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Abstract

Given a smooth potential W : Tn → R on the torus, the Quantum
Guerra-Morato action functional is given by

I(ψ) =
∫

( DvDv∗

2 (x)−W (x) ) a(x)2dx,

where ψ is described by ψ = a ei
u
h , u = v+v∗

2 , a = e
v∗ − v
2 ~ , v, v∗ are real

functions,
∫
a2(x)dx = 1, and D is derivative on x ∈ Tn. It is natural

to consider the constraint div(a2Du) = 0. The a and u obtained
from a critical solution (under variations τ) for such action functional,
fulfilling such constraints, satisfy the Hamilton-Jacobi equation with
a quantum potential. Denote ′ = d

dτ . We show that the expression for
the second variation of a critical solution is given by∫

a2D[v′]D[(v∗)′] dx.

Introducing the constraint
∫
a2Dudx = V , we also consider later

an associated dual eigenvalue problem. From this follows a transport
and a kind of eikonal equation.

1 Introduction

In [10] L. C. Evans considered an Action Functional which is related
to Aubry-Mather theory and also present another Action Functional
which he called the Guerra-Morato Action Functional. The first Func-
tional is of Lagrangian nature and the second Functional of Hamilto-
nian nature. This last one is more adequate for the description of the
Physics of Quantum Mechanics, and to analyze its properties is the
primary goal of the present work. In [10] a few properties of this last
mentioned functional were presented and we intend to provide here a
more complete description of the topic. One of our goals is to charac-
terize critical action solutions for this quantum action functional; they
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are not necessarily local minimal solutions. Our main result concerns
the expression for the second variation of a critical solution (see The-
orem 1). We will present full proofs adapting the reasoning followed
in [10] (with the necessary changes at each moment).

The Evans Functional Action (see (1.5) in [10]) plays an important
role in the quantum analog of weak KAM theory.

The reason for the terminology Guerra-Morato Action Functional
introduced in [10] was motivated by the paper [13] by F. Guerra and
L. Morato. Related work appear in [25], [20], [?] and [22]. In fact, the
expression coined by Evans, which is of a stationary nature, does not
appear in this form in [13] which is of nonstationary type. Moreover,
in [13] there is no assumption to constraints which is an essential issue
in [10].

The papers [1], [2], [3], [18], [11], [23], [24] and [6] analyze different
types of problems related to Evans Functional Action and Mather
measures.

Let’s consider a potential of class C∞ given by W : Tn = (S1)n →
R, where S1 is the unit circle. Under some suitable assumptions sim-
ilar results hold for W : Rn → R but we will not address this issue
here.

The classical Lagrangian is given by

L(v, x) =
m

2
|v|2 −W (x), x ∈ Tn, v ∈ Rn,

and the associated classical (mechanical) Hamiltonian is

H(p, x) =
1

2m
|p|2 +W (x), x ∈ Tn, p ∈ Rn,

where m denotes the mass.
Taking p = mv, it is well known that the solutions of the Euler-

Lagrange equation for L and the ones for the Hamilton equation cor-
respond to each other via a change of coordinates. It is well known
that in Classical Mechanics there exist critical action principles for the
Lagrangian formulation and for Hamiltonian one (see [4]). From the
point of view of Physics, solutions minimizing the action are preferred
in the theory.

We denote ~ = 1
m . A wave function has the form ψ = a ei

u
h , where

a is positive and u is real.

In Quantum Mechanics the expected value of the Hamiltonian is∫
(
~
2
|Dψ|2 +W |ψ|2) dx (1)
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Given the functions a > 0 and u, where a : Tn → R and u : Tn →
R, consider s = ~ log a and take v∗ = (u+ s) and v = (u− s), then

v + v∗

2
= u

and
v∗ − v

2
= s = ~ log a.

