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1 Introduction

In this chapter, we will state several results related to the Ruelle operator
and to the topological pressure of expanding maps. We point out that the
Bernoulli shift is a very important case where the results we will present here
can be applied. The proofs of the main results will be presented in the next
chapters.

Given a compact metric space (X, d), we denote by B(X) the Borel sigma-
algebra on X, C(X) the set of real continuous function φ : X → R and
M(X) denotes the set of Borel probabilities on X.

Recall the definition:

Definition 1.1. A continuous map T from a compact metric space (X, d) to
itself is expanding if there exist c > 0 and λ > 1 such that, for any x, y ∈ X
and n ∈ N , d(T n(x), T n(y)) > cλnd(x, y).

M(T ) denotes the set of T -invariant probabilities.

When X = Ω = {1, 2, ...,m}N, the shift transformation σ : Ω → Ω given
by σ(x0, x1, x2, x3, ....) = (x1, x2, x3, x4, ....) is an example of a continuous ex-
panding transformation acting in a compact metric space, when considering
the metric described by (5).

Sometimes, we will assume the map T is differentiable and we will be
able to give a more precise description of the results using the derivative of
the map. An equivalent definition of expanding map in this case is:

Definition 1.2. Let M be a compact manifold without boundary. A map
T : M ←↩ is expanding if it is of class C1 and there exists 0 < λ < 1 such
that ‖ DxT · v ‖≥ λ−1 ‖ v ‖ for any x ∈M , v ∈ TxM .

We shall prove results concerning the existence of some invariant measures
which have significant properties from the dynamic point of view. The first
of these results shows that every expanding differentiable map has one and
only one invariant measure equivalent to the Lebesgue measure obtained as
the limit of iteration of the Lebesgue measure by the map.

A map T : M ←↩∈ C−1 is Hölder-C1 if detDxT is Hölder-continuous.
Denote by C1+γ the space of Hölder-C1-maps with Hölder-constant γ.

Definition 1.3. A probability µ ∈ M(X) is exact with respect to T if for
any A ∈ ∩n≥0 T

−n(B(X)), then µ(A) = 0 or µ(A) = 1. Here B(X) denotes
the Borel σ-algebra of X.
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If µ ∈M(T ) is exact then it is ergodic (see [11] , [10] or [6]).

Notation We will use the following notation, for φ ∈ C(X) and ν ∈
M(X): we denote 〈φ, ν〉 the value

∫
φ(x)dν(x).

Definition 1.4. For a given operator L from C(X) to itself, the dual of L
is the operator L∗ defined from the dual space C(X)∗ = S(X) (the space of
signed-measures) to itself defined in the following way: L∗ is the only operator
from S(X) to itself such that for any φ ∈ C(X) and ν ∈ S(X)

〈L(φ), ν〉 = 〈φ,L∗(ν)〉.

Remark 1.5. Such L∗ operator is well defined by the Riesz Theorem. This
is so because for a given fixed ν ∈ S(X) the operator H from C(X) to R
given by H(φ) = 〈L(φ), ν〉 =

∫
Lφ(x)dν(x) satisfies the hypothesis of Riesz

Theorem, therefore there exists a signed-measure µ such that
∫
Lφ(x)dν(x) =

H(φ) =
∫
φ(x)dµ(x) = 〈φ, µ〉. Hence, by definition L∗(ν) = µ.

Theorem 1.6. Let T : M ←↩ be a Hölder-C1 expanding map. There exists a
unique µ ∈M(T ) absolutely continuous with respect to the Lebesgue measure-
m. Moreover, µ satisfies:

(1) dµ
dm
∈ Cγ(M) and is strictly positive

(2) µ is exact
(3) h(µ) =

∫
M

log | det T ′ | dµ
(4) h(η) <

∫
M

log | det T ′ | dη, for any η ∈M(T ), η 6= µ.

(5) m(T−n(A))
m(M) n→∞

= µ(A) for any Borel set A.

Consider now the question of studying the asymptotic distribution of the
pre-images of a point x by T n, when n→∞.

Definition 1.7. Define µn(x) ∈M(M) by

µn(x) =
1

dn

∑
Tn(y)=x

δy

where d = #f−1(a) independs on a.
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Theorem 1.8. Let T : M ←↩ be an expanding map. There exists µ ∈M(T )
such that µ = limn→∞ µn(x) for any x ∈M . Moreover µ satisfies:

(1) µ is exact and positive on open sets
(2) h(µ) = log d
(3) h(η) < log d for any η ∈M(T ), η 6= µ.

Definition 1.9. The above defined measure µ is called the maximal measure

Definition 1.10. Suppose that T : M ←↩ is a continuous map and ψ : M →
R is a continuous function. Remember that we denote by C(M) the space of
continuous functions on M . Define Lψ : C(M)←↩ by

Lψφ(x) =
∑

y∈T−1x

eψ(y)φ(y) (1)

for any φ ∈ C(M) and x ∈ M . We call this operator the Ruelle-Perron-
Frobenius Operator (Ruelle Operator for short)

The function ψ : M → R is usually called the potential (a terminology
originated in Statistical Mechanics).

It is quite easy to see that:

Lnψφ(x) =
∑

y∈Tn(x)

eψ(y)+ψ(T (y))+ψ(T 2(y))+...+ψ(Tn−1(y))φ(y) (2)

Theorem 1.11. Ruelle Theorem - Let T : M ←↩ be an expanding map and
ψ : M → R be Hölder-continuous. Then there exist h : X → R Hölder-
continuous and strictly positive, ν ∈M(X) and λ > 0 such that:

(1)
∫
hdν = 1

(2) Lψh = λh
(3) L∗ψν = λν
(4) ‖ λ−nLnψφ− h

∫
φdν ‖C(X)→ 0 for any φ ∈ C(X).

(5) h is the unique positive eigenfunction of Lψ, except for multiplication
by scalars.
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(6) The probability µ = µψ = hν is T -invariant (that is, µ ∈ M(T )),
exact, positive on open sets and satisfies

log λ = h(µ) +

∫
ψdµ.

(7) For any η ∈M(T ), η 6= µ

log λ > h(η) +

∫
ψdη

(8) For any probability w ∈M(X),

lim
n→∞

Ln∗ψ w
λn

= ν

Definition 1.12. Given a continuous potential ψ : X → R, the value

P (ψ) = sup
η∈M(T )

{h(η) +

∫
ψdη},

is called the Topological Pressure of ψ. A probability µψ attaining the maximal
value P (ψ) will be called an equilibrium probability for ψ.

Corolary 1.13. If the potential ψ is Hölder-continuous, then the equilibrium
probability µψ for ψ is unique and satisfies µψ = hν. Moreover, P (ψ) = log λ.

The proof follows from (6) and (7) of Theorem 1.11

Theorem 1.14. Let T : X ←↩ be an expanding map and ψ : X → R, ψ :
X → R be Hölder-continuous. Then the following properties are equivalent:

(1) µψ << µψ
(2) µψ << µψ
(3) µψ = µψ
(4) For any n > 0 and x ∈ X with T n(x) = x it holds that

1

n

n−1∑
j=0

ψ(T jx)− 1

n

n−1∑
j=0

ψ(T jx) = log λψ − log λψ.

(5) There exists u ∈ C(X) such that

u ◦ T − u = log λψ − log λψ + (ψ − ψ).
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Observe that condition (4) is extremely strong and “in general” different
“potentials” ψ induce mutually singular probabilities µψ.

Let us see now how Theorems 1.6 and 1.8 follow from Theorem 1.11.

Let us prove first Theorem 1.6. Let ψ(x) = − log | det T ′(x) | which is
Hölder-continuous because T is Hölder-C1. If ϕ ∈ C◦(M)∫

ϕd(L∗ψm) =

∫
Lψϕdm =

∫ ( ∑
y∈T−1x

| det T ′(y) |−1 ϕ(y)

)
dm(x).

Take a collection of disjoint open sets A1, ..., An which cover M except for
a set of Lebesgue measure zero and such that T−1(Aj) consisting of a finite
number of disjoint open sets restricted to which T is a diffeomorphism. This
can be done using the compactness of M and the fact that det T ′(x) does not
vanish. Then∫

ϕd(L∗ψm) =
∑
j

∫
Aj

( ∑
y∈T−1x

| det T ′(y) |−1 ϕ(y)

)
dm(x)

=
∑
j

∫
T−1(Aj)

ϕdm =

∫
ϕdm.

Therefore L∗ψm = m. Let λ, h and ν be given by Theorem 1.11. Then

1

λn
Lnψϕ

C(X)−→ h

∫
ϕdν

for any ϕ ∈ C(X). Integrating with respect to m

1

λn

∫
ϕd(L∗nψ m) −→

∫
hdm

∫
ϕdν.

Hence
1

λn

∫
ϕdm −→

∫
hdm

∫
ϕdν.

Taking ϕ ≡ 1 and since h > 0, the relation above shows that λ = 1 and∫
hdm = m(X). Therefore

∫
ϕdm = m(M)

∫
ϕdν for any ϕ ∈ C(). It results

that ν = m/m(M).
The probability µ = hν, satisfies then the conditions (1), (2), (3) and

(4) of the Theorem 1.6. Observe that condition (1) actually implies the
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equivalence between µ and m. The claim concerning the uniqueness of µ
follows then from the fact that if µ1 ∈ M(T ), µ1 << µ then µ1 = µ since µ
is ergodic. Property (5) follows from the fact that µ is mixing.

Let us prove now Theorem 1.8. Take ψ ≡ 0 and let λ, h and ν be given
by Theorem 1.11. Then

Lψ1(x) =
∑

y∈T−1x

1(y) = d.

Because of the part (5) of Theorem 1.14, d = λ and h ≡ 1. Also, part (4)
shows that

1

dn

∑
y∈T−nx

ϕ(y) −→
∫
ϕdν

for any ϕ ∈ C◦(M). This proves Theorem 1.8.

Definition 1.15. A continuous function J : X → R is called the Jacobian
of T : X → X with respect to µ ∈M(X), if

µ(f(A)) =

∫
A

Jdµ,

for any Borel set A such that T |A is injective.

It is easy to prove that if such a J exists it is unique. Some ergodic
properties of µ can be analyzed through J .

Theorem 1.16. Suppose that J is Hölder-continuous and strictly positive.
Then

(a) h(µ) =
∫

log Jdµ
(b) µ is exact.

Consider now the question of finding a T -invariant probability with Ja-
cobian J > 1 given. It is easy to prove that every function J > 1 that is
Jacobian of T with respect to some T -invariant probability must satisfy∑

T (x)=y

1

| J(x) |
= 1 (3)

for any y ∈ X. This condition is also sufficient. In fact the the following
result is true:
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Theorem 1.17. Let T : X ←↩ be an expanding map and J : X → R strictly
positive and Hölder-continuous. Let λ, h, ν be given by Theorem 1.11 with
ψ = − log J . Then the Jacobian of T with respect to µ = hν is

JµT = λJ
h ◦ T
h

.

