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Abstract. We consider billiard trajectories on the geodesic triangle D in the
i hyperbolic half-plane with internal angles 0, 0 and 7/2 at the vertices co, 1 and
i. The billiard map of D sends a given intersection point (together with the angle
L of incidence) of a given billiard trajectory v with the boundary 8D of D to the
next intersection point of v with 8D.
By choosing an appropriate cross section for the billiard map, we show that
the decay of correlation of the first return map is slower than n=2. As a by-
i product, we enumerate the billiard trajectories in terms of their cutting sequences
and relate the boundary expansion of the billiard map to continued fractions with
even partial quotients.

5 0. Introduction. In thepresent paper we consider the billiard that corresponds to
the Theta Group (see section 1). Adapting some ideas of D. Fried ([1]) we enumerate
; conjugacy classes of geodesics on the billiard (Theorem 2 in section 3). The billiard
map is the first return map of the geodesic flow on the billiard for a certain cross
section (section 3). Using standard geometric techniques we represent the billiard
i map by a function F in two variables (Theorem 2 and Corollary 1 of section 3), the
so called “boundary expansion”. The projection to its first component is denoted
by T'. Following Series ([4]) we find in section 4 the invariant measure m of T'.
The map T and the measure m were studied in a paper by Kraaikamp and
Lopes ([2]) about the Theta Group. The map T is related to the Continued Fraction
expansion with even partial quotients in the same way that the Gauss map is related
to the usual continued fraction expansion (See remark 1 of section 4). So the present
paper presents a geometric proof (or interpretation) of some of the results in [2].
In particular the map F' is a geometric way to define a natural extension of the
continued fraction expansion in even partial quotients.
Our main result is theorem 3 in section 5 which states that the billiard map
presents for a certain function (interpreted as a first return map in the remark
following the theorem) a decay of correlation of order larger than n—2.
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108 M. BAUER AND A. LOPES

This situation is quite different from the modular case or the case of compact
hyperbolic Riemann surfaces where the decay of correlation is of exponential type.

In [3] the decay of correlation of the Maneville-Pomeau map is obtained by means
of Renewal Theory considerations. The map considered here is similar to the only
case (y = 2) to which the methods of [3] did not apply.

1. Definition of the billiard. We analyse the hyperbolic billiard that is deter-
mined by the triangle D which is contained in the hyperbolic upper half-plane
H? = {c+iye C:y > 0} and whose (geodesic) sides are Ag = {iy : y > 1},
Bo={l+iy:y>0}and Co={z+iy:22+y2=1,0<z < 1}. D is illustrated
by the shaded region in figure 1. The other parts of the figure will be explained in
the remainder of this section.

Roughly speaking, we consider the unit speed motion of a point mass in D that
will rebound when hitting the boundary 8D = Aq U By UCy of D according to the
law of “incoming angle equals outgoing angle” and whose trajectory is a hyperbolic
geodesic segment between any two consecutive boundary hits. In the notation of
figure 1, the arcs ag, a1, a3 and ag are geodesic segments (i.e. intersections with D
of circles whose centers are on the real axis) that combine to a connected subset of
a billiard trajectory.

Note that the vertices 1 and oo are at infinity (in the hyperbolic metric) and can
not be reached by a point mass in finite time that starts in D. The interior angle
at these two vertices is of course 0.

To be more precise, we define the group I' of hyperbolic isometries generated by
the reflections a(z) = —%, b(z) = 2 — 7 and ¢(2) = 1/z, about the sides Ao, By,
and Cy, respectively. ' acts on IH? with fundamental domain D. Let 7 : IH? — D
be the projection that sends a point z € H? to the unique point in D equivalent
to z by an element of T'. For instance, the regions in figure 1 that are denoted
a(D), ¢(D), ca(D), etc., are mapped bijectively to D under the map a, ¢, ca, etc.,
respectively, where ac is the map a followed by ¢. So we read compositions of maps
from left to right.

We identify the quotient space @ = IH?/T' with D. A billiard trajectory is by
definition the projection of a geodesic v of IH? under the map 7 to D. In the
notation of figure 1, the arcs ag, 81, B2 and 3 combine to a geodesic segment and
project to ao, a1, and a3, respectively.

