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Depto. de Matemática- ICEx - UFMG

Belo Horizonte - MG - Brazil

and

Artur Lopes

Inst. Mat. - UFRGS

Porto Alegre - RS - Brazil

Abstract: In this paper we show the existence of a plateau for the
minimal action function associated with a model for a particle under the
influence of a magnetic field (Hall effect). We will describe the structure of
the Mather sets, that is, sets that are support of minimizing measures for
the corresponding autonomous Lagrangian.

This description is obtained by constructing a twist map induced by the
first return map associated with a certain transversal section on a fixed level
of energy.

Supported by PRONEX-Sistemas Dinâmicos
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0. Introduction

In [C] J.Mather’s Theory about minimizing measures for the action of
time periodic Lagrangians is developed for the autonomous case (time in-
dependent). Further developments were obtained by Contreras, Delgado,
Iturriaga and Mañé in [CDI]

In this work we study a special Lagrangian on the two dimensional torus
(two degrees of freedom and periodic on each spatial coordinate). In the
model considered here there exists a non-trivial magnetic potential vector but
there is no eletrostatic potential.This model appears in phenomena related
to the Hall effect.

The objetive is to study the dynamical properties of the Euler Lagrange
flow generated by the Lagrangian associated to a magnetic field. In IR3 with
coordinates (x1, x2, x3) let us consider a C∞ magnetic force F = ẋ × B,
B = ∇× A, associated to a Lagrangian on the two Torus T 2 defined by

L(x1, x2, v1, v2) =
‖v‖2

2
+ 〈A(x1, x2), v〉

where the metric ‖ ‖ is induced by the euclidean inner product and
A(x1, x2) = (a1(x1, x2), a2(x1, x2)).

The Euler-Lagrange flow associated with this Lagrangian is generated by
the vector field

X :

{
ẋ = v
v̇ = (∂2a1 − ∂1a2)Jv = v × B

where

∂i =
∂

∂xi

,

J =

(
0 1
−1 0

)
.

It follows immediately that the scalar velocity is constant along a solution
of X and, by Stokes Theorem and the periodicity of b, that the locus of
inflection points ∂1a2 − ∂2a1 = 0 is non-empty.

This set is relevant to the following problem: describe the minimizing
measures of the action A(µ) =

∫
Ldµ, among the probabilities with compact

support invariant under the flow of X with a given rotation vector ρ(µ).
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Let us explain the terms of this statement. First, we observe that the
above Lagrangian is positive definite (that is for all x ∈ T 2, L|Tx(T

2) has
everywhere positive definite second derivative) and superlinear

(
lim

‖v‖→∞
L(x1, v)

‖v‖ = ∞
)

uniformly on T 2. Therefore the solutions of X are defined for all t ∈R (is
complete) and L satisfies the hypothesis of Mather’s Theory for autonomous
Lagrangian . According to that theory, for a given invariant measure ν with
compact support on the one point compactification of T (T 2), we define the
rotation vector or homological position, ρ(ν) = u ∈ H1(M,R), the first real
homology group of M , as the element ρ(ν) such that for any co-homology
class [w] ∈ H1(M,R)∗ = H1(M,R),

< [w], ρ(ν) >=
∫

wdν

In particular, if ν is ergodic, then

< [w], ρ(ν) = lim
T→∞

1

2T

∫ T

−T
wx(ẋ)dt,

where the trajectory (x(t), ẋ(t)) ∈ R4 (solution of the Euler-Lagrange equa-
tion)used on the right hand side integration is generic in the sense of Birkhoff’s
Theorem with respect to ν.

In the case of the two torus, T 2, ρ(ν) = (α1, α2) ∈ R2 = H1(M,R), means
that the lifting z(t) = (x1(t), x2(t)) of a generic trajectory to the universal
covering R2 is such that x1(t) has a mean value of inclination α1, that is,

lim
t→∞

x1(t) − x1(0)

t
= α1,

and x2(t) has mean value of inclination α2 that is

lim
t→∞

x1(t) − x1(0)

t
= α2.

This follows from the fact that dx1 and dx2 generates H1(M,R).
Whenever the above limits exist we say that the curve has asymptotic

direction (α1, α2). For example, if there exists a vector (m,n) ∈ Z2 and a

3



number T such that z(t + T ) = z(t) + (m,n) then it is easy to see that the
associated homological position is equal to 1

T
(m,n).

For a probability measure ν, the action is defined by A(ν) =
∫

Ldν.
Given a homological position u , we denote by β(u) = infρ(µ)=u A(µ),

(where µ is assumed to be invariant for the flow X), the minimal action
function. A measure νu satisfying A(νu) = β(u) is called a minimizing mea-
sure (or a minimizing measure for u).

The minimal action function is convex and superlinear and many interest-
ing properties of the Euler-Lagrange flow can be derived from its behaviour.
For instance, if u is an extremal point for β, then there exists an ergodic
minimal measure with rotation vector u. However, in general, β may have
non trivial linear domains (”plateau”), which are convex sets such that the
restriction of β is an affine function.

