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Abstract: We consider topological groupoids in finite and also in a compact
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and we studied them in the context of statistical mechanics and quantum me-
chanics. We exhibit explicit examples and one of them will be the so-called
quantum ratchet. This is related to Schwinger’s algebra of selective measure-
ments. Here we consider G-kernels, transverse functions, modular functions,
and quasi-invariant measures for Haar systems. Later we present our main re-
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extending the original proof of T. Tannaka.
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1 Introduction

Considering appropriate definitions in the framework of topological groupoids,
our main goal here is to present some interesting results concerning finite and
Hausdorff compact groupoids. We are interested in the study of properties
that are potentially applicable to quantum mechanics and dynamical systems.
Schwinger’s algebra of selective measurements has a natural interpretation in
the formalism of groupoids. In this direction we present some characteristics of
observables defined on the so-called “quantum ratchet” (see [1], [4], [3] and [2] for
more details). Later, we extend that characterizations to the non-finite compact
context. We will also describe the so-called G-kernels, transverse functions,
modular functions, and quasi-invariant measures for Haar systems in our setting;
these are fundamental concepts in non-commutative integration. As far as we
know there are not many explicit examples of these entities in the mathematical
literature, and we provide them. One of our main results is the proof of a
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version of the so-called Tannaka’s Theorem in the setting of Hausdorff compact
groupoids, which is an extension of the classical result presented in Section XI
11. in [21] and [20] (see also [19]). This theorem presents a duality between
any Hausdorff compact group and a suitable subset of the ring of the Fourier
polynomials associated with the group (see [21] and [20] for details about that
result).

We refer the reader to [5] and [9] for general results in Noncommutative
integration (see also Section 5 in [6] for a synthetic presentation of the topic).
The characterizations of that kind of observables were well understood in [9] for
the setting of measurable groupoids

As mentioned in [3]: Contrary to the situation with groups, even if G is
locally compact there is not a canonical (right/left) invariant measure on the
groupoid, but a family of Haar measures had to be chosen.

The paper is organized as follows:
In section 2, we introduce the concept of a topological groupoid. Next, we

introduce characterizations of some observables defined in that setting, putting
special attention on the example of “the quantum ratchet”, which are presented
explicit expressions. After that, we extend those characterizations to the context
of non-finite compact groupoids.

In section 3 we present an extension of the so-called Tannaka’s Theorem to
the context of Hausdorff compact groupoids. First, we present the definitions of
linear representation and unitary representation for topological groupoids (in a
similar way to the ones presented in [7]). Later, we present the proof of the main
result of the section which guarantees the existence of a suitable epimorphism
between any Hausdorff compact groupoid and a subset of the ring of Fourier
polynomials associated with the groupoid.

General results concerning groupoids in Quantum Mechanics can be found
in [11], [14] and [8].

2 Topological groupoids

In this section, we are concerned with the study of compact topological groupoids,
and some observables defined in that context, which are widely studied in the
settings of statistical mechanics and quantum mechanics. The section is divided
into two parts. In the first one we deal with finite groupoids, in fact, we can
induce a structure of C∗-algebra on the space of continuous functions defined
on that class of groupoids and we present a suitable definition of quasi-invariant
measure for that context. In the second part, we extend the results presented
in the first one to the setting of compact groupoids using the so-called Haar
systems.

So, let us first present the definition of topological groupoid. Consider a
topological space G equipped with a composition map (α, β) ∈ G(2) 7→ α ·β ∈ G,
where G(2) ⊂ G × G is the space of composable pairs (which is equipped with
the subspace topology), we also consider a inverse map α ∈ G → α−1 ∈ G
and we assume that the maps · and −1 are continuous and satisfy the following
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properties:

i) (α−1)−1 = α for each α ∈ G.

ii) For any (α, α′) ∈ G(2) and (α′, α′′) ∈ G(2), we have (α · α′, α′′) ∈ G(2),
(α, α′ · α′′) ∈ G(2) and (α · α′) · α′′ = α · (α′ · α′′).

iii) Each α ∈ G satisfies (α−1, α) ∈ G(2), and for any (α, β) ∈ G(2), we have
α−1 · (α · β) = β.

iv) Any α ∈ G satisfies (α, α−1) ∈ G(2), and for each (β, α) ∈ G(2), we have
(β · α) · α−1 = β.

We call any element α ∈ G a morphism of the groupoid, we define the source
of α as s(α) := α−1 · α and the range of α as r(α) := α · α−1. The space
of objects of the groupoid G is defined as G(0) := s(G) = r(G) ⊂ G (which is
equipped with the subspace topology). We call units of the groupoid G to the
elements belonging to the space G(0). The above, because each α ∈ G satisfies
α·s(α) = α and r(α)·α = α. Moreover, since the maps · and −1 are continuous, it
follows that the maps α ∈ G 7→ r(α) ∈ G(0), α ∈ G 7→ s(α) ∈ G(0) are continuous
as well.

Given a pair a, b ∈ G(0), we use the notations Ga := r−1({a}), Gb := s−1({b})
and Gba := s−1({b}) ∩ r−1({a}). Actually, note that two morphisms α ∈ Gba
and α′ ∈ Gb′a′ are composable in the form α · α′ if, and only if, b = a′, i.e.,
when s(α) = r(α′). Furthermore, under the former assumptions we obtain that
α · α′ ∈ Gb′a and the groupoid G can be expressed as

G :=
⋃

a,b∈G(0)

Gba ,

Definition 1. Any topological space G satisfying the conditions mentioned above
is called a topological groupoid and it is usual to use the notation G ⇒ G(0).

On the other hand, given an arbitrary a ∈ G(0), the isotropy group for the
object a is defined as the space of all the morphisms belonging to the set Gaa
equipped with the composition law ·. Actually, it is easy to check that Gaa is a
group by the properties of G.

Throughout the paper we use the notation BG for the collection of Borel
sets on G, we also denote by C(G) the set of complex continuous functions on G
equipped with the uniform norm ‖ ·‖∞, we use the notationM(G) for the set of
finite Borel measures on G and we denote byM1(G) the set of Borel probability
measures on G.

Remark 1. Note that any topological group G is a topological groupoid where
the space of units is G(0) = {1} (with 1 the unit of the topological group). Fur-
thermore, in that case, G has an only isotropy group and it is the trivial group.
By the above, all the theories presented throughout this section can be applied to
the framework of topological groups, in particular, the so-called isotropy groups
as we will see in the following section.
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2.1 Finite groupoids

We say that a topological groupoid G is a finite groupoid when the set of mor-
phisms is finite. Actually, in this case, the spaces G(0), G and G(2) are all finite
and each one of them is equipped with the discrete topology. In particular, the
above implies that any set in BG is a finite union of morphisms belonging to G.
Throughout this section, we deal only with finite groupoids.

Next, we will present an interesting example of a finite groupoid (beyond the
group theory approach), well known in the mathematical physics literature as
“quantum ratchet”. That model describes a physical system of selective mea-
sures acting on microscopic phenomena (see for more details see [1] and [3]).
In addition, we also describe in explicit form the main concepts usually consid-
ered in Noncommutative integration (see [9] and [5]), and we detail appropriate
definitions and examples in that matter.