We remark in passing that D has the structure of an orbifold for which a billiard
trajectory is a geodesic. Also, the index 2 subgroup I'* of I that consists of an
even number of compositions of isometries is the Theta group that acts on IH? with
fundamental domain D U a(D).

We will always assume that geodesics of IH? and billiard trajectories are oriented.
Moreover, we ignore billiard trajectories that hit the point ¢ or that converge to
infinity or the point 1.

For each point z of a billiard trajectory 4 that is not on the boundary of D there
is a well defined unit vector tangent to 4 at z. At a point z € ¥ N D we have
two choices, and we define the (unit) tangent vector v of 5 at z to be the one that
points out of D.

Note that T'(0D) = {g(X) : g € I, X € {Ao, By, Cy}} forms a tessellation of IH?
that we denote by 7. We attach to each image of the side Ag (and By, Cp) under
an element of the group I' the same label A (and B, C, respectively). See figure 2
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where we drew part of the tessellation 7" between z = —1 and # = 1. As the map
ab is horizontal translation by 2 the tessellation between 2n — 1 and 2n +1isa
horizontal translate of the part between —1 and 1, for all n € 7.

We next define the cutting sequence - X_oX 1 XoX1Xo--- of a billiard tra-
Jectory ¥ with respect to a point z € 4N Cp as follows: X, = C and Xy, Xo, -
(X_1,X_2,- -, respectively) are the labels of the sides of the triangle D that we
encounter in succession when moving along 7 in the positive (negative) direction
starting from z. For instance, the connected segment ap U a; U ay U ev3 shown in
figure 1 contributes BCABC to the cutting sequence of the billiard trajectory that
contains the segment.

Alternatively, suppose that - is the (unique) geodesic of IH? that passes through
z with the same unit tangent vector as 5. As m(7y) = 7, the cutting sequence of v
with respect to z agrees with the cutting sequence of 7 with respect to z and the
labels of the tessellation 7. For example the cutting sequence of ag U B1UBs U B3
is BCABC, which is what we found in the end of the last paragraph.

Note that it can not happen that the cutting sequence of 7 (and hence of 7)
contains one of the strings BA or CB an infinite number of times in succession. So
a billiard trajectory can not “bounce off” to infinity.

2. A normal form for conjugacy classes in I'. We represent in this section a
given conjugacy class in I' by a word in normal form.

Note first that I has presentation I' = (a, b, cla® = b? = ¢® = 1; (ac)? = 1), where
we read letters of a word (as compositions of maps) from left to right. The map
ac = ca is the rotation by m about the point ¢, 7 being twice the angle of incidence
of the sides A and Cy. Note also that the elements of finite order in " are given
by a,b, ¢ and ac.

We say that w € T, represented as a word in a,b, ¢, is in normal form if it is
shortest in its conjugacy class (i.e. among all the representation of w or a conjugate
of w as a word in the letters a, b, ¢, we take one that has the fewest letters), if it is
of infinite order, if its first letter is ¢ and if it does not contain the string ca. Note
in particular that w will not contain any of the strings aa, bb, cc, aca and cac.

Given w € I' that is not of finite order and that is not conjugate to (ab)™.
We represent w by a word that is shortest in its conjugacy class and replace each
occurrence of the string ca by ac to get a representation w’ of w that will again be
shortest in its conjugacy class.

After possibly cyclically permuting the letters of w', we get a word whose first
letter is c. If by doing so we create a string ca, we replace it by ac. If the first letter
is now a we conjugate the word by a to get a word in normal form that represents
a conjugate of w.

We showed that we can represent the conjugacy class of w by a word in normal
form.

Suppose now that wy is a word in normal form. We write wy = rywp, where r;
is the longest initial string of letters of wy that contains exactly one letter ¢. This
initial letter c is followed by the letter b, and each letter @ and b of wyp can only be
followed by the letter b and a, respectively. So by defining

c(ba)™, ife=1;
el = { c(ba%“_lb, ife=—1,

we see that ry is equal to f(ni,e;), for some ny > 1 and e; € {£1}.
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w; will now be either the empty word or a word whose first letter is ¢. We write
w; = rowe where r is the longest initial substring of w; that contains exactly one
c. Note that as wp is shortest in its conjugacy class this ¢ can not be the only letter
of w,. We see as before that r = f(ns,e3), for some ny > 1 and ey € {£1}.