In the case of the torus it is easy to see, as [C] for example, that β can be
non strictly convex only along closed intervals contained in one dimensional
subspaces. Moreover, if the interval does not contain the origin, the subspace
must have rational slope ( rational homology).

It is well known that by adding a gradient vector field to the magnetic
potential we do not change the Lagrangian, therefore, using the Fourier ex-
pansion and integration by parts, the magnetic potential can be written in
the following form:

A(x1, x2) = (a1(x2), a2(x1, x2))), with A2(x1, x2) =
∑

cos(2nπx1)Cn(x2)+
sin(2nπx1)Dn(x2) and n ≥ 1. We can now state our theorem:

Theorem A : Let us suppose that magnetic potential is vertical A(x1, x2) =
(0, b(x1, x2)) and satisfies: (i) b(x1, x2) =

∑
cos(2nπx1)Cn(x2) with n odd

and
∑

sin(2nπx1)Cn(x2) > 0, 0 < x1 < 1/2. (ii) 4bminb̄ > bmin
2 + b̄2, where

bmin = min b(x1, x2) and b̄ =
∫ 1
0 b(1

2
, x2)dx2.

Then the minimal action function is not strictly convex, and there is a
segment of the form (0, I) ⊂ H1(T

2,R), where I = (b̄,−b̄), such that if h
belongs to the interior of I there is no ergodic minimizing measure µ such
that ρ(µ) = (0, h).

Moreover, there is a positive number ζ such thatif ‖v‖2 = E is a level set
that contains the support of a minimizing measure, then E≥ ζ.
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Several examples satisfying the hypothesis of Theorem A are presented
at the end of Theorem 3 in the next section.

In figure 1 we show the graph of β(0, h) as a function of h.

As it was pointed out in the beginning of this introduction, the set of
inflection points K (defined by ∂1a2 − ∂2a1 = 0) is always non-empty. Under
the hypothesis of Theorem A it projects onto two closed curves K0 ∪ K 1

2
.

Therefore any trajectory of X which projects on to a curve with non-zero
asymptotic direction must intersect K transversally (or coincide with K).
Therefore we have naturally associated a first return map T : K → K.

Theorem B: Let b(x1, x2) be a magnetic potential satisfying the hy-
potesis of Theorem A. Then there is a positive number E0 such that if
E > E0 there is an open annulus

∧
(E) and an area preserving twist map

BE :
∧

(E) → ∧
(E) such that the minimizing measure µ with supp µ con-

tained in the level set E is described by orbits of BE.
Moreover, there is a number α = α(E) ∈ IR such that if µ is an ergodic

minimizing measure with the slope of the rotation vector ρ(µ) bigger then α,
then supp µ is not an invariant torus.

After Theorem 6 in section 2 we show examples where all these results
apply.

In this work, we studied examples with a1 constant equal 0. The situation
in general is more complicated, however, we believe that these examples serve
as model cases, in the following sense: the dynamics of the Euler-Lagrange
flow in the level set is divided in two pieces one is described by the orbits of
a twist map (or composition of twist maps) and the other, where invariant
torus cannot exist, is similar to the dynamics near a homoclinic point, giving
rise to horse-shoe type dynamics.

Theorem A will be analised in section 1 and Theorem B in section 2.

1. Existence of plateau for the minimal action function

We recall that the minimal action function β is convex in u and from
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Theorem 1 [C], the total energy is constant in the support of any minimizing
measure.

We will show that β has a plateau when restricted to vertical line (0, h), h ∈
R.

We collect some elementary facts about the solutions of the particular L
we consider.

It is easy to see that the total energy L−Lv.v is constant on trajectories
of the flow and is equal to

‖v‖2

2
.

Symmetry principle: it is also easy to see from the symmetry of the
Lagrangean that if z(t) is a solution then

z̃(t) = z(−t) +
(

1

2
, 0

)

is also a solution.

Proposition 1: The minimal-action function β associated to L is sym-
metric, β(−u) = β(u) for all u ∈ H1(T

2, IR).

Proof: Suppose that z(t) and z̃(t) are solutions of the Euler-Lagrange
flow such that

z̃(t) = z(−t) +
(

1

2
, 0

)
.

Then
A[ z̃ |T−T ]

2T
= 2E +

1

2T

∫ T

−T
b(z̃(t)) ˙̃x2(t)dt =

= 2E +
1

2T

∫ T

−T
−b

(
z(−t) +

(
1

2
, 0

))
ẋ2(−t)dt =

= 2E +
1

2T

∫ T

−T
b(z(−t))ẋ2(−t)dt = 2E − 1

2T

∫ −T

T
b(z(t))ẋ2(t)dt

= 2E +
1

2T

∫ T

−T
b(z(t))ẋ2(t)dt =

A[ z |T−T ]

2T
.
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Suppose that z(t) is the projection of a generic solution which is contained
in the support of an ergodic minimizing measure µ so that

A(µ) = β(ρ(µ)) = lim
T→∞

A[ z |T−T ]

2T
.