Example 1 (Quantum ratchet). Consider the set {−,+} and the permutation
map σ : {1, 2, 3} → {1, 2, 3}, given by, σ(1) = 2, σ(2) = 3 and σ(3) = 1. The
quantum ratchet groupoid G is given by the expression

G := {(a, σ0, b), (a, σ1, b), (a, σ2, b) : a, b ∈ {−,+}} , (1)

where σj := σj for j = 0, 1, 2. Following [3] and [1], we denote the elements of
G by

+ := (+, σ0,+), σ+ := (+, σ1,+), σ2
+ := (+, σ2,+),

− := (−, σ0,−), σ− := (−, σ1,−), σ2
− := (−, σ2,−),

β1 := (−, σ1,+), β2 := (−, σ2,+), β3 := (−, σ0,+),
α1 := (+, σ1,−), α2 := (+, σ2,−), α3 := (+, σ0,−).

As at the beginning of the section, we denote by α the general element in the
groupoid G. We say that two morphisms β = (a1, σi, b1) and α = (a2, σj , b2),
with i, j = 0, 1, 2, are composable in the form α · β if, and only if, a1 = b2.
Furthermore, in this case, the composition law · is given by

α · β = (a2, σj , a1) · (a1, σi, b1) := (a2, σjσi, b1) , (2)

where σjσi is the usual product of permutations on the set {1, 2, 3}.
On the other hand, since each one of the maps σj, with j = 0, 1, 2, is a

bijection on {1, 2, 3}, by (2), it is guaranteed that each element of G has an
inverse. The list of all the inverse morphisms is given by

+−1 = +, β−1
1 = α2, α−1

1 = β2, −−1 = −,
σ−1

+ = σ2
+, β−1

2 = α1, α−1
2 = β1, σ−1

− = σ2
−,

(σ2
+)−1 = σ+, β−1

3 = α3, α−1
3 = β3, (σ2

−)−1 = σ−.

By the above, given a triple α = (a, σj , b) belonging to G, with j = 0, 1, 2 and
a, b ∈ {−,+}, the source of α is equal to s(α) = s(a, σj , b) = (b, σ0, b) := b and
the range of α is given by r(α) = r(a, σj , b) := (a, σ0, a) := a. Therefore, the set
G, such as appears defined in (1), joined with the composition law in (2) and
the inverse map results in a finite groupoid with a set of objects G(0) = {−,+}.
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Remark 2. Note that the groupoid G presented in the last example has two
units which imply that G cannot be isomorphic to any group.

Given α ∈ G, we define the canonical potential χα : G → C by the equation

χα(β) :=

{
1 , α = β

0 , α 6= β .

It is not difficult to check that {χα : α ∈ G} results in a basis for the space
C(G). That is, any f ∈ C(G) can be expressed as

f =
∑
α∈G

zαχα , (3)

with zα ∈ C. Actually, by the expression in (3), it is easy to realize that
zα := f(α) for each α ∈ G.

Furthermore, since G is a groupoid, we have that each α ∈ G has an inverse
α−1 ∈ G. Then, we are able to define an adjoint operator Ad : C(G) → C(G)
assigning to each f ∈ C(G) the function Ad(f) = f∗ ∈ C(G) given by the
equation

f∗ :=
∑
α∈G

f(α)χα−1 . (4)

By (4), it follows that f∗(α) = f(α−1) for each α ∈ G and it is easy to check
that Ad is an involution, i.e., (f∗)∗ = f . Furthermore, below we will show that
the operator Ad results in an involution for a suitable Banach algebra defined
on the space C(G).

Example 2 (Involution). Consider the so-called “quantum ratchet” (see Ex-
ample 1 for details). So, the adjoint operator can be expressed explicitly by

f∗ =f(+)χ+ + f(σ+)χσ2
+

+ f(σ2
+)χσ+

+ f(−)χ− + f(σ−)χσ2
−

+ f(σ2
−)χσ−

+ f(α1)χβ2
+ f(α2)χβ1

+ f(α3)χβ3
+ f(β1)χα2

+ f(β2)χα1
+ f(β3)χα3

.

For instance, evaluating in α1, we obtain that f∗(α1) = f(β2).

Now we introduce a convolution operation ∗ on the space C(G) in the fol-
lowing way: given two potentials f, g ∈ C(G), we set the convolution between f
and g as

f ∗ g :=
∑

s(α)=r(β)

f(α)g(β)χα·β .

In fact, it is not difficult to check that the above expression implies that each
γ ∈ G satisfies

f ∗ g(γ) =
∑
α·β=γ

f(α)g(β) =
∑

r(α)=r(γ)

f(α)g(α−1 · γ) .
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Furthermore, it is not difficult to check that the convolution defined above
satisfies (f ∗ g)∗ = g∗ ∗ f∗, where ∗ is the involution in (4). Hereafter, we will
use the notation σ0

+ := + and σ0
− := − in order to simplify the expressions

appearing in the examples presented below.

Example 3 (Convolution). The explicit expression for the convolution in the
case of the “quantum ratchet” (introduced in Example 1), is given by

f ∗ g =
( 3∑
j=1

f(σj−1
+ )

)( 3∑
i=1

g(βi)χσj−1
+ ·βi + g(σi−1

+ )χσj−1
+ ·σi−1

+

)

+
( 3∑
j=1

f(αj)
)( 3∑

i=1

g(βi)χαj ·βi + g(σi−1
+ )χαj ·σi−1

+

)

+
( 3∑
j=1

f(σj−1
− )

)( 3∑
i=1

g(αi)χσj−1
− ·αi + g(σi−1

− )χσj−1
− ·σi−1

−

)

+
( 3∑
j=1

f(βj)
)( 3∑

i=1

g(αi)χβj ·αi + g(σi−1
− )χβj ·σi−1

−

)
. (5)

For instance, evaluating in the morphism + ∈ G, we obtain

f ∗ g(+) =f(σ+)g(σ2
+) + f(σ2

+)g(σ+) + f(+)g(+)

+ f(α1)g(β2) + f(α2)g(β1) + f(α3)g(β3) .

Observe that the space C(G) joint with the convolution ∗ becomes an alge-
bra. Moreover, when C(G) is equipped with the uniform norm ‖ · ‖∞ and the
involution in (4), we obtain a C∗-algebra which we denote by C∗(G).

The same conclusion holds true on the units space G(0), i.e., the space of
functions C(G(0)) equipped with the convolution ∗ and the involution in (4) also
results in a C∗-algebra which will be denoted by C∗(G(0)).

We say that a linear operator ρ : C∗(G) → C is a density operator when
ρ(1) = 1. Actually, in order to give an explicit expression, it is enough to
identify the values ρ(χα), for each α ∈ G, and guarantee that

ρ(1) =
∑
α∈G

ρ(χα) = 1 .

The above, because by linearity of the space C(G), we have

ρ(f) =
∑
α∈G

f(α)ρ(χα) . (6)

Density operators play an important role in the setting of Quantum Me-
chanics. The above is because they have the same behavior that the probability
measures in the classical approach.
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Example 4 (Density operator). In the case of the “quantum ratchet” (which
was introduced in Example 1), we have that a density operator defined on C∗(G)
is given by

ρ(f) :=

3∑
i=1

f(αi)ρ(χαi)+f(βi)ρ(χβi)+f(σi−1
+ )ρ(χσi−1

+
)+f(σi−1

− )ρ(χσi−1
−

) , (7)

with
3∑
i=1

ρ(χαi) + ρ(χβi) + ρ(χσi−1
+

) + ρ(χσi−1
−

) = 1 .