Theorem 1. Ifw € I is not of finite order, then w 15 conjugate to either (ba)™ or
an element w' € U in normal form. In the latter case we have

w' = f(ny,e1) - f(ng,ex),

where n; > 1 and e; € {£1}, fori=1,... ,k. Moreover, this normal form repre-
sentation of the conjugacy class of w is unique up to a cyclic permutation of the
factors f(ni,e;).

We only need to prove the uniqueness part which is done in the following

Lemma 1. If two conjugate elements w and w' of I are in normal form and repre-
sented as a product of factors f(n,e) as in theorem I, then the two representations
can only differ by a cyclic reordering of the factors.

Proof. (The argument follows the lines of a proof of a lemma by Fried in (1)

Step 1. By taking squares we see that it suffices to prove the lemma for elements
in the subgroup I't of T that consists of words of even length.

Using the Reidemeister-Schreier method for presenting subgroups, one sees that
I't has presentation (z,ylz? = 1), where z = ca and y = ab, hence is the free
product of Z, and ZZ. It follows that each '+ conjugacy class of an element in
can be written as w = zy™ -+ xy™, where n; € J = ZA\ {0}, fori=1,...,k We
say that (ni,...,nx) is the J-sequence associated to w. Note that the J-sequence
of a conjugacy class is unique up to cyclic permutation.

As we are interested in I' conjugacy classes of elements in I't, we need in addition
to consider conjugation by the element a. To that effect we note that axa = z7l==z
and aya = y~!, hence azy™a = zy™".

If follows that if w,w' € T+ are conjugate in T', then their J-sequences can only
differ by a cyclic rearrangement of their factors or an overall sign.

Step 2. Suppose that w' € T'* is as in theorem 1. Using the relation cb = zy, one
shows that f(n,1) = zy™a and f(n,—1) = zy™. Sow' = f(n1,e1) - f(ng,ex) can
be written as zy™a! - --xy™*a®*, wheren; > 1 and ¢; € {0,1}, for i = 1,..., k.
Using again the relation azy™a = vy " and the fact that e; + --- + €& is even, the
J-sequence of w is of the form (ny,ne,... ,%ny), where the signs of the n; are
a function of the ¢;. Note that if we cyclically permute the factors of w' then we
get the J-sequence of the permuted word by applying the same permutation to the
factors of the J-sequence of w' plus a possible overall change of sign.

Step 3. Given now two elements w and w' in 't that are conjugate in I' and
in normal form. We write them as a product of factors f(n,e) as in theorem 1.
Construct the J-sequence S and S’ of w and w', respectively, as described in Step 2.
S and S’ agree up to an eventual cyclic reordering and overall sign.

By cyclically reordering the factors of w', we can assume that S and S’ agree up
to maybe an overall sign. But the first element in the J-sequence is always positive,
so S — S'. Tt follows that w and the (cyclically permuted) w' agree. O
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3. The billiard map. We fix for this section a billiard trajectory 4° and a point
20 € 4° N Cs.

Suppose that - -+ ,2z-1, 20,21, are the successive points where 4° hits the side
Co. The vector tangent to 4 at z; is denoted by v;, for ¢ € ZZ.

Of course the pair (z;,v;) determines 4%, hence in particular (2ziy1,vi+1), for each
i € 7. The application that maps (zi,v;) to (Zit1,Vi41), for each i € ZZ is called
the billiard map of the billiard D with respect to the side Cp.

The goal of this section is to describe the billiard map in some convenient rep-
resentation using only the cutting sequence of 4°. We proceed in two steps, the
second being a modification of the first.

Step 1. Bach (z;,v;) determines a unique oriented geodesic v* of IH2. Suppose
temporarily that o*(t), t € IR, is a unit speed (with respect to the hyperbolic metric)
parametrisation of o' that respects the orientation of 4*. Then 4% = lim¢—o0 0 (2)
and 7 = lim;—coa'(t) are points “at infinity”, i.e. points on the boundary
{(z,0) : z € R} U {co} of the hyperbolic half-plane. We refer to 7L and % as the
positive and negative, respectively, endpoint of 7.