One can define a new invariant measure µ̃ on TM by

∫
f(x, v)dµ̃ = lim

T→∞
1

2T

∫ T

−T
f

(
z(−t) +

(
1

2
, 0

)
,−ż(−t)

)
dt.

Observe that the limit exists since∫ T

−T
f

(
z(−t) +

(
1

2
, 0

)
,−ż(−t)

)
dt =

∫ −T

T
f

(
z +

1

2
,−ż(µ)

)
− du =

=
∫ T

−T
f

(
z(u) +

1

2
,−ż(µ)

)
du =

∫ T

−T
g(z(t), ż(t))dt

where

g(x, v) = f
(
x +

1

2
,−v

)
.

Considering g(x, v) = wx(v) where w is a 1-differential form, we can
conclude that ρ(µ) = −ρ(µ̃).

It also easily follow that A(µ̃) = A(µ) implies β(−ρ(µ)) ≤ A(µ̃) =
β(ρ(µ)). Reversing the above construction we obtain the opposite inequality
and we finally obtain β(ρ(µ)) = β(−ρ(µ)). �

Proposition 2: It follows from the symmetry of β that β(0) = min β ≤ 0.

Proof : If β(u) = min β then β(−u) = min β and by the convexity of β,

β(0) ≤ 1

2
β(u) +

1

2
β(−u) = min β.

Since v = 0, x = x0 is a singularity of the Euler-lagrange vector field, and
L(x0, 0) = 0, then min β ≤ 0. �

In the case of the torus, if S is a supporting domain for the function β,
then S is contained in a subspace of dimension 1 (Proposition 3 [C]).

Theorem A that will be proved bellow shows the existence of nontrivial
support domains for the class of Lagrangians we consider here.
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Theorem 3: Suppose the b(x1, x2) satisfies the following hypothesis
(equivalent to the ones stated in Theorem A of the Intoduction):

(i) b(−x1, x2) = b(x1, x2)
(ii) b(x1 + 1

2
), x2) = −b(x1, x2)

(iii) for each fixed x2, b(x1, x2) is monotone decreasing on the interval
(0, 1

2
)

(iv) 4bmin > bmin
2 + b̄2 where bmin is the minimum of b and 0 > b̄ =∫ 1

0 b(1
2
, x2)dx2,

then, there is a horizontal flat segment for the minimal action function β
in the level set β−1(β(0)).

For (0, h) , h ∈ (b̄,−b̄) there is no ergodic minimal measure with rotation
vector (0, h) and outside this set β(0, h) = β(h) is strictly convex as a function
of h.

Moreover, if µ is a minimizing measure, then the support of µ is contained
on a level of Energy E such that E ≥ b̄2

2
.

Proof:
It follows from b(x1 + 1/2, x2) = −b(x1, x2) and b(−x1, x2) = b(x1, x2)

that

∂1b(0, x2) = 0 = ∂1b
(

1

2
, x2

)
.

Therefore

z1 : t �→ (0,−
√

2Et)

and

z2 : t �→
(

1

2
,
√

2Et
)

are solutions of the Euler-Lagrange equation with the same mean action

A[z1|T−T ] = 2ET −
∫ T

−T
b(0,−

√
2Et)

√
2Edt = 2ET +

∫ −√
2ET

√
2ET

b(0, t)dt

and
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A[z2|T−T ] = 2ET +
∫ T

−T
b
(

1

2
,
√

2Et
)√

2Edt = 2ET +
∫ √

2ET

−√
2ET

b
(

1

2
, t

)
dt,

then

A(z1|T−T ) = A(z2|T−T ) = 2ET −
∫ √

2ET

−√
2ET

b(0, t)dt.

As

z1

(
t − 1√

2E

)
= (0,−

√
2Et + 1) = z1(t) + (0, 1)

and

z2

(
t +

1√
2E

)
= (0,

√
2Et + 1) = z2(t) + (0, 1)

so
ρ(z1) = −

√
2E(0, 1)

ρ(z2) =
√

2E(0, 1)

and µ1, µ2 probabilities defined by

∫
f(x, v)dµi =

1

δi

∫ δi

0
f(zi(t), żi(t))dt, δ1 = − 1√

2E
, i = {1, 2}, δ2 =

1√
2E

are invariant under the Euler-Lagrange flow.
We have just seen that

A(µ1) = A(µ2) = E −
√

2E
∫ 1

0
b(0, x2)dx2,

and this implies that

β(0, h) ≤ min
{

h2

2
+ hb̄,

h2

2
− hb̄

}
,

where b̄ �= 0..
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We now show that the measures µ1 and µ2 associated to the curves z1

and z2 with velocity
√

2E = −b̄ are minimizing. In order to do that, let us
evaluate ∫ δ

0
b(x1, x2)ẋ2dt

for a solution of the Euler-Lagrange equation such that x(δ) = x(0) + (0, 1),
with

1

δ
= −b̄ [ρ(x) = ρ(µ1)].

