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1 Introduction

In this chapter, we will state several results related to the Ruelle operator
and to the topological pressure of expanding maps. We point out that the
Bernoulli shift is a very important case where the results we will present here
can be applied. The proofs of the main results will be presented in the next
chapters.

Given a compact metric space (X, d), we denote by B(X) the Borel sigma-
algebra on X, C(X) the set of real continuous function ¢ : X — R and
M(X) denotes the set of Borel probabilities on X.

Recall the definition:

Definition 1.1. A continuous map T' from a compact metric space (X, d) to
itself is expanding if there exist ¢ > 0 and X\ > 1 such that, for any x,y € X
andn € N d(T™(x), T"(y)) > c\"d(z,y).

M(T) denotes the set of T-invariant probabilities.

When X = Q = {1,2,...,m}", the shift transformation o : Q — Q given
by o(zg, x1, T2, T3, ....) = (21, X2, T3, T4, ....) is an example of a continuous ex-
panding transformation acting in a compact metric space, when considering
the metric described by (5).

Sometimes, we will assume the map 7T is differentiable and we will be
able to give a more precise description of the results using the derivative of
the map. An equivalent definition of expanding map in this case is:

Definition 1.2. Let M be a compact manifold without boundary. A map
T : M <+ is expanding if it is of class C' and there exists 0 < X\ < 1 such
that || DT -v [|> X7t ||v || for any x € M, v € T, M.

We shall prove results concerning the existence of some invariant measures
which have significant properties from the dynamic point of view. The first
of these results shows that every expanding differentiable map has one and
only one invariant measure equivalent to the Lebesgue measure obtained as
the limit of iteration of the Lebesgue measure by the map.

Amap T : M +c C~!is Holder-C' if det D, T is Holder-continuous.
Denote by C'*7 the space of Holder-C'-maps with Holder-constant +.

Definition 1.3. A probability n € M(X) is exact with respect to T if for
any A € Nyu>o T (B(X)), then u(A) =0 or u(A) = 1. Here B(X) denotes
the Borel o-algebra of X.



If p € M(T) is exact then it is ergodic (see [11] , [10] or [6]).

Notation We will use the following notation, for ¢ € C(X) and v €
M(X): we denote (¢, v) the value [ ¢(x)dv(x).

Definition 1.4. For a given operator L from C(X) to itself, the dual of L
is the operator L* defined from the dual space C(X)* = S(X) (the space of
signed-measures) to itself defined in the following way: L* is the only operator

from S(X) to itself such that for any ¢ € C(X) and v € S(X)

(L(¢),v) = (¢, L (V).

Remark 1.5. Such L£* operator is well defined by the Riesz Theorem. This
is so because for a given fized v € S(X) the operator H from C(X) to R
given by H(p) = (L(¢),v) = [ LP(z)dv(z) satisfies the hypothesis of Riesz
Theorem, therefore there exists a signed-measure p such that [ Lo(x)dv(x) =
H(p) = [ p(x)du(x) = (¢, p). Hence, by definition L*(v) = p.

Theorem 1.6. Let T : M < be a Holder-C' expanding map. There exists a
unique pn € M(T') absolutely continuous with respect to the Lebesgue measure-
m. Moreover, | satisfies:

(1) % € CY(M) and is strictly positive

(2) p is exact

(3) h(p) = [y log | detT" | du

(4) h(n) < [y, log | detT" | dn, for any n € M(T), n # p.

(5) m(T—n()A)) = u(A) for any Borel set A.

m(M n—00

Consider now the question of studying the asymptotic distribution of the
pre-images of a point x by T", when n — co.

Definition 1.7. Define u,(x) € M(M) by

where d = # f~1(a) independs on a.



Theorem 1.8. Let T : M < be an expanding map. There ezists p € M(T)
such that p = lim, oo pn(z) for any x € M. Moreover p satisfies:

(1) p is exact and positive on open sets
(2) h(p) =logd
(3) h(n) <logd for any n € M(T), n # p.

Definition 1.9. The above defined measure p is called the mazximal measure

Definition 1.10. Suppose that T : M < is a continuous map and v : M —
R is a continuous function. Remember that we denote by C'(M) the space of
continuous functions on M. Define L, : C(M) < by

Lyp(z)= Y 'Woly) (1)

yeT 1z

for any ¢ € C(M) and x € M. We call this operator the Ruelle-Perron-
Frobenius Operator (Ruelle Operator for short)

The function ¢ : M — R is usually called the potential (a terminology
originated in Statistical Mechanics).
It is quite easy to see that:

n 2 n—1
Lio(z) = Z YW FP(T () +o(T= () +- +4(T (y))¢(y) (2)
)

yeT" (z

Theorem 1.11. Ruelle Theorem - Let T : M < be an expanding map and
v M — R be Holder-continuous. Then there exist h : X — R Holder-
continuous and strictly positive, v € M(X) and A > 0 such that:

(1) [ hdv =1

(2) Lyh = Ah

(3) Ly = v

(4) | N6 — b f édv [l O for any 6 € C(X).

(5) h is the unique positive eigenfunction of Ly, except for multiplication
by scalars.



(6) The probability i = 1y, = hv is T-invariant (that is, p € M(T)),
exact, positive on open sets and satisfies

log A = h(u /wdu.
(7) For anyn € M(T), n #

log A > h(n /wdn

(8) For any probability w € M(X),

ﬁn*
lim

n—oo A"

=V

Definition 1.12. Given a continuous potential ¢ : X — R, the value

P(y) = sup {h / Ydn},

neM(T

is called the Topological Pressure of 1. A probability p, attaining the maximal
value P(v) will be called an equilibrium probability for 1.

Corolary 1.13. If the potential v is Holder-continuous, then the equilibrium
probability pu, for is unique and satisfies j1y, = hv. Moreover, P(1)) = log .

The proof follows from (6) and (7) of Theorem 1.11

Theorem 1.14. Let T : X « be an expanding map and ¢ : X — R, ¢
X — R be Holder-continuous. Then the following properties are equivalent:

(1) pry << puig
(2) g << puy
(3) py =
(4) For anyn >0 and x € X with T"(x) = x it holds that
= . =
- > W(Tix) - =~ U(Tx) =log Ay — log Xy
J=0 J=0

(5) There exists w € C(X) such that

UOT—UZIOg)\w—IOg)\E—F(E—w).



Observe that condition (4) is extremely strong and “in general” different
“potentials” 1) induce mutually singular probabilities .
Let us see now how Theorems 1.6 and 1.8 follow from Theorem 1.11.

Let us prove first Theorem 1.6. Let ¢(z) = —log | det T"(x) | which is
Holder-continuous because T' is Holder-C*. If p € C°(M)

[edtcim = [ Logam= [ ( > 14T () |190(y))dm(w)-

Take a collection of disjoint open sets Ay, ..., A, which cover M except for
a set of Lebesgue measure zero and such that T7'(A;) consisting of a finite
number of disjoint open sets restricted to which 7' is a diffeomorphism. This
can be done using the compactness of M and the fact that det T"(x) does not
vanish. Then

frem- TI(S,
— %:/Tl(Aj)gpdm:/godm.

Therefore Ljm =m. Let A, h and v be given by Theorem 1.11. Then

Vﬁ” ) p / odv

for any ¢ € C'(X). Integrating with respect to m

1
I d( E ) — /hdm/gpdl/.

1
F/@dm%/hdm/gpdu.

Taking ¢ = 1 and since h > 0, the relation above shows that A = 1 and
[ hdm = m(X). Therefore [ pdm =m(M) [ pdv for any ¢ € C(). It results
that v = m/m(M).

The probability u = hv, satisfies then the conditions (1), (2), (3) and
(4) of the Theorem 1.6. Observe that condition (1) actually implies the

| detT'(y) |~ w(y)) dm(x)

Hence
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equivalence between p and m. The claim concerning the uniqueness of u
follows then from the fact that if gy € M(T'), 1 << p then py = p since p
is ergodic. Property (5) follows from the fact that p is mixing.

Let us prove now Theorem 1.8. Take v = 0 and let A\, h and v be given
by Theorem 1.11. Then

Lyl(z)= > 1y)=d.

Because of the part (5) of Theorem 1.14, d = X and h = 1. Also, part (4)

shows that .
o > ely) — / pdv

yeT—"gx
for any ¢ € C°(M). This proves Theorem 1.8.

Definition 1.15. A continuous function J : X — R is called the Jacobian
of T : X — X with respect to p € M(X), if

H(F(A)) = / Jdu,

for any Borel set A such that T' |4 is injective.

It is easy to prove that if such a J exists it is unique. Some ergodic
properties of y can be analyzed through J.

Theorem 1.16. Suppose that J is Holder-continuous and strictly positive.
Then

(a) h(u) = [log Jdp
(b) 1 is exact.

Consider now the question of finding a 7T-invariant probability with Ja-
cobian J > 1 given. It is easy to prove that every function J > 1 that is
Jacobian of T with respect to some T-invariant probability must satisfy

1
2 T ?)

for any y € X. This condition is also sufficient. In fact the the following
result is true:



Theorem 1.17. Let T : X < be an expanding map and J : X — R strictly
positive and Holder-continuous. Let X\, h, v be given by Theorem 1.11 with
v = —logJ. Then the Jacobian of T with respect to = hv is
hoTl
J, T =X\J —
Condition (2) Theorem 1.11 implies that h = 1 and A = 1 in the last
theorem. Hence P(—logJ) = 0.

Theorem 1.18. Suppose 1 is Holder continuous, (., ts the equilibrium state
associated with 1, h is the eigenfunction associated with \ in Theorem 1.11
then the Jacobian Jy, of the probability ju, is given by:

)hoT(x)

z) = e ¥
Jy(x) = A no)

(4)

In section 5 we will present results about the differentiability of the pres-
sure and in section 7 we will present results about the differentiability of the
Hausdorff dimension of the Julia set of rational maps.



2 Properties of expanding maps

Let (K,d) be a compact metric space.

Definition 2.1. T : K <= continuous is said to be an expanding map if there
evistr > 0,0 < A <1 and c > 0 such that:

(a) x #y and T(z) =T (y) = d(z,y) > c.
(b)) Vo € K and a € T (x) there exists ¢ : B,(x) — K such that
o(x) =a and

y)) =yVy € B,(x)

T(e(
< MN(z,w),Yz,w € B,.(x)

d(p(2), p(w))

Ezxamples:

(a) Let M be a compact manifold without boundary and 7" : M < a
C~l-map. Then T is an expanding map by the definition above iff T" is an
expanding map by the first definition, that is, 30 < A < 1 such that

1
| DT vz 5 e

Ve M,VveT,M. For verifying this, suppose first that 7" is an expanding
map by the first definition.