The following facts are crucial, well known and easy to verify (see [5] for exam-
ple):

We fix i. Suppose that a is the connected segment of 7° that has initial point

z; and endpoint zi41. Then o is the union of smooth arcs e, ... ,a,, for some n,
where the endpoint of a; is contained in a side of the triangle D, say with label
X, and agrees with the initial point of @41, for j =1,...,n—1. Moreover, the

initial point of a; and the endpoint of o, are in Co.

This means that the cutting sequence { of 4° with respect to z; is of the form
viw G Xy v Xgea Corve: By underlining a letter of a cutting sequence we indicate
where we start to read it.

Let 3 be the initial segment of +* that starts at z; and cuts through exactly n
consecutive regions Di,... ,Dp, each of which is a copy of D by an element of T'.
Each D; cuts out a segment B; from B that projects to o, for 3 =1,... , 7.

Note that the endpoint of §; is in a side of the tessellation 7~ with label X, for
j=1,...,n—1, and B, has its endpoints in a side with label C'

We use for the rest of this section the following convention: If the capital letter
X denotes a label A, B or C, then ¢ denotes the map a,b or ¢, respectively.

One shows inductively that D; = zj_1---z1¢(D), and B; = Tjq -+ T1c(ag),

hence a; = czy -+ x;-1(B;), for j =1,...,n.
As 7"*! is a continuation of ay, it follows that 7*+! = ¢czy - - Tp—1(7"), hence
in particular 7' = cx1-- 2Ta-1(7:). Note that the cutting sequence of !

with respect to zit!is ---CX; - X;—1C---. This means that we get the cutting
sequence of y*1 (or #°) with respect to zi41 by underlining the first C that occurs
after the C that is underlined in the cutting sequence of +* (or 4°) with respect to
i

Step 2. This is almost what we want, but not quite. It is clear that the cutting
sequence [ of 4° does not contain any of the strings AA, BB, CC, ACA, or CAC.
We already remarked that ! does not contain the string BA an infinite number of
times in succession. | might however contain the string C'A.

We therefore define the modified cutting sequence l,, of the cutting sequence l
to be the sequence we get from ! by replacing each occurrence of C'A by AC. T
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by doing that we replace the string CA in I, with C underlined, by AC, then we
continue to underline the same C in L.
1t follows by an argument gimilar to the one we used in section 2 to characterize
words in normal form that lm = - -F(n_l,e_l)F(ng,eg)F(nl,el) ..., where
C(BA)", ife=1;
P(nye) = { c(BA)" B, ife=-1

Recall the sequences (2i,0:)i=% and (4)iE=,, from step 1. The cutting se-
quence I of 7' with respect t0 zi ‘s either of the form ! = ---CB--- oOF I =
...CA---. In the first case we define 8¢ = 7 and take the cutting sequence of &'
with respect to zi. In the second case we define §i = a(y') and take the cutting
sequence of &' with respect to a(z;). Note that the cutting sequences of &* and '
agree in either case.

As a geodesic in 2 can not cut the same line of the tessellation T twice, we
can convince ourselves by a quick consultation of figure 2 that & el= (0,1) and
5t € J=(~00,-1)U (1,00). Indeed, if Ii contains CB, then 8t = ~* crosses first
Cl, and then the side of ¢(D) whose label is B. So 6% €I and 6i € J. If however
/i contains CA, then & = a(*) crosses a(Co) and then the side of ca(D) whose
abel is A. So 6. € I and &% € (—o0,—1) C J.

Using the notation of steps 1 and 2 above, we determine in the next theorem the
billiard map acting on pairs (8% 0%)-

Theorem 2. Let ! be the cutting sequence of the billiard trajectory 7% with respect
to the point zo € Co.
(1) Then the modified cutting sequence lm of L 15 of the form
l, =+ F(n-1, e,l)F(no,eg)F(m,el) Sy
wheren; > 1 and &; € {£1}, fori € Z.
(2) We assume the notation in part 1 to be chosen such that the initial letter
C of F(ng,eo) is underlined (i.e. is the label that corresponds to 20). The
billiard map is then gwen by

6‘;1 = f(ni,ei)l i), fori€ Z.
Moreover, the cutting sequence 1k of 5° with respect to zk equals 1, except that
the kth C that follows the underlined C of 1 1s now underlined, for k € IN.

Similarly, the modified cutting sequence Ik of I* equals lm except that the
initial C of F(nk,ex) is now underlined.