Thus, we can write every function of the form a ei
u
~ , in terms of v

and v∗ by solving the above equation.
If u and a are periodic ( in (S1)n ) the same goes for v, v∗ : Tn → R.
Likewise given v and v∗, the functions a > 0 and u can be deter-

mined using the above expressions.
The Guerra-Morato action functional (see (7.10) in [10]) is given

by

I(ψ) =

∫
(
DvDv∗

2
−W ) a(x)2dx (2)

where ψ is described by ψ = a ei
u
h , u = v+v∗

2 , a = e
v∗ − v
2 ~ , v, v∗ are

real functions and
∫
a2(x)dx = 1. When considering critical action for

such functional, we are analyzing a problem that is different from the
critical action problem for the Evans Action Functional, as defined by
(1.5) in [10] (see also our Remark 4).

The function ψ will be assumed to satisfy the constraints (7), (8),
(9) to be defined next (see also (17), (18) and (19)). Expressions (7),
(8), (9) are in some sense the field version of the corresponding classical
constraints in Aubry-Mather theory (see [14]). The expression (8)
corresponds to the assumption that a probability is holonomic and
condition (9) plays the role of a homological class (see Section 2.6 in
[9]).

Our main result is

Theorem 1. If ψ = a ei u/h is critical for the action and a > 0, where

u = v+v∗

2 , a = e
v∗ − v
2 ~ , then the second derivative of the variation has

the expression ∫
a2D[v′]D[(v∗)′] dx. (3)

The sign of (3) will determine if the critical solution is a local
minimum or a local maximum (or indeterminate).

The above functional I is Hamiltonian in nature (the Evans func-
tional is Lagrangian in nature according to discussion on page 312 in
[10]). Here we will analyze a principle of critical action for such an
action I.
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We say that a certain ψ is critical for I if any close-by variation will
have zero derivative. Another issue will be whether at a given critical
ψ, the functional I attains a minimum, a maximum, or neither. Our
objective will be to analyze the first and second variational problems.

We point out that in Sections 2 and 3 here (in the same way as
in Section 2 in [10]) the functions v, v∗ : Tn → R, do not satisfy any

other constraint different from
∫
e

v∗(x)− v(x)
~ dx = 1. When comparing

our setting with the hypothesis (16), (17), and (18) in [25], it is clear
that in [25] there are assumptions on b, b∗, which does not correspond
to the freedom of our v, v∗. In the same direction, expressions (4) (5)
(6), and (7) in [8] show that we are considering a different class of
problems.

In Section 4 and 5 the functions v, v∗ will satisfy certain relations
which will be described by (32) and (33). When considering (3) (see
also (32) and (33)) we get from Remarks 9 and 11 that a critical point
is not necessarily a local minimum (or maximum).

In our understanding, the above expression of the functional (2),
taken from Section 7.2 in [10], corresponds to a different type of prob-
lem that one considered in [13]. We also point out that [13] considered
variational problems depending on time which is a different framework
when compared with [10].

Remark 2. To add the term Px to u, getting ũ = u+P x, is equivalent
to consider the new functions ṽ = v + P x and ṽ∗ = v∗ + P x.

Below D will denote derivative with respect to x.

We will need a later expression (4).

As a′

a = (v∗)′−v′
2 ~ , then

− ~2
∣∣∣D(a′

a

)∣∣∣2 + |Du′|2 = D[v′]D[(v∗)′] (4)

In the case we want to consider ũ = u+ Px instead of u, we get

− ~2
∣∣∣D(a′

a

)∣∣∣2 + |Dũ′|2 = D[ṽ′]D[(ṽ∗)′] = D[v′]D[(v∗)′]. (5)

Here ψ̃ will be considered in the form ψ̃ = a ei
u
~ , where a = e

v∗−v
2 ~

and u = v∗+v
2 , where v and v∗ are periodic functions taking real and

differentiable values.
Let’s assume that ψ has the ”Bloch waveform”

ψ = ei
1
~P x ψ̃
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for some P ∈ Rn and where ψ̃ : Tn → C was given in the above
form. The introduction of the parameter P is quite important in our
reasoning.