Condition (2) Theorem 1.11 implies that h ≡ 1 and λ = 1 in the last
theorem. Hence P (− log J) = 0.

Theorem 1.18. Suppose ψ is Holder continuous, µψ is the equilibrium state
associated with ψ, h is the eigenfunction associated with λ in Theorem 1.11
then the Jacobian Jψ of the probability µψ is given by:

Jψ(x) = λe−ψ(x)h ◦ T (x)

h(x)
(4)

In section 5 we will present results about the differentiability of the pres-
sure and in section 7 we will present results about the differentiability of the
Hausdorff dimension of the Julia set of rational maps.
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2 Properties of expanding maps

Let (K, d) be a compact metric space.

Definition 2.1. T : K ←↩ continuous is said to be an expanding map if there
exist r > 0, 0 < λ < 1 and c > 0 such that:

(a) x 6= y and T (x) = T (y) =⇒ d(x, y) > c.
(b) ∀x ∈ K and a ∈ T−1(x) there exists ϕ : Br(x) → K such that

ϕ(x) = a and

T (ϕ(y)) = y,∀ y ∈ Br(x)

d(ϕ(z), ϕ(w)) ≤ λd(z, w),∀ z, w ∈ Br(x)

Examples:

(a) Let M be a compact manifold without boundary and T : M ←↩ a
C−1-map. Then T is an expanding map by the definition above iff T is an
expanding map by the first definition, that is, ∃ 0 < λ < 1 such that

‖ DxT · v ‖≥
1

λ
‖ v ‖,

∀x ∈M , ∀ v ∈ TxM . For verifying this, suppose first that T is an expanding
map by the first definition.

Given x ∈M , ∃ neighborhood V of x such that T−1(V ) consists of a finite
number of open sets W1, ...,Wn such that f |Wj

is a diffeomorfism. Cover M
with neighborhoods V of this type and let r0 be the Lebesgue number of this
covering.

Let r1 > 0 be such that if z, w ∈ M and d(z, w) < r1, then ∃ a geodesic
β : [0, 1] → M with β(0) = z, β(1) = w and d(z, w) = l(β) (= length of β).
Let r = min(r0, r1).

Then if ϕ : Br(x)→M is a branch of T−1,

d(ϕ(z), ϕ(w)) ≤ l(ϕβ) =

∫ 1

0

‖ ϕ′(β(t)) · β′(t) ‖ dt ≤

≤ 1

λ

∫ 1

0

‖ β′(t) ‖ dt =
1

λ
d(z, w)

10



This verifies condition (b) of the above definition. Condition (a) is very
easy to verify.

Reciprocally, let x ∈ M . Take y ∈ ϕ(Br(f(x)), where ϕ is such that
ϕ(T (x)) = x, and sufficiently near x in such a way that x and y can be
joined by a geodesic β with d(x, y) = l(β). Then

l(β) = d(x, y) ≤ λd(T (x), T (y)) ≤ λl(T ◦ β)

⇒
∫ 1

0

‖ β′(t) ‖ dt ≤
∫ 1

0

λ ‖ T ′(β(t))β′(t) ‖ dt.

If y tends to x through the geodesic β with β′(0) = v it results that

‖ v ‖≤ λ ‖ T ′(x)v ‖ .

This proves the claim.

Below we will list a series of interesting cases related to the topics covered
here.

Definition 2.2. Let M be a manifold, T : M ←↩ a C−1-map and ∧ ⊂ M a
completely invariant compact set. We say that ∧ is expanding if

(1) ∧ is isolated, that is, there exists a neighborhood U of ∧ such that

∩n≥0T
−nU = ∧.

(2) There exists 0 < λ < 1 such that

‖ DxT · v ‖≥
1

λ
‖ v ‖

for any x ∈ ∧ and v ∈ TxM .

It is easy to verify that T |∧ is an expanding map.
This example occurs when T is an Axiom A rational map of the Riemann

sphere C and ∧ is its Julia set (see [5] or [9]) and also Section 7.

I) If T : K ←↩ is an expanding map and ∧ an invariant compact set is not
true that necessarily T |∧ is also an expanding map.

For example, let p be a fixed point in K and {qi}i∈Z an orbit of T with
the following properties:

(1) qN+m = qN for some N ∈ N and some m > 0.
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(2) limi→−∞ qi = p.

Let p0 be a pre-image of p different from p, and define

∧ = {po} ∪ {p} ∪ {qi}i∈N.

Then T (∧) = ∧, but it is easy to see that T |∧ cannot be an expansive
map.

II) Let A = (aij) be a m×m matrix of 0’s and 1’s. Define the operator σ
in B+(A) = {(x0, x1, ...) | xi ∈ {1, ...,m} and axi,xi+1

= 1} by σ(x0, x1, ...) =
(x1, x2, ...). The pair (σ,B+(A)) is called a unilateral subshift of finite type.
Define a metric in B+(A) by

d(α, β) =
∞∑
n=0

1

2n
| α(n)− β(n) (5)

where α = (α(0), α(1), ...) and β = (β(0), β(1), ...).
With this metric σ is an expanding map, with r = 1, λ = 1/2 and c < 1.

Because if α 6= β and σ(α) = σ(β) then α(0) 6= β(0) and so d(α, β) ≥ 1 > c.
This verifies (a). Also if α and β satisfy d(α, β) < 1 then α(0) = β(0). Hence
the pre-images by σ of α and β are (xj, α) and (xj, β) where xj ∈ {1, ...,m}
and axj ,α(0) = 1, and d((xj, α), (xj, β)) =

∑∞
n=1

1
2n
| α(n− 1)− β(n− 1) |=

1
2
d(α, β). this verifies (b). The dynamics in this case is called a shift of finite

type.

III) Let T : S1 ←↩ be a C2-map with degree greater than one and such that
T ′(x) 6= 0, ∀x. We define

∑
(T ) = (∪ basin of attractors). Then if all periodic

points of T are hyperbolic (this is a generic property) T |∑(T ):
∑

(T ) ←↩ is
an expanding map.

Definition 2.3. Let T : K ←↩ be an expanding map and S ⊂ K.
Then g : S → K is a contractive branch of T−n if T ng(x) = x, ∀x ∈ S

and
d(T jg(x), T jg(y)) ≤ λn−jd(x, y)

for any x, y ∈ S, 0 ≤ j ≤ n.

It is easy to see that given x ∈ K and a ∈ T−n(x) there exists g : Br(x)→
K contractive branch of T−n such that g(x) = a.
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Lemma 2.4. Let B(n, ξ, x) = {z ∈ K | d(T jz, T jx) ≤ ξ, for 0 ≤ j ≤ n}.
Then there exists ξ0 > 0 such that if 0 < ξ < ξ0; then

(a) For n ≥ 1, let g : Br(T
n(x)) → K be a contractive branch of T−n

such that g(T n(x)) = x. Then B(n, ξ, x) = g(Bξ(T
n(x)).

(b) If d(T nz, T nw) ≤ ξ, ∀n ≥ 0⇒ z = w.

Proof. Suppose n = 1 and let ξ0 < min

(
r, C

1+λ

)
, where r > 0, 0 < λ < 1,

c > 0 are given by Definition 2.1. If z ∈ B(1, ξ, x) then d(z, x) ≤ ξ and
d(T (z), T (x)) ≤ ξ and so d(g(T (z)), x) ≤ λξ. By the triangular desiguality,
d(z, g(T (z))) < C. It follows that z = g ◦ f(z) and so z ∈ g(Bξ(T (x))). This
proves (a) for n = 1.

With analogous arguments we complete the proof of (a) by induction.
If d(T n(z), T n(w)) ≤ ξ, ∀n ≥ 0, by the first item d(z, w) ≤ λnξ, ∀n.

Hence z = w, and this proves (b).

Remark 2.5. ξ0 is called an expansivity constant for f .

Lemma 2.6. For any ξ > 0, there exists δ > 0 such that if a sequence
{xn | n ≥ 0} satisfies d(T (xn), xn+1) < δ, ∀n ≥ 0, then there exists x ∈ K
satisfying d(T n(x), xn) < ξ, ∀n ≥ 0.

Proof. Let ϕn : Br(xn)→ K be contractive branches of T−1 with ϕn(T (xn−1)) =

xn−1. Take δ < min

(
1−λ
λ
· ξ, r

λ
− r
)
.

If z ∈ Br(xn) then d(z, Txn−1) ≤ r+δ and so d(ϕnz, xn−1) ≤ λ(r+δ) < r.
It results that ϕn(Br(xn)) ⊂ Br(xn−1), ∀n ≥ 1.

Consider the sequence {ϕ1, ..., ϕn(Br(xn))}n≥1. It is a decrescent sequence

of compact sets whose diameters tend to zero. Hence ∩n≥1 ϕ1...ϕn(Br(xn))
consists of a unique point that we shall call x.

Let l ∈ N. Then

d(T lx, xl) ≤ λd(T l+1x, Txl) ≤ λd(T l+1x, xl+1) + λd(Txl, xl+1) ≤
≤ λd(Txl, xl+1) + λ2d(Txl+1, xl+2) + ...+ λkd(Txl+k−1, xl+k)+

+ λkd(T l+kx, xl+k). (∗)
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Making h→∞
d(f lx, xl) ≤

δλ

1− λ
< ξ.

Lemma 2.7. In last Lemma, if the sequence {xn, n ≥ 0} is periodic of period
N , then x is periodic of period N , if it is assumed that 2ξ < ξ0, where ξ0 is
the expansivity constant given by Lemma 2.4.

Proof. Consider the orbits (x, T (x), T 2(x), ...) and (TN(x), TN+1(x), ...). Since
they are 2ξ close one to each other, using the Lemma 2.7, (b), it results that
x = TN(x).

Remarks:

(1) We shall use in the future the following refinement of previous Lemmas.
In case that x0, x1, ... is periodic of period N and xj+1 = fxj, j =
0, ..., N − 2 and d(T (xN−1), x0) < δ, it results from (*) that

d(T j(x), T j(x0)) = d(T j(x), xj) ≤ λN−jd(TN(x), T (xN−1))

= λN−jd(x, T (xN−1))

for 0 ≤ j ≤ N − 1.

(2) In the following Lemma, we shall use (*) with l = 0, i.e.,

d(x, x0) ≤
∞∑
0

λn+1d(fxn, xn+1).

Lemma 2.8. Given ξ0 > 0, there exists δ0 > 0 such that for all ξ > 0, there
exist N ∈ N and δ1 > 0 such that if a sequence {xn | n ≥ 0} satisfies

d(T (xn), xn+1) ≤ δ0, ∀n ≤ 0

T (xn) = xn+1, ∀ 1 ≤ n ≤ N

d(T (x0), x1) < δ1
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then there exists x ∈ K such that

d(T n(x), xn) ≤ ξ0, ∀n ≥ 0

d(x, x0) < ξ.