Proof. We only need to prove the second part of the theorem. To that effect we
start by noting that 10 = | will be of the form ] == ---QAE‘(BA}“‘J‘S‘AEZC‘A‘3 rey
where €1, €2,€3,€2 + €3 € {0,1}. It follows from step 1 that the cutting sequence R
of 4* with respect to z1 is 19 except that we underline the first letter C that follows
the one underlined in 1°. Moreover, At = ca® (ba)"ba®? (7%). Note that 80 = a*(7°)
and &' = a®(y}). It follows that 5 = c(ba)mbacze (8°). (Recall that we read maps
from left to right and that aca = )

Now 12, = - . AnC(BA)"BAST=C -, hence F(no,e0) = C(BA]“BA“*‘“.
But then f(no,eo) = ¢(ba)™ba2* ¢ which proves the claim in case i = 0.

Note that the modified cutting sequence 1L of I! is the same as 19, except that
we underline the first C that follows the underlined C of I%,. An obvious induction
argument proves the claim. 0
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We remark in passing that the first part of theorem 2 can be used to enumerate
billiard trajectories. The only restriction on the modified cutting sequence of a
billiard trajectory is that it can not contain an infinite number of times the string
F(1,—1) = CB in succession. To construct a geodesic with a given modified cutting
sequence one can use the second part of remark 1 is section 4 below.

For n > 1 and e € {*1}, we compute

f(n,e)(z) =e [:1; - 2n] ;
where z € IR \ {0}, and define

B(n)e) = { (51,11?1151;)’ Tfe =1
(E,m), ife=—1.
Recall that 6% € I = (0,1) and §*. € J = (—o00,—1) U (1,00). One readily verifies
that f(n,e) maps B(n,e) bijectively onto (0, 1), for e = £1 and n € IN. Moreover,
f(n,e) maps J onto (—2n —1,—2n) U (—2n,—2n + 1), if e = 1, and it maps J onto
(2n — 1,2n) U (2n,2n + 1), if e = —1. Thus, we proved

Corollary 1. The billiard map, acting on (6;,51) as described in Theorem 2 is
given by
I IxJ = IxJ
C(my) » (f(ne)(z), f(n,e) (),
if © € B(n,e), forn > 1 and e € {£1}. F is a bijection between the subset of I x .J
where it is defined and its image.

4. The invariant measure of the billiard map. It is convenient to use the
change of coordinates h : J — (—1,1) defined by h(y) = —1/y. For n € IN and
e € {£1}, we define g(n,e) = ho f(n,e) o h and compute

e

g(n,e)(y) = T

The billiard map then becomes

P (O,I)X (_1:1) —+ (U,I)X (_1s1)
(z,) = (f(n,e)(z),9(n,€) (),

if z € B(n,e), forn > 1 and e € {£1}.

Denote by T': (0,1) — (0,1) the projection and restriction of F' (and F) to its
first factor, namely

T(z) = f(n,e)(z), if z € B(n,e),

for e € {#1} and n € IN. It will be convenient to add the right endpoint to the
intervals (0,1) and B(n,e), for n > 1 and e € {£1}. See figure 3 for part of the
graph of T'. The map F that we defined in an essentially geometric way (up to the
renormalization) agrees with the natural extension of the map T' considered in [2].

We next determine the invariant measure of the maps F' and T following an
argument of Series in [4].

The invariant measure of the geodesic flow induces an invariant measure for the
first return map of a given cross section. By representing a geodesic by its endpoints
(z,y), this measure becomes ﬁwda:dy, defined in our case on I x .J,
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By applying the change of coordinates h to the variable y we find “leﬁ;drdy
as the invariant measure for F.

The invariant measure m for T on (0,1) can then be found by integrating the
invariant measure of F' over the interval (—1,1). We find that m is given by

1 1
dm——(l_x'i“H_—I)dl‘.

Remark 1. (1) Suppose that we are in the situation of Theorem 2 of section 3.
The formula for the billiard map given there implies that
; 1
5

T edfl :
for i > 0. We conclude that
1

@=L
2ng +

2n, + =
2ny + i

2nz 4+ -.

But this is just the continued fraction expansion with even partial quotients
of 6% (see [2]). This means that we determined the continued fraction expan-
sion with even partial quotients of the positive endpoint 6% of the geodesic
8° using the (modified) cutting sequence I,, of 8°.