Given z € M, d neighborhood V of z such that T=!(V) consists of a finite
number of open sets W1, ..., W,, such that f |y, is a diffeomorfism. Cover M
with neighborhoods V' of this type and let ¢ be the Lebesgue number of this
covering.

Let r1 > 0 be such that if z, w € M and d(z,w) < r1, then 3 a geodesic
B :]0,1] — M with 5(0) = z, f(1) = w and d(z,w) = [(B) (= length of B).
Let r = min(rg, 7).

Then if ¢ : B,(z) — M is a branch of T,

d(p(2), p(w)) < [(0h) :/0 1" (B(2)) - B(1) || dt <

Lot 1
< 51w a5
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This verifies condition (b) of the above definition. Condition (a) is very
easy to verify.

Reciprocally, let € M. Take y € ¢(B.(f(z)), where ¢ is such that
©(T(z)) = =z, and sufficiently near x in such a way that z and y can be
joined by a geodesic 8 with d(z,y) = I($). Then

L(B) = d(z,y) < Ad(T(x), T(y)) < N(T o )

1 1
= [s@nas [ xiremso) e
If y tends to x through the geodesic 8 with '(0) = v it results that
vl <A T (x)v .

This proves the claim.

Below we will list a series of interesting cases related to the topics covered
here.
Definition 2.2. Let M be a manifold, T : M <> a C~'-map and N C M a

completely invariant compact set. We say that A is expanding if

(1) A is isolated, that is, there exists a neighborhood U of A such that
ﬂnZQTinU = A.

(2) There ezists 0 < A < 1 such that
I DT vz 5 e
T -U = —
L

foranyx € N and v € T, M.

It is easy to verify that T' |, is an expanding map.
This example occurs when 7" is an Axiom A rational map of the Riemann
sphere C and A is its Julia set (see [5] or [9]) and also Section 7.

I) If T : K < is an expanding map and A an invariant compact set is not
true that necessarily 7' |, is also an expanding map.

For example, let p be a fixed point in K and {g;}iez an orbit of T' with
the following properties:

(1) gvim = qn for some N € N and some m > 0.

11



Let pg be a pre-image of p different from p, and define

AN ={po} U{p} U{qi}iex.

Then T'(A) = A, but it is easy to see that T' |, cannot be an expansive
map.

IT) Let A = (a;j) be a m x m matrix of 0’s and 1’s. Define the operator o
in BY(A) = {(zo,21,...) | @ € {1,...,m} and ay, 5,,, = 1} by o(z0,21,...) =
(21, 23, ...). The pair (o, BT(A)) is called a unilateral subshift of finite type.
Define a metric in BT(A) by

A0, =" o | an) ~ B(n) )

where o = ((0), (1), ...) and 8 = (8(0), 5(1),...).

With this metric ¢ is an expanding map, with r =1, A\=1/2 and ¢ < 1.
Because if a #  and o(a) = o(f) then «(0) # 5(0) and so d(«, 8) > 1 > c.
This verifies (a). Also if a and g satisfy d(«, 5) < 1 then a(0) = £(0). Hence
the pre-images by ¢ of @ and § are (z;, ) and (x;, 5) where z; € {1,...,m}
and ag, o) = 1, and d((z;,a), (2;,8)) = >opey 57 |a(n —1) = B(n—1) |=
1 d(a, B). this verifies (b). The dynamics in this case is called a shift of finite
type.

IIT) Let T : S <= be a C?-map with degree greater than one and such that
T'(z) # 0, V. We define ) (T") = (U basin of attractors). Then if all periodic
points of 1" are hyperbolic (this is a generic property) T' [sy): D (1) <= is
an expanding map.

Definition 2.3. Let T : K < be an expanding map and S C K.
Then g : S — K is a contractive branch of T™" if T"g(x) = x, Vo € S
and

d(T7g(x), T?g(y)) < A" d(x,y)
foranyz,ye S, 0<j5<n.

It is easy to see that given z € K and a € T~"(x) there exists g : B.(z) —
K contractive branch of T—" such that g(x) = a.

12



Lemma 2.4. Let B(n,&,x) = {z € K | d(TVz,Tix) < &, for 0 < j < n}.
Then there exists &g > 0 such that if 0 < £ < &; then

(a) For n > 1, let g : B,(T™(x)) — K be a contractive branch of T~™
such that g(T"(x)) = x. Then B(n,§, x) = g(Be(T"(z)).

(b) If d(T"z, T"w) <&, Vn>0= 2z =w.

.
TSN

¢ > 0 are given by Definition 2.1. If z € B(1,&,z) then d(z,z) < ¢ and
d(T(2),T(x)) < & and so d(g(T(z)),x) < A. By the triangular desiguality,
d(z,9(T(z))) < C. It follows that z = go f(z) and so z € g(B¢(T'(x))). This
proves (a) for n = 1.

With analogous arguments we complete the proof of (a) by induction.

If d(T"(z), T"(w)) < &, ¥Yn > 0, by the first item d(z,w) < A&, Vn.
Hence z = w, and this proves (b). O

Proof. Suppose n = 1 and let £ < min (r , where r > 0, 0 < A < 1,

Remark 2.5. & is called an expansivity constant for f.

Lemma 2.6. For any & > 0, there exists 6 > 0 such that if a sequence
{z,, | n > 0} satisfies d(T(x,), Tpi1) < 6, Y > 0, then there exists x € K
satisfying d(T™(x),xz,) < &, Vn > 0.

Proof. Let ¢, : B.(z,) — K be contractive branches of 7! with ¢, (T(z,_1)) =
ZTp_1. Take § < mm(lA 6T —7“)

If z € B,(x,) then d(z,Tx,_1) < r+6 and so d(pnz, p—1) < A(r+0) <r
It results that ¢, (B,(z,)) C B.(rs-1), Vn > 1.

Consider the sequence {1, ..., on (B, (25)) }n>1. It is a decrescent sequence
of compact sets whose diameters tend to zero. Hence My>1 ¢1...00 (B (1))

consists of a unique point that we shall call z.
Let [ € N. Then

d(T'x, 2;) < M(T 2, Tay) < N(T 2, 2004) + M(Tay, v44) <
S /\d(Tl’l, xl—i—l) + )\2d(Tl’l+1, JZH_Q) + ...+ )\kd(Tl’H_k_l, Il+k)+
+ Ned(T oz 2p,). (%)

13



Making h — oo

oA
l <

Lemma 2.7. In last Lemma, if the sequence {x,,n > 0} is periodic of period
N, then z 1s periodic of period N, if it is assumed that 26 < &y, where & is
the expansivity constant given by Lemma 2.4.

Proof. Consider the orbits (x, T'(x), T?(z), ...) and (TV (z), T¥*1(z), ...). Since
they are 2¢ close one to each other, using the Lemma 2.7, (b), it results that
r="TN(x). O

Remarks:

(1) We shall use in the future the following refinement of previous Lemmas.
In case that zg, 1, ... is periodic of period N and z;11 = fz;,j =
0,... N —2and d(T(zn-1), 7o) < J, it results from (*) that

d(T7(x), T (z0)) = d(T7(z),z;) < AV 7d(TV(z), T(xn-1))
= Md(z, T(xy_1))

for0<j <N —1.
(2) In the following Lemma, we shall use (*) with [ =0, i.e.,

$ 1750 Z )\an fl’n, $n+1)

Lemma 2.8. Given & > 0, there exists g > 0 such that for all € > 0, there
exist N € N and 0, > 0 such that if a sequence {x,, | n > 0} satisfies

d(T(ZL’n)7ZEn+1) S (50, Vn S 0
T(x,) = Tpy1, Vi<n<N
d(T(ZL‘Q),ZL’l) <

14



then there exists x € K such that
d(T™(x),x,) <&, VYn=>0

d(x,z9) < €.

Proof. Given & > 0, take dy as in a previous Lemma. By item (2) in the
remark,

d(z,20) <Y NTA(T(20), 20s1) < Adp+ Y N AT (@), Tg1)
0

N+1
N+2

1—X

< o1+ 0o

If N is sufficiently large and ¢§; sufficiently small it results that d(x, z() <
£ O

Definition 2.9. A sequence {x, | n > 0} is a pre-orbit of x if v = xy and
T(Zny1) = Tp.

Lemma 2.10. If d(z,y) < r and {z, | n > 0} is a pre-orbit of x, then there
exists a pre-orbit of y, {y, | n > 0} such that d(x,,y,) < N'd(zo,yo)-

Proof. Consider ¢ : B,(z) — K a contractive branch of 77" with g(z) = x,
and define y, = g(y). O

Lemma 2.11. Denote by PerT = { periodic points of T} and N = PerT.
Then T |A: A <= is an expansive map.

15



Proof. Let r > 0, 0 < A < 1 and ¢ > 0 be given by Definition 2.1. Let
0o be given by Lemma 2.4 with £ an expansivity constant and define r; =
min(r, §p). For proving that T" |, is an expanding map it is sufficient to prove
that (B, (x)NA) C A, if x € A and ¢ : B.(z) — K is a contractive branch
of T7! with ¢(z) = a € A. Let z € B, (x)NA. We must verify that ¢(z) € A.
Without loss of generality, we can assume that z and a (and therefore z) are
periodic. Let s =period of a =period of x, and ¢t =period of z.

Let w = ¢(z). Take a pre-orbit {w, | n > 0} of w asymptotic to the
periodic pre-orbit of a and a pre-orbit {x,, | n > 0} of z asymptotic to the
periodic pre-orbit of z, as in a previous Lemma.

Given £ > 0, take N large as above and consider the periodic dp-pseudo-
orbit w, Ty, ooy T, We_1, uvy W, W, ...

By Lemma 2.6, there exists p such that d(p,w) < £ and such that its
orbit &y-shadows the dp-pseudo-orbit above.

By a previous Lemma, p is periodic and therefore w € A.

Theorem 2.12. K = U,>¢T " (PerT).

Proof. Let x € K and let w(x) be the w-limit set of the orbit of x, that is,
{y | there exists a sequence {ny}r C N, ny — oo such that T"*(z) — y}.

If y € w(z), and £ > 0 is arbitrary, let § > 0 be given by Lemma 2.10.
Take [ and N such that d(T'(x),y) < 6/2 and d(T"Nx,y) < §/2. So

T (x), T (z), ..., TN (2), T (2), ...

is a periodic d-pseudo-orbit.