Partition the curve x(t) into pieces t0 = 0 < t1 < ... < tk = δ such that

ẋ2|(ti,ti+i)
�= 0

so the above integral becomes

∑ ∫ ti+1

ti
b(x2, x2)ẋ2dt =

∑ ∫ x2(ti+1)

x2(ti)
b[fi(x2), x2]dx2

where fi(x2) is a C1 function such that the image of x restrited to [ti, ti+1]
is contained in the graph of fi. Of course x2(ti) < x2(ti+1), if ẋ2 > 0, and
x2(ti) > x2(ti+i), if ẋ2 < 0.

By assumption

b(0, x2) > b(x1, x2) > b
(

1

2
, x2

)
= −b(0, x2),

so ∫ x2(ti+1)

x2(ti)
b(fi(x2), x2)dx2 >

∫ x2(ti+1)

x2(ti)
b
(

1

2
, x2

)
dx2,

if x2(ti) < x2(ti+1), otherwise,

∫ x2(ti+1)

x2(ti)
b(fi(x2), x2)dx2 = −

∫ x2(ti)

x2(ti+1)
b(fi(x2), x2)dx2 >

−
∫ x2(ti)

x2(ti+1)
b(0, x2)dx2 =

∫ x2(ti)

x2(ti+1)
b(

1

2
, x2)dx2.

That is ∫ δ

0
b(x1, x2)ẋ2dt >

k∑
l=1

∫ xl+1
2

xl
2

b(
1

2
, x2)dx2 (∗)
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where [xi
2, x

i+1
2 ] = [x2(ti), x2(ti+1)], if ẋ2 > 0 on (ti, ti+1)

and [xi
2, x

i+1
2 ] = [x2(ti+1), x2(ti)], if ẋ2 < 0 on (ti, ti+1).

Let

bmin = min b(x1, x2) = min b
(

1

2
, x2

)
and b̄ =

∫ 1

0
b(

1

2
, x2)dx2.

Observe that b̄ < 0.
Since x is a solution of the Euler-Lagrange equation, it is contained in a

energy level, say E, and from the hypothesis x(t+δ) = x(t)+(0, 1) it follows
that √

2Eδ = lenght ( x
∣∣∣∣
0<t<δ

) >
k−1∑
l=0

(xl+1
2 − xl

2) > 1.

However due to the convexity of x in the strips

0 < x1 <
1

2

or
1

2
< x1 < 1

this bound can be improved.
Before doing that, let us suppose that the number of points with horizon-

tal direction is equal to 5 (as in figure 2) .The case with fewer critical points
are treated similarly.

By the above construction the curve x|[0,δ] is subdivided into 4 pieces
on each of one ẋ2 �= 0, with the corresponding points labeled as follows:
x0

2 < x2
2 < x1

2 < x4
2 < x3

2 and where x4
2 = x0

2 + 1 (x0
2 = x2(0) is the smallest

local minimum)
For instance, in the picture: min < max < min < max < min, therefore

alternating minimum and maximum.
The integral in (*) is

∫ x1
2

x0
2

b(
1

2
, x2)dx2 +

∫ x1
2

x2
2

b
(

1

2
, x2

)
dx +

∫ x3
2

x2
2

b
(

1

2
, x2

)
dx2 +

∫ x3
2

x4
2

b
(

1

2
, x2

)
dx2 =

∫ x1
2

x0
2

b
(

1

2
, x2

)
dx2+

∫ x4
2

x1
2

b
(

1

2
, x2

)
dx2+2

∫ x1
2

x2
2

b
(

1

2
, x2

)
dx2+2

∫ x3
2

x4
2

b
(

1

2
, x2

)
dx2 =
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∫ 1

0
b
(

1

2
, x2)

)
dx2 + 2

∫ x1
2

x2
2

b
(

1

2
, x2

)
dx2 + 2

∫ x3
2

x4
2

b
(

1

2
, x2

)
dx2 ≥

b̄ + 2bmin[x1
2 − x2

2 + x3
2 − x4

2] = b̄ + 2bmin[x1
2 − x2

2 + x3
2 − x0

2 − 1]

or
1

δ

∫ δ

0
bẋ2dt >

b̄

δ
+

2bmin
δ

[x1
2 − x2

2 + x3
2 − x0

2 − 1] =

=
b̄

δ
− 2bmin

δ
+

2bmin
δ

[x1
2 − x0

2 + x3
2 − x2

2].

Since

ρ(x) =
1

δ
(0, 1) = −b̄(0, 1),

we obtain 1
δ

= −b̄.
Denote M = 2[x1

2 − x0
2 + x3

2 − x2
2].

Then,
1

δ

∫ δ

0
bẋ2dt > −b̄2 + 2bminb̄ − bminb̄M.

