any other point, then {QII I Pn} is a base of
the image of Ln. So Ln i8 (of finite rank and then) compact.

We will prove that for some large enough n, ]]Qn_ Ln]B < 1. We have for B

(Qn Ln)= (nF)-I(Tn o Sl)-lF o SI o Si u(I)
I6I

with

o Si(x) ,(I) :d -I(z)- (w)l < II]lTdT (z, w)

Then I(Qn Ln)cfll <_ (CnF)-I(pnF)IiIlB IIlls, which implies that II(Q
nn)ll goes to zero when n -+ +oo. Denote SI(X) z, SI(y) y; then

((Qn Ln)99)(x ((Qn Ln)9)(Y)

with

<_ an -4- bn + cn W dn

F(y) F(x) < IIFII na F(y)d"-y) Ln)(p)(x) lanl inf F II(PlIB MalIIIB
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678 ARTUR LOPES AND ROBERTO MARKARIAN

(inf F > 0 since F E/C).

1 F(z)- F(w)d(z, w)"@ bn nf(y E d(z, w) -j(;-7 (T2(z))- (z)
I T)n

1 1

I C=_ 7)n
inf F a "

B,

@Cn--
1

ctnF(y) E F(w)(T2(z))-l(T(w))-l T2(w) T2(z)
d(x, y)’

(:(z) .() :d.

iCnl <
(gF)(y)

sup(T(z))_ IT(w)
4x,)

if n is large enough,

1
@ dn F(w)(T(w)) -1 :(z)

(PrF)()Idol onF(y supl:(z)-:(w)(d(z,w))d(z,) -J-(x; ) <-

We conclude that II(Q L)991IB < c/ll:ll for some constant c and for a
large enough n. The lemma is proven.

LEMMA 5. Restricted to B, the operator Q has 1 as a simple eigenvalue, and the
rest of the spectrum is in a disk of radius r < 1. The previous lemma allows us to
apply VIII.8.6 of [9] and conclude that the spectrum of Q can be decomposed into the
union of a closed set which lies inside the circle Izl < r < 1 and a finite number of
simple poles pj, 1,...,q, IPl 1.

If 99 E B satisfies Q99 p99 for [Pl 1, choose k > 0 such that 99 + k > 0. Hence
99 + k /. Since Q1 1, we have Q(99 + k) pn99 + k. From Theorem iii)

IlQn(99 -[- k)lll
F-1p((99 --I-- k)F) f P((99 -I-/c)F)lll

---> I.
f P((99 -I-/c)F)l]1 f F-1p((99 --I- k)F)dr,

Therefore
p99+ k

But for k large enough, pn99 n k is bounded and bounded away from zero for every
IPl 1, n N. Then p must be 1. This relation also shows that the eigenfunctions
associated with 1 are the constant functions

Therefore 1 is a simple eigenvalue.
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Now let , be the eigenfunctions of the eigenvalues e,, lenl < r < 1. Then for
any E B, b kl + a,,, and Qn kl + a,e,, - k as n - +oo. So
G: C(B) - R defined by G(b) k is a linear positive functional. From the Riesz
theorem there exists a unique measure # such that Sgd# G(g) for every g C(B).
(The relation is valid for every g B.)

This measure is invariant under T since

Q(g o T) (aF) -1 E g o T o Si F o Si(Td o Si) -1

(aF)-lgEF o Si(Td Si) -1 (aFI-lgPIF g.

Hence Qn+(g o T) Qn(g) and f g o Td G(g o T) G(g) f gd for every
g e C(B).

Denote by K n>0 T-n(A) the limit Cantor set. The measure # is supported
by K. In fact, if 9 vanishes on a neighbourhood of the Cantor set, Qng converges to
zero. This Cantor set can be coded by the partition of connected components of 7)
As usual, denote by [i0,... in-] the set

n--1

N T-tAi "Pn,
i=0

and let Jio,- in-1 T(y) for some y [i0,... in-].
LEMMA 6. There exists a constant c > 0 such that for every n

c-1j-1 a-n < #([i0,.... in--l]) < cJ a-nio ,in- ,in-

that

Its proof is exactly the same as that of Lemma 3 in [6].
We have proved parts i) and iii) of Theorem 2. It remains to prove ii). We know

#F(C N T-hA) 1c" (1A o Tn) Fd --/A pn(lcF)dp

(see the remarks between the statements of Theorems 1 and 2).
From the definition of Q we obtain

#F(C ( T-nA) ] anFQn(lc)d,.

But Qn(lc) converges to #(C) in L(A, ), and F is bounded: then

#F(C T-nA)a-n =/A F#(C)&,.

It was observed at the beginning of 6 that a #F(T-nA); then iii) is proved.

Acknowledgments. We would like to thank R. Marl6, M. Sebastiani, A. Do-
ering, S. Martinez, R. Ures, and N. Chernov for helpful conversations about several
questions related to this paper.
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