By a previous, it can be é-shadowed by a periodic orbit. Therefore y €
PerT.

Consider the map 7' |5, which is expanding. Fixing £ > 0, let 6 > 0 be
given by Lemma 2.11 applied to T" |5 . Let 0’ < §/2 be such that d(z, w) < ¢
implies d(T'(z), T'(w)) < §/2 for any 2z, w € K.

16



Let z € K. Since w(z) C A, there exist N € N and {x,},>0 C A such
that d(TN*"(z), (z,)) < &, for each n > 0. Hence

(T (), T () + d(TV (), 241)
§/2+46/2=19

d(T(xn); 1)

IA A

for each n > 0. By Lemma 2.11, there exists z € A such that d(T"(z),z,) <
&, for each n > 0. Hence

d(T"(2), T"(T"(2))) <0+ &

for each n > 0. But by the expansiveness of T, if £ and § are small, TV (z) = 2.
Therefore z € TN (A). O

Theorem 2.13. There exist unique disjoint compact sets /\gm), 1=1,..., Ny,
=1,.... M such that

(a) TNy =pA" 1<i<n, 1<m<M

(
TATY =A™, 1<m< M.

(b) U™ = A(= PerT).

(c) T | m): A™ <= s topologically mizing.
More over, the following properties are valid:

(d) T |, om: /\Em) is an expanding map.

(e) For each open set'V C /\ , there exists N > 0 such that

() (V) = A

Proof. Let p and ¢ be periodic points, and {p, | n > 0} and {¢, | n > 0}
their periodic pre-orbits. Define p ~ ¢ if there exist pre-orbits {p/, | n > 0}
of p and {¢,, | n > 0} of ¢ such that d(¢,, p,) — 0 and d(p},, g,) — 0.

Let us verify that ~ is an equivalence relation in PerT. Clearly ~ is
reflexive and simetric. If p ~ ¢ and ¢ ~ r, then there exist pre-orbits

17



{¢, | n > 0} of ¢ and {r, | n > 0} of r asymptotic to the periodic pre-
orbits {p, | n > 0} of p and {g, | n > 0} of ¢ respectively. Let ny > 0
be such that d(r),q,) < r if n > ng, and let my > ny be a multiple of the
periods of p and ¢q. Then d(r}, ,q) <r.

By a previous Lemma, there exists a pre-orbit {r}; | n > 0} of r}, asymp-
totic to {p, | » > 0}. Since my is a multiple of the period of this orbit,
the pre-orbit 7,7, ..., 1,709,771, ... is asymptotic to {p, | n > 0}. By
simmetry, r ~ p.

Therefore ~ is actually an equivalence relation em PerT. If d(p,q) <,
then p ~ ¢. This implies that there are only a finite number of classes of
equivalence X, ..., X,, and that they are open and closed in PerT. Besides,
f transform classes of equivalence in classes of equivalence. Therefore, we
can denote the classes by XZ-(m), 1 <i<ngy, 1 <m < M satisfying

TX™) = X™ 1 <i<npl<m<M

T(X) = X™ 1 <m< M.
Define A™ = X™ Then conditions (a) and (b) are obviously satisfied.
Let us prove (d). As f |5 is an expanding map (Lemma I1.9), 7™ |, is
an expanding map. It follows then from T*”m(/\gm)) = /\Em) that 7" |, o)
is an expanding map. Z
Let us prove now (e). Denote by ¢ the map 7" |A§m) and let V' be an

open set of /\Em). Let p € V be periodic of g-period ng and let {p, | n > 0}
be its g-periodic-pre-orbit. Let ¢ be periodic in /\Em) and {quj) | n > 0},
0 < j < ng— 1, g-pre-orbits of ¢ such that d(q,gj),pj+n) — 0 when n — oo.

Let > 0 be such that Bs(p) C Ve N > 0 be such that d(qéj),pﬂn) <0,
whenn > N, 0 <7 <ng—1. Thenif n > N, take 0 < j7 < ng — 1 such that
j +mn is a multiple of ny and so we obtain qy(zj) € Bs(p) C V and g”(q,(f)) =q.

In reality, since ¢ is an expanding map, ¢"(Bs(p)) D B.(q) if \* < 4.
Taking a finite number of B,(q) covering /\gm) we obtain (e).

The assertion (c) is corollary of (e).

Suppose now that there are a decomposition of A in disjoint compact sets
Ni(m), 1 < i < ny,, 1 < m < M satisfying (a) and (¢). Let p and g be
periodic points. From (a) it follows that if p ~ ¢, then p and ¢ are in the
same /\Z(-m). From (c) it follows that if p and ¢ are in the same /\Z(-m), then
p ~ q. Therefore this decomposition is well determined by (a) and (¢). O
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Theorem 2.14. If K is connected and T : K < is an expanding map, then
T 1s topologically mizing.

Proof. Let r > 0, ¢ > 0 and 0 < A < 1 be given by Definition 2.1 applied

to f |r: A <=, which by Theorem 2.13 is an expanding map. Let £ <

min(r, 155) ed < § be such that if d(z,w) <4 then d(fz, fw) <¢&.
Claim: If z € f~'(A) and d(z,A) < 4, then z € A.

Proof of the Claim. In fact, there exists w € A such that d(z,w) < 9.
Hence d(T(z),T(w)) < &. Considering the contractive branch of 771, ¢ :
B, (T(w))NA — A such that ¢T'(w) = w we obtain that d(¢fz,z) < 0+ <
C'. Hence ¢T(z) = z and therefore z € A, proving the claim. ]

It follows from the claim S = T—'(A)\A is closed. From the fact that A
is invariant it follows that A, S, T-1S, T—2S, ... is a disjoint collection of
closed sets. By Theorem 2.13, such a collection covers K. If follows then
by the Baire Theorem that one of them has non-empty interior. As T is an
open map, this implies that A has non-empty interior.

Consider the decomposition of A given by Theorem 2.14 at least one of
the /\Z(m) contains an open set V', and since (T")NV = /\Em) for some N > 0,
it follows that /\Em) is open in K. But since K is connected, it results that
/\Em) = K. This proves the Theorem. O

Suppose that f is an expanding topologically mixing map.

Definition 2.15. ¢ and ¢ in C(K) are homologous if there exists u € C(K)
such that v = o +uoT —u. Denote it by 1 ~ .

Theorem 2.16. Suppose that 1) is y-Holder-continuous. Then

n—1

b~ 0 = [T”(:v) — 2 = Su(a) Y3 (T (@) = 0].

J=0

In adition, the funtion u that satisfies 1) = uo T —u is y-Hélder-continuous.
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Proof. If ¢ ~ 0, ¢ =u- f —u, for some u € C(K). It results that S,y (z) =
u(T"(z)) — u(z). Therefore, if T"(z) = =, Syip(x) = 0.

Reciprocally, suppose that S, (x) = 0, for any x such that 7"(z) = x.
Let a € K be transitive for f (i.e., {T"(a)}n>0 is dense in K) and define u
in the orbit of a by

u(T"(@)) = u(@) + S(a)

where u(a) is arbitrarily defined.

Claim: u is y-Holder-continuous in the orbit of a.

Proof of the Claim. For x; > 0 satisfying (1 — \)x; < r— A, take § = % - T
Then by Lemma 2.4, if d(T™(a), T™""(a)) < ¢, the d-pseudo-orbit T™(a),
T (a), ...,T™ ™ (a), T™(a), ... can be z-shadowed by the orbit of a peri-
odic point x of period n. In addition, this orbit satisfies d(T7z), T™" (a)) <
NI d(x, T™(a)), for 0 < j < n — 1 according to Remark 2.5 following
Lemma 2.4. Then

| w(T™ (@) = w(T"(a)) | =| Smintb(a) — Sutp(a) [=] Spib(T™(a)) |

<3 [H(T () — (T @) |

n—1 n—1

<O (T (a), TV (2)) <CY (A€ <67

where C' = C (1 :\17)2. This proves the claim. n

It follows from the claim that u can be extended to a y-Holder-continuous
function in K. Let y € K, y =1lim 7" a. Then

u(T(y)) = uly) = lim w(T""(a)) = lim u(T"(a))
= lim Sy, 19(a) — Sn;9(a)
= lim (7" (a)) = ¥(y)-

Therefore v =uwoT — u. ]
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Corolary 2.17. Let ) and ¢ be v-Holder-continuous functions. Then

In adition the function u that satisfies v = ¢ +u ol — u s y-Holder-
conlinuous.
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3 Jacobians and Entropy

Let T': K <= be a continuous and locally injective map and u € M(T).
A continuous function F': K — R is the Jacobian of T if

W(T(A)) = / Fu

for any Borel set A such that T' |4 is injective. The Jacobian, if it exists, is
unique a.e. and it is denoted by J, f. If ¥ € C°(K) define L, : C°(K) <= by

(Lop)() = Y ey

yeT ! (2)
for any ¢ € C°(K).

Lemma 3.1. Let v € M(K) satisfying Lj,v = Av, A > 0.
Then
J,T =X ¥ .

Let h be continuous and strictly positive and p = hv. Then

JT = et ZT.

Proof. Let A be a Borel set such that f |4 is injective.
Take a sequence {h,},>; in C°(K) such that h, — X4 a.e. [v] and
| hn [|ce< 2, Vn > 1. Then

ﬁw(€_¢hn)($)= Z ew(y)e_d}(y)hn(y): Z i (y).-
)

yeT 1z yeT—1(z

This last expression converges to Xpea)(z) a.e. [v] and so, by the domi-
nated convergence Theorem

/)\ewhndu = /Ew(ewhn)dz/ — v(f(A)).

Hence

/ e Ydv = v(T(A)).
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Also

hoT
/ eV Z hudp = / Ly(e™Vh o Thy)dy

Since p and v are equivalent, this last expression converges to p(7(A))
and so

LékethTEMZA&ﬂAD
]

From now on, we will suppose that T is a topologically mixing expanding
map. If p € M(K), define the support of u as

supp(p) = {x € K | any neighborhood V' of x, u(V') > 0}.

Lemma 3.2. If p € M(K) admits a Jacobian J,f, then supp(p) = K.