However,
√

2Eδ =lengh ( x|δ0 ) > 1 + M, or

E >
b̄2

2
(1 + 2M + M2).

So we obtain the following estimate for A[x]:

A[x] >
b̄2

2
(1 + 2M + M2) − b̄2 + 2bminb̄ − bminb̄M

that is,

A(x) >
−b̄2

2
+ 2bminb̄ + b̄2M +

b̄2

2
M2 − bminb̄M,

The right hand side of this inequality, as a function of M has minimum
value for

M =
bmin − b̄

b̄
,

therefore

A[x] >
−b̄2

2
+ 2bminb̄ + b̄(bmin − b̄) +

(bmin − b̄)2

2
− bmin(bmin − b̄),
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that is,

A[x] >
−b̄2

2
− (bmin − b̄)2

2
+ 2bminb̄.

Therefore, if −b̄2 − b bmin
2 + 4bminb̄ > 0, then A[x] > A[µ1].

The same procedure also works if there are more critical points. If x(t) =
[x1(t), x2(t)] ∈ IR2, 0 ≤ t ≤ δ, we denote by x0

2 = x2(0) the smallest local
minimum for x2(t).

Let x0
2 < x1

2 < ... < xk
2 be the image of the critical points of π2(x(t)),

0 ≤ t ≤ δ, where π2(x1, x2) = x2 is the canonical projection. The lines
x2 = xj

2 determine a partition of x(t) in the interval 0 ≥ t ≥ δ. Observe that
xl

2 = x0
2 + 1 for some l < k, then using this partition we obtain

∫ δ

0
b(x1, x2)ẋ2dt ≥

∫ 1

0
b(x̄1, x2)dx − 2bmin + bmin

∑
(xj − 1)(xj

2 − xj−1
2 ) =

= b̄ − 2bmin + bmin
∑

(nj − 1)(xj
2 − xj−1

2 ),

where nj is the number of components of the intersectionn of x(t) with the
strip xj

2 < x2 < xj−1
2 .

However,
√

2Eδ = lenght(x) ≥ 1 +
∑

(nj − 1)(xj
2 − xj−1

2 )
Therefore, using the above estimate, and denoting by M =

∑
(nj−1)(xj

2−
xj−1

2 we obtain

A[x] = E + 1
δ

∫ δ
0 b(x1(t)), x2(t))ẋ2(t)dt ≥ (1+M)2

2δ2 + b̄−2bmin

δ
+ bminM

δ
.

Since 1
δ

= −b̄, we get

A[x] ≥ (1 + M)2

2
b̄2 − b̄(b̄ − 2 bmin) − b̄ bminM

or

A[x] ≥ − b̄2

2
+ M2 b̄2

2
+ Mb̄2 + 2bminb̄ − b̄bminM.

As before,

A[x] ≥ −b̄2

2
+

(bmin − b̄)2

2
+ (bmin − b̄)b̄ + 2bminb̄ − bmin(bmin − b̄),

or

A[x] ≥ −b̄2

2
+

b2
min

2
− b̄bmin +

b̄2

2
+ b̄bmin − b̄2+
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+2b̄bmin − b2
min + b̄ bmin

or

A[x] ≥ − b̄2

2
− b2

min

2
+

+4b̄bmin − b̄2

2
− b̄2

2
− (bmin − b̄)2

2
+ 2bminb̄

as before.
Therefore, if −b̄2 − bmin

2 + 4b̄bmin > 0, then A[x] > A[µ1].
This shows that the vertical solutions (0, b̄t) and (0,−b̄t) are minimizers

and β(0, b̄) = β(0,−b̄) = − b̄2

2
. Therefore, the interval I = {h | b̄ ≤ h ≤ −b̄}

is a non-trivial linear domain for the minimal action funcion.
This also implies that there are no ergodic minimizing measures with

rotation vector (0, h) with h �= 0, inside the interval I. In fact, the graph
property of Λ(I) (=the closure of the union of the support of all minimizing
measures with rotation vector inside I) implies that any solution contained
in Λ(I) does not intersect the lines x1 = 0, x1 = 1

2
. This means that the

projection must be a convex curve (nonzero curvature), but this contradicts
the assumption that the rotation vector is multiple of (0, 1).

Also using the above estimate one can prove that the value of the action
on a curve with vertical rotation vector (0, h) with h ∈ I and h �= 0 is bigger
that − b̄2

2
. Now from Corollary 2 in [C], the minimum energy level that con-

tains a minimizing measure is E = − b̄2

2
.

We consider now the case h = 0.
If there is an ergodic minimizing measure µ with ρ(µ) = 0, then the lift

of the projection of supp µ to R2 is a closed convex curve homotopically
trivial. Also using the ideas of [C] we get that such curve is parametrized
with constant speed |b̄|. By the graph property, if such curve comes from a
minimizing action measure, then it can not intersect the lines x1 = 0, x1 =
1
2
, x1 = 1 (that are in the support of minimizing measures).