Consider a fixed vector V ∈ Rn.
Let us now consider the Quantum Guerra-Morato action of the

state ψ

A[ψ] :=

∫
Tn

(
Dv∗(x) Dv(x)

2
− W (x)) a2(x)dx, (6)

where we assume that∫
Tn

|ψ(x)|2dx =

∫
Tn

a(x)2dx = 1, (7)∫
Tn

(ψ(x)Dψ(x)− ψ(x)Dψ(x)) ·D φ(x)dx = 0 for all φ ∈ C1(Tn),

(8)
and

~
2i

∫
Tn

(ψDψ − ψDψ) dx = V. (9)

If ψ is differentiable then (8) implies

div(ψDψ − ψDψ) = 0 (10)

The vector field j := ψDψ − ψDψ represents what is called the
flux in quantum mechanics.

Note that

~
2 i

(ψDψ − ψDψ ) =
~
2 i

(
aa′ + a2

i u′

~
− a a′ + a2

i u′

~

)
= a2 u′. (11)

So the condition (10) can be replaced by the transport equation

div(a2Du) = 0

and condition (9) by ∫
a2Dudx = V. (12)

Fixing v, v∗ we will denote

V0 :=

∫
a2(x)Du(x) dx =

∫ (
e

v∗(x)−v(x)
2 ~

)2
D
(v∗(x) + v(x)

2

)
dx.

If we consider ũ = v∗(x)+v(x)
2 + Px instead of u = v∗(x)+v(x)

2 , as in
Remark 2, we get∫

a2Dũ dx =

∫
a2 (Du+ P ) dx = V0 + P = V = VP . (13)
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Remark 3. This shows that the value V , which we fix as a constraint,
is coupled with the term P . Note that in the reasoning of Sections 2
and 3 the constraint (12) is not used.

2 First variation

Consider the state ψ in polar form where

ψ = aei
u
~ , (14)

and where the phase u satisfies the expression

u(x) = P · x+ z(x) (15)

for some periodic function z.
It is known from (7.11) Section 7.2 in [10] that the Guerra-Morato

action is given in this case by

A[ψ] =

∫
Tn

− ~2

2
|Da|2 +

a2

2
|Du|2 − Wa2dx, (16)

Remark 4. This action is different from (2.3) considered in [10] due
to a change of sign in the first term under the integral (see section 7.2
in [10]). Indeed, compare (16) with (2.3) in [10].

We are initially interested in the critical points of this action.
Note that (7), (8) and (9) become by (11) in the expressions∫

Tn

a2dx = 1, (17)

div(a2Du) = 0, (18)∫
Tn

a2 Du dx = V. (19)

Let {(u(τ), a(τ))}−1≤τ≤1 be a differentiable family of functions
indexed by τ such that it satisfies the constraints above, i.e., (17)-(19)
holds for a = a(τ), and moreover (u(0), a(0)) = (u, a). Let’s assume
that for every τ ∈ (−1, 1), we can write

u(τ) = P (τ) · x+ z(τ),

where P (τ) ∈ Rn and v(τ) are Tn-periodic. Define

j(τ) :=

∫
Tn

− h2

2m
|Da(τ)|2 +

a2(τ)

2
|Du(τ)|2 − W a2(τ)dx,
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In the next theorems, we denote ′ = d
dτ , and in turn, the derivative

with respect to x will be denoted as D. .

We can thus consider variations and, under the hypothesis that
the choice of a, u is critical for the action, we will be able to obtain
constraints for a and u.

Consider a and u fixed and we will look for conditions obtained
when they are critical for the action.