We say that a linear map λ : C∗(G)→ C∗(G(0)) is fibered by the maps r and
IdG(0) when for any f ∈ C(G) and each a ∈ G(0) such that f |Ga ≡ 0, we have
λ(f)(a) = 0.

Definition 2. The G-kernels are defined as linear maps λ : C∗(G) → C∗(G(0))
fibered by r and IdG(0) satisfying the expression

λa(f) = λ(f)(a) :=
∑
α∈Ga

taαf(α) . (8)

Since, any E ∈ BG is finite union of elements belonging to G, denoting the
Dirac measure by

δα(E) :=

{
1 , α ∈ E
0 , α /∈ E .

it follows that for each a ∈ G(0)

λa = λ(·)(a) =
∑
α∈Ga

taαδα ,

That is, the map a 7→ λa takes values into the set M(G). Moreover, by the
fibered property, we have taα = 0 when α /∈ Ga which also implies that the Borel
measure λa is supported on Ga ⊂ G. Besides that, defining

λ(E)(·) := λ(χE)(·) =
∑
α∈G·

t(·)α χE(α) ,

for each E ⊂ BG , it follows that the map E 7→ λ(E)(·) is measurable and takes
values into the set C(G).

Example 5 (G-kernel). In the particular case of the “quantum ratchet” (see
Example 1 for details), the explicit expression of the so-called G-kernel is given
by

λ(f)(+) =

3∑
i=1

t+αif(αi) + t+
σi−1

+

f(σi−1
+ ) ,

and

λ(f)(−) =

3∑
i=1

t−βif(βi) + t−
σi−1
−
f(σi−1
− ) .
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Next, we will introduce the definitions of transverse function, modular func-
tion, and quasi-invariant measure (see Definition 7) in our setting. These con-
cepts are the building block for the framework of noncommutative integration
(see [9] and [5]). In [6] it is described the relation of Haar measures with DLR
probabilities of Statistical Mechanics (which can be seen in the framework of
Thermodynamic Formalism as eigenprobabilities for the dual of the Ruelle op-
erator). On the other hand, the study of groupoids with dynamical content
appears in [12], [13], [17], [10].

Definition 3. A transverse function is a G-kernel satisfying the equation λr(α) =
αλs(α) for each α ∈ G. Then, by the expression (8), it follows that∑

γ∈Gr(α)

tr(α)
γ δγ =

∑
γ∈Gs(α)

ts(α)
γ δα·γ ,

for each α ∈ G. The above is equivalent to say∑
γ∈G

tr(α)
γ f(γ) =

∑
γ∈G

ts(α)
γ f(α · γ) ,

for each α ∈ G and any f ∈ C∗(G). In particular, when we have Ga 6= ∅ for
each a ∈ G(0), we say that λ is a faithful transverse function.

Definition 4. We say that a map ∆ : G(2) → R+ is a modular form when each
(α−1, β) ∈ G(2) satisfies

∆(α−1 · β) = ∆(α)−1∆(β) .

More general definitions will be presented later.
Using the above, we can present a suitable definition of quasi-invariant mea-

sure with respect to a modular function ∆ : G → C in the matter of finite
groupoids. Indeed, consider a faithful transverse function λ and M ∈M(G(0)).
It is not difficult to check that the measure M is of the form

M :=
∑
a∈G(0)

taδa ,

where the Dirac measure at the point a ∈ G(0) is given by

δa(E) :=

{
1 , a ∈ E
0 , a /∈ E ,

for each E ∈ BG(0) . We say that the measure M is a quasi-invariant measure
(general definition in Definition 7) with respect to the modular function ∆, if
we have that each f ∈ C∗(G) satisfies the expression∑

a∈G(0)

∑
α∈Ga

tat
a
αf(α) =

∑
a∈G(0)

∑
α∈Ga

tat
a
α−1f(α−1)∆(α−1) . (9)
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In particular, when the modular function is given by ∆(α) = eϕ(s(α))−ϕ(r(α)),
where ϕ : G(0) → C is a measurable function, we say that M is a Haar-invariant
measure and the expression in (9) is equivalent to∑

a∈G(0)

∑
α∈Ga

tat
a
αf(α) =

∑
a∈G(0)

∑
α∈Ga

tat
a
α−1f(α−1)

eϕ(a)

eϕ(s(α))
.

Moreover, note that in this case the measure m := M ·λ satisfies the expres-
sion

m =
∑
a∈G(0)

∑
α∈Ga

tat
a
αδaδα ,

and the property m(f) = m(f∗∆−1).

Example 6. Now we present the explicit expression of the so-called Haar-
invariant measures in the setting of the “quantum ratchet” (introduced in the
Example 1). In this case, we have a measure of the form

M = t−χ− + t+χ+ ,

is a Haar-invariant measure with respect to the G-kernel in Example 5 and the
modular function ∆(α) = eϕ(s(α))−ϕ(r(α)), when satisfies the following

3∑
i=1

t+(t+αif(αi) + t+
σi−1

+

f(σi−1
+ )) + t−(t−βif(βi) + t−

σi−1
−
f(σi−1
− ))

=

3∑
i=1

t+

(
t+βif(βi)

eϕ(−)

eϕ(+)
+ t+

σi−1
+

f(σi−1
+ )

)
+ t−

(
t−αif(αi)

eϕ(+)

eϕ(−)
+ t−

σi−1
−
f(σi−1
− )

)
,

for each f ∈ C∗(G).

2.2 Compact groupoids

In this section, we present examples of compact non-finite topological groupoids.
The main idea is to show some illustrative cases where the results to be presented
in section 3 are applicable. Besides that, we present explicit expressions of some
observables defined in section 2.1 for the setting introduced in this section.

A more detailed analysis of properties related to the next example as some
examples of C∗-algebras in that context appear in [17], [16], [15] and [10].

Example 7 (Dynamic groupoid). Consider a compact metric space X and a
homeomorphism f : X → X. We assume that the group G := Z acts on the set
X taking any pair (x, n) ∈ X×Z and sending it into the value x·n = fn(x) ∈ X.
In this case, we can define the following groupoid

G := {(x, n) : x ∈ X, n ∈ Z} ∼= X × Z ,

where the set of objects of G is given by

G(0) := {(x, 0) : x ∈ X} = X × {0} ∼= X ,
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and the set of composable elements of G is given by

G(2) := {((x, n), (x′,m)) : fn(x) = x′} .

In this case, we have that the product on G is defined as

(x, n) · (x′,m) := (x, n+m) ,

and any element (x, n) ∈ G has inverse (x, n)−1 := (fn(x),−n). Indeed,

(x, n) · (x, n)−1 := (x, n) · (fn(x),−n) = (x, 0) ∈ G(0) ,

and
(x, n)−1 · (x, n) := (fn(x),−n) · (x, n) = (fn(x), 0) ∈ G(0) ,

It is not difficult to check that both of the maps −1 : G → G and · : G(2) → G
are continuous. The above, simply as a consequence of the continuity of the
maps α 7→ f(α), n 7→ −n and (n,m) 7→ n+m.