We can assume without lost of generality the case where the solutions are
on the strip 0 < x1 < 1

2
.

Suppose that γ1 and γ2 are closed convex curves homotopically trivial
contained in the strip 0 < x1 < 1

2
with γ1 contained in the interior of the
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region bounded by γ2, then length γ1 < length γ2, so the respective periods
satisfy τ1 < τ2.

Hence

A[γ2]−A[γ1] =
1

τ2

∫ τ2

0
b(γ2)γ̇2− 1

τ1

∫ τ1

0
b(γ1)γ̇1 <

1

τ2

(
∫ τ2

0
b(γ2)γ̇2−

∫ τ1

0
b(γ1)γ̇1 )

=
1

τ2

(
∫

γ2

b dx2 −
∫

γ1

b dx2 ) =
1

τ2

∫
γ2−γ1

b dx2 =
1

τ2

∫ ∫
R

∂1b dx1dx2,

where R is the annulus bounded by γ2 − γ1. Since R is contained in strip
0 < x1 < 1

2
, where ∂1b is negative we obtaion

A[γ2] < A[γ1].

This shows that there are no minimizing curve which is homotopically trivial
because the action can always be decreased for homotopically trivial ex-
tremals.

Finally for (0, h) outside the interval (0, I), estimates analogous to the
one used in the previous case show that the solutions (0, ht) and (1

2
, ht) are

global minimizers.
For h not in the set I, it is easy to see from the above that β(0, h) = h2

2
−hb̄

for h > −b̄ and β(0, h) = h2

2
+ hb̄ for h < b̄.

This shows that the graph of β(0, h) = β(h) as a function of h has the
shape of figure 1.

This is the end of Theorem 3. �

Now we will show some examples:

1) when b = bλ = cos 2πx1(1 + λ sin 2πx2), where λ is a constant small
enough: b̄ = −1 and bmin = −(1 + λ), so the condition is −1 − (1 + λ)2 +

4(1+λ) > 0 or: 1−√
2 < λ < 1+

√
2, and since we are assuming 0 < λ < 1,

we always have A[x] > A[µ] = −1
2

.
2) when b(x1, x2) = cos2πx1(1 + λ sin πx2), then b̄ = [−1 + λ

π
] and bmin =

−[1 + λ]
3) in general whem b is of the form b(x1)c(x2), then b̄ = b(x̄1)

∫ 1
0 c(x2)dx2 =

b(x̄)c̄ and bmin = b(x̄1)c(x̄2) (if b(x̄1) < 0 then bmin = b(x̄1) max c(x2)) and
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the above condition becomes:

−b(x̄1)
2c̄2 − b(x̄1)

2c(x̄2)
2 + 4b(x̄1)

2c(x̄2) > 0

or
−c̄2 + c(x̄2)

2 + 4c(x̄2)c̄ > 0

(condition only on the perturbation term).

2. The twist map

In this section we show Theorem B, that is, the existence of a twist map
defined by the first return map associated with a certain tranversal section.

We will need first the following proposition:

Proposition 4: Suppose that z : IR → IR2 is a minimizer for a La-
grangian satisfying the hypothesis of Theorem 3 with non-vertical homolog-
ical mean position i.e, ρ(z) is not a multiple of (0,1).

Then the map t �→ π1 ◦ z(t) = x1(t) is injective.

Proof: If ẋ1(t0) = 0, since |ż(t)| =
√

2E, we have ż(t0) = (0,±√
2E).

By uniqueness of O.D.E.

x1(t0) �= 1

2
, 0

because we are assuming that the homological mean position of z(t) is non-
vertical.

Let us suppose without lost of generality (otherwise use the symmetry
principle) that

x1(t0) ∈
(

1

2
, 1

)
.

By the convexity of z(t) in the strip

x1 ∈
(

1

2
, 1

)
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and non-verticality of the homological position, there exist two points t1 <
t0 < t2 such that

x1(t1) = x1(t2) =
1

2
.

or
x(t1) = x(t2) = 1.

Without lost of generality suppose the first case happens (otherwise apply
the symmetry principle).

Observe that ẋ2(t0) > 0, otherwise, by convexity of z(t) it will never hit
the side x1 = 1

2
.

Therefore there are two values c, d such that c < t0 < d with x1(c) =
x1(d).

From this it follows that

A[z|dc ] = E(d− c) +
∫ d

c
b(z(t))ẋ2(t)dt ≥ E(d− c) +

∫ d

c
b
(
x1(c), x2(t)

)
ẋ2(t)dt.

The right hand side is the action of the curve (x1(c), x2(t)) with the same
end point condition. Therefore z is not a global minimizer. �

Now we will show that under appropriate conditions and using certain
variables there exists a twist map induced by the first return on the torus
to x1 = 0. First we will show that under these assumptions a trajectory
beginning in x1 = 0 will hit x1 = 1/2. The same reasoning, after that, will
produce a sucessive hitting in x1 = 1.