(2) If one applies the method of this paper to the group I'y of hyperbolic isome-
tries generated by the reflections a;(z) = =%, b1(2) = 1-Z and ¢;(z) = 1/z,
then instead of T' one obtains the Gauss map 7)(z) = 1/z — [1/z]. Further,
the map F) that corresponds to F is the natural extension of T), and the
measure 12, that is invariant under 7}, when normalized to be a probabil-
ity measure, is the Gauss measure 10;21%@' Finally, the endpoints of a
(normalized) geodesic can be expanded as a (usual) continued fraction using
the cutting sequence of the geodesic. See [4] and especially [1]. Note that
the fundamental domain for Ty is half of the fundamental domain for the
modular group.

We close this section by checking directly that m is invariant under 7.
Recall that dm = g(z)dz, where

9(e) = (1:.~:+141m)'

If y € (0,1), then the collection of inverse images of y under T is given by
{an(y) =1/(y+2n) :n > 1} and {ba(¥) = 1/(2n—y) : n > 1}. To show that m is
invariant under T it suffices to verify that g satisfies the functional equation

> 19(an@))lah®)] + g(ba @) B @) = 9(y).
n=1
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i—)gda:dy To that end we compute a, = —1/(y + 2n)* and b!, = 1/(2n — y)? and find that
oo
1
) = {1/(1 - 1/(1
SR 9(an(y)la, (W)l = {1/( oy o) T/ + e ==} @ on)E
by 1 1 1
={ + }
y+2n—-1 y+2n+1"y+2n
_ 2
T (y+2n-D(y+2n+1)
section 3. _ 1 B 1
y+2n—1 y+2n+1
By summing over n we find 1/(1 + y).
Similarly, one shows that by performing the above computation for b, instead
of a, one obtains 1/(1 —y). g therefore satisfies the above functional equation.
5. The decay of correlation. Recall from the last section that the map T is
given by T(z) = 2 — L, if z € [.5,1]. Note that for k& > 1 the point z; = 5L
satisfies T'(2x41) = %, and therefore T is a bijective map from (zg41,Tk+2) onto
(Tk, Th41]-
If we set My = (Tg41,Ti+2), for k£ > 0, then we conclude from the above consid-
erations that T%(M;) = M, = (0, .5).
We want to estimate
o | @)1 (7)) @)
:r;:;g;r; Note that from the graph of T it is easy to see that
Ingo (2) Ity (TH(2)) = Ity =1 M1y o
olic isome- for some set N}, that is not very important for us.
(2) = 1/7, Therefore
|. Further,
1, and the /IM., () Ing, (T*(z))dm(z) > m(Mp N T My_,).
. probabil-
sointsof a We will show next that m(Mo NT~'M,_,) decreases to zero as n™2.
tion using We calculate the measure m(M,) to be log g:ﬁ' This last term is of the order
Note that n~! by L’Hépital’s rule.
G5 Terhe Now from the invariance of the measure m we find
m(My) = m{Mp41) + m(Mo N T~ (M,)).
n Therefore m(Mo N T~ (Mp41)) is of the order n™! — (n 4 1)~! which in turn is

of the order n~2.

The final conclusion is:

Theorem 3. The decay of correlation of the function Ipg, for the billiard map T

(or F) is greater than or equal to a constant times n™2.
s given by Remark 2. We adopt the notation of theorem 2 of section 3 and represent a billiard
7 that m is trajectory 4° by its modified cutting sequence l,,. The theorem then states that
ation the billiard map relative to our choice of cross section (the side Cy of D) acts

by the “shift” map that consists in underlining the C' that follows the previously
underlined C of I,,. As C is always followed by B we look for the substring C'B of

lm-
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In theorem 3 however we restrict attention to M, which can be interpreted
as choosing a smaller cross section. Namely, 6° € (0,1) implies that the cutting
sequence of 4° contains either CBA or CABA. This means that the modified
cutting sequence contains CBA. So by representing a billiard trajectory by its
modified cutting sequence we choose the cross section CBA rather than only CB.
The shift map consists now in underlining the initial C of the first string C'BA that
follows the previously underlined C (of a string CBA). This action is captured by
the random variable M, whose correlation is shown to have polynomial decay in
theorem 3 above.
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