Proof. Given ξ0 > 0, take δ0 as in a previous Lemma. By item (2) in the
remark,

d(x, x0) ≤
∞∑
0

λn+1d(T (xn), xn+1) ≤ λδ1 +
∞∑
N+1

λn+1d(T (xn), xn+1)

≤ λδ1 + δ0
λN+2

1− λ
.

If N is sufficiently large and δ1 sufficiently small it results that d(x, x0) <
ξ.

Definition 2.9. A sequence {xn | n ≥ 0} is a pre-orbit of x if x = x0 and
T (xn+1) = xn.

Lemma 2.10. If d(x, y) < r and {xn | n ≥ 0} is a pre-orbit of x, then there
exists a pre-orbit of y, {yn | n ≥ 0} such that d(xn, yn) ≤ λnd(x0, y0).

Proof. Consider g : Br(x)→ K a contractive branch of T−n with g(x) = xn
and define yn = g(y).

Lemma 2.11. Denote by Per T = { periodic points of T} and ∧ = Per T .
Then T |∧: ∧ ←↩ is an expansive map.
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Proof. Let r > 0, 0 < λ < 1 and c > 0 be given by Definition 2.1. Let
δ0 be given by Lemma 2.4 with ξ0 an expansivity constant and define r1 =
min(r, δ0). For proving that T |∧ is an expanding map it is sufficient to prove
that ϕ(Br1(x)∩∧) ⊂ ∧, if x ∈ ∧ and ϕ : Br(x)→ K is a contractive branch
of T−1 with ϕ(x) = a ∈ ∧. Let z ∈ Br1(x)∩∧. We must verify that ϕ(z) ∈ ∧.
Without loss of generality, we can assume that z and a (and therefore x) are
periodic. Let s =period of a =period of x, and t =period of z.

Let w = ϕ(z). Take a pre-orbit {wn | n ≥ 0} of w asymptotic to the
periodic pre-orbit of a and a pre-orbit {xn | n ≥ 0} of x asymptotic to the
periodic pre-orbit of z, as in a previous Lemma.

Given ξ > 0, take N large as above and consider the periodic δ0-pseudo-
orbit w, xNt, ..., x1, ws−1, ..., w1, w, ....

By Lemma 2.6, there exists p such that d(p, w) < ξ and such that its
orbit ξ0-shadows the δ0-pseudo-orbit above.

By a previous Lemma, p is periodic and therefore w ∈ ∧.

Theorem 2.12. K = ∪n≥0T
−n(Per T ).

Proof. Let x ∈ K and let w(x) be the w-limit set of the orbit of x, that is,

{y | there exists a sequence {nk}k ⊂ N, nk →∞ such that T nk(x)→ y}.

If y ∈ w(x), and ξ > 0 is arbitrary, let δ > 0 be given by Lemma 2.10.
Take l and N such that d(T l(x), y) < δ/2 and d(T l+Nx, y) < δ/2. So

T l(x), T l+1(x), ..., T l+N−1(x), T l(x), ...

is a periodic δ-pseudo-orbit.
By a previous, it can be ξ-shadowed by a periodic orbit. Therefore y ∈

Per T .
Consider the map T |∧, which is expanding. Fixing ξ > 0, let δ > 0 be

given by Lemma 2.11 applied to T |∧ . Let δ′ < δ/2 be such that d(z, w) < δ′

implies d(T (z), T (w)) < δ/2 for any z, w ∈ K.
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Let x ∈ K. Since w(x) ⊂ ∧, there exist N ∈ N and {xn}n≥0 ⊂ ∧ such
that d(TN+n(x), (xn)) < δ′, for each n ≥ 0. Hence

d(T (xn), xn+1) ≤ d(T (xn), TN+n+1(x)) + d(TN+n+1(x), xn+1)

≤ δ/2 + δ/2 = δ

for each n ≥ 0. By Lemma 2.11, there exists z ∈ ∧ such that d(T n(z), xn) ≤
ξ, for each n ≥ 0. Hence

d(T n(z), T n(TN(x))) ≤ δ + ξ

for each n ≥ 0. But by the expansiveness of T , if ξ and δ are small, TN(x) = z.
Therefore x ∈ T−N(∧).

Theorem 2.13. There exist unique disjoint compact sets ∧(m)
i , i = 1, ..., nm,

m = 1, ...,M such that

(a) T (∧(m)
i ) = ∧(m)

i+1, 1 ≤ i < nm, 1 ≤ m ≤M

T (∧(m)
nm ) = ∧(m)

1 , 1 ≤ m ≤M.

(b) ∪i,m∧(m)
i = ∧(= Per T ).

(c) T nm |∧(m)
i

: ∧(m)
i ←↩ is topologically mixing.

More over, the following properties are valid:

(d) T nm |∧(m)
i

: ∧(m)
i is an expanding map.

(e) For each open set V ⊂ ∧(m)
i , there exists N > 0 such that

(T nm)N(V ) = ∧(m)
i .

Proof. Let p and q be periodic points, and {pn | n ≥ 0} and {qn | n ≥ 0}
their periodic pre-orbits. Define p ∼ q if there exist pre-orbits {p′n | n ≥ 0}
of p and {q′n | n ≥ 0} of q such that d(q′n, pn)→ 0 and d(p′n, qn)→ 0.

Let us verify that ∼ is an equivalence relation in Per T. Clearly ∼ is
reflexive and simetric. If p ∼ q and q ∼ r, then there exist pre-orbits
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{q′n | n ≥ 0} of q and {r′n | n ≥ 0} of r asymptotic to the periodic pre-
orbits {pn | n ≥ 0} of p and {qn | n ≥ 0} of q respectively. Let n0 > 0
be such that d(r′n, qn) < r if n > n0, and let m0 > n0 be a multiple of the
periods of p and q. Then d(r′m0

, q) < r.
By a previous Lemma, there exists a pre-orbit {r′′n | n ≥ 0} of r′m0

asymp-
totic to {pn | n ≥ 0}. Since m0 is a multiple of the period of this orbit,
the pre-orbit r′0, r

′
1, ..., r

′
m0−1, r

′′
0 , r
′′
1 , ... is asymptotic to {pn | n ≥ 0}. By

simmetry, r ∼ p.
Therefore ∼ is actually an equivalence relation em Per T . If d(p, q) < r,

then p ∼ q. This implies that there are only a finite number of classes of
equivalence X1, ..., Xn and that they are open and closed in Per T . Besides,
f transform classes of equivalence in classes of equivalence. Therefore, we
can denote the classes by X

(m)
i , 1 ≤ i ≤ nm, 1 ≤ m ≤M satisfying

T (X
(m)
i ) = X

(m)
i+1 , 1 ≤ i < nm,1 ≤ m ≤M

T (X(m)
nm ) = X

(m)
1 ,1 ≤ m ≤M.

Define ∧(m)
i = X

(m)
i . Then conditions (a) and (b) are obviously satisfied.

Let us prove (d). As f |∧ is an expanding map (Lemma II.9), T nm |∧ is

an expanding map. It follows then from T−nm(∧(m)
i ) = ∧(m)

i that T nm |∧(m)
i

is an expanding map.
Let us prove now (e). Denote by g the map T nm |∧(m)

i
and let V be an

open set of ∧(m)
i . Let p ∈ V be periodic of g-period n0 and let {pn | n ≥ 0}

be its g-periodic-pre-orbit. Let q be periodic in ∧(m)
i and {q(j)

n | n ≥ 0},
0 ≤ j ≤ n0 − 1, g-pre-orbits of q such that d(q

(j)
n , pj+n)→ 0 when n→∞.

Let δ > 0 be such that Bδ(p) ⊂ V eN > 0 be such that d(q
(j)
n , pj+n) < δ,

when n ≥ N , 0 ≤ j ≤ n0 − 1. Then if n ≥ N , take 0 ≤ j ≤ n0 − 1 such that
j + n is a multiple of n0 and so we obtain q

(j)
n ∈ Bδ(p) ⊂ V and gn(q

(j)
n ) = q.

In reality, since g is an expanding map, gn(Bδ(p)) ⊃ Br(q) if λn < δ.

Taking a finite number of Br(q) covering ∧(m)
i we obtain (e).

The assertion (c) is corollary of (e).
Suppose now that there are a decomposition of ∧ in disjoint compact sets

∧i(m), 1 ≤ i ≤ nm, 1 ≤ m ≤ M satisfying (a) and (c). Let p and q be
periodic points. From (a) it follows that if p ∼ q, then p and q are in the

same ∧(m)
i . From (c) it follows that if p and q are in the same ∧(m)

i , then
p ∼ q. Therefore this decomposition is well determined by (a) and (c).
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Theorem 2.14. If K is connected and T : K ←↩ is an expanding map, then
T is topologically mixing.

Proof. Let r > 0, c > 0 and 0 < λ < 1 be given by Definition 2.1 applied
to f |∧: ∧ ←↩, which by Theorem 2.13 is an expanding map. Let ξ <
min(r, c

1+λ
) e δ < ξ be such that if d(z, w) < δ then d(fz, fw) < ξ.

Claim: If z ∈ f−1(∧) and d(z,∧) < δ, then z ∈ ∧.

Proof of the Claim. In fact, there exists w ∈ ∧ such that d(z, w) < δ.
Hence d(T (z), T (w)) < ξ. Considering the contractive branch of T−1, ϕ :
Br(T (w))∩∧ → ∧ such that ϕT (w) = w we obtain that d(ϕfz, z) < δ+λξ <
C. Hence ϕT (z) = z and therefore z ∈ ∧, proving the claim.

It follows from the claim S = T−1(∧)\∧ is closed. From the fact that ∧
is invariant it follows that ∧, S, T−1S, T−2S, ... is a disjoint collection of
closed sets. By Theorem 2.13, such a collection covers K. If follows then
by the Baire Theorem that one of them has non-empty interior. As T is an
open map, this implies that ∧ has non-empty interior.

Consider the decomposition of ∧ given by Theorem 2.14 at least one of
the ∧(m)

i contains an open set V , and since (T nm)NV = ∧(m)
i for some N > 0,

it follows that ∧(m)
i is open in K. But since K is connected, it results that

∧(m)
i = K. This proves the Theorem.

Suppose that f is an expanding topologically mixing map.

Definition 2.15. ψ and ϕ in C(K) are homologous if there exists u ∈ C(K)
such that ψ = ϕ+ u ◦ T − u. Denote it by ψ ∼ ϕ.

Theorem 2.16. Suppose that ψ is γ-Hölder-continuous. Then

ψ ∼ 0⇐⇒
[
T n(x) = x =⇒ Snψ(x)

def
=

n−1∑
j=0

ψ(T j(x)) = 0
]
.