This procedure will induce a first return map that we will show later is
a twist map. It will be necessary that the solution z(t) has a large value of
energy in order it can cross from x1 = 0 to x1 = 1.

First we will need the next theorem.

Theorem 5: Let ϕ(t) be the angle (with the horizontal line) of a tra-
jectory z(t) of the Euler-Lagrange flow on IR2, z(t) = (x1(t), x2(t)). Suppose
that x1(0) = 0, x2(0) = x0

2. There are positive numbers E0 and θ0 such
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that if the energy E > E0 and the initial condition (x1(0), x2(0), x
′
1(0), x

′
2(0))

, tan ϕ0 =
x
′
2(0)

x
′
1(0)

is such that −θ0 < ϕ0 < θ0, then ∃t0 such that

x1(t0) =
1

2
.

Proof: The proof is by contradiction.
Start with some initial condition

−π

2
< ϕ0 <

π

2
.

Suppose ẋ1(t) �= 0 for t in some interval (0, δ), then there is a function
y(x) such that x2(t) = y(x1(t)).

Let

λ(t) =
∫ x1(t)

0
∂1b(x1, y(x1))dx1 −

√
2E sin ϕ(t)

for 0 ≤ t ≤ δ.
As ẋ1 =

√
2E cos ϕ and ∂1b = ϕ̇, λ′(t) = ∂1b(x1(t), y(x1(t)))ẋ1(t) −√

2E cos ϕ(t)ϕ̇(t) = 0.
Therefore, λ is constant along the trajectory z(t).
Suppose by contradiction that there is no t0 as asserted and let t1 be the

first value such that ϕ(t1) = π
2
.

Denote x1(t1) = x1 < 1/2.
As λ(t) is constant

λ(t1) =
∫ x1

0
∂1b(x1, y(x1))dx1 −

√
2E = −

√
2E sin ϕ0,

or ∫ x1

0
∂1b(x1, y(x1))dx1 =

√
2E(1 − sin ϕ0).

Since ∫ x1

0
∂1b(x1, y(x1))dx1

is bounded above by some V (depending only on b), then

V√
2E

≥ (1 − sin ϕ0).

If E is large and sin ϕ0 bounded away from 1 the last expression is not
possible. Therefore, z(t) has to cross x1 = 1/2, otherwise the solution is
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always in a region of negative curvature and will bend until ϕ(t) attains the
value π/2.

This shows the Theorem. �

Remark 1: After the hiting of the line x1 = 1
2

the trajectory will hit
the line x1 = 1 by the same argument (symetry principle). This shows the
existence of a first return map of trajectories (with large enough value of
energy) on the torus beginning in x1 = 0 to itself. The domain of definition
of such map is all 0 ≤ x0

2 ≤ 1 and ϕ0 on a uniform neighbourhood of 0.

For a better geometrical understanding of the domain of the returning
map we describe the phase space of the Lagrangian flow in the example 1 :
b(x1, x2) = cos 2πx1(1 + λ sin 2πx2).

For λ = 0 and E fixed it is easy to see that H(x1, ϕ) = cos(2πx1) +√
2E sin ϕ is a first integral.
This follows from

dx1

dϕ
=

√
2E cos ϕ

−2π sin(2πx1)
.

The critical points of H(x1, ϕ) are
(0, π/2) maximum
(0,−π/2) saddle
(1/2, π/2) saddle
and (1/2,−π/2) minimum.
Depending of the level of energy, the separatrix of the saddle points pre-

vent or not the trajectories to cross from x1 = 0 to x1 = 1. This property
can be seen in figures 3 (parameter E=0.1 ) and 4 (parameter (E=20 ).

A necessary condition for existing trajectories with non-vertical rotation
vectors is E > 1

2
.

In fact, since the equation for the separatrices are

√
2E(1 − sin ϕ) = 1 + cos 2πx1

and √
2E(1 + sin ϕ) = 1 − cos 2πx1,
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if E ≤ 1/2, then both curves intersect the axis ϕ = 0 and therefore the
saddle conection will be among saddle points that are in the same vertical
line (x = 0 and x = 1/2).

This property prevents any trajectory of going from x = 0 to x = 1/2.
In the case E > 1/2, the saddle connection will be between saddle points
located in the same horizontal line.

The analysis of the dynamics of the returning map T in the case of small
λ is obtained by continuity properties of the perturbation of the case λ = 0
described above. Note that the domain of definition of the perturbed case is
a subset of the domain of definiton of the unperturbed case.

A geometrical picture that may help the reader is shown in figure 5 and
6. In fig 5 we show the unperturbed case λ = 0 and fig 6 shows the case of
λ �= 0 but small enough.

Now we will show that under suitable change of coordinates the map
defined above is a twist map.