Furthermore, in this case, the source of the map s and range r are given by

s(x, n) := (x, n)−1 · (x, n) = (fn(x), 0) ∈ G(0) ,

and
r(x, n) := (x, n) · (x, n)−1 = (x, 0) ∈ G(0) ,

which guarantees continuity because the composition of continuous maps also
results in a continuous map.

On the other hand, the so-called modular forms are of the form

∆(x, n+m) = ∆(x, n)∆(fn(x), n+m) .

That is, any modular form defined in this setting results in a cocycle.

Observe that in the last example, we present a topological groupoid with a
non-numerable set of objects and a non-numerable set of morphisms which is
Hausdorff compact. In fact, that is the setting in which we are interested in this
section. So, the definitions of the observables that appear previously need some
modifications in order to still hold in this new setting.

The definition of the adjoint operator is given also by the map Ad : C(G)→
C(G) such that Ad(f) = f∗ satisfies the expression f∗(α) = f(α−1) for each
α ∈ G. So the map f 7→ f∗ results in an involution. The definitions of con-
volution, density operator, G-kernel, transverse function, modular form, and
quasi-invariant measure considered here are given in a similar way to the ones
presented in [9].

Indeed, remember that a linear map λ : C(G) → C(G(0)) is fibered by the
maps r and IdG(0) when for any f ∈ C(G) and each a ∈ G(0) such that f |Ga ≡ 0,
we have λ(f)(a) = 0.
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Definition 5. Given a collection {λa : a ∈ G(0)}, with λa ∈M(G), define

λ(f)(a) :=

∫
α∈G

f(α)dλa(α) . (10)

Then, we say that λ is a G-kernel when it satisfies the following conditions

i) Supp(λa) = Ga for each a ∈ G(0);

ii) For each f ∈ C(G), the map a 7→ λ(f)(a) is continuous;

iii) We have
∫
G f(γ)dλr(α)(γ) =

∫
G f(α · γ)dλs(α)(γ) for any α ∈ G and each

f ∈ C(G).

It is not difficult to check that the former conditions imply that λ is fibered
by r and IdG(0) .

Definition 6. When all of the conditions presented above are satisfied, we say
that the collection of measures {λa : a ∈ G(0)} is a left Haar system (see for
instance [17]).

Now we are able to induce a structure of C∗-algebra on the space of functions
C(G), even when the groupoid is not a finite one. So, consider a left Haar system
{λa : a ∈ G(0)}, we define the convolution ∗λ between two maps f, g belonging
to C(G) by the expression

f ∗λ g :=

∫
G
f(α · γ)g(γ−1)dλs(α)(γ) .

It follows immediately that the space C(G) equipped with the convolution
∗λ is an algebra. Moreover, when it is equipped with the involution f 7→ f∗ and
the norm ‖ · ‖∞, it results in a C∗-algebra which we denote again by C∗(G).

In this case a G-kernel is a transverse function when it satisfies the expression
λr(α) = αλs(α) for each α ∈ G. That is,∫

G
f(γ)dλr(α)(γ) =

∫
G
f(α · γ)dλs(α)(γ) .

In particular (see [9] for details), the former condition is equivalent to say
that for any f, g, h ∈ C(G) the following expression holds

(f ∗λ g) ∗λ h = f ∗λ (g ∗λ h) .

We say that λ is a faithful transverse function, when Ga 6= ∅ for each a ∈ G(0).
Next, we want to present a suitable definition of quasi-invariant measure in

this context.

Definition 7. Given a modular function ∆ : G(2) → R+, i.e., satisfying ∆(α−1 ·
β) = ∆(α)−1∆(β), we say that M ∈M(G(0)) is a quasi-invariant measure with
respect to ∆, when each f ∈ C∗(G) satisfies∫

G(0)

(∫
Ga
f(α)dλa(α)

)
dM(a) =

∫
G(0)

(∫
Ga
f(α−1)∆(α−1)dλa(α)

)
dM(a) .

That is, the measure m := M ◦ λ which satisfies m(f) = m(f∗∆−1).
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3 Tannaka’s Theorem

In this section, we prove a version of the so-called Tannaka’s Theorem in the
setting of Hausdorff compact topological groupoids. That is, we want to prove a
duality between the groupoid G and a suitable set of homomorphisms of algebras.

Throughout this section we use the notation C≥0(G) for the cone of non-
negative continuous functions on G. A linear representation of the groupoid G
is defined as a functor Λ : G → FinVect, where FinVect is the category of
finite dimensional vector spaces, sending each x ∈ G(0) into a finite dimensional
vector space Λ(x) := Vx and any α ∈ G into a linear map Λ(α) : Vr(α) → Vs(α)

such that Λ(α · β) = Λ(α)Λ(β) for any pair (α, β) ∈ G(2) and Λ(x) = IdVx for
each x ∈ G(0).

Since each α ∈ G is an isomorphism with inverse α−1, it follows that Λ(α)
is a linear isomorphism with inverse Λ(α)−1 = Λ(α−1). Moreover, we have

IdVr(α)
= Λ(r(α)) = Λ(α · α−1) = Λ(α)Λ(α−1) ,

IdVs(α)
= Λ(s(α)) = Λ(α−1 · α) = Λ(α−1)Λ(α) .

Remark 3. It is well known that the spaces Vx associated with a linear rep-
resentation Λ of G result isomorphic on the connected components of G. In
particular, when G is connected (i.e., when for any x, y ∈ G(0) there is α ∈ G
such that s(α) = y and r(α) = x), it follows that the linear spaces Vx are all
isomorphic.

Given Λ a linear representation of G and a connected component Gi of G,
we call local dimension of Λ into the component Gi, to the dimension of the

spaces Λ(x) (which is the same for each x ∈ G(0)
i ). So, in the case of connected

groupoids, the dimension of Λ is defined as the dimension of Λ(x), where x is
an arbitrary element of G(0).

Our next goal is to introduce suitable definitions for direct sum and tensor
product between linear representations of a topological groupoid G.

So, the direct sum between linear representations is defined as a functor
⊕ : FinVect× FinVect→ FinVect, such that each x ∈ G(0) satisfies

(Λ⊕ Λ′)(x) := Λ(x)⊕ Λ′(x)

and
(Λ⊕ Λ′)(α) := Λ(α)⊕ Λ′(α)

for each α ∈ G (here the direct sum between linear transformations is given in
the usual sense). Hereafter, we will use the notation Λ⊕Λ′ for the direct sum of
the linear representations Λ and Λ′ which also results in a linear representation.

On the other hand, the tensor product between linear representations is
defined as a functor ⊗ : FinVect× FinVect→ FinVect which satisfies

(Λ⊗ Λ′)(x) = Λ(x)⊗ Λ′(x)
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for each x ∈ G(0) and

(Λ⊗ Λ′)(α) = Λ(α)⊗ Λ′(α)

for each α ∈ G (where the tensor product between linear transformations is de-
fined as usual). Note that the tensor product between the linear representations
Λ and Λ′ also results in a linear representation which we denote by Λ⊗ Λ′.

Hereafter, we will use the notation U(V ) for the set of unitary transforma-
tions from V into itself, where V is a finite dimensional vector space equipped
with an inner product (·, ·).