Proof. Suppose that there exists an open set V' with (V') = 0.
Cover V' with Borel sets A C V' such that T |4 is injective. Then

p(() = [ 50 =0

A

Hence p(7'(V')) = 0. Inductively, u(7™(V')) = 0. But since there exists n € N
such that 7"(V) = K, this is a contradiction. O

Lemma 3.3. If J,T is strictly positive and Holder-continuous, there exists
A > 0 such that Vn, if g : S — K 1is a contractive branch of T™", then

J, T (x) <A
ST (y) —

for any x, y € g(S).
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Proof. Since g is a contractive branch of T-", and z, y € g(S)
d(T7(x), T (y)) < A" d(T"(x),T"(y)) < A"d

for 0 < j <n, where d=diameter(.S). Then

-1

LI (x) Ty LI(Tz) H | LT (1) = J,T(T7y) |

-\ e Sl A . +1
JuTn(y) im0 ‘]/AT(TJ (¥)) =0 J,uT(T]y)
n—1 .
<I[t+- | T (T () = J,T(T(y)) |
j=o
where ¢ = inf,cg J#T(a:) > (. Hence
J,T"(x)
< 1 + — d T] )< 1 —l— (A"~ ]
< H L+~ M iqd™ A

Corolary 3.4 (Distortion Lemma). If J,T is strictly positive and Hélder-
continuous, then, there exists B > 0 such that for any Sy, So C S

1 (g(S0) _ p(S) _ pulo($)
B alg(5) = mS) = 2 ula(S))

Proof. Fix zg € g(S). Then

p(S1) = [ i < ALT @ntols1)
1
u(S5) = [Tz LT a5,
9(S2) A
Then
1S _ ple(S)
A% p(S2) — plg(52))
Inverting the roles of S; and S5 we obtain the other inequality. O
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Corolary 3.5. Let & be an expansivity constant for T given by former
Lemma, and 0 < § < &. Then there exists C¢ > 0 such that

L < (B, &,2)) - () < C
Ce

Vn >0, Ve € K.

Proof. By a former Lemma, B(n,§,z) = g(B¢(f"z)), where g : B.(T"(z)) —
K is a contractive branch of T7".

Cover K with balls By...B; of radius /3 and let d¢ = miny<;<; u(B;). ¢
is strictly positive, because by a former Lemma, y is positive on open sets.
Also, if y € K,

H(Be(y)) > .

Hence
5e < u(Be(T™ () = / 1Ty < ATT"(2)u(B(n, £, 7).
9(Be(T™(2)))

It follows that

p(B(n.6.2)) - J,T"(@) > % & Clxz
Also
> 1) > P (6, > DT

Hence

Corolary 3.6. Suppose that j is f-invariant and ergodic. Then

hu(f) :/IOgJufdM-
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Proof. The Theorem of Brin-Katok [4] claims that

1
h,(T) = limlim sup ——log (B(n, &, z))
n

0 nooo
a.e. x € K. From Corollary 3.5 it follows that
1 1
lim sup ——log p(B(n, &, z)) = limsup — log J, 7" (z)

n—00 n—oo I
if 0 < & < &. From Birkhoft’s Theorem it results that

n—1

1 . 1 .
~log J,T"(v) = — X% log J,T(T?z) — / log J, Tdy
p

a.e. x € K. Hence
h,(T) = /log J, Tdp.

Lemma 3.7. Let K be a compact metric space, n € M(K) and P a Borelian
partition of K, P = {Py,..., P,}. Let {Cp}m>1 be a sequence of partitions
with diam C,, = maxcec,, (diam C) converging to zero, when m — co. Then
there exist partitions {Efm), . ET(Lm)} such that

(1) Each Ei(m) is a union of atoms of Cy,.

(2) limp oo (BT AP) = 0, Vi.

Proof. Let K, ..., K, be compact sets with K; C P, and u(P; \ K;) < &.
Let ¢ = inf,+; d(K;, K;) > 0 and consider m > 0 such that diam C,,, < 6/2.
Divide the elements C' € C,, in groups whose unions we call Efm), o B in
the following way: C' C EZ-(m) if cN K; # 0. An element ¢ € C,, can intersect
at most one of the K;’s and in case that it doesn’t intersect anyone include
it arbitrarily in any of the Ei(m)/s. Then

W(EAP) = u(P N\ B) 4 p(E™\ P)
< p( P\ KG) + p(K\ UL KG) < (n+ 1)E
As ¢ was arbitrarily chosen, the result follows. O

26



Theorem 3.8. If J,T' is strictly positive and Holder-continuous, then p is
exact.

Proof. Let Py = {P?,..., )} be a partition of K, with diamPy < r and
int(P) #, for 1 <i <ly. Define contractive branches gi% : P — K of f"~!,
for 0 < j <mny 1 <id <y Let Pjj = gf‘j(PiO). Then P, = {P}},0 < j <
ni, 1 <1 <lp} is a partition of K and diam P,, — 0.

Suppose by contradiction that there exists A € N;>oT 7 (B(K)) such that
1(A) > 0 and pu(A°) > 0. Applying a former Lemma, it follows that V& > 0,
IN(§) > 0 such that if n > N(), IP]; € P, such that

n(AN Py)
u(Py)

Since A € Njsof 7/ (B(K)), A=T""(A,), for a certain

>1- ¢

Ay € Nj2oT 7 (B(K))
and so gj5(A, N PY) = AN Pj}. By the distortion Lemma

(A, N PY)
u(Py)

In an analogous way, 31 < k < [y such that

>1-¢B.

p(AS N PY)
n(Py)

Since T is topologically mixing, there exists NV > 0 such that V1 <1 <
lo there exists j(i) such that the contractive branch gf ) of T~V satisfies

N
Pli@ © B

For simplicity, we shall denote Plej(i) by ); and g{\f i) by 9i-

Let ¢ = min; u(Q;), c is strictly positive because (); has non-empty inte-

rior. Let us take & > 0 such that

¢B sup, u(FY)
C

>1-¢B.

<¢
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where § < %. So we have

N(An N QZ)
Qi) b=
p(A;, N Qx)
P\ Tk _s
w(Qr) =

Observing that A, = T"N By and A = T~ B and applying again the
distortion Lemma

u(By N PY)

PPN "1 o9 4B
1(PY)

(B N PY)

2N 1) 5B,
1(PY)

Summing the terms leads to
1>2—-20B

which is a contradiction. O
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4 Proof of the Ruelle Theorem

In this section we will prove the main result.

Theorem 4.1. Let T : K <> to be an expanding map and topologically
maxing; and 1 Holder-continuous. Then, there exist h : K — R Holder-
continuous and strictly positive, v € M(K) and X\ > 0 such that

1. fhdyzl
Ly-h=MAh
,CZ)VZ)\V

| AL — h [ @dv [|co— 0, Yo € CO(K).

v o e

h is the unique positive eigen-function of Ly, except for multiplication
by scalars.

6. The probability “hy s mvariant, exact and
log A = h,T + /wdu.
7. For any i € M(T), it # p
log A > hﬂf+/1bdﬂ.

Proof. (1) Consider G : M(K) <= given by G(u) = L*u/L*u(1).

G is well defined since £(1) > 0 and therefore £*u(1) = [ £(1)du > 0.
Also, as L is positive, G(u) is actually a probability. By the Theorem of
Tychonoff-Schauder we get that G has a fixed point v. Define A = L*1(1) > 1.
Then

L' = .
For simplifying the notation we are using £ in place of L. || ¢ || will

denote the C%-norm of ¢. O

(2) There exists A > 0 such that £™(1)(z)/L™(1)(y) < A, if z, y € K.
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Proof. We shall prove first the following Lemma.

Lemma 4.2. There ezists § > 0 such that if x, y € K, with d(x,y) <
d and n > 0 then T7"(z) = {x1,....,xr}, T""(y) = {v1,..., yx} satisfying
d(T7x;, Ty;) < A d(z,y) for all0<j<n, 1<i<k.

Proof. Let 6 = min(r,c/2)\) and let g be the contractive branch of T~*
such that ¢z = 2;, where T7(x) = {x1, ..., 21 }.
Define y; = ¢®y. Then if y; = Yj

d(x;, x;) < d(x;,y:) + d(zj,y5) <206 < ¢

a contradiction. Hence z; = z;. Therefore to each x; there correspond
distinct y;’s such that d(z;,y;) < Ad(z,y). Inverting the roles of x and y
we see that this correspondence is one-to-one. This proves the Lemma for
n = 1. By induction, using analogous reasoning, we complete the proof of
the Lemma. O

Let us prove then (2). Suppose at first that d(z,y) < 6. Then T-™(z) =
{z1,...,x} and T""(y) = {v1, ..., yx } as in the above Lemma.

m—1
| Sth(wi) = Smtb(ys) | < D 1(Tm) = () 1<
§=0
m—1
S Z Cd(T]J?“ iji)V
m—1 =
< CN™Yd(z,y) < A,

j=0

Hence

£m(1)(x )ZZ Srb ) <Z€ et = AL (1)(y).

=1

For the general case cover K with balls of diameter ¢; By, ..., B; and take
N > 0 such that TV (B;) = K, forall 1 <i <.
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LN (1)) = 2,
zef~m=N(z)
_ T ST,

zifmzef—N(z)

Write
- 1 1 l !
T N(z) = {xg ), ...,xl(ﬁ), ...,xg), ...,xl(ﬂ)}
_ 1 1 ! !
TNy = ",y )Y
where the index above means that 2% (y) is in B;. The condition on N
implies that kq, ..., k;, S, ..., S; are strictly positive.

IN

!
MIVIS 3 (Smib()

J=1 z:Tmze{zgj) ..... Z](CJ)}

1 kj
— NIl ZZﬁm(l) . (xZ(J))

j=1 i=1

L (1) ()

We know that ‘ A
L) @Yy < AL (1) ()

foralli=1,....k;-r=1,...,5;. Therefore

I 5
£m+N(1)(y) > e~ NIV Z Z ﬁm(l)(yﬁj»

j=1 r=1
e—2NIl¥| 1 Nl Lok . 0
> MY - (s
> T ek, 22 L) (@)
1<5<i j=1i=1
1
— Al ———— LN (1) ().
o £
1<5<1
But as k;j(z), € K is bounded, (2) is proved. O
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Proof. (3)
(a) sup, [| A7"L(1) [[< o0

(b) inf, inf, | A7"L"(1)(x) |> 0.