Fix a value E of energy such that there exist minimal solutions

(x1(t), x2(t), ẋ1(t), ẋ2(t)) = (x1(t), x2(t), v1(t), v2(t))

with x1(t) coming from 0 to 1.
Consider tan ϕ = v2

v1
. The Euler Lagrange equation can be written

ẋ1 = v1 =
√

2E cos ϕ
ẋ2 = v2 =

√
2E sin ϕ

v̇1 = −√
2E sin ϕ ϕ̇

v̇2 =
√

2E cos ϕ ϕ̇
ϕ̇ = K(x1, x2) = ∂1b(x1, x2),
because v2

1 + v2
2 = 2E.

Expressing the last two equations in terms of x1(ϕ), and x2(ϕ) we obtain
dx1

dϕ
=

√
2E cos ϕ

K(x1,x2)
,

dx2

dϕ
=

√
2E sin ϕ

K(x1,x2)
,

Let the variable w be
√

2E sin ϕ.
The last two equations in terms of w can be read as (remember that x2

is a function of x1)
dw
dx1

=
√

2E cos ϕ dϕ
dx1

=
√

2E cos ϕK(x1,x2)√
2E cos ϕ

= K(x1, x2) = ∂1b(x1, x2).

20



dx2

dx1
= tan ϕ = w√

2E cos ϕ
= w√

2E−w2 .

The transformation T should be seen as a first hitting map in the variable
(x1, x2) of the trajectory beginning in the line (x1, x

0
2) = (0, x0

2) to the line
(x1, x

1
2) = (1, x1

2).
The domain of definition of T is the set of (x0

2, w
0) obtained in Theorem 5

and remark 1. Note that in this case, the solution z(t) of the Euler-Lagrange
equation , z(t) = (x1(t), x2(t)), with initial condition (0, x0

2, w
0) should satisfy

the condition v1(t) = x
′
1(t) �= 0 for all t.

The map T (x2, w) is formally defined by taking the time one of the flow
ψx1 generated by this (time-dependent) vector-field.

If b is a function of x1 only, as in the above example, the vector-field is
integrated explicitly and the return map becomes

T (x2, w) = (x2 +
∫ 1

0

(b(x1) − b(0) + w)√
2E − (b(x1) − b(0) + w)2

dx1, w).

In this case we call T integrable.
Such T is clearly a twist map and therefore, for small λ, the map T = Tλ

is also a twist map defined on an open annulus.
This is also valid in the general case but the region where T is twist will

depend of the particular form of b.
Now we will show Theorem B.

Theorem 6: Lef b(x1, x2) be a magnetic potential satisfying the hypotesis
of Theorem A. Then there is a positive number E0 such that if E > E0 there is
an open annulus

∧
(E) and an area preserving twist map BE :

∧
(E) → ∧

(E)
such that the minimizing measure µ with supp µ contained in the level set
E is described by orbits of BE.

Moreover, there is a number α = α(E) ∈ IR such that if µ is an ergodic
minimizing measure with the slope of the rotation vector ρ(µ) bigger then α,
then supp µ is not an invariant torus.

Proof:
First we observe that the local maximum of the slope of any solution

occurs at x1 = 0 and the minimum at x1 = 1
2

and by the graph property, if
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there is an invariant torus in the tangent bundle contained in some energy
level E and foliated by minimizers, then it is a Lipschitz graph of the form
ϕ = ϕ(x1, x2).

Let
∧

(E) be the domain of the twist map as described in Theorem 5, then
there are two C1 functions ϕ1, ϕ2 such that

∧
(E) = {ϕ1(x2) < w < ϕ2(x2)}.

If T :
∧

(E) → ∑
denotes the return map, then ∩j∈ZT j(

∧
(E)) is an

annulus bounded by the graph of two Lipchitz functions αE
1 (x2), α

E
2 (x2).

Let β+(E) = sup αE
1 (x2) and β−(E) = inf αE

2 (x2) and

α+(E) =
β+(E)√

2E − β+(E)2

and

α−(E) =
β−(E)√

2E − β−(E)2
.

If Sp/q is an invariant torus contained in the level set E and with the
associated rotation vector a multiple of p/q, then there is a point (x0

1, x
0
2)

belonging to the projection of Sp/q on the torus T 2 such that tan ϕ(x0
1, x

0
2) =

p/q.
It follows from the invariance of Sp/q that α−(E) < p/q < α+(E).
On the other hand if Sα is an invariant torus with associated rotation

vector with irrational slope, then there is a sequence of rational numbers
pn/qn converging to α and a sequence of points (xn

1 , x
n
2 ) in T 2 such that

tan ϕ(xn
1 , x

n
2 ) = pn/qn . Therefore, from the invariance of Sα we obtain

α−(E) < α < α+(E)

We conclude that if ρ2

ρ1
> α+(E) then there is not an invariant torus with

rotation vector ρ = (ρ1, ρ2). �

To obtain the twist property we use the fact that minimizers with non-
vertical homological positions are graphs (x1, y(x1)) and proceed as in [B].
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