An important characteristic that we want to identify among the linear rep-
resentations of a groupoid G is when they are comparable. So, we say that ϕ is
a morphism between the linear representations Λ and Λ′, when there is a family
of linear transformations (ϕx)x∈G(0) , with ϕx : Λ(x)→ Λ′(x), such that

ϕs(α)Λ(α) = Λ′(α)ϕr(α) .

Furthermore, we say that Λ and Λ′ are equivalent, when each one of the maps
ϕx is a linear isomorphism and, in that case, we use the notation Λ ∼ Λ′. In
particular, the spaces Λ(x) and Λ′(x) have the same dimension for each x ∈ G(0)

when Λ ∼ Λ′.
The former definitions allow us to characterize the irreducibility of a linear

representation. In fact, we say that the linear representation Λ of G is reducible,
when there are linear representations Λ1 and Λ2 of G such that

Λ ∼ Λ1 ⊕ Λ2 ,

in another case, we say the linear representation Λ is irreducible.
Now we are able to present a definition of unitary representation in the

setting of topological groupoids. Hereafter, we assume that G is a connected
groupoid. So, given any linear representation Λ, we have Λ(x) = VΛ for each
x ∈ G(0). By the above, the vector space VΛ is uniquely determined by the
functor Λ and it is equipped with an inner product (·, ·).

We say that Λ is a unitary representation of the connected groupoid G, when
Λ(α) ∈ U(VΛ) for any α ∈ G. That is, any α ∈ G satisfies (Λ(α)u,Λ(α)v) =
(u, v) for each pair u, v ∈ VΛ. Furthermore, assuming that n = dim(VΛ) and
{e1, ..., en} is a orthonormal basis of VΛ, it is possible to find a matrix represen-
tation of Λ(α) belonging to U(n,C) which we denote by (Λij(α))n×n.

Remark 4. For instance, any unitary representation Λ such that dim(VΛ) = 1
is a multiplication by a scalar z such that |z| = 1.

A particular case of unitary representations is the so called identity represen-
tations denoted by Λ0, which are defined as the functor sending each α ∈ G into
the map Λ0(α) := IdVΛ0

. Note that, up to an isomorphism, there is a unique
identity representation for each n-dimensional vector space.

Let A(G) be the set of unitary representations of the groupoid G. Then,
we have that Λ ∼ Λ′ when there exists a unitary isomorphism ϕ : VΛ → VΛ′ ,
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such that ϕΛ(α) = Λ′(α)ϕ for each α ∈ G. On the other hand, given any
set S ⊂ VΛ, we say that S is stable by Λ when w ∈ S implies Λ(α)w ∈ S
for any α ∈ G. In the following lemma, we show that stable vector subspaces
characterize irreducible components of unitary representations.

Lemma 1. Consider Λ ∈ A(G) and suppose that there is a non-trivial subspace
W ( VΛ stable by Λ. Then, Λ is reducible.

Proof. Note that in this case W⊥ is also stable by Λ. Indeed, taking any
v ∈ W⊥, i.e., a vector satisfying (v, w) = 0 for any w ∈ W , it follows that
(Λ(α)v, w) = (v,Λ(α−1)w) = 0 for any α ∈ G.

The above implies that Λ(α)v ∈W⊥ for any α ∈ G. So, we have

Λ ∼ Λ|W ⊕ Λ|W⊥ .

Remark 5. The former lemma implies that any linear representation Λ, with
dim(VΛ) = n, has a decomposition of the form Λ = Λ1 ⊕ ... ⊕ Λn, where each
Λi, with i = 1, ..., n is irreducible.

Given a groupoid G and a finite-dimensional vector space V , we denote by
A(G, V ) the set of unitary representations of G on the space V . Fix a ∈ G(0)

and let C(a,G(0),U(V )) be the set of continuous functions from G(0) into the
space U(V ) sending a into IdV .

Since G is a connected topological groupoid, for each a ∈ G(0) there exists
a map Ω : G(0) → G such that each x ∈ G(0) satisfies that Ω(x) ∈ Gxa . For
instance, for each x ∈ G(0) we choose Ω(x) := αx, for some αx ∈ G such that
s(αx) = x and r(αx) = a. However, in general, it is not possible to guarantee the
continuity of the map Ω. Because of that, we introduce the following hypothesis.

(H). Let G be a topological groupoid, we assume existence of a ∈ G(0) and
a continuous map Ω : G(0) → G such that each x ∈ G(0) satisfies Ω(x) ∈ Gxa .
Furthermore, replacing Ω(x) by Ω(a)−1Ω(x), we can assume w.l.o.g. Ω(a) = 1a.

Lemma 2. Let G be a connected compact groupoid satisfying the hypothesis (H)
for a ∈ G(0) and Ω : G(0) → G. Consider a finite dimensional vector space V and
Λ ∈ A(G, V ), we define λ := Λ|Gaa and µ(x) := Λ(Ω(x)) for each x ∈ G(0). Then,

the map sending each Λ ∈ A(G, V ) into (λ, µ) ∈ A(Gaa , V ) × C(a,G(0),U(V ))
results in a bijection.

Proof. Given α ∈ G, define the map Γ : G → Gaa by

Γ(α) := Ω(r(α)) · α · Ω(s(α))−1 .

By the above, it follows that Γ is a continuous homomorphism from G into
Gaa . Moreover, we are able to obtain an expression of α in terms of the maps Γ,
Ω, s and r in the following way

α = Ω(r(α))−1 · Γ(α) · Ω(s(α)) .
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Then, we have

Λ(α) = Λ(Ω(r(α))−1 · Γ(α) · Ω(s(α)))

= Λ(Ω(r(α)))−1Λ(Γ(α))Λ(Ω(s(α))) = µ(r(α))−1λ(Γ(α))µ(s(α)) .

which guarantees that the map Λ 7→ (λ, µ) is a continuous bijection.

In the following lemma, we prove that the bijection above is independent of
the a ∈ G(0) given by the hypothesis (H).

Lemma 3. Let G be a connected compact groupoid satisfying the hypothesis (H)
for a ∈ G(0) and Ω : G(0) → G. Then, given x ∈ G(0) and λ′ ∈ A(Gxx), there is
Λ′ ∈ A(G) such that Vλ′ = VΛ′ and λ′ = Λ′|Gxx .

Proof. Since G satisfies (H) for a ∈ G(0) and Ω : G(0) → G, by Lemma 2, for
any unitary representation λ of Gaa , there is a unitary representation Λ of G such
that Vλ = VΛ and Λ|Gaa = λ.

Given x ∈ G(0) and ω ∈ Gxa , we define λ(α) := λ′(ω−1 · α · ω) for each
α ∈ Gaa . It follows that λ is a unitary representation of Gaa and, therefore, there
is Λ unitary representation of G such that Vλ = VΛ and Λ|Gaa = λ. Define
Λ′(x) := VΛ and for each β ∈ Gxx consider

Λ′(β) := Λ(ω)Λ(β)Λ(ω)−1 .

Since x ∈ G(0) is arbitrary, it follows that Λ′ is a unitary representation of
G (because Λ is unitary representation of G). Moreover, as ω · β · ω−1 ∈ Gaa , we
obtain that

Λ′(β) = Λ(ω)Λ(β)Λ(ω)−1 = Λ(ω · β · ω−1)

= λ(ω · β · ω−1) = λ(ω−1 · (ω · β · ω−1) · ω) = λ′(β) .