From (1) it follows that

/)\”/J"(l)dy =1
for all n € N. It follows that there exist s, t, € K such that
ATPLM1)(S,) <1
and
ALY () > 1.
Using (2) it results that

AL (1) () < A

and .
ALY (1) () > 1

for all x € K and n € N.
Let C7(K) be the space of real valued Holder-continuous functions with
Holder constant v endowed with the norm

| @ llv=Il ¢ [lo +sup
zFy

Given a > 0 define the seminorm | - |,, on C7(K,R) by

| o(z) —p(y) |
| @ ]ay= sup
! x7éyd(:c,y)<a d(x7 y)’Y

and the norm
| llar=Il® llo+ ¥ lay -
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This norm is equivalent to || - ||, because obviously || ¢ ||,>| ¢ ||+, and
on the other hand

| p(x) — ¢(y) | | o(@) —¢(y) |
sup < | © oy + sup <
T#Y d(l’, y)’y ! d(z,y)>a d(ZL’, y>7
2 || 14 ||0
< | @ laqy + e
Hence

2
le < (14 5) 1 o

Analogous considerations remains valid for the space C7 (K, C) of complex
Holder-continuous functions with Holder constant ~. O]

Proof. (4) Suppose that ~ is a Holder-constant for ¢ and that a = § given
by Lemma 4.2. Then there exists C' > 0 such that

| L7 [any < (W) 19 lany +C [T @ llo) 1| £71 [lo
for all ¢ € C7(K,C). It results that
L(C(K,C)) Cc C"(K,C)

and
sup [| AL |0 o0
n

where || A™"L" ||,o is the operator norm of A™"L" in the space C7 (K, C).

Take a as in Lemma 4.2. If x, y € K with d(x,y) < a then T7"(x) =
{z1,...,z} and T7"(y) = {y1, ..., yx } satisfying

(T2, T y;) < X' d(z,y)

forallm >0,0<j<mand1<7¢<k. Then

| L7(z) = L(y) | = | Z o(;) exp Sp(xi) — p(ys) exp Sp(yi) |
< Z | (i) — () | exp Sutb(z;)+
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k

+ 3 1) | exp Sutb(y:) | 1 — exp(Sntp(wi) — Sutb(:)) | -

i=1
Also
| Sutp(:) = Sutb(i) | < Z | (i) — o (fy) |
n—1 .
< |0 lasy Y (N") (2, y)
=0
A7 ”
< [ oo Ty )
Therefore there exists C' > 0 such that
| 1 —exp(Snto(zi) — Spb(yi)) |< Cd(z, ).
Then
k
| L(x) = LM (y) | < > 1@ lay d(zi, yi)7 exp Sptp () +
i=1
k
+ D 1) | exp Sptp(yi)Cd(x, y)
i=1

< [W)” | lanll £7T flo +C [ lloll £71 flo | d(z, y)".

This proves the required estimate. For concluding the proof of (4) observe
that by (3) (a) A™" || £™1 ||o is bounded above. It follows that

| AL 0 oy < C |l @ |lay -
Using (3) (a) again
| 3% o<l A1 ol o< ATl s -

From this the claim (4) follows easily. O
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Proof. (5) There exists h € C7(K) strictly positive such that Lh = Ah and
[ hdv = 1.

Let us consider the sequence {g,}, given by

n—1
1 o
n = — E AL
g 0 pr

By (4), sup || ¢» ||y< co. We can therefore use the Arzeld-Ascoli Theorem

and find a subsequence {g,, }x such that g,, — h in the norm C°. It follows
that h € C7(K) and

Nk

A .
_ 3 o —J /)
Lh = lim o 2 AL
j:

\ ng—1

_ lim = (Z NI~ 1+ A”kﬁ”ﬂ)
k—o0 N g

= \h

because sup || A7"L"1 [|< oo. Also, since [ g, dv = 1, it results that
[ hdv = 1. From (3) (b) it follows that h is strictly positive. O

Proof. (6) Let o = hv. Then p is invariant and exact.

Let ¢ € C°(K). Then

/gpofd,u: /gpof-hdu:)\_l/ﬁ(h-gpof)du

= A1/£h~gpd1/: /gphdu: /godu.

It follows that p is invariant. In Lemma 3.1 we have seen that J, T =
Ae~¥ and therefore is Holder-continuous and strictly positive. It results from
Theorem 3.8 that v is exact. As u is equivalent to v, u is also exact. O]
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Proof. (7) let uw and ¢ be in C°(K). Then
/go()\”ﬁnu)dl/ = /)\”[,”(gp oT™ - u)dv
= poT" - udv

dp
= Ty - —.
[oormt

This last expression converges to [ du- [ #du because i is mixing. Hence

/go()\_”ﬁnu)dy — /ap(h/udy)du

for all ¢ and u in C°(K). We shall now prove the following Lemma. O

Lemma 4.3. Let v € M(K) positive on open sets and {{,}, C C°(K,C)
an equicontinuous and bounded sequence such that there exists 1 € C°(K)

satisfying
/cpwndy — /gowdl/

for all p € C°(K). Then 1, — 2 in C°.

Proof. Let 1 be an accumulation point of {1, },,>0 in the C°-topology. Then,

if Pnj — o
/ Oy idy — / ©ody

for all p € C°(K). Hence
[ ot = wav=o

for all ¢ € C°(K). Suppose by contradiction that 1) # 1. Then there exists
an open set V where ¢ — )y > & > 0 (or pg — 1 > 6 > 0).

Choose ¢ € C°K) strictly positive and with support in V. It results
that

/90(@/) — o)dv > /V&pdu > 0.
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Which is a contradiction. Hence ¢ = 19 and the unique accumulation
point of {¥,}n>o in C® is . Since {1, },>0 is relatively compact in C°,
W, — 1 in C°, ]

From a previous Lemma we conclude that A™"L"u — h [ udv in C°, for
all w € C7(K). Observing that C7(K) is dense in C°(K’) and

sup [| AT"L™ || < o0,

it results that
AL — h/udy

in C° for all u € C°(K).

(8) Suppose h > 0 in C°(K) such that £h = Ah. Then

ALh = (;) h— h/hdu.

Since v is positive on open sets and h> 0, h # 0, it follows that [ hdv > 0.
Hence A = \. It results that h = h f hdy.

(9) From a previous Lemma, we have

T
J,T = Ae—¢h2 .

Hence by Corollary 3.6

h,(T) :/logJqu,uzlog)\—/@bdu

because p is invariant.
The items (1) to (9) prove the Theorem of Ruelle, except for (7).

(10) Let us prove (7).
Let P ={P,..., P,,} be a partition of K with diameter smaller than r.
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Proof. From Lemma 3.3 it is clear that

L5 g, 1(P)
AN = L))

for all = € g(P). It follows that

<AJT"(x)

%;22”“3) < u(g(P)) - J,T™(x) < A}sjtég/vb(P) (-+)-

Recalling that J,f = \e” hOT, it follows that

@
exp{—mlog A + S, u(x)}

7=0

—_—— ——

- exp{— [i log h(T () — log h(T(z))

= exp{—log h(T™(x)) + log h(x)}
_ h(x) [mfh sup h]

h(Tm(x)) suph’ infh

This togheter with (4) proves Lemma 4.3.

Let P = {g(P) | g : P — K is a contractive branch of T7~™}. Then if
ne M(T)

Hn(TaP(m))ﬂL/Smtﬁdn:Z[—U(Q(P))logn(g(f’))Jr/

g,P g(P)

Sm¢dn] )
Let Z(p)t = sup,eqp ) Sm¥(x). Then

(T P™) 4 [ Sy < 3 nlg(P)[~lognlo(P) + Zginy].
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Lemma 4.4.

Z pi(_ 10gpi + CLi) < logzn: e%i

P1--es p7L207p1++pn:1 i=1

The proof of the Lemma will be given soon.
It follows from the Lemma that

(L P™) + [ Sy <log Y e
g,P
By a former Lemma we get,

m mlog?
eZg(P)d] S M
1

Hence "
m m log
> efiin® < €
=G
g,P
Then ) low
og L A
—H,(T,P™ dn < — 1 .
mn(ap)+/¢77_ m—l—og (%)

Proof. Proof of Lemma 4.4 Let v(x1,...,x,) = — > o x;logm; + Y i | 4,
be a function defined in {(z1,...,2,) | ©; > 0 and >, x; = 1}. Suppose
that p = (p1, ..., pn) is @ maximum of v and that p; > 0 for 1 < j <n. Then

0
v _0
@elej
for 2 < 7 < n. Hence
dv  Ov

for 0 < 7 < n. It results that

1 1
_1ng1_p1' +a1:_10gpj—pj-—+aj.
P pj
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Reordering the terms
P; =% " py.

And since 77 p; = 1, it results that

n —1
p— (zew—an) |

J=1

Calculating the value of v in this point
v(p) = log Z e,
j=1

Observe that if v assume its maximum in a boundary point p = (py, ..., D,,)
we can suppose without loss of generality that p, = 0. But by similar calculus
v cannot assume its maximum in {(py, ..., p,,_1,0), withp; > 0,1 < j <n—1}
because such a maximum would be smaller than the value obtained above.
Reducing the problem in this way we would arrive at the conclusion that v
assume its maximum in (1,0, ...,0). But this is an absurd because

logZeaﬂ' > loge™ = a; = v(1,0,...,0).

J=1

Therefore v assume its maximum in the interior point p described above and

v(xy,...xy) < log (Z e“]’) .
j=1

Lemma 4.5. Let K be a compact metric space n € M(K), £ >0 and C a
Borelian partition. There exists § > 0 such that H,(C/D) < & if D is any
partition with diam D <.
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Proof. Let C = {C4,...,C,}. By Lemma 4.3, for any & > 0 there exists
d > 0 such that if diam D < ¢ then there exists £ = {Ey, ..., E, } C D with
n(E;AC;) < & . The expression

(E ncj)
H,(C/E) = ZnEﬂC E

depends continuously on the numbers n(E; N C;) and n(E;), and it vanishes
when 7n(C; N E;) = 6;;n(C;). Therefore if & is sufficiently small

H,(C/E) <¢.

Hence

H,(C/D) < H,(C/E) <

Lemma 4.6. Suppose diam P < § = 3% Then PV ...V f~™P is thiner than
plm),

Proof. Let gi(P) and go(P) be atoms of P!, Then diam g¢;(P) < Ad and
diam ¢o(P) < Ad. Since there exist x; € g1(P) and xo € go(P) such that
d(z1,22) > C, it does not exist a @ € P such that Q N g;(P) # 0 and
Q N go(P) # (). This proves that PV f~!(P) is thiner than P

Since diam PV f~1(P) < A\§ < § we can repeat the argument and show
that PV f~1(P) V f~2(P) is thinner than P?.