In adition, the funtion u that satisfies ψ = u◦T−u is γ-Hölder-continuous.
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Proof. If ψ ∼ 0, ψ = u · f − u, for some u ∈ C(K). It results that Snψ(x) =
u(T n(x))− u(x). Therefore, if T n(x) = x, Snψ(x) = 0.

Reciprocally, suppose that Snψ(x) = 0, for any x such that T n(x) = x.
Let a ∈ K be transitive for f (i.e., {T n(a)}n≥0 is dense in K) and define u
in the orbit of a by

u(T n(a)) = u(a) + Snψ(a)

where u(a) is arbitrarily defined.

Claim: u is γ-Hölder-continuous in the orbit of a.

Proof of the Claim. For xi > 0 satisfying (1−λ)xi < r−λ, take δ = 1−λ
λ
·xi.

Then by Lemma 2.4, if d(Tm(a), Tm+n(a)) < δ, the δ-pseudo-orbit Tm(a),
Tm+1(a), ...,Tm+n−1(a), Tm(a), ... can be xi-shadowed by the orbit of a peri-
odic point x of period n. In addition, this orbit satisfies d(T jx), Tm+j(a)) ≤
λn−jd(x, Tm+n(a)), for 0 ≤ j ≤ n − 1 according to Remark 2.5 following
Lemma 2.4. Then

| u(Tm+n(a))− u(T n(a)) | =| Sm+nψ(a)− Snψ(a) |=| Snψ(Tm(a)) |
=| Snψ(fma)− Snψ(x) |

≤
n−1∑

0

| ψ(Tm+j(a))− ψ(T j(x)) |

≤ C
n−1∑

0

d(Tm+j(a), T j(x))γ ≤ C
n−1∑

0

(λn−jξ)γ ≤ C ′ · δγ

where C ′ = C
(

λγ

1−λγ
)2

. This proves the claim.

It follows from the claim that u can be extended to a γ-Hölder-continuous
function in K. Let y ∈ K, y = limT nja. Then

u(T (y))− u(y) = lim
j→∞

u(T nj+1(a))− lim
j→∞

u(T nj(a))

= lim
j→∞

Snj+1ψ(a)− Snjψ(a)

= lim
j→∞

ψ(T nj(a)) = ψ(y).

Therefore ψ = u ◦ T − u.
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Corolary 2.17. Let ψ and ϕ be γ-Hölder-continuous functions. Then

ψ ∼ ϕ⇐⇒
[
T n(x) = x =⇒ Snψ(x) = Snϕ(x)

]
.

In adition the function u that satisfies ψ = ϕ + u ◦ T − u is γ-Hölder-
continuous.
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3 Jacobians and Entropy

Let T : K ←↩ be a continuous and locally injective map and µ ∈M(T ).
A continuous function F : K → R is the Jacobian of T if

µ(T (A)) =

∫
A

Fdµ

for any Borel set A such that T |A is injective. The Jacobian, if it exists, is
unique a.e. and it is denoted by Jµf . If ψ ∈ C◦(K) define Lψ : C◦(K)←↩ by

(Lψϕ)(x) =
∑

y∈T−1(x)

eψ(y)ϕ(y)

for any ϕ ∈ C◦(K).

Lemma 3.1. Let ν ∈M(K) satisfying L∗ψν = λν, λ > 0.
Then

JνT = λe−ψ .

Let h be continuous and strictly positive and µ = hν. Then

JµT = λe−ψ
h ◦ T
h

.

Proof. Let A be a Borel set such that f |A is injective.
Take a sequence {hn}n≥1 in C◦(K) such that hn −→ XA a.e. [ν] and

‖ hn ‖C◦≤ 2, ∀n ≥ 1. Then

Lψ(e−ψhn)(x) =
∑

y∈T−1x

eψ(y)e−ψ(y)hn(y) =
∑

y∈T−1(x)

hn(y).

This last expression converges to XT (A)(x) a.e. [ν] and so, by the domi-
nated convergence Theorem∫

λe−ψhndν =

∫
Lψ(e−ψhn)dν → ν(f(A)).

Hence ∫
A

λe−ψdν = ν(T (A)).
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Also ∫
λe−ψ

h ◦ T
h

hndµ =

∫
Lψ(e−ψh ◦ Thn)dν

=

∫
Lψ(e−ψhn)dµ.

Since µ and ν are equivalent, this last expression converges to µ(T (A))
and so ∫

A

λe−ψ
h ◦ T
h

dµ = µ(f(A)).

From now on, we will suppose that T is a topologically mixing expanding
map. If µ ∈M(K), define the support of µ as

supp(µ) = {x ∈ K | any neighborhood V of x, µ(V ) > 0}.

Lemma 3.2. If µ ∈M(K) admits a Jacobian Jµf , then supp(µ) = K.

Proof. Suppose that there exists an open set V with µ(V ) = 0.
Cover V with Borel sets A ⊂ V such that T |A is injective. Then

µ(T (A)) =

∫
A

Jµ(T )dµ = 0.

Hence µ(T (V )) = 0. Inductively, µ(T n(V )) = 0. But since there exists n ∈ N
such that T n(V ) = K, this is a contradiction.

Lemma 3.3. If JµT is strictly positive and Hölder-continuous, there exists
A > 0 such that ∀n, if g : S → K is a contractive branch of T−n, then

JµT
n(x)

JµT n(y)
≤ A

for any x, y ∈ g(S).
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Proof. Since g is a contractive branch of T−n, and x, y ∈ g(S)

d(T j(x), T j(y)) ≤ λn−jd(T n(x), T n(y)) ≤ λn−jd

for 0 ≤ j ≤ n, where d=diameter(S). Then

JµT
n(x)

JµT n(y)
=

n−1∏
j=o

JµT (T jx)

JµT (T j(y))
≤

n−1∏
j=o

| JµT (T jx)− JµT (T jy) |
JµT (T jy)

+ 1

≤
n−1∏
j=o

1 +
1

c
| JµT (T j(x))− JµT (T j(y)) |

where c = infx∈K JµT (x) > 0. Hence

JµT
n(x)

JµT n(y)
≤

n−1∏
j=o

1 +
C

c
d(T j(x), T j(y))γ ≤

n−1∏
j=o

1 +
C

c
(λn−j)γd

≤
∞∏
j=o

1 +
C

c
(λγ)jd

def
= A.

Corolary 3.4 (Distortion Lemma). If JµT is strictly positive and Hölder-
continuous, then, there exists B > 0 such that for any S1, S2 ⊂ S

1

B

µ(g(S1))

µ(g(S2))
≤ µ(S1)

µ(S2)
≤ B

µ(g(S1))

µ(g(S2))
.

Proof. Fix x0 ∈ g(S). Then

µ(S1) =

∫
g(S1)

JµT
ndµ ≤ AJµT

n(x0)µ(g(S1))

µ(S2) =

∫
g(S2)

JµT
ndµ ≥ 1

A
JµT

n(x0)µ(g(S2)).

Then
1

A2

µ(S1)

µ(S2)
≤ µ(g(S1))

µ(g(S2))
.

Inverting the roles of S1 and S2 we obtain the other inequality.
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Corolary 3.5. Let ξ0 be an expansivity constant for T given by former
Lemma, and 0 < ξ ≤ ξ0. Then there exists Cξ > 0 such that

1

Cξ
≤ µ(B(n, ξ, x)) · JµT n(x) ≤ Cξ

∀n ≥ 0, ∀x ∈ K.

Proof. By a former Lemma, B(n, ξ, x) = g(Bξ(f
nx)), where g : Br(T

n(x))→
K is a contractive branch of T−n.

Cover K with balls B1...Bl of radius ξ/3 and let δξ = min1≤i≤l µ(Bi). δξ
is strictly positive, because by a former Lemma, µ is positive on open sets.
Also, if y ∈ K,

µ(Bξ(y)) ≥ δξ.

Hence

δξ ≤ µ(Bξ(T
n(x))) =

∫
g(Bξ(Tn(x)))

JµT
ndµ ≤ AJµT

n(x)µ(B(n, ξ, x)).

It follows that

µ(B(n, ξ, x)) · JµT n(x) ≥ δξ
A

def
=

1

Cxi
.

Also

1 ≥ µ(Bξ(T
nx)) ≥ JµT

n(x)

A
µ(B(n, ξ, x)) ≥ µ(B(n, ξ, x))JµT

n(x)

Cξ
.

Hence
µ(B(n, ξ, x))JµT

n(x) ≤ Cξ.

Corolary 3.6. Suppose that µ is f -invariant and ergodic. Then

hµ(f) =

∫
log Jµfdµ.
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Proof. The Theorem of Brin-Katok [4] claims that

hµ(T ) = lim
ξ↓0

lim sup
n→∞

− 1

n
log µ(B(n, ξ, x))

a.e. x ∈ K. From Corollary 3.5 it follows that

lim sup
n→∞

− 1

n
log µ(B(n, ξ, x)) = lim sup

n→∞

1

n
log JµT

n(x)

if 0 < ξ < ξ0. From Birkhoff’s Theorem it results that

1

n
log JµT

n(x) =
1

n

n−1∑
j=0

log JµT (T jx)→
∫

log JµTdµ

a.e. x ∈ K. Hence

hµ(T ) =

∫
log JµTdµ.

Lemma 3.7. Let K be a compact metric space, µ ∈M(K) and P a Borelian
partition of K, P = {P1, ..., Pn}. Let {Cm}m≥1 be a sequence of partitions
with diamCm = maxC∈Cm(diamC) converging to zero, when m→∞. Then

there exist partitions {E(m)
1 , ..., E

(m)
n } such that

(1) Each E
(m)
i is a union of atoms of Cm.

(2) limm→∞ µ(E
(m)
i ∆Pi) = 0, ∀i.

Proof. Let K1, ..., Kn be compact sets with Ki ⊂ Pi and µ(Pi \ Ki) < ξ.
Let δ = infi 6=j d(Ki, Kj) > 0 and consider m > 0 such that diamCm < δ/2.

Divide the elements C ∈ Cm in groups whose unions we call E
(m)
1 , ..., E

(m)
n in

the following way: C ⊂ E
(m)
i if c∩Ki 6= ∅. An element c ∈ Cm can intersect

at most one of the Ki’s and in case that it doesn’t intersect anyone include
it arbitrarily in any of the E

(m)
i ′s. Then

µ(E
(m)
i ∆Pi) = µ(Pi \ E(m)

i ) + µ(E
(m)
i \ Pi)

≤ µ(Pi \Ki) + µ(K \ ∪ni=1Ki) ≤ (n+ 1)ξ.

As ξ was arbitrarily chosen, the result follows.
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Theorem 3.8. If JµT is strictly positive and Hölder-continuous, then µ is
exact.