That is, λ′ = Λ′|Gxx , such as we wanted to prove.

Now we want to present the construction of a set of homomorphisms of
algebras T(G) such that there exists an epimorphism from the groupoid G into
T(G) (when the last one is equipped with a suitable product). The above will
be done under the assumption that the groupoid G is Hausdorff compact, which
is presented as an extension of the so-called Tannaka’s Lemma to the matter of
topological groupoids.

Given Λ ∈ A(G) and a pair u, v ∈ VΛ, we set fΛ
u,v ∈ C(G) by the equation

fΛ
u,v(α) := (Λ(α)(u), v) .

When (Λij(α))n×n is a matrix representation of Λ(α), v = (v1, ..., vn) and
u = (u1, ..., un), it is not difficult to check that the following expression holds
true

fΛ
u,v(α) =

n∑
i,j=1

viΛij(α)uj . (11)

An straightforward argument shows that f ∈ ξ(G) if, and only if, f ∈ ξ(G).
In fact, we have the following conditions:
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a) Given Λ ∈ A(G), we have fΛ∗

u,v = fΛ
u,v, where Λ∗(x) = Λ(x) = VΛ for each

x ∈ G(0) and Λ∗(α) = Λ(α−1) for any α ∈ G (in particular Λ∗ ∈ A(G));

b) fΛ
ei,ej (α) = Λij(α) for any α ∈ G and each Λ ∈ A(G);

c) We have fΛ⊕Λ′

u⊕u′,v⊕v′ = fΛ
u,v + fΛ′

u′,v′ and fΛ⊗Λ′

u⊗u′,v⊗v′ = fΛ
u,vf

Λ′

u′,v′ for any pair
Λ,Λ′ ∈ A(G).

The former assumptions imply that the set of functions

ξ(G) := {fΛ
u,v : Λ ∈ A(G), u, v ∈ VΛ} ⊂ C(G) , (12)

is a sub-algebra with unit of C(G), i.e., satisfying 1 ∈ ξ(G).

Remark 6. As a particular case of (12), we obtain that ξ(G) is well defined
when G is a topological group and also results in a sub-algebra of C(G) with the
unit. In particular, we have that condition for any isotropy group G := Gaa .

Our next goal is to introduce a suitable definition of the mean value function
MG associated with a Hausdorff compact group G (similar to the one presented
in [21]). The existence of such a function is guaranteed in the following lemma.

Lemma 4. Consider a compact group G. Then, there is a linear application
MG : C(G)→ C satisfying the following conditions:

i) MG(1) = 1.

ii) MG(f) ≥ 0 when f ∈ C≥0. Moreover, MG(f) = 0 implies that f ≡ 0.

iii) |MG(f)| ≤MG(|f |).

iv) Given x, y ∈ G, define fx(y) := f(xy), fx(y) := f(yx), we have

MG(f) = MG(fx) = MG(fx) = MG(f∗) .

Proof. It is enough to choose the map MG satisfying the equation

MG(f) :=

∫
G

fdm ,

where m ∈M1(G) is a Haar measure.

Observe that the map MG is continuous on C(G). The above, because it is
linear and by item ii) of Lemma 4, we have |MG(f)| ≤MG(‖f‖∞) = ‖f‖∞.

Now we will present some properties of the mean value calculated on func-
tions fλu,v belonging to ξ(G), when G is a compact group.

Lemma 5. Consider a compact group G and λ ∈ A(G) irreducible.

1. If λ ∼ λ0, then, MG(fλu,v) = (u, v) for any pair u, v ∈ Vλ.
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2. If λ � λ0, then, MG(fλu,v) = 0 for each u, v ∈ Vλ.

Proof. Suppose that λ ∼ λ0, thus, we have λ(x) = IdVλ for each x ∈ G. By the
above, it follows that fλu,v(x) = (u, v) for any pair u, v ∈ Vλ which implies

MG(fλu,v) :=

∫
G

fλu,v(x)dm(x) =

∫
G

(u, v)dm = (u, v) .

On the other hand, assuming that λ � λ0. For each v ∈ Vλ, we define the
linear map Lv : Vλ → C by the expression Lv(u) := MG(fλu,v). Then, defining

f(x) = fλu,v(x) for each x ∈ G, it follows that any y ∈ G satisfies

Lv(λ(y)u) = MG(fλλ(y)u,v) = MG(fy)

= MG(fλu,v) = MG(f) = Lv(u) .

The former expression guarantees that the space Ker(Lv) is stable by λ.
Furthermore, since λ is irreducible, by Lemma 1, it follows that Ker(Lv) = {0}
or Ker(Lv) = Vλ either.

In the first case, we obtain that λ(y)u = u for any y ∈ G and each u ∈ Vλ
and, thus, λ ∼ λ0, which contradicts our assumption.

So, we need to have Lv ≡ 0 such as we wanted to prove.

Our next goal is to present a characterization of surjective group homomor-
phisms in terms of the mean value function when suitable conditions are given.

Lemma 6. Consider compact groups G,H, with H Hausdorff, let F : G → H
be a continuous groups homomorphism such that MG(g ◦ F ) = MH(g) for any
function g ∈ C(H). Then, F is surjective.

Proof. Suppose that there exists y ∈ H such that y /∈ F (G). Since {y} and
F (G) is closed and H is Hausdorff compact, by Urysohn’s Lemma, there exists
g ∈ C≥0(H) such that g|F (G) ≡ 0 and g(y) = 1. Therefore, it follows that
MH(g) > 0 = MG(g ◦ F ) which contradicts our hypothesis.

By the above, we obtain that F (G) = H, and our claim holds.

Consider λ ∈ A(G) and define

Wλ := {u ∈ Vλ : λ(x)u = u for all x ∈ G} . (13)

In the following lemma, we present a characterization of the mean value map
MG on functions belonging to ξ(G).

Lemma 7. Consider a compact group G, λ ∈ A(G) and u, v ∈ Vλ. Then, for
any function fλu,v ∈ ξ(G), we have MG(fλu,v) = (u′, v), where u′ is the orthogonal
projection of u on Wλ.

Proof. Let λ = λ1⊕ ...⊕λn be the decomposition of the unitary representation
λ in irreducible components, i.e., we have Vλ = Vλ1

⊕ ... ⊕ Vλn . Without loss
of generality, we can assume that λi ∼ λ0 for i = 1, ..., k and λi � λ0 for
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i = k + 1, ..., n (i.e. the first k components are identity representations). Then,
by Lemma 5, taking u = u1 + ... + un and v = v1 + ... + vn, with uj , vj ∈ Vλj ,
it follows that

MG(fλu,v) = MG

( n∑
i=1

fλiui,vi

)
=

n∑
i=1

MG(fλiui,vi) .

On the other hand, given any x ∈ G, we have

λ(x)u =

n∑
i=1

λi(x)ui =

n∑
i=1

ui ,

with λi � λ0 for i = k + 1, ..., n. Then, λi(x)ui = ui for all x ∈ G implies that
ui = 0 when i = k + 1, ..., n.

By the above, it follows that Wλ = Vλ1 ⊕ ... ⊕ Vλk and u′ = u1 + ... + uk.
Besides that, by Lemma 5, we have

MG(fλu,v) =

k∑
i=1

(ui, vi) = (u′, v) ,

such as we wanted to prove.