Note that as the functions a′ = a′(0) and u′ = u′(0) denote the
derivative with respect to the variation {(u(τ), a(τ))}−1≤τ≤1, with
the variable τ , they can be quite general. But, for example, a′ must
satisfy the identity∫

Tn

2
d a(τ)

d τ
a dx = 2

∫
Tn

a′ a dx = 0,

which is obtained by differentiating with respect to τ , at τ = 0, the
expression ∫

Tn

a2 dx = 1.

Theorem 5. Suppose that ψ is described by ψ = a ei
u
~ . Then j′(0) =

0 for all variations, if and only if,

h2

2
4a = a

(
|Du|2

2
+ W − E

)
(20)

for some real number E.
In this case, a and u satisfy the so-called Hamilton-Jacobi equation

with a quantum potential.

Proof. First, let’s estimate j′(τ). An easy account shows that

j′(τ) =

∫
Tn

(
−h

2

m
Da ·Da′ + aa′|Du|2 + a2Du ·Du′ − 2Waa′

)
dx.

Above, a = a(τ), u = u(τ). Taking derivatives at τ = 0 under the
assumption of constraints we obtain:

div(2aa′Du + a2Du′) = 0, (21)∫
Tn

(2aa′Du + a2Du′) dx = 0, (22)

Remember that Du = P + Dz. We multiply (21) by u and integrate
in space. Then, by integrating by parts we arrive at∫

Tn

(2aa′|Du|2 + a2Du′ ·Du) dx = 0.
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So,

j′(0) =

∫
Tn

(
− h

2

m
DaDa′ − a a′|Du|2 − 2Waa′

)
dx

= 2

∫
Tn

a′
(
h2

2m
4a−

(
|Du|2

2
+ W

)
a

)
dx.

Remember that each variation a′ must satisfy the identity∫
Tn

d a(τ)

d τ
a dx =

∫
Tn

a′ a dx = 0.

Assume that a and u satisfy

h2

2m
4a−

(
|Du|2

2
+ W

)
a = −E a

for some constant E.
Thus, j′(0) = 0 for any variation of a and u.
The above expression means(

|Du|2

2
+ W

)
− E =

h2

2m

4a
a
, (23)

for some constant E.

Let’s show that when j′(0) = 0 we get that the reciprocal holds.
We assume that a2 > 0.

Now,

j′(0) = 2

∫
Tn

a′
(
h2

2m
4a − a

(
|Du|2

2
+ W

))
dx

= 2

∫
Tn

a′ g dx.

As a′ is general, the only restriction being that
∫
aa′ dx = 0, we

can conclude from j′(0) = 0, that there is a constant E such that
g = −aE and the result follows (similar reasoning as Theorem 2.1 in
[10]).

Note that given the constraint (19) on V , the vector P has to be
set, and this shows a coupling of the value E with V (and also P )

The next result was proved in Theorem 7.2 in [10]
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Theorem 6. If ψ = a ei
u
~ is differentiable and critical for the Guerra-

Morato action, then ψ is an eigenfunction of the Hamiltonian operator

− ~2

2
∆ψ +Wψ = E ψ, (24)

for some E ∈ R.

Note that expression (20) is different from expression (2.8) in [10]
due to a change of sign in the Laplacian term.

3 Second variation

Let us now analyze the second variation. Thus, we will take the second
derivative of j with respect to τ .

Theorem 7. Suppose that ψ is described by ψ = a ei
u
~ , where u =

v+v∗

2 , a = e
v∗−v
2 ~ and v, v∗ are real functions. If ψ = aei u/h is a

critical point for action I then

j′′(0) =

∫
Tn

−h
2

m
|Da′|2 + a2|Du′|2 − 2(a′)2

(
|Du|2

2
+W − E

)
dx.