Proof. Let P0 = {P 0
1 , ..., P

0
l0
} be a partition of K, with diamP0 < r and

int(P 0
i ) 6=, for 1 ≤ i ≤ l0. Define contractive branches gnij : P 0

i → K of fn−1,
for 0 ≤ j ≤ ni, 1 ≤ i ≤ l0. Let P n

ij = gnij(P
0
i ). Then Pn = {P n

ij, 0 ≤ j ≤
ni, 1 ≤ i ≤ l0} is a partition of K and diamPn −→ 0.

Suppose by contradiction that there exists A ∈ ∩j≥0T
−j(B(K)) such that

µ(A) > 0 and µ(Ac) > 0. Applying a former Lemma, it follows that ∀ξ > 0,
∃N(ξ) > 0 such that if n ≥ N(ξ), ∃P n

ij ∈ Pn such that

µ(A ∩ P n
ij)

µ(P n
ij)

≥ 1− ξ.

Since A ∈ ∩j≥0f
−j(B(K)), A = T−n(An), for a certain

An ∈ ∩j≥0T
−j(B(K))

and so gnij(An ∩ P 0
i ) = A ∩ P n

ij. By the distortion Lemma

µ(An ∩ P 0
i )

µ(P 0
i )

≥ 1− ξB.

In an analogous way, ∃1 ≤ k ≤ l0 such that

µ(Acn ∩ P 0
k )

µ(P 0
k )

≥ 1− ξB.

Since T is topologically mixing, there exists N > 0 such that ∀1 ≤ i ≤
l0 there exists j(i) such that the contractive branch gN1,j(i) of T−N satisfies

PN
1,j(i) ⊂ P 0

i .

For simplicity, we shall denote PN
1,j(i) by Qi and gN1,j(i) by gi.

Let c = mini µ(Qi), c is strictly positive because Qi has non-empty inte-
rior. Let us take ξ > 0 such that

ξB supi µ(P 0
i )

c
< ξ
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where δ < 1
2B
. So we have

µ(An ∩Qi)

µ(Qi)
≥ 1− δ

µ(Acn ∩Qk)

µ(Qk)
≥ 1− δ.

Observing that An = T−NBN and Acn = T−NBc
N and applying again the

distortion Lemma
µ(BN ∩ P 0

1 )

µ(P 0
1 )

> 1− δB

µ(Bc
N ∩ P 0

1 )

µ(P 0
1 )

> 1− δB.

Summing the terms leads to

1 > 2− 2δB

which is a contradiction.
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4 Proof of the Ruelle Theorem

In this section we will prove the main result.

Theorem 4.1. Let T : K ←↩ to be an expanding map and topologically
mixing; and ψ Hölder-continuous. Then, there exist h : K → R Hölder-
continuous and strictly positive, γ ∈M(K) and λ > 0 such that

1.
∫
hdν = 1

2. Lψ · h = λh

3. L∗ψν = λν

4. ‖ λ−nLnψϕ− h
∫
ϕdν ‖C0→ 0, ∀ϕ ∈ C0(K).

5. h is the unique positive eigen-function of Lψ, except for multiplication
by scalars.

6. The probability µ
def
= hν is invariant, exact and

log λ = hµT +

∫
ψdµ.

7. For any µ̂ ∈M(T ), µ̂ 6= µ

log λ > hµ̂f +

∫
ψdµ̂.

Proof. (1) Consider G :M(K)←↩ given by G(µ) = L∗µ/L∗µ(1).
G is well defined since L(1) > 0 and therefore L∗µ(1) =

∫
L(1)dµ > 0.

Also, as L is positive, G(µ) is actually a probability. By the Theorem of
Tychonoff-Schauder we get that G has a fixed point ν. Define λ = L∗ν(1) > 1.
Then

L∗ν = λν.

For simplifying the notation we are using L in place of Lψ. ‖ ϕ ‖ will
denote the C0-norm of ϕ.

(2) There exists A > 0 such that Lm(1)(x)/Lm(1)(y) < A, if x, y ∈ K.
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Proof. We shall prove first the following Lemma.

Lemma 4.2. There exists δ > 0 such that if x, y ∈ K, with d(x, y) <
δ and n > 0 then T−n(x) = {x1, ..., xk}, T−n(y) = {y1, ..., yk} satisfying
d(T jxi, T

jyi) ≤ λn−jd(x, y) for all 0 ≤ j ≤ n, 1 ≤ i ≤ k.

Proof. Let δ = min(r, c/2λ) and let g(i) be the contractive branch of T−1

such that g(i)x = xi, where T−1(x) = {x1, ..., xk}.
Define yi = g(i)y. Then if yi = yj

d(xi, xj) ≤ d(xi, yi) + d(xj, yj) ≤ 2λδ ≤ c

a contradiction. Hence xi = xj. Therefore to each xi there correspond
distinct yi’s such that d(xi, yi) ≤ λd(x, y). Inverting the roles of x and y
we see that this correspondence is one-to-one. This proves the Lemma for
n = 1. By induction, using analogous reasoning, we complete the proof of
the Lemma.

Let us prove then (2). Suppose at first that d(x, y) < δ. Then T−m(x) =
{x1, ..., xk} and T−m(y) = {y1, ..., yk} as in the above Lemma.

| Smψ(xi)− Smψ(yi) | ≤
m−1∑
j=0

| ψ(T jxi)− ψ(f jyi) |≤

≤
m−1∑
j=0

Cd(T jxi, T
jyi)

γ

≤
m−1∑
j=0

C(λm−j)γd(x, y)γ ≤ A′.

Hence

Lm(1)(x) =
k∑
i=1

eSmψ(xi) ≤
k∑
i=1

eSmψ(yi)eA
′
= ALm(1)(y).

For the general case cover K with balls of diameter δ; B1, ..., Bl and take
N > 0 such that TN(Bi) = K, for all 1 ≤ i ≤ l.

30



Lm+N(1)(x) =
∑

z∈f−m−N (x)

eSm+Nψ(z)

=
∑

z:fmz∈f−N (x)

eSNψ(fmz)eSmψ(z).

Write
T−N(x) = {x(1)

1 , ..., x
(1)
k1
, ..., x

(l)
1 , ..., x

(l)
kl
}

T−N(y) = {y(1)
1 , ..., y

(1)
S1
, ..., y

(l)
1 , ..., y

(l)
Sl
}

where the index above means that x
(j)
i (y

(j)
i ) is in Bj. The condition on N

implies that k1, ..., kl, S1, ..., Sl are strictly positive.

Lm+N(1)(x) ≤ eN‖ψ‖
l∑

j=1

∑
z:Tmz∈{x(j)i ,...,x

(j)
ki
}

eSmψ(z)

= eN‖ψ‖
l∑

j=1

kj∑
i=1

Lm(1) · (x(j)
i ).

We know that
Lm(1)(x

(j)
i ) ≤ ALm(1)(y(j)

r )

for all i = 1, ..., kj · r = 1, ..., Sj. Therefore

Lm+N(1)(y) ≥ e−N‖ψ‖
l∑

j=1

Sj∑
r=1

Lm(1)(y(j)
r )

≥ e−2N‖ψ‖

A

1

max
1≤j≤l

kj
eN‖ψ‖

l∑
j=1

kj∑
i=1

Lm(1) · (x(j)
i )

= A′
1

max
1≤j≤l

kj
Lm+N(1)(x).

But as kj(x), x ∈ K is bounded, (2) is proved.
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Proof. (3)

(a) supn ‖ λ−nLn(1) ‖<∞

(b) infn infx | λ−nLn(1)(x) |> 0.

From (1) it follows that ∫
λ−nLn(1)dν = 1

for all n ∈ N. It follows that there exist sn, tn ∈ K such that

λ−nLn(1)(Sn) ≤ 1

and
λ−nLn(1)(tn) ≥ 1.

Using (2) it results that

λ−nLn(1)(x) < A

and

λ−nLn(1)(x) >
1

A

for all x ∈ K and n ∈ N.
Let Cγ(K) be the space of real valued Hölder-continuous functions with

Hölder constant γ endowed with the norm

‖ ϕ ‖γ=‖ ϕ ‖0 + sup
x 6=y

| ϕ(x)− ϕ(y) |
d(x, y)γ

.

Given a > 0 define the seminorm | · |a,γ on Cγ(K,R) by

| ϕ |a,γ= sup
x 6=yd(x,y)<a

| ϕ(x)− ϕ(y) |
d(x, y)γ

and the norm
‖ ϕ ‖a,γ=‖ ϕ ‖0 + | ϕ |a,γ .
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This norm is equivalent to ‖ · ‖γ because obviously ‖ ϕ ‖γ≥‖ ϕ ‖a,γ and
on the other hand

sup
x 6=y

| ϕ(x)− ϕ(y) |
d(x, y)γ

≤ | ϕ |a,γ + sup
d(x,y)>a

| ϕ(x)− ϕ(y) |
d(x, y)γ

≤

≤ | ϕ |a,γ +
2 ‖ ϕ ‖0

aγ
.

Hence

‖ ϕ ‖γ≤
(

1 +
2

aγ

)
‖ ϕ ‖a,γ .

Analogous considerations remains valid for the space Cγ(K,C) of complex
Hölder-continuous functions with Hölder constant γ.

Proof. (4) Suppose that γ is a Hölder-constant for ψ and that a = δ given
by Lemma 4.2. Then there exists C > 0 such that

| Lnϕ |a,γ≤
(
(λγ)n | ϕ |a,γ +C ‖ ϕ ‖0

)
‖ Ln1 ‖0

for all ϕ ∈ Cγ(K,C). It results that

L(Cγ(K,C)) ⊂ Cγ(K,C)

and
sup
n
‖ λ−nLn ‖γ,a<∞

where ‖ λ−nLn ‖γ,a is the operator norm of λ−nLn in the space Cγ(K,C).

Take a as in Lemma 4.2. If x, y ∈ K with d(x, y) < a then T−n(x) =
{x1, ..., xk} and T−n(y) = {y1, ..., yk} satisfying

d(T jxi, T
jyi) ≤ λn−jd(x, y)

for all n > 0, 0 ≤ j ≤ n and 1 ≤ i ≤ k. Then

| Lnϕ(x)− Lnϕ(y) | = |
k∑
i=1

ϕ(xi) expSnψ(xi)− ϕ(yi) expSnψ(yi) |

≤
k∑
i=1

| ϕ(xi)− ϕ(yi) | expSnψ(xi)+
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+
k∑
i=1

| ϕ(yi) | expSnψ(yi) | 1− exp(Snψ(xi)− Snψ(yi)) | .

Also

| Snψ(xi)− Snψ(yi) | ≤
n−1∑
j=0

| ψ(f jxi)− ψ(f jyi) |

≤ | ψ |a,γ
n−1∑
j=0

(λn−j)γd(x, y)γ

≤ | ψ |a,γ
λγ

1− λγ
d(x, y)γ.