Given a family F ⊂ A(G), we say that F is complete when satisfies the
following conditions

i) λ0 ∈ F ;

ii) For any pair λ1, λ2 ∈ F , we have λ1 ⊕ λ2 ∈ F and λ1 ⊗ λ2 ∈ F .

iii) λ ∈ F when λ ∈ F .

Next, we characterize the surjectivity of continuous group homomorphisms
in terms of complete families of unitary representations on compact groups.

Lemma 8. Consider G and H compact groups, with H Hausdorff, and let
F : G → H be a continuous group homomorphism. Assume that there exists a
complete family F ⊂ A(G) such that for each λ ∈ F there is λ′ ∈ A(H) such
that Vλ = Vλ′ = V and the following conditions hold true:

i) λ0 = λ′0;

ii) If λ1, λ2 ∈ F , then, (λ1 ⊕ λ2)′ = λ′1 ⊕ λ′2 and (λ1 ⊗ λ2)′ = λ′1 ⊗ λ′2;

iii) λ′ = (λ)′ for any λ ∈ F ;

iv) λ(x) = λ′(F (x)) for each x ∈ G;

v) If y1, y2 ∈ H and y1 6= y2, then, there are λ ∈ F and u, v ∈ V such that
fλ
′

u,v(y1) 6= fλ
′

u,v(y2);
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vi) For any λ ∈ F , there are u, v ∈ V such that MH(fλ
′

u,v) = MG(fλu,v).

Then, the map F is surjective.

Proof. Since F is a complete family of unitary representations, by conditions
i), ii) and iii), it follows that F ′ := {λ′ : λ ∈ F} ⊂ A(H) is also a complete
family of unitary representations. By the above, we obtain that

ξ′(G) := {fλ
′

u,v : λ ∈ F , u, v ∈ V } ,

is a sub-algebra with unit of C(H) such that f ∈ ξ′(G) implies f ∈ ξ′(G).
Furthermore, by condition v) and the Stone-Weierstrass’ theorem, it follows
that the set ξ′(G) is dense in C(H). Besides that, by conditions iv) and vi) we
have MG(g ◦ F ) = MH(g) for any g ∈ ξ′(G). So, by continuity of the mean
value function, we obtain that MG(g ◦ F ) = MH(g) for any g ∈ C(H) which
implies that F is surjective by Lemma 6.

The former lemma also implies that for any λ ∈ F , each u, v ∈ Vλ and any
x ∈ G, the following expression holds true

fλ
′

u,v(F (x)) = (λ′(F (x))u, v) = (λ(x)u, v) = fλu,v(x) .

Consider the set of homomorphisms of algebras

T(G) := {T : ξ(G)→ C : T (1) = 1 and T (f) = T (f)} .

Note that given any α ∈ G, the map Tα : ξ(G) → C given by the equation
Tα(f) := f(α) belongs to the set T(G), because Tα(1) = 1(α) = 1 and for any
f ∈ ξ(G) we have Tα(f) = f(α) = f(α) = Tα(f). So, the set T(G) is non-empty.

Given T ∈ T(G) and any Λ ∈ A(G), we define the linear map LΛ
T : VΛ → VΛ

by the equation
(LΛ

T (u), v) := T (fΛ
u,v) , (14)

where u, v ∈ VΛ. It is not difficult to check that the matrix representation of LΛ
T

with respect to the orthonormal basis {e1, ..., en} is of the form (T (fΛ
ei,ej ))n×n.

Moreover, by (14) and conditions a), b) and c) stated above, it follows that:

a’) LΛ0

T = IdVΛ0
.

b’) We have LΛ⊕Λ′

T = LΛ
T ⊕LΛ′

T , LΛ⊗Λ′

T = LΛ
T ⊗LΛ′

T and LΛ∗

T = LΛ
T , for any pair

Λ,Λ′ ∈ A(G).

In particular, the above implies LΛ
T ∈ U(VΛ).

Lemma 9. Consider Λ,Λ′ ∈ A(G), u, v ∈ VΛ and u′, v′ ∈ VΛ′ . Assume that
fΛ
u,v(α) = fΛ′

u′,v′(α) for each α ∈ G. Then, (LΛ
T (u), v) = (LΛ′

T (u′), v′) for any
T ∈ T(G).
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Proof. Take Λ̃ ∈ A(G) and assume that f Λ̃
ũ,ṽ ≡ 0. Then, given any T ∈ T(G),

we obtain that (LΛ̃
T (ũ), ṽ) = T (0). Since T (0) = T (0)2 and T (0) = 0 6= 1, it

follows that (LΛ̃
T (ũ), ṽ) = 0.

By hypothesis, we have fΛ⊕Λ′

u⊕u′,v⊕(−v′) ≡ 0. So, taking Λ̃ = Λ⊕Λ′, ũ = u⊕u′

and ṽ = v ⊕ (−v′), we obtain that (LΛ
T (u), v) = (LΛ′

T (u′), v′) such as we wanted
to prove.

In the next lemma, we prove that any unitary transformation satisfying
suitable conditions can be characterized in terms of elements belonging to T(G)
as a linear transformation satisfying the expression in (14).

Lemma 10. Assume that for each Λ ∈ A(G) there exists LΛ ∈ U(VΛ) satisfying
the properties a′) and b′) stated above. Then, there is T ∈ T(G) such that
LΛ
T = LΛ.

Proof. Given LΛ ∈ U(VΛ), define T : ξ(G) → C by T (fΛ
u,v) := (LΛ(u), v) for

each u, v ∈ VΛ. By Lemma 9 the map T is well defined and satisfies (14).
Besides that, conditions a′) and b′) stated above imply that T is a linear

homomorphism such that T (1) = 1 and T (f) = T (f), i.e., T ∈ T(G).

We induce the weak topology on T(G) which is generated by neighborhoods
of the unit Ta as basic open sets of the form

{T ∈ T(G) : |T (fi)− Ta(fi)| < εi, a ∈ G(0)} .

Furthermore, we have that T(G) ⊂
∏
f∈ξ(G){z ∈ C : |z| ≤ supT∈T(G) |T (f)|}

and the set
∏
f∈ξ(G){z ∈ C : |z| ≤ supT∈T(G) |T (f)|} is compact by Tychonoff’s

theorem, because for any f ∈ ξ(G) we have supT∈T(G) |T (f)| ≤ ‖f‖∞. Moreover,
by continuity of the conjugation map, it follows that T(G) is closed and, thus,
compact with the weak topology.

Our next goal is to define a product on T(G) which induces a structure of
groupoid on that set of linear homomorphisms under suitable conditions.

Given T1, T2 ∈ T(G), we define the product T1 · T2 by the expression

LΛ
T1·T2

:= LΛ
T1
LΛ
T2
,

where Λ ∈ A(G) is arbitrary. Observe that the product in (15) is well defined
by Lemma (10), which also implies that T1 · T2 ∈ T(G).

Next, we introduce the definition of a set of homomorphisms of algebras G
such that there exists an epimorphism from the groupoid G into G. Define

Iba := {f ∈ ξ(G) : f |Gba ≡ 0} .