(25)

Proof. Note that

j′′(τ) =

∫
Tn

[
−h

2

m
|Da′|2 − h2

m
Da ·Da′′

]
+ [aa′′|Du|2 + 4aa′Du ·Du′ + a2Du ·Du′′ ]

+ [ (a′)2|Du|2 + a2|Du′|2 − 2W (a′)2 − 2Waa′′ ] dx.
(26)

Taking derivative in (21) and (22) we get

div(2(a′)2Du+ 2aa′′Du+ 4aa′Du′ + a2Du′′) = 0 (27)

and ∫
Tn

( 2(a′)2Du+ 2aa′′Du + 4aa′Du′ + a2Du′′ ) dx = 0. (28)

9



Now take τ = 0, multiply (27) by u, integrate, and do integration
by parts to get∫
Tn

[
2(a′)2 |Du|2 + 2aa′′|Du|2 + 4aa′Du′ ·Du+ a2Du′′ ·Du

]
dx = 0.

(29)

Let’s now use the expression (26). As j′(0) = 0, we integrate by
parts (−h2/2m)Da ·Da′′ and obtain

j′′(0) =

∫
Tn

[
2a′′

(
h2

2m
4a− a

(
|Du|2

2
+ W

))
− h2

m
|Da′|2

− (a′)2|Du|2 + a2|Du′|2 − 2 W (a′)2
]
dx

=

∫
Tn

2a′′(−E a)− h2

m
|Da′|2 − 2(a′)2

(
|Du|2

2
+ W

)
+ a2|Du′|2 dx

=

∫
Tn

−h
2

m
|Da′|2 + a2|Du′|2 − 2(a′)2

(
|Du|2

2
+ W − E

)
dx.

=

∫
Tn

−h
2

m
|Da′|2 + a2|Du′|2 dx−

∫
Tn

2(a′)2
(
|Du|2

2
+ W − E

)
dx.

Above we use the identity∫
Tn

a′′a+ (a′)2 dx = 0,

obtained by differentiating with respect to τ twice and using
∫
a2 dx =

1.
The reasoning above proves the claim we were looking for.

Note that (25) is an expression which is different from (2.12) in
[10].

4 Other expression for j′′(0)

We want to get a more appropriate expression for j′′(0).

Let’s assume that

a(x) > 0, for all x ∈ Tn.
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Theorem 8. If ψ = a ei u/h is critical for the action and a > 0, where

u = v+v∗

2 , a = e
v∗ − v
2 ~ , then

j′′(0) =

∫
Tn

(
|Du′|2 − h2

m

∣∣∣D(a′
a

)∣∣∣2) a2 dx =

∫
a2D[v′]D[(v∗)′]dx.

(30)

Proof: Since ψ is critical, form (23) we have

h2

2m
4a = a

(
|Du|2

2
+W − E

)
.

So, from (4) we have

j′′(0) =

∫
a2|Du′|2 − h2

m
|Da′|2 − 2(a′)2

(
h2

2m

4a
a

)
dx

=

∫
a2|Du′|2 − h2

m
|Da′|2 − h2

m
(a′)2

|Da|2

a2
+

2h2

m
a′
Da′ ·Da

a
dx

=

∫
Tn

a2|Du′|2 − h2

m
a2
∣∣∣D(a′

a

)∣∣∣2 dx =

∫
a2D[v′]D[(v∗)′] dx,

showing the claim of the theorem.
�

Note that j′′(0) in expression (30) may be positive or negative.

Remark 9. Remember that ψ is described by ψ = a ei
u
~ , where u =

v+v∗

2 , a = e
v∗−v
2 ~ e v, v∗ are real functions. Note that if v = −v∗

then the j′′(0) is negative. Also, if v + v∗ is constant, then the above
expression is negative.

Remark 10. Note that in the case we consider u = v+v∗

2 + P x, we
also get

j′′(0) =

∫
a2D[v′]D[(v∗)′] dx. (31)

We point out that from Remark 3 the vector P has to be set from
the constraint (19) on V .