Therefore there exists C > 0 such that

| 1− exp(Snψ(xi)− Snψ(yi)) |≤ Cd(x, y)γ.

Then

| Lnϕ(x)− Lnϕ(y) | ≤
k∑
i=1

| ϕ |a,γ d(xi, yi)
γ expSnψ(xi)+

+
k∑
i=1

| ϕ(yi) | expSnψ(yi)Cd(x, y)γ

≤
[
(λγ)n | ϕ |a,γ‖ Ln1 ‖0 +C ‖ ϕ ‖0‖ Ln1 ‖0

]
d(x, y)γ.

This proves the required estimate. For concluding the proof of (4) observe
that by (3) (a) λ−n ‖ Ln1 ‖0 is bounded above. It follows that

| λ−nLnϕ |a,γ≤ C ‖ ϕ ‖a,γ .

Using (3) (a) again

‖ λ−nLnϕ ‖0≤‖ λ−nLn1 ‖0‖ ϕ ‖0≤ A ‖ ϕ ‖0 .

From this the claim (4) follows easily.
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Proof. (5) There exists h ∈ Cγ(K) strictly positive such that Lh = λh and∫
hdν = 1.

Let us consider the sequence {gn}n given by

gn =
1

n

n−1∑
j=0

λ−jLj1.

By (4), sup
n
‖ gn ‖γ<∞. We can therefore use the Arzelá-Ascoli Theorem

and find a subsequence {gnk}k such that gnk → h in the norm C0. It follows
that h ∈ Cγ(K) and

Lh = lim
k→∞

λ

nk

nk∑
j=1

λ−jLj1

= lim
k→∞

λ

nk

(
nk−1∑
j=0

λ−jLj1− 1 + λ−nkLnk1

)
= λh

because sup
n
‖ λ−nLn1 ‖< ∞. Also, since

∫
gnkdν = 1, it results that∫

hdν = 1. From (3) (b) it follows that h is strictly positive.

Proof. (6) Let µ = hν. Then µ is invariant and exact.

Let ϕ ∈ C0(K). Then∫
ϕ ◦ f dµ =

∫
ϕ ◦ f · hdν = λ−1

∫
L(h · ϕ ◦ f)dν

= λ−1

∫
Lh · ϕdν =

∫
ϕhdν =

∫
ϕdµ.

It follows that µ is invariant. In Lemma 3.1 we have seen that JνT =
λe−ψ and therefore is Hölder-continuous and strictly positive. It results from
Theorem 3.8 that ν is exact. As µ is equivalent to ν, µ is also exact.
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Proof. (7) let u and ϕ be in C0(K). Then∫
ϕ(λnLnu)dν =

∫
λ−nLn(ϕ ◦ T n · u)dν

=

∫
ϕ ◦ T n · udν

=

∫
ϕ ◦ T nu · dµ

h
.

This last expression converges to
∫
ϕdµ·

∫
u
h
dµ because µ is mixing. Hence∫

ϕ(λ−nLnu)dν −→
∫
ϕ(h

∫
udν)dν

for all ϕ and u in C0(K). We shall now prove the following Lemma.

Lemma 4.3. Let ν ∈ M(K) positive on open sets and {ψn}n ⊂ C0(K,C)
an equicontinuous and bounded sequence such that there exists ψ ∈ C0(K)
satisfying ∫

ϕψndν −→
∫
ϕψdν

for all ϕ ∈ C0(K). Then ψn → ψ in C0.

Proof. Let ψ0 be an accumulation point of {ψn}n≥0 in the C0-topology. Then,
if ψnj → ψ0 ∫

ϕψnjdν →
∫
ϕψ0dν

for all ϕ ∈ C0(K). Hence ∫
ϕ(ψ − ψ0)dν = 0

for all ϕ ∈ C0(K). Suppose by contradiction that ψ 6= ψ0. Then there exists
an open set V where ψ − ψ0 > δ > 0 (or ψ0 − ψ > δ > 0).

Choose ϕ ∈ C0(K) strictly positive and with support in V . It results
that ∫

ϕ(ψ − ψ0)dν >

∫
V

δϕdν > 0.
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Which is a contradiction. Hence ψ = ψ0 and the unique accumulation
point of {ψn}n≥0 in C0 is ψ. Since {ψn}n≥0 is relatively compact in C0,
ψn → ψ in C0.

From a previous Lemma we conclude that λ−nLnu → h
∫
udν in C0, for

all u ∈ Cγ(K). Observing that Cγ(K) is dense in C0(K) and

sup
n
‖ λ−nLn ‖<∞,

it results that

λ−nLnu→ h

∫
udν

in C0 for all u ∈ C0(K).

(8) Suppose ĥ ≥ 0 in C0(K) such that Lĥ = λ̂ĥ. Then

λ−nLnĥ =

(
λ̂

λ

)n

· ĥ→ h

∫
ĥdν.

Since ν is positive on open sets and ĥ ≥ 0, ĥ 6= 0, it follows that
∫
ĥdν > 0.

Hence λ̂ = λ. It results that ĥ = h
∫
ĥdν.

(9) From a previous Lemma, we have

JµT = λe−ψ
h ◦ T
h

.

Hence by Corollary 3.6

hµ(T ) =

∫
log JµT dµ = log λ−

∫
ψdµ

because µ is invariant.
The items (1) to (9) prove the Theorem of Ruelle, except for (7).

(10) Let us prove (7).
Let P = {P1, ..., Pm} be a partition of K with diameter smaller than r.
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Proof. From Lemma 3.3 it is clear that

1

A
JµT

m(x) ≤ µ(P )

µ(g(P ))
≤ AJµT

m(x)

for all x ∈ g(P ). It follows that

1

A
inf
P∈P

µ(P ) ≤ µ(g(P )) · JµTm(x) ≤ A sup
P∈P

µ(P ) (+).

Recalling that Jµf = λe−ψ h◦T
h

, it follows that

[JµT
m(x)]−1

exp{−m log λ+ Smψ(x)}
=

= exp

{
−

[
m−1∑
j=0

log

(
λe−ψ

h ◦ T
h

)
(T j(x))− log λ+ ψ(T j(x))

]}

= exp

{
−

[
m−1∑
j=0

log h(T j+1(x))− log h(T j(x))

]}
= exp{− log h(Tm(x)) + log h(x)}

=
h(x)

h(Tm(x))
∈

[
inf h

suph
,
suph

inf h

]
.

This togheter with (+) proves Lemma 4.3.

Let P(m) = {g(P ) | g : P → K is a contractive branch of T−m}. Then if
η ∈M(T )

Hη(T,P(m)) +

∫
Smψdη =

∑
g,P

[
−η(g(P )) log η(g(P )) +

∫
g(P )

Smψdη

]
.

Let Zm
g(P )ψ = supx∈g(P ) Smψ(x). Then

Hη(T,P(m)) +

∫
Smψdη ≤

∑
g,P

η(g(P ))
[
− log η(g(P )) + Zm

g(P )ψ
]
.
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Lemma 4.4. ∑
p1,...,pn≥0,p1+...+pn=1

pi(− log pi + ai) ≤ log
n∑
i=1

eai

.

The proof of the Lemma will be given soon.
It follows from the Lemma that

Hη(T,P(m)) +

∫
Smψdη ≤ log

∑
g,P

eZ
m
g(P )

ψ.

By a former Lemma we get,

eZ
m
g(P )

ψ ≤ µ(g(P ))em logλ

C1

.

Hence ∑
g,P

eZ
m
g(P )

ψ ≤ em logλ

C1

.

Then
1

m
Hη(T,Pm) +

∫
ψdη ≤ − logC1

m
+ logλ (∗).

Proof. Proof of Lemma 4.4 Let v(x1, ..., xn) = −
∑n

i=1 xi log xi +
∑n

i=1 aixi
be a function defined in {(x1, ..., xn) | xi ≥ 0 and

∑n
i=1 xi = 1}. Suppose

that p = (p1, ..., pn) is a maximum of v and that pj > 0 for 1 ≤ j ≤ n. Then

∂v

∂e1ej
= 0

for 2 ≤ j ≤ n. Hence
∂v

∂e1

=
∂v

∂ej

for ∂ ≤ j ≤ n. It results that

− log p1 − p1 ·
1

p1

+ a1 = − log pj − pj ·
1

pj
+ aj.
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Reordering the terms
Pj = eaj−a1p1.

And since
∑n

j=1 pj = 1, it results that

p1 =

(
n∑
j=1

e(aj−a1)

)−1

.

Calculating the value of v in this point

v(p) = log
n∑
j=1

eaj .

Observe that if v assume its maximum in a boundary point p = (p1, ..., pn)
we can suppose without loss of generality that pn = 0. But by similar calculus
v cannot assume its maximum in {(p1, ..., pn−1, 0), with pj > 0, 1 ≤ j ≤ n−1}
because such a maximum would be smaller than the value obtained above.
Reducing the problem in this way we would arrive at the conclusion that v
assume its maximum in (1, 0, ..., 0). But this is an absurd because

log
n∑
j=1

eaj > log ea1 = a1 = v(1, 0, ..., 0).

Therefore v assume its maximum in the interior point p described above and

v(x1, ...xn) ≤ log

(
n∑
j=1

eaj

)
.

Lemma 4.5. Let K be a compact metric space η ∈ M(K), ξ > 0 and C a
Borelian partition. There exists δ > 0 such that Hη(C/D) < ξ if D is any
partition with diam D < δ.
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Proof. Let C = {C1, ..., Cn}. By Lemma 4.3, for any ξ1 > 0 there exists
δ > 0 such that if diam D < δ then there exists E = {E1, ..., En} ⊂ D with
η(Ei∆Ci) < ξ1. The expression

Hη(C/E) = −
∑
i,j

η(Ei ∩ Cj) log
η(Ei ∩ Cj)
η(Ei)

depends continuously on the numbers η(Ei ∩ Cj) and η(Ei), and it vanishes
when η(Cj ∩ Ei) = δijη(Cj). Therefore if ξ1 is sufficiently small

Hη(C/E) < ξ.

Hence
Hη(C/D) ≤ Hη(C/E) < ξ.

Lemma 4.6. Suppose diam P < δ = C
3λ
. Then P ∨ ...∨ f−mP is thiner than

P(m).

Proof. Let g1(P ) and g2(P ) be atoms of P(1). Then diam g1(P ) < λδ and
diam g2(P) < λδ. Since there exist x1 ∈ g1(P ) and x2 ∈ g2(P ) such that
d(x1, x2) > C, it does not exist a Q ∈ P such that Q ∩ g1(P ) 6= ∅ and
Q ∩ g2(P ) 6= ∅. This proves that P ∨ f−1(P) is thiner than P(1).