The proof is completed by induction. O

Definition 4.7. A collection R = {Ry,...,R,} of disjoint open sets is a
Markov partition of f if
(1) U?:leLT’ RZ =K.
(2) diam R; < r for all i = 1,...,n and for all contractive branch ¢ :
R, — K of f7!
p(R) N Ry # 0 = o(R;) C Ry

foralll1 <5 <n.
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Lemma 4.8. There are Markov partitions of f with diameter arbitrarily
small.

Proof. Let B = {Bj,..., Bi} be a covering of K by balls with diameters
smaller than €. Define for n > 0, B™ = {¢(B;) | ¢ : B; — K is a contractive
branch of f~"}. For 1 <i <[ define inductively BS’) = B, and

BZ(T) = Bi(ril) U (UBeB(’I‘)7BmB(T1)#@B> .

Then diam B < §+ 26N+ ... + 26N, Let B; = U2 OB( ") Hence diam
B, < & Observe also that if ¢ : B; — K is a contractive branch of f~*
and gp(Bl) N B;j # () then o(B;) C BJ, by construction.

Let R be the collection of the open sets R C K such that if RN éj # )
then R C B and such that R is maximal with that property. R is a finite
collection of disjoint open sets such that Ugegbar R = K. For completing
the proof of the Lemma, it remains to show that condition (2) of the above
definition is valid.

Claim:

Proof. Proof of the Claim:

The ¢(B;) such that o(B,) N By # 0 cover B.

Because if # € By then z € o™ (D,,), where ¢(™ is a contractive branch of
f~™and D, € {By, ..., Bj}. Also there exists a sequence go(j)(Dj), 1<j<n
such that W (D;) A pUt)(D;y) # 0,1 < j <n—1and oM (D)) N B, #
(. Suppose that D; = B;. By the construction of the Ej the sequence
©U=D(D;), 1 < j < n is entirely contained in Bj, where U= = f o ),
Therefore z is in (Y D,,) C ¢(B;) and ¢(B;) N By # 0. This proves the
claim. O

Let R € R be such that ¢(R) N By # 0. From the claim above it follows
that we can find B; satisfing ¢(B;)NB; # §) and go(B )N@(R) # 0. Therefore
B;N R # and so R C B;. Hence p(R) C ¢(B;) C By. This proves that
gp(R) C R’ for some R' € R O
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Previous Lemmas permit to consider partitions P satisfying
VI TP ={g(P,) | g : P, = K is a contractive branch of 7~} = P™,

It is sufficient to take a Markov partition (with the boundaries arbitrarily
distributed) with diameter less than ¢/3), as in Lemma 4.8.

Because in this case the atoms of the two partitions are exactly of the
form A= {z | T'(z) € P;,0 <i<m}.

Lemma 4.6 shows that h,(T') = h,(T,P), for all n € M(T). Because if
C is any partition of K, take m > 0 such that PV ... VTP has diameter
smaller than 9.

Then

hy(T,C) < hy(T, PV ..V T "P) + H,(C | PV ...V T~"P).

Since h,(T,PV ..V T~ "P) = h,(T,P) and H,(C | PV ..VT™P) <¢
it results that
sup h, (T, C) < hy(T,P).
c

Hence
hy(T) = hy (T, P).

From these facts and from (*),

hy(T) + /wdn < log \.

In the following we shall get this fact and we shall show also that the
equality holds only if n = u. The proof above gives an intuitive idea of why
p is the probability that maximizes the expression h,(T) + [ dn. It fact,
a previous Lemma say what must be the values of 7(P) so that the equality
above holds and such values are exactly the values of u(P), according to a

previous Lemma.
We must show that if n # u, n € M(T) then

hn(f)+/¢dn < log \.

15 case - n singular with respect to .
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In this case, there exists C such that u(C;) = 0 and n(Cy) = 1. If
C =Nys1 Ujsy T77(C), then T7H(C) = C, u(C) =0 and n(C) = 1. Using
again Lemma 4.8, consider F™ union of atoms of P(™ such that

(n+ 1) (F"AC) = 0

when n — oo.
Suppose by contradiction that

1
log A < - (H(P™) + [ Sysdn)

Then
mlogh < Y (—n(B)logn(B)+/BSmwdn)-

Bep(m)
Let Zipyt = sup,eq(p) Sm¥(2). Then

mlog \ < Z n(B)(Zgy —logn(B))
Bep(m)

< > aB)ZEY —logn(B)) + Y n(B)(ZEv —logn(B)).

BCF™ BC(Fm)e

Lemma 4.9. Letp; >0, j=1,..,n, s =" p; <1, and ay, ...,a, € R.

Then . .
ij(aj —logp;) <s <log Z e” — log s) .
j=1 i=1
Proof. Analogous to Lemma 4.5. O
So
mlog A < n(F™)log Z eZBY £ n((F™)°) log Z eZBY 420
BCEF™ BC(Fm)c
where

C = sup —slogs.

0<s<1
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Then
—2C < n(Fm) log Z ezgt¢—mlog)\ + U((Fm)c) log Z ezgw—mlogk‘

BCF™ BC(F™)e
By Lemma 4.4
m u(B mye p(B
20 <o 3 PPy 3 )
BCF™ 1 BC(Fm)c 1

—log -+ n(F™) log u(F™) + n((F™)")log  (F™)')

Making m — oo, n(F™) — n(C) =1 and u(F™) — p(C) = 0. Therefore
the expression in the right converges to —oo and this is a contradiction.
It results that

log A > %(Hn(ﬂm)) + / Stbdn)
and therefore using the adequate partition
log A > %HU(P V..VT™"P) + /@/}dn.
Since the expression in the right is decreasing with m it follows that

h, (T') + /z/zdn < log A.

274 case - 1 not singular with respect to p. As 7 is not also absolutely

continuous with respect to p, we can decompose it as n = an’ + (1 — a)i/,
where 0 < o < 1, 77 singular and g’ absolutely continuous (with respect to
w). Let A be such that T-'(A) = A, ’(A) = 1 and u(A) = 0. Then for all
B Borel set

7T (B) = HEHBAA) +of (T (B AY))
= B = (T (BN A))
- “y(BAA) = /(BN A) = (B)

Hence ' € M(T). It results that u/ € M(T) and therefore y' = p.
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Lemma 4.10. Let v, v' € M(T) mutually singulars and 0 < o« < 1. Then

hay+(1,a)y/(T) = Oéh,,(T) + (1 — Oz)hV/ (T)

Proof. Let A be T-invariant such that v(A) =1 and v/(A) = 0.
Let A= {A, A°} and n = av + (1 — a)v'. Then if R is a partition of K,

H(RVA) =a > v(R)logav(R)

RERVARCA
+1l-a) Y V(R)log(l—a)/(R)
RERVARC Ac
=aloga+ (1 —a)log(l —a)+aH,(RVA)+ (1 —a)H,(RV.A).
Therefore
1
h(T) = @@EmﬂpvmvmvT%“wvA»:
= lim %Hn(Pv...vT"“PvA) =
= lim l[ozlogoz—k(l—oz) log(1l — a)+
n—oo 1,
+ aH,(PVA)V ..VT " PV A))+
+ (1—a)Hy((PVA)V..VT " PV A))

ah,(T) + (1 — a)h, (7).

From the Lemma it follows that

ho(T) = ahy (T) + (1 — a)h,(T)
< alog A+ (1 —a)log A
= log \.

This proves item (7) and therefore all main Theorem 4.1.

Theorem 4.11. Let ¢ and ¢ be Holder-functions. Then p, = i, iff ¥ —
log Ay ~ ¢ —log A,.
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Proof. It py = p, then J, T = J, f. This means that

hyoT hyoT
Ape V= = N e
v Ty, T,
Define h = Z—i Then
i hoT _ v
A, h '

Therefore
(logh) o T —logh = (1) —log A\y) — (¢ —log A,).
Reciprocally suppose that there exists H € C°(K) such that
HoT —H = (¢ —log\y) — (¢ —log\,).

To show that p, = p, it is sufficient to show that p, << s because they
are ergodic probabilities. For this, it is sufficient to show that v, << v,. Let
h =exp H. Then, if u € C°(K).

(A Lh)() = B Y eI )u(y)

yeT~1(z)
— h(x) Z eV loe Xt )W)y (1))

yeT~1(z)
_ Z e(q/}—log)\¢+H—HoT)(y)u(y)

yeT 1 (x)
= A, Lou(x)
Hence

—1y—mpny _ \—n pn
h /\w Lih=A"L]
for all n > 0. On the other hand

hw/uducp = lim )\;”ﬁgu

n—oo

= ! lim A" Lhuh

n—o0

= h™"hy / hudu,,.
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Therefore if u € C°(K), u > 0,

1 _
[ e < g N LU f

This shows that v, << vy.
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5 Differentiability for Holder potentials

Remember that in last Chapter we have defined the space C7(K,R) of ~-
Holder-continuous real valued functions on K.

For ¢ € C7(K,R) consider A(¢) > 0, hy, € C'(K,R), vy, € M(K),
py € M(K) given by Theorem 4.1. The purpose of this Chapter is to prove
the following Theorem.

Theorem 5.1. The functions
C'(K,R)>¢Y — AN¢¥) €eR
C'(K,R)> ¢ — hy € C"(K,R)

CUK,R) x CV(K.R) 5 (ip,1) —> / odvy € R

CUEK,R) x CT(K.R) 5 (5,1) —> / odpy € R

are real analytic.

Consider a function ¥, € C7(K,R) and define E; as the subspace of
C7(K, C) generated by hy, and E, as the subspace of C7(K, C) defined by

/ QPdeo =0

for all p € E,. Define projections m; : CV(K,C) — Ey, my : C7(K,C) — Es
by

TP = h¢0/g0dy¢0
T — I — 1

For the proof of Theorem 5.1 we shall need the following Lemma.

Lemma 5.2. There exist B >0, 0< 3 <1 and a > 0 such that

I A@W0) "L llan< BA™ [ @ [lany

for every ¢ € Ejs.
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Proof. From Theorem 4.1 we know that || A(10) "Ly [lo converges to zero,
for any ¢ € Es. Let B be the closed unit ball in Es. B is compact in the
topology || - ||o. Therefore, given § > 0, there exists N > 0 such that

I A(tho) "L, lo< 0

ifn>N and ¢ € B.
Taking a given by part (4) in the proof of Theorem 4.1, and making
AN =c
| A0) PN LET @ lan < (CV [ AMth0) ™ L@ laqy +

C I Awo) ™ Lyo2 llo) | A(w0) ¥ LG o
< [CN(CN | @ lan +C 1@ llo) | Awo) ™ L3 1 llo +C| | Awoo) VLI o -

0

But for N large enough || (1) >N LINT [Jo< 1+ || Ay, [lo-
Then

[ ATVLETP lan < [ (e + O)Y(A+ || g llo) + COI(I| g [lo +1).