Remark 11. Similar results hold when x ∈ Rn and not on the torus.
Let’s consider x ∈ R next. Note that in the case of the harmonic

oscillator H(x, p) = p2

2m + mw2 x2

2 we have the ground state ψ0, which
is the minimum energy state E0 = 1

2 ~w, is described by

ψ0(x) = (
mw

π ~
)
1
4 e−

mwx2

2 ~ .
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Thus, |ψ0|2 will determine a Gaussian density with variance a =√
h

2mw .

Note that v∗(x)− v(x) = −mx2 and v + v∗ = 0.
Thus, v′ = −v∗ ′ and

1

m

∫
a2D[v′]D[(v∗)′] dx < 0

That is, we just show the ground state ψ0 is not minimum for the
Guerra-Morato action I when x ∈ R (and not in the circle).

5 Dual eigenfunctions

In this section, we will assume conditions on v, v∗.

Is is natural to consider the dual eigenvalue problems:{
− h2

2 4w + hP ·Dw + W w = E0
~w in Tn

w is Tn periodic
(32)

and {
− h2

2 4w
∗ − hP. Dw∗ + Ww∗ = E0

~w
∗ in Tn

w∗ is Tn periodic,
(33)

where E0
~(P ) ∈ R is the main eigenvalue. We may assume the real

eigenfunctions w, w∗ to be positive in Tn and normalized in such away
that ∫

Tn

ww∗dx = 1. (34)

Moreover, we can take w, w∗ and E0
~ to be twice differentiable in

x and P .
Note the change of sign in the W term when compared with (3.1)

and (3.2) in [10] (and also [1] and [3]).
In the same way as in [10] we employ a form of the Cole-Hopf

transformation, to define {
v := −h logw
v∗ := h logw∗.

Then, {
w = e−v/h

w∗ = ev
∗/h

and then follows that
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{
− h

2 4v + 1
2 |P +Dv|2 −W = H~(P ) in Tn

v is a Tn − periodic function
(35)

and {
h
2 4v

∗ + 1
2 |P +Dv∗|2 −W = H~(P ) in is a Tn

v∗ is a Tn − periodic function
(36)

for

H~(P ) :=
|P |2

2
− E0

~(P ). (37)

It follows from classical PDE estimates the bounds

|Dv|, |Dv∗| ≤ C,

for a constant C depending only on P and W .

Remark 12. The equation (35) in the one-dimensional case admits
a solution

v = −h log(w) + Cx

where w > 0 solves the equation

w′′ − 2

(
P + C

h

)
w′ +

((
P + C

h

)2

− 2

h2
(H̄h +W )

)
w = 0.

Now we define
σ := ww∗ = e

v∗−v
h (38)

and

u := P · x+
v + v∗

2
. (39)

Note that although w, w∗, v, v∗, u and σ depend on h, we will for
notational simplicity mostly not write these functions with a subscript
h. The importance of the product (38) of the eigenfunctions is also
noted in [3] (see also [18]) but it is used for a different purpose related
to Aubry-Mather Theory (see [14]).

Note that

a e
i u
h = e

1
2 (v∗−v) + i v+v∗

2 + i P ·x
h .

According to (34),

σ > 0 in Tn,

∫
Tn

σdx = 1.
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Theorem 13. For

u = P · x+
v + v∗

2
, we get

(i)
div (σDu) = 0 in Tn. (40)

(ii) Furthermore,
1

2
|Du|2 − W −H~(P ) =

h

4
4(v − v∗)− 1

8
|Dv −Dv∗|2 in Tn. (41)

We call (40) the continuity (or transport) equation, and regard (41)
as an eikonal equation with an error term on the right-hand side.
Note that the form of (41) is not exactly the classical Hamilton-Jacobi
equation due to the minus sign multiplying the potential W (in the
left-hand side of (41)). This expression is different from (3.12) in [10].