Since diam P ∨ f−1(P) < λδ < δ we can repeat the argument and show
that P ∨ f−1(P) ∨ f−2(P) is thinner than P(2).

The proof is completed by induction.

Definition 4.7. A collection R = {R1, ..., Rn} of disjoint open sets is a
Markov partition of f if

(1) ∪ni=1bar Ri = K.
(2) diam Ri < r for all i = 1, ..., n and for all contractive branch ϕ :

Ri → K of f−1

ϕ(Ri) ∩Rj 6= ∅ ⇒ ϕ(Ri) ⊂ Rj

for all 1 ≤ j ≤ n.
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Lemma 4.8. There are Markov partitions of f with diameter arbitrarily
small.

Proof. Let B = {B1, ..., Bl} be a covering of K by balls with diameters
smaller than ξ. Define for n ≥ 0, B(n) = {ϕ(Bi) | ϕ : Bi → K is a contractive

branch of f−n}. For 1 ≤ i ≤ l define inductively B(0)
i = Bi and

B
(r)
i = B

(r−1)
i ∪

(
∪B∈B(r),B∩B(r−1) 6=∅B

)
.

Then diam B
(r)
i ≤ ξ + 2ξλ + ... + 2ξλr. Let B̂i = ∪∞r=0B

(r)
r . Hence diam

B̂i <
ξ

1−λ . Observe also that if ϕ : B̂i → K is a contractive branch of f−1

and ϕ(Bi) ∩Bj 6= ∅ then ϕ(B̂i) ⊂ B̂j, by construction.

Let R be the collection of the open sets R ⊂ K such that if R ∩ B̂j 6= ∅
then R ⊂ B̂j and such that R is maximal with that property. R is a finite
collection of disjoint open sets such that ∪R∈Rbar R = K. For completing
the proof of the Lemma, it remains to show that condition (2) of the above
definition is valid.

Claim:

Proof. Proof of the Claim:
The ϕ(B̂j) such that ϕ(Bj) ∩B1 6= ∅ cover B̂1.

Because if x ∈ B̂1 then x ∈ ϕ(n)(Dn), where ϕ(n) is a contractive branch of
f−n and Dn ∈ {B1, ..., Bl}. Also there exists a sequence ϕ(j)(Dj), 1 ≤ j ≤ n
such that ϕ(j)(Dj) ∧ ϕ(j+1)(Dj+1) 6= ∅, 1 ≤ j ≤ n − 1 and ϕ(1)(D1) ∩ B1 6=
∅. Suppose that D1 = Bj. By the construction of the B̂j the sequence

ϕ(j−1)(Dj), 1 ≤ j ≤ n is entirely contained in B̂j, where ϕ(j−1) = f ◦ ϕ(j).

Therefore x is in ϕ(ϕ(n−1)Dn) ⊂ ϕ(B̂j) and ϕ(Bj)∩B1 6= ∅. This proves the
claim.

Let R ∈ R be such that ϕ(R) ∩ B̂1 6= ∅. From the claim above it follows
that we can find Bj satisfing ϕ(Bj)∩B1 6= ∅ and ϕ(B̂j)∩ϕ(R) 6= ∅. Therefore

B̂j ∩ R 6= and so R ⊂ B̂j. Hence ϕ(R) ⊂ ϕ(B̂j) ⊂ B̂1. This proves that
ϕ(R) ⊂ R′ for some R′ ∈ R.
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Previous Lemmas permit to consider partitions P satisfying

∨mi=0T
−iP = {g(Pi) | g : Pi → K is a contractive branch of T−m} = P(m).

It is sufficient to take a Markov partition (with the boundaries arbitrarily
distributed) with diameter less than c/3λ, as in Lemma 4.8.

Because in this case the atoms of the two partitions are exactly of the
form A = {x | T i(x) ∈ Pi, 0 ≤ i ≤ m}.

Lemma 4.6 shows that hη(T ) = hη(T,P), for all η ∈ M(T ). Because if
C is any partition of K, take m > 0 such that P ∨ ... ∨ T−mP has diameter
smaller than δ.

Then

hη(T,C) ≤ hη(T,P ∨ ... ∨ T−mP) +Hη(C | P ∨ ... ∨ T−mP).

Since hη(T,P ∨ ... ∨ T−mP) = hη(T,P) and Hη(C | P ∨ ... ∨ T−mP) < ξ
it results that

sup
C
hη(T,C) ≤ hη(T,P).

Hence
hη(T ) = hη(T,P).

From these facts and from (*),

hη(T ) +

∫
ψdη ≤ log λ.

In the following we shall get this fact and we shall show also that the
equality holds only if η = µ. The proof above gives an intuitive idea of why
µ is the probability that maximizes the expression hη(T ) +

∫
ψdη. It fact,

a previous Lemma say what must be the values of η(P ) so that the equality
above holds and such values are exactly the values of µ(P ), according to a
previous Lemma.

We must show that if η 6= µ, η ∈M(T ) then

hη(f) +

∫
ψdη < log λ.

1st case - η singular with respect to µ.
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In this case, there exists C1 such that µ(C1) = 0 and η(C1) = 1. If
C = ∩N≥1 ∪j≥N T−j(C1), then T−1(C) = C, µ(C) = 0 and η(C) = 1. Using
again Lemma 4.8, consider Fm union of atoms of P(m) such that

(η + µ)(Fm∆C)→ 0

when n→∞.
Suppose by contradiction that

log λ ≤ 1

m
(Hη(P(m)) +

∫
Smψdη).

Then

m log λ ≤
∑

B∈P(m)

(−η(B) log η(B) +

∫
B

Smψdη).

Let Zm
g(P )ψ = supx∈g(P ) Smψ(x). Then

m log λ ≤
∑

B∈P(m)

η(B)(Zm
B ψ − log η(B))

≤
∑
B⊂Fm

η(B)(Zm
B ψ − log η(B)) +

∑
B⊂(Fm)c

η(B)(Zm
B ψ − log η(B)).

Lemma 4.9. Let pj ≥ 0, j = 1, ..., n, s =
∑n

j=1 pj ≤ 1, and a1, ..., an ∈ R.
Then

n∑
j=1

pj(aj − log pj) ≤ s
(

log
n∑
i=1

eai − log s
)
.

Proof. Analogous to Lemma 4.5.

So

m log λ ≤ η(Fm) log
∑
B⊂Fm

eZ
m
B ψ + η((Fm)c) log

∑
B⊂(Fm)c

eZ
m
B ψ + 2C

where
C = sup

o≤s≤1
−s log s.
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Then

−2C ≤ η(Fm) log
∑
B⊂Fm

eZ
m
B ψ−m log λ + η((Fm)c) log

∑
B⊂(Fm)c

eZ
m
B ψ−m log λ.

By Lemma 4.4

−2C ≤ η(Fm) log
∑
B⊂Fm

µ(B)

C1

+ η((Fm)c) log
∑

B⊂(Fm)c

µ(B)

C1

=

= log
1

C1

+ η(Fm) log µ(Fm) + η((Fm)c) log µ((Fm)c).

Making m→∞, η(Fm)→ η(C) = 1 and µ(Fm)→ µ(C) = 0. Therefore
the expression in the right converges to −∞ and this is a contradiction.

It results that

log λ >
1

m
(Hη(P(m)) +

∫
Smψdη)

and therefore using the adequate partition

log λ >
1

m
Hη(P ∨ ... ∨ T−mP) +

∫
ψdη.

Since the expression in the right is decreasing with m it follows that

hη(T ) +

∫
ψdη < log λ.

2nd case - η not singular with respect to µ. As η is not also absolutely
continuous with respect to µ, we can decompose it as η = αη′ + (1 − α)µ′,
where 0 < α < 1, η′ singular and µ′ absolutely continuous (with respect to
µ). Let A be such that T−1(A) = A, η′(A) = 1 and µ(A) = 0. Then for all
B Borel set

η′(T−1(B)) = η′(T−1(B ∩ A)) + η′(T−1(B ∩ Ac))

= η′(T−1(B ∩ A)) =
1

α
η(T−1(B ∩ A))

=
1

α
η(B ∩ A) = η′(B ∩ A) = η′(B).

Hence η′ ∈M(T ). It results that µ′ ∈M(T ) and therefore µ′ = µ.
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Lemma 4.10. Let ν, ν ′ ∈M(T ) mutually singulars and 0 < α < 1. Then

hαν+(1−α)ν′(T ) = αhν(T ) + (1− α)hν′(T ).

Proof. Let A be T -invariant such that ν(A) = 1 and ν ′(A) = 0.
Let A = {A,Ac} and η = αν + (1− α)ν ′. Then if R is a partition of K,

Hη(R∨A) = α
∑

R∈R∨AR⊂A

ν(R) logαν(R)

+(1− α)
∑

R∈R∨AR⊂Ac

ν ′(R) log(1− α)ν ′(R)

= α logα + (1− α) log(1− α) + αHν(R∨A) + (1− α)Hν′(R∨A).

Therefore

hη(T ) = lim
n→∞

1

n
Hη((P ∨ A) ∨ ... ∨ T−n+1(P ∨ A)) =

= lim
n→∞

1

n
Hη(P ∨ ... ∨ T−n+1P ∨ A) =

= lim
n→∞

1

n
[α logα + (1− α) log(1− α)+

+ αHη((P ∨ A) ∨ ... ∨ T−n+1(P ∨ A))+

+ (1− α)Hη′((P ∨ A) ∨ ... ∨ T−n+1(P ∨ A))]

= αhη(T ) + (1− α)hν′(T ).

From the Lemma it follows that

hη(T ) = αhη′(T ) + (1− α)hµ(T )

< α log λ+ (1− α) log λ

= log λ.

This proves item (7) and therefore all main Theorem 4.1.

Theorem 4.11. Let ψ and ϕ be Hölder-functions. Then µψ = µϕ iff ψ −
log λψ ∼ ϕ− log λϕ.
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Proof. If µψ = µϕ then JµψT = Jµϕf . This means that

λψe
−ψhψ ◦ T

hψ
= λϕe

−ϕhϕ ◦ T
hϕ

.

Define h =
hψ
hϕ
. Then

λψ
λϕ
· h ◦ T

h
= e−(ϕ−ψ).

Therefore

(log h) ◦ T − log h = (ψ − log λψ)− (ϕ− log λϕ).

Reciprocally suppose that there exists H ∈ C◦(K) such that

H ◦ T −H = (ψ − log λψ)− (ϕ− log λϕ).

To show that µψ = µϕ it is sufficient to show that µϕ << µψ because they
are ergodic probabilities. For this, it is sufficient to show that νϕ << νψ. Let
h = expH. Then, if u ∈ C◦(K).