It is not difficult to check that Iba is an ideal of ξ(G) for any pair a, b ∈ G(0).
Using that, we consider

G := {(a, b, T ) : a, b ∈ G(0), T ∈ T(G) and T (f) = 0 ∀f ∈ Iba} ,
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equipped with the product topology and

Gba := {(a, b, T ) : T ∈ T(G) and T (f) = 0 ∀f ∈ Iba} .

Then, we have that each Gba is a closed subspace of G and

G :=
⋃

a,b∈G(0)

Gba .

Observe that

G = {(a, b, T ) : a, b ∈ G(0), T ∈ T(G) and (LΛ
T (u), v) = 0, ∀Λ ∈ A,

∀u, v ∈ VΛ such that (Λ(α)u, v) = 0, if α ∈ Gyx} .

The above, because fΛ
u,v(α) = (Λ(α)u, v) for all α ∈ G. Given (a, b, T1) ∈ Gba

and (b, c, T2) ∈ Gcb, define

(a, b, T1) · (b, c, T2) := (a, c, T1 · T2) . (15)

Observe that the product · defined in (15) results continuous by the ex-
pression in (14). In the next lemma, we prove that such a product induces a
structure of topological groupoid on T(G).

Lemma 11. Assume that G is a compact groupoid. Then, the product in (15)
induces a structure of topological groupoid on the set T(G).

Proof. Consider a ∈ G(0), then, Ta(fΛ
u,v) = (Λ(a)u, v) = (u, v) which implies

that LΛ
Ta

= IdVΛ
for any Λ ∈ A(G). So, by (15), it follows that

(b, a, T1) · (a, a, Ta) = (b, a, T1) and (a, a, Ta) · (a, b, T2) = (a, b, T2) ,

for any T1, T2 ∈ T(G) and each a, b ∈ G(0), i.e., (a, a, Ta) is a unit of G for each
a ∈ G(0).

On the other hand, since LΛ
T ∈ U(VΛ) for each T ∈ T(G), by Theorem 10, we

are able to define T−1 as the only element in T(G) associated to (LΛ
T )−1. Then,

defining (a, b, T )−1 := (b, a, T−1), we obtain that

(b, a, T1) · (b, a, T1)−1 = (b, b, IdVΛ) and (a, b, T2) · (a, b, T2)−1 = (a, a, IdVΛ)

for any T1, T2 ∈ T(G) and each a, b ∈ G(0). So, by the expression in (14) the
map −1 is continuous.

The associativity of the product in (15) follows immediately of the associa-
tivity that satisfies the composition of linear transformations.

Besides that, given any pair (α, β) ∈ G(2), we have

((LΛ
TαL

Λ
Tβ

)(u), v) = (LΛ
Tβ

(u), (LΛ
Tα)∗(v))

= (Λ(β)(u), (LΛ
Tα)∗(v))

= (LΛ
Tα(Λ(β)(u)), v)

= (Λ(α)(Λ(β)(u)), v)

= (Λ(α · β)(u), v) = (LTα·β (u), v) .
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That is, Tα · Tβ = Tα·β . In other words, the elements (r(α), s(α), Tα) and
(r(β), s(β), Tβ) can be composed if, and only if, (α, β) ∈ G(2). In fact, the former
property guarantees that G has at least as many units as the groupoid G.

The above guarantees that conditions i), ii), iii), and iv) stated at the
beginning of Section 2 hold, such as we wanted to prove.

In the last one of the results presented in this section we prove a version of
the so-called Tannaka’s Theorem. The statement of the result is the following
one.

Theorem 1. Suppose that G is a Hausdorff connected compact groupoid satis-
fying the hypothesis (H) and consider the map φ : G → G, given by the equation

φ(α) := (r(α), s(α), Tα) .

Then, φ is an epimorphism of topological groupoids.

Proof. Fix a ∈ G(0) and define Gaa := {(a, a, Tα) : α ∈ Gaa}, by Lemma 3, it is
enough to show that the function φ|Gaa : Gaa → Gaa is surjective.

Under the notation that appears in Lemma 8, we consider G := Gaa , F := φ
and H := {Tα : α ∈ Gaa}. Besides that, we define F := {Λ|Gaa : Λ ∈ A(G)}.

It follows immediately that F is a complete family of unitary representations
of G. Take Λ1,Λ2 ∈ A(G) such that Λ1|G = Λ2|G and VΛ1

= VΛ2
= V . Since

fΛ1
u,v|G = fΛ2

u,v|G, it follows that each T ∈ H satisfies

T (fΛ1
u,v)− T (fΛ2

u,v) = T (fΛ1
u,v − fΛ2

u,v) = 0 ,

So, for any λ ∈ F , we can define λ′ ∈ A(H) by the expression

λ′(T ) := LΛ
T ,

where Λ ∈ A(G) satisfies Λ|G = λ and VΛ = Vλ = Vλ′ .
Conditions i), ii) and iii) of Lemma 8 follow from the properties a′) and b′)

of the map LΛ
T stated above. Besides that, given Λ ∈ A(G), λ = Λ|G, a ∈ G

and u, v ∈ VΛ, it follows that

(λ′(F (a))u, v) = (LΛ
F (a)(u), v) = F (a)(fΛ

u,v)

= Ta(fΛ
u,v)

= fΛ
u,v(a) = (Λ(a)u, v) = (λ(a)u, v) .

The above proves that iv) of Lemma 8 holds. Besides that, for any Λ ∈ A(G),
each T ∈ H and any u, v ∈ VΛ, we have

T (fΛ
u,v) = (LΛ

T (u), v) = (λ′(T )u, v) = fλ
′

u,v(T ) ,

where λ = Λ|G. So, condition v) of Lemma 8 holds true.
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In order to finish this proof, it is enough to show that Wλ = Wλ′ which
implies that the condition vi) of Lemma 8 holds. The above, as a consequence
of Lemma 7. Indeed, since λ = Λ|G, it follows that

Wλ = {u ∈ Vλ : λ(a)u = u for all a ∈ G}
= {u ∈ VΛ : Λ(a)u = u for all a ∈ G}
= {u ∈ VΛ : fΛ

u,v(a) = (u, v) for all a ∈ G, v ∈ VΛ} .

On the other hand, we have that

Wλ′ = {u ∈ Vλ′ : λ′(T )(u) = u for all T ∈ H}
= {u ∈ VΛ : (LΛ

T (u), v) = (u, v) for all T ∈ H, v ∈ VΛ}
= {u ∈ VΛ : T (fΛ

u,v) = (u, v) for all T ∈ H, v ∈ VΛ} .

If u ∈Wλ, it follows that fλu,v(a) = (u, v) for all a ∈ G and any v ∈ Vλ which

implies that fΛ
u,v(a) = (u, v) because fΛ

u,v|G = fλu,v. By the above, we obtain

that T (fΛ
u,v) = (u, v) for any T ∈ H and each v ∈ VΛ. Then, it follows that

u ∈Wλ′ .
On the other hand, if u ∈Wλ′ , we obtain that T (fΛ

u,v) = (u, v) for any T ∈ H
and all v ∈ VΛ. In particular, the above implies that fΛ

u,v(a) = Ta(fΛ
u,v) = (u, v)

for each a ∈ G and any v ∈ VΛ. So, we obtain that u ∈Wλ.

No new data were created or analysed in this study.
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