Proof. a) Note that

hdiv(w∗Dw − wDw∗) = h (w∗4w − w4w∗)

=
2

h

(
w∗
(h2

2
4w

)
− w

(h2
2
4w∗

))
=

2

h
[w∗(−E0w +Ww + hP ·Dw)

+ w(E0w∗ −Ww∗ + hP ·Dw∗)]
= 2(w∗P ·Dw + wP ·Dw∗) = 2P ·Dσ.

But

w∗Dw − wDw∗ = w∗
(
− Dv

h
w
)
− w

(Dv∗
h
w∗
)

= −1

h
σ(Dv +Dv∗),

and therefore

P ·Dσ +
1

2
div(σD(v + v∗)) = 0.

This shows (i).
b) Taking into account the expression (see [10])

1

2
|a− b|2 +

1

2
|a+ b|2 = |a|2 + |b|2,

and taking a = (P +Dv), b = (P +Dv∗), we get

1

2

∣∣∣∣P +
1

2
D(v + v∗)

∣∣∣∣2 =
1

8
|(P +Dv) + (P +Dv∗)|2

=
1

4
|P +Dv|2 +

1

4
|P +Dv∗|2 − 1

8
|Dv −Dv∗|2.
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Therefore, we finally get

1

2
|Du|2 −W −H~(P ) =

1

2

(
1

2
|P +Dv|2 −W −H~(P )

)
+

1

2

(
1

2
|P +Dv∗|2 −W −H~(P )

)
− 1

8
|D(v − v∗|2

=
1

2

(h
2
4v
)
− 1

2

(h
2
4v∗

)
− 1

8
|D(v − v∗)|2

=
~
4
4(v − v∗)− 1

8
|D(v − v∗)|2.

Remark 14. One can also show that

−h
2
4σ − div((P +Dv)σ) = 0,

−h
2
4σ + div((P +Dv∗)σ) = 0.

Indeed, note that

h

2
4σ = div

(
1

2
D(v∗ − v)σ

)
.

Now, add and subtract the above from (40).

Now we will show integral identities involving Du and D2u. To
simplify notation, we will denote

dσ := σdx.

Theorem 15.∫
Tn

1

2
|Du|2 −Wdσ = H~(P ) +

1

8

∫
Tn

|Dv −Dv∗|2dσ. (42)

Proof. Note that from the above∫
Tn

1

2
|Du|2 −W −H~(P )dσ =

h

4

∫
Tn

4(v − v∗)σdx− 1

8

∫
Tn

|Dv −Dv∗|2σdx.

But σ = ww∗ = e
v∗−v

h , and therefore∫
Tn

1

2m
|Du|2 −W −H~(P )dσ = − h

4

∫
Tn

D(v − v∗) · D(v∗ − v)

h
σdx

− 1

8

∫
Tn

|Dv −Dv∗|2 σdx

=
1

8

∫
Tn

|Dv −Dv∗|2dσ.

15



Theorem 16. For ~ fixed, taking derivative with respect to P

i)
d

dP
H~(P ) =

∫
Dudσ. (43)

Moreover,

ii)
d2

dP 2
Hh(P ) =

∫
Tn

D2
xPu⊗D2

xPudσ

+
1

4

∫
Tn

D2
xP (v − v∗)⊗D2

xP (v − v∗)dσ. (44)

This shows that Hh is a convex function of P .

Proof. The proof i) is similar to the proof of item 1) in Theorem 4.1 in
[10]; we just have to substitute −W (of [10]) by W . Taking derivative
with respect to P in (32) and (33) we get d

dPE
0
~(P ) = −

∫
Dv dσ and

d
dPE

0
~(P ) = −

∫
Dv∗ dσ (see page 321 in [10]).

Then, from (37) we get

d

dP
H~(P ) = P − d

dP
E0

~(P ) = P +
1

2

∫
[Dv +Dv∗]dσ =

∫
Dudσ.

The proof of ii) is also similar to the one in Theorem 4.1 in [10].
The same cancellation procedure of item 2) in theorem 4.1 in [10]

results in (44).
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