(h−1λ−1
ψ Lψhu)(x) = h−1(x)

∑
y∈T−1(x)

e(ψ−log λψ)(y)h(y)u(y)

= h−1(x)
∑

y∈T−1(x)

e(ψ−log λψ+H)(y)u(y)

=
∑

y∈T−1(x)

e(ψ−log λψ+H−H◦T )(y)u(y)

= λ−1
ϕ Lϕu(x)

Hence
h−1λ−nψ L

n
ψh = λ−nϕ Lnϕ

for all n ≥ 0. On the other hand

hϕ

∫
udνϕ = lim

n→∞
λ−nϕ Lnϕu

= h−1 lim
n→∞

λ−nψ L
n
ψuh

= h−1hψ

∫
hudνψ.
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Therefore if u ∈ C◦(K), u ≥ 0,∫
udνϕ ≤

1

inf hϕ
‖ hψ ‖ · ‖ h−1 ‖ · ‖ h ‖

∫
udνψ.

This shows that νϕ << νψ.
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5 Differentiability for Hölder potentials

Remember that in last Chapter we have defined the space Cγ(K,R) of γ-
Hölder-continuous real valued functions on K.

For ψ ∈ Cγ(K,R) consider λ(ψ) > 0, hψ ∈ Cγ(K,R), νψ ∈ M(K),
µψ ∈M(K) given by Theorem 4.1. The purpose of this Chapter is to prove
the following Theorem.

Theorem 5.1. The functions

Cγ(K,R) 3 ψ −→ λ(ψ) ∈ R

Cγ(K,R) 3 ψ −→ hψ ∈ Cγ(K,R)

Cγ(K,R)× Cγ(K,R) 3 (ϕ, ψ) −→
∫
ϕdνψ ∈ R

Cγ(K,R)× Cγ(K,R) 3 (ϕ, ψ) −→
∫
ϕdµψ ∈ R

are real analytic.

Consider a function ψ0 ∈ Cγ(K,R) and define E1 as the subspace of
Cγ(K,C) generated by hψ0 and E2 as the subspace of Cγ(K,C) defined by∫

ϕdνψ0 = 0

for all ϕ ∈ E2. Define projections π1 : Cγ(K,C)→ E1, π2 : Cγ(K,C)→ E2

by

π1ϕ = hψ0

∫
ϕdνψ0

π2 = I − π1

For the proof of Theorem 5.1 we shall need the following Lemma.

Lemma 5.2. There exist B > 0, 0 < β < 1 and a > 0 such that

‖ λ(ψ0)−nLnψ0
ϕ ‖a,γ≤ Bβn ‖ ϕ ‖a,γ

for every ϕ ∈ E2.
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Proof. From Theorem 4.1 we know that ‖ λ(ψ0)−nLnψ0
ϕ ‖0 converges to zero,

for any ϕ ∈ E2. Let B be the closed unit ball in E2. B is compact in the
topology ‖ · ‖0. Therefore, given δ > 0, there exists N > 0 such that

‖ λ(ψ0)−nLnψ0
‖0≤ δ

if n ≥ N and ϕ ∈ B.
Taking a given by part (4) in the proof of Theorem 4.1, and making

λγ = c
| λ(ψ0)−2NL2N

ψ0
ϕ |a,γ≤ (CN | λ(ψ0)−NLNψ0

ϕ |a,γ +

C ‖ λ(ψ0)−NLNψ0
ϕ ‖0) ‖ λ(ψ0)−2NL2N

ψ0
1 ‖0

≤
[
cN(cN | ϕ |a,γ +C ‖ ϕ ‖0) ‖ λ(ψ0)−NLNψ0

1 ‖0 +Cδ
]
‖ λ(ψ0)−2NL2N

ψ0
1 ‖0 .

But for N large enough ‖ λ(ψ0)−2NL2N
ψ0

1 ‖0≤ 1+ ‖ hψ0 ‖0.
Then

| λ−2NL2N
ψ0
ϕ |a,γ≤ [cN(cN + C)(1+ ‖ hψ0 ‖0) + Cδ](‖ hψ0 ‖0 +1).

It follows that if N is large enough and δ small enough

| λ(ψ0)−2NL2N
ψ0
ϕ |a,γ≤

1

2
.

Hence, if ϕ ∈ B

‖ λ(ψ0)−2NL2N
ψ0
ϕ ‖a,γ≤

1

2
+ δ <

2

3

if we had chosen δ < 1/6. It follows from this that λ(ψ0)−2NL2N
ψ0

(B) ⊂ B
and that

‖ λ(ψ0)−2N ·nL2N ·n
ψ0
‖a,γ≤

(
2

3

)n

.

We conclude that there exist B > 0 and 0 < β < 1 such that

‖ λ(ψ0)−nLnψ0
ϕ ‖a,γ≤ Bβn ‖ ϕ ‖a,γ .
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Proof of Theorem 5.1. Lemma 5.2 implies that the spectrum sp(Lψ0) of
Lψ0 : Cγ(K,C) ←↩ is the eigen-value λ(ψ0) plus a set contained in the disc
{z | | z |< βλ(ψ0)}. Take circles γ1 and γ2 centered at λ(ψ0) and 0 such that
its interiors are disjoint and contain sp(Lψ0). Denote by S the space of con-
tinuous linear applications L : Cγ(K,C)←↩ endowed with the norm topology.
Let V be a neighborhood of Lψ0 in S such that sp(L)C int(γ, ) ∪ int(γ) for
all L ∈ V . Given L ∈ V define the spectral projections πi(1) : Cγ(K,C),
i = 1, 2, by

πi(L) =
1

2πi

∫
γi

(L− zI)−1dz

and let E1(L) = π(L)z(Cγ(K,C)). It is well know that

Cγ(K,C) = E1(L)⊕ E2(L)

I = π1(L) + π2(L)

dimE2(L) = 1

πi(L) is a complex analytic function of L.
Take v∗ ∈ (Cγ(K,C))∗ such that 〈v∗, hψ0〉 6= 0 and define, for L ∈ V

λ(L) =
〈v∗, Lπ1(L)hψ0〉
〈v∗, π1(L)hψ0〉

.

The denominator is different from zero if V is taken small enough. Then
the function λ : V → C is analytic. Define also h(L) ∈ Cγ(K,C) by

h(L) = π1(L) · 1.

Observe that h : V → Cγ(K,C) is analytic and that π1(Lψ0)1 = hψ0 . We
can therefore define, restricting the neighborhood V if necessary, ν : V →
(Cγ(K,C))∗, by

〈ν(L), ϕ〉 =
π1(L)ϕ

π1(L)1
.

The function that associates to each pair (L, ϕ) ∈ V × Cγ(K,C) the
complex number 〈ν(L), ϕ〉 is analytic. Since E2(L) is unidimensional and
invariant and h(L) ∈ E1(L), it follows that Lh(L) = λh(L) for some λ ∈ C.
But

λ(L) =
〈v∗, Lπ1(L)hψ0〉
〈v∗, π1(L)hψ0〉

= λ.
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Therefore for any L ∈ V

Lh(L) = λ(L)h(L).

For any L ∈ V consider L∗ : (Cγ(K,C))∗ ←↩ the adjoint map. Then

〈L∗ν(L), ϕ〉 = 〈ν(L), Lϕ〉

=
π1(L)Lϕ

π1(L)1
=
Lπ1(L)Lϕ

π1(L)1

= λ(L)
π1(L)ϕ

π1(L)1
= λ(L)〈ν(L), ϕ〉

for any ϕ ∈ Cγ(K,C). Hence

L∗ν(L) = λ(L)ν(L).

Since the application Cγ(K,C) 3 ψ → Lψ ∈ S is analytic, it follows that
there exists a neighborhood W of ψ0 in Cγ(K,C) such that Lψ ∈ V if ψ ∈ W
and the functions

(1) W 3 ψ → λ(Lψ) ∈ C.

(2) W 3 ψ → h(Lψ) ∈ Cγ(K,C).

(3) W × Cγ(K,C) 3 (ψ, ϕ)→ 〈ν(Lψ), ϕ〉 ∈ C are analytic. More over

Lψh(ψ) = λ(Lψ)h(ψ)

and
L∗ψν(Lψ) = λ(Lψ)ν(Lψ).

We shall show now that if ψ is real then

(4) λ(Lψ) = λψ

(5) h(Lψ) = hψ

(6) ν(Lψ) = νψ
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Write hψ = ah(Lψ) + ϕ with ϕ ∈ E2(Lψ). Then

λ(Lψ)−nLnψhψ = ah(Lψ) + λ(Lψ)−nLnψϕ.

Since ϕ ∈ E2(Lψ), it follows that λ(Lψ)−nLψ)nϕ→ 0 and therefore

lim
n→∞

λ(Lψ)−nλnψhψ = ah(Lψ).

And since h(Lψ) 6= 0, hψ 6= 0, we obtain λ(Lψ) = λψ and hψ = ah(Lψ).
More over

L∗ψνψ = λψνψ = λ(Lψ)νψ.

But λ(Lψ) is a simple eigen-value of L∗ψ (because λ(Lψ) is a simple eigen-
value of Lψ). It follows that ν(Lψ) = bνψ, for some b. Since νψ(1) = 1 =
ν(Lψ)1. We conclude that b = 1.

Hence ν(Lψ) = νψ.
Then

1 = 〈ν(Lψ), h(Lψ)〉 = a〈ν(Lψ), hψ〉 = a〈νψ, hψ〉 = a.

It results that hψ = h(Lψ), completing the proof of (4), (5), (6) that,
together with (1), (2), (3), proves Theorem 5.1

6 Hausdorff Dimension and Capacity

Definition 6.1. Let K be a compact metric space. For t > 0, define the
t-measure of K as

mt(K) = sup
ε↘0

inf
Γε

∑
B∈Γε

(r(B))t

where Γε is any collection of balls B with radius r(B) smaller than ε.

It is easy to verify that there exists a unique t0 ∈ [0,∞] with the following
property:

mt(K) =∞ if t < t0
mt(K) = 0 if t > t0
This t0 is called the Hausdorff dimension of K and denoted by HD(K).
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We shall collect some well-known facts about the Hausdorff dimension in
the next proposition. Since they will not be used in what follows, we shall
not prove them.

Proposition 6.2. (a) If M is a compact manifold, than HD(M) = dimM .

(b) If K1 ⊂ K2 then HD(K1) ≤ HD(K2).

(c) If K = K1 ×K2 then HD(K) ≥ HD(K1) +HD(K2).

Definition 6.3. Let N(ε,K) be the number of balls of radius ε necessary for
covering K. Define the upper and lower limit capacities of K by

C+(K) = lim sup
ε↘0

logN(ε,K)

− log ε

C−(K) = lim inf
ε↘0

logN(ε,K)

− log ε

Lemma 6.4. HD(K) ≤ C−(K) ≤ C+(K)

Proof. Given δ > 0 consider a sequence εn ↘ 0 such that N(εn, K) ≤
ε
−