It follows that if N is large enough and 0 small enough

_ 1
| MW0) VL < 5

Hence, if p € B

_ 1 2
H /\<w0> 2N£12/1](YS0 Ha,'yg 5 + 0 < g

if we had chosen § < 1/6. It follows from this that A(yo) >V L3)(B) C B
and that

—2Nn n 2 !
[ M) YL o< <§> -

We conclude that there exist B > 0 and 0 < 8 < 1 such that

I A@W0) "L lan< BA™ || @ [lay -
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Proof of Theorem 5.1. Lemma 5.2 implies that the spectrum sp(Ly,) of
Ly, : C7(K,C) < is the eigen-value A(¢)p) plus a set contained in the disc
{z || z|< BA(1ho)}. Take circles 71 and 7 centered at () and 0 such that
its interiors are disjoint and contain sp(L,,). Denote by S the space of con-
tinuous linear applications L : C7 (K, C) <= endowed with the norm topology.
Let V' be a neighborhood of Ly, in S such that sp(L)Cint(vy,) U int(vy) for
all L € V. Given L € V define the spectral projections m;(1) : C7(K, C),
1=1,2, by

1
mi(L) = / (L —2I)"dz
Qﬂ—i Vi

and let By (L) = n(L)z(CV(K,C)). It is well know that

C'(K,C) = Ei(L) ® Ey(L)
I =m(L)+m(L)

m;(L) is a complex analytic function of L.
Take v* € (C7(K, C))* such that (v*, hy,) # 0 and define, for L € V

v*, Ly (L)hy,)
(v, m1 (D) Po) -

The denominator is different from zero if V' is taken small enough. Then
the function A : V' — C is analytic. Define also h(L) € C7(K, C) by

D) =

h(L) = m(L) - 1.

Observe that h : V — C7(K, C) is analytic and that m(Ly,)1 = hy,. We
can therefore define, restricting the neighborhood V' if necessary, v : V. —
(CY(K,C))", by

m (L)
L = .
((L), ¢ (D)1

The function that associates to each pair (L,¢) € V x C7(K,C) the
complex number (v(L), ) is analytic. Since Ey(L) is unidimensional and
invariant and h(L) € E;1(L), it follows that Lh(L) = Ah(L) for some A € C.
But

(0", Ly (L) huso)
(v w1 (L) P, )
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Therefore for any L € V

For any L € V consider L* : (C7(K,C))* <= the adjoint map. Then

(L*v(L), ) = (v(L), L)
w1 (L) Ly _ Ly (L) Ly
7T1(L)1 7T1(L>1

mi(L)y o
T = M),

= ML)

for any ¢ € C7(K,C). Hence
L*v(L) = ML)v(L).

Since the application C7(K,C) 3 ¢ — L, € S is analytic, it follows that
there exists a neighborhood W of ¢ in C7(K, C) such that £, € V ifp € W
and the functions

(1) W 3¢ — \Ly) € C.

(2) W 4 — h(Ly) € CV(K,C).

(3) W x CV(K,C) 5 (1), ) = ((Ly),¢) € C are analytic. More over
Lyh(¥) = ALy)h(¥)

and

Lyv(Ly) = MLy)v(Ly).
We shall show now that if 1 is real then
(4) AMLy) = Ay
(5) h(Ly) = hy

(6) v(Ly) = vy
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Write hy, = ah(Ly) + ¢ with ¢ € Ey(Ly). Then
MLy) "Ly = ah(Ly) + AM(Ly) "L p.
Since ¢ € Ey(Ly), it follows that A(Ly) " Ly)"p — 0 and therefore

TLILII(}Q )\(,Cqb)_ Awhdi = ah(£¢)

And since h(Ly) # 0, hy # 0, we obtain A(Ly) = Ay and hy = ah(Ly).

More over
Ezyw = /\TZJVT/) = )‘<£¢)V¢‘

But A(Ly) is a simple eigen-value of L7, (because A(Ly) is a simple eigen-
value of Ly). It follows that v(L,) = by, for some b. Since v(1) =1 =
v(Ly)1. We conclude that b = 1.

Hence v(Ly) = vy.

Then

1= @(Ly), MLy)) = alv(Ly), hy) = alvy, hy) = a.

It results that hy = h(Ly), completing the proof of (4), (5), (6) that,
together with (1), (2), (3), proves Theorem 5.1
O]

6 Hausdorff Dimension and Capacity

Definition 6.1. Let K be a compact metric space. For t > 0, define the
t-measure of K as

where U is any collection of balls B with radius r(B) smaller than €.

It is easy to verify that there exists a unique ¢y € [0, oo| with the following
property:

my(K) = oo if t <t

This t¢ is called the Hausdorff dimension of K and denoted by HD(K).
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We shall collect some well-known facts about the Hausdorff dimension in
the next proposition. Since they will not be used in what follows, we shall
not prove them.

Proposition 6.2. (a) If M is a compact manifold, than HD(M) = dim M.
(b) If K, C Ky then HD(K,) < HD(K).
(c) If K = Ky x Ky then HD(K) > HD(K}) + HD(K>).

Definition 6.3. Let N(¢, K) be the number of balls of radius € necessary for
covering K. Define the upper and lower limit capacities of K by

C*(K) = limsup —log N(e K)
O —loge

C(K) = liminfM
e\ —loge

Lemma 6.4. HD(K) < C~(K) < C*(K)

Proof. Given 6 > 0 consider a sequence €, \, 0 such that N(e,, K) <
e (CTE)+0),

Then, if t > C~(K) + 6

my(k) < lim € e (€ F) =
n—oo

Hence HD(K) < C~(K) + 0
Since d > 0 is arbitrary, the result follows. O

Lemma 6.5. Suppose that there exist a probability 1 over K and numbers
0~ >0 and 6+ > 0 with the following property:

1 B, 1 B,
0~ <liminf —og,u( () < limsup —og,u( (z))
r—0 log r r—0 log r

forallz € K. Then 6~ < HD(K) < C~(K) < CT(K) <d*.

<o"
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Proof. Given § > 0 it follows from the first inequality that p(B,(z)) < r% ~°
if r is small enough. Therefore if ', is a collection of balls of radius smaller
than r covering K

1< > u(B)< > r(B)

Bel', Bel'»

It follows that HD(K) > 6~ — §. Since § > 0 is arbitrary it results that
HD(K) > 6.

A set S C K is called e-separated if for any z, y € S, d(x,y) > €. Denote
by S(e, K) the maximum number of elements in a e-separated set. It is easy
to verify that N(e, K) < S(¢, K) < N(¢/2, K).

Hence log S(e. K
C*(K) = limsup AR (e, K)
N0 —loge
1 K
C™(K) = liminf 080\G ) S(e. K)
N0 —loge

Given 6 > 0, it follows from the third inequality in the hypothesis
of the lemma that p(B,(z)) > r% *% if r is small enough. Take a set
{@1,...,x54 k) } r-separated. Then the balls B(x;,r/2) are disjoint and so

1> ;u(B(xi,'rﬂ)) > (g)ﬁMS(r, k).

It follows that CT(K) < §* +0. Since § is arbitrary it results that C*(K) <
d". This concludes the proof of the lemma. n

Definition 6.6. A probability p € m(k) is called a 6-probability if there exists
C > 0 such that

for any x € k and r > 0.

Lemma 6.7. If K admits a §-probability then HD(K) = C~(K) = Ct(K) =
0. Any two d-probabilities are equivalent.
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Proof. The first part of the lemma is an easy corollary of Lemma 6.5. To
prove the second part observe that if i is a d-probability then for every & > 1
there exists a(K) > 0 such that

N(Bkr(x))
(B (x)) —

for any x € K and r > 0. This implies that Vitali’s recovering theorem holds
for p (just repeating the usual proof in the case of the Lebesgue measure).
A C K is a Borel set there exists a covering of A by disjoint balls B, (z;),
{z;} C A, with sup, r; arbitrarily small and such that u(A\ U;B,,(z;)) = 0.
Let v be another d-probability, where the associated constant in Definition
6.6 is given by C (and not C). Given € > 0 take U D A on open set such
that v(U) < v(A) + €. Suppose that sup, r; is so small that U D U; B, (z;).
Then

a(K)

p(A) = p(AN (Ui By (24))) < (Ui By, (2:))

< COC(v(A) +e)

Since € > 0 is arbitrary, this proves that y << v. Inverting the roles
of ;1 and v we can prove that v << p. It follows then that p and v are
equivalent. O
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7 Differentiability of the Hausdorff Dimen-
sion of Julia sets

It this chapter we shall prove differentiability results for Julia sets of rational
maps on the Riemann sphere. Let us recall the notation. Ry is the space of
rational maps f : C <= of the Riemann sphere of degree d > 1, endowed with
the C° topology. Ay C Ry is the set of Axiom A rational maps (see definition
in [9] or [2]). J(f) is the Julia set of f and 6(f) its Hausdorff dimension. For
more details on the dynamics of rational maps see [5], [9], [7] or [2].

When f € A, there exists a unique f-invariant probability My on the
Borel og-algebra of J(f) such that there exists C' > 0 satisfying

-1 w(Br (@)
©="am o =¢

for all x € J(f) and r > 0. The main result in this section is the following

Theorem 7.1. The functions

Aad f—(f)

Ag> f = hy,(f) and

Ai > f — [wduy € R where ¢ : C — R is any Holder continuous
function, are real analytic.

In the proof of this theorem we shall use the following proposition:

Proposition 7.2. Suppose f € Aq and co € J(f). Then there exist a
neighborhood U of f in Ay and an analytic map h : U — CY(J(f),C) such
that g o hy(z) = hyo f(2) for every g € U and z € J(f). Moreover J(g) =

he(J(f))-

Proof. Given f € A; with oo & J(f) take 6 > 0 and a neighborhood Uy of f
such that d(z, J(f)) < ¢ implies g(z) # oo, for any g € Uy. Given 0 < vy < 1
let W be the ball of radius § centered at the identity I in C°(J(f), C). Define
O:Uyx W — CV(J(f),C) by ®(g,h) = goh—ho f.
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It is straightforward to verify that ® is anlytic. More over,

221 Delz) = F2)elz) — 9o 1(2).
We claim that 5%
(D)
is an isomorphism. We shall prove this by showing that
L:C"(J(f),C) «+
given by

Lo(2) =Y o)) ()] (6)

=0
for ¢ € C7(J(f),C) is an inverse to

0P

Observe first that since f € Ay, there exists a metric ||.|] in J(f) such
that f|; : J(f) <= is an expanding map. Therefore we can prove a lemma
similar to Lemma 3.3.

Lemma 7.3. There ezist r > 0 and a constant A > 0 such that if x,y € J(f)
with d(f'x, fly) <r, 0 < j <n, then
- d(f'z, f'y)
ATl < - <
d(z, y)[(f7) ()|
‘ (/") ()
(/") (z)

_ 1‘ < Ad(f"y, ).

Proof. Take r > 0 such that B(n,r,z) = g(B,(f"x)) with g a contractive
branch of f~" with ¢g(f"x) = x as in Lemma 3.1. Then if y € B(n,r,z) and
0<j<n
() LU H f'(f'y) = (' (')
() L5 f(fle) 5 f(fix)

+ 1.



Hence

-« 2 ]

- [H (i) - fifo)l 1} o

i=0
where
c= inf |f( )| > 0.
zeJ(f
Then .
(/) (v) - C i i
e < {Hl - St )] -
where
C= sup |f"(z)|.
zebar C
Let ¢, =0o0r 1, for 0 <i < j—1. Then

768 -1 = [ Svama] -

iy o N
(Sv-iaipy ) =

(€0,--s€5—1)#(0,...,0) i=0

o, i O N
=d(fy, f'z) > (H ?AH> d( iy, fiz)set
j 0) Vi=0

Since d(fiz, fly) < r, d(fiy, flz)Xe1

(55~ s () -1

Since the last product is bounded by

ﬁ (1 + %X)

=0

< 1. Hence

the second part of the lemma follows. The first part follows easily from the
second.

[l
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Let us prove now that L of expression (6) is well defined and continuous.
Take ¢ € C7(J(f),C) and two points x, y € J(f) with d(z,y) < r. Let N
be the greatest integer such that d(f’x, fiy) <r, for 0 < j < N.

Observe that
rA

d(z,y)

CAN < (fY)(2) <

Therefore lowr A 1
N < log7 og C' + logd(x, y)
- log \—1

Hence there exists a constant £ > 0 such that Nd(z,y) < Ed(x,y)?. Then

o

|Lop(x <Y @) () = [ )] e ()

0

N

<D MUY @ el e) = e(fry) 1+

0

" @) = Y @) e ()l
+ Y @I e )]+ 1 @)l (Fy)

n>N
Therefore
[Lo(z) — Lo(y)| < lelly ZI N (@) (e, )+
Hiel il(f”“)’(a:)l‘l 1
e (1))
+||90|| |: N+2 IZ| N+1 1_|_
0

N+2 Z| fn N+1 :|

N
< Aellyd(a, y) Y 1Y (@) 7+
0
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N
Allgllo Y 1™ @) d(fry, fra)+
0

1
1-A

A2 @+ 1) @)

AT
< Ay d(z,y)"C" Tt

+llelloC

1 A
+A%||plloNd(z,y) + Cr— llello2—d(z,y)

< Fllellyd(z, y)?

for same constant F' > 0.

This estimatives proves that Ly € CV(J(f), C) and that |Ly|,, < Fll¢|--
It is very easy to prove that ||Ly|lo < Bl|¢|lo for some constant B > 0. We
conclude that ||Ly||, < max(B, F')||¢||, and therefore L is continuous.

It is a straightforward verification that L is indeed the bilateral inverse

of 90

We can now apply the implicit function theorem to obtain a neighborhood
U of f and an analytic function h : U — C?(J(f), C) such that hy = I and
®(g,hg) = 0.

If hg(x) = hg(y) then hg(f"z) = hg(f™y) for all n < 0. This implies
that d(f"x, f*y) < 2dy(hg,I). Therefore, restricting if necessary the neigh-
borhood U, hg is injective. It remains to prove that hg(J(f)) = J(g).

Every point of hg(J(f)) is accumulated by a sequence {p,} of periodic
points p,, # p. This follows immediately from the fact that the same property
holds for J(f). Hence p € J(g). Therefore we have proved that J(g) D
hg(J(f)). But every point hg(p) € hg(J(f)) has d pre-images (namely, the
points hg(q), with ¢ € f~'({p})). Then g~*(hg(J(f))) C hg(J(f)). Since
completely invariant set of bar C contains J(g), J(g) C hg(J(f)).

This completes the proof of our main result. O

Given f € Ay and ¢ € CV(J(f),R) let L, : C°(J(f)) < the Perron-
Frobenius operator associated to f|;s) : J(f) <= and . Let A(¢, f) be
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the eigenvalue of £, given by Ruelle’s theorem. Observe that if U is the
neighborhood of f given by Proposition 7.2 then

Lyong(wohg) = (Lyp) o hyg

(0) for every g € U, p € C°(J(g)) and ¢ € C7(J(g), R). This implies
that the application C°(J(g)) 2 ¢ — po hg € C°(J(f)) is an equivalence
between Ly : C°(J(g)) <= and Lyong : C°(J(f)) <= for every v € C7(J(g))
and g € U. Then it is easy to verify that A(¢ o hg, f) = A(¢, g) for every
ge U, v eC'(J(g),R). Besides, it follows from Ruelle’s theorem that

1
log A(¥,9) = lim —log £(1)(x)

for any = € J(g).

Lemma 7.4. If f € A; and o € R then
(a) The limit below

P(d, f) = lim ~log 3" |(f") ()|

n—oo N,
yef "z

ezists for any x € J(f) and independs on x € J(f).
(b) The function R x Az 3 (a, f) — P(a, f) is real analytic.

(c) P(a, f) = log A(—alog|[f"], f).

Proof. (a) and (c) are immediate from the previous observation. Let us then
prove (b). Let U be a neighborhood of f in A, as in Proposition 7.2. Then
ifgeU
P(a, g) = log A(—alog|g'], 9)
= log A(—alog|g’ o hgl, f).

It is easy to see that U 3 g — log |¢' h g| is real analytic. By Theorem 5.1
2 CY(J(f),R) = M) € R is real analytic. So P(.,.) is the composition
of analytic functions and hence is analytic. n
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Lemma 7.5. For each f € Ay there ezists C(f) > 0 such that

oP

%(O[’f) < _C<f)

for any a € R.

Proof. Given f € Ay, take x € J(f) and define P, : R <= by

Pu(0) = log 3 107 w)

yef "z

Then
— D yesna (M) (W)~ log [(f") (y)] .

D yerna (M) W)
Since f € Ay, there exists C(f) > 0 such that

1
P(a) = —
() =~

“log (/") ()] = ()

for any z € J(f). Hence P/ (a) < —C(f) for any o € R. This implies that

P,(a1) — Py(aa) < —C(f)(on — az) for any oy > ap. Taking the limits when

n tends to infinity P(ay, f) — P(aa, f) < —C(f)(a1 — ag) for any a; > as.
We conclude that op

(o) < —C()
for any a € R. O

Observe that P(0, f) = d. It follows from the lemma above that there
exists a unique §(f) > 0 such that P(5(f), f) = 0. We can also apply the
implicit functions theorem to the equation P(«,g) = 0 and conclude that
the function Ay 3 f — d(f) € R is real analytic.

From the above we get that for every ¢ € C7(J(g),R) and g € U
(hg) * Vyong = 1
hwohg = hw e} hg

and hence
(hg) * tyong = fhy-
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Define p1, = pyy with ¢ = —0(g) log|g|.

Then pg = (hg) * f1—5(g) 10g(1g: |ohg)-
Hence

/ pdpy = / (¢ © hg)dp—s(g)108(1g: |ohg)

for any p € C°(C,R).
From this relation and the last part of Theorem 5.1 we conclude that
Aa > f— [@dus € R is real analytic if ¢ € C7(C,R) (2)
Note also that

log A(—d(g) log |g'|g) = hyu,(g) + /(—5(9) log |¢'])djug.
But
log A\(—d(g) log |g’lg) = P(4(g),9) = 0.

Hence

hu,(9) = 6(g) / log |g°|dpy

=4(9) / log(|g| © hg)dii—s(g)10g(]g Johg)

since g — 0(g) is analytic it follows again from the last part of Theorem
5.1 that g — h,,, (g) is analytic. (3)

Proposition 7.6. If there exists a probability v € M(J(f)) whose Jacobian
with respect to f is equal to |f'|°, then v is a &-probability.

Proof. Let g > 0 be such that there are contractive branches of f~" defined
in By, (x), for any x € J(f) and n > 0. Take z € J(f) and contractive
branches ¢, : B,,(f"z) — C of f~" such that ¢, (f"z) = z. Define 0 < p,, <
r, by

rp = min{r|By,(2) D ¢n(By,("2))}

Pn = maX{HBro(Z) - (pn(Bro(fnZ»}

By using Lemma 7.3 we obtain
A7ro|(f7) ()7 < s S 1 < Aro (F7)' (2)7H (%)
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and

LY@
AT Gy S
for ;LH T, Y € pn(Br(f"2)).
V(Boy(£2)) = V(S (pu( By / o

Since v is positive on open sets, v(B,,(z)) > ¢ > 0 for some constant
¢ > 0 and all x € J(f). This together Wlth (**) proves that there exist a
constant B > 0 such that

B < (Y (2)I°v(pn(Bry(f"2))) < B
Therefore
v(B,,(2)) < BI(f")(2)]° < BA™rypy,
VB, (2)) = B/ ()] = B A ry 08,
Given 0 < r < pg take n such that r, 3 <r <r,. Then
v(B,(2)) 2 v(By,+1(2)) = B~ LAy _5 2+1
It follows easily from (*) that there exists a constant D > 0 such that

D1 < Tn+1 <D
'n
and
Dl < Pn+1 < D.
Pn

It follows that
v(B,(2)) = B A D% H o1y,
Using now the sequence {p,} in the role of {r,} we can prove that

v(B,(2)) < Or’.
This proves the proposition. ]

Observe now that if ¢ = —d(g)log|g’| then v, has Jacobian J,, g =
|g’|°@). This implies that v, is a §(g)-probability. Therefore p, = pu, is also
a d(g)-probability. Since any two d(g)-probability are equivalent and p, is
ergodic it follows that p, is the unique invariant 6(g)-probability in J(g).
Therefore p, is the probability mentioned in Theorem 7.1. Hence (1), (2)
and (3) proves the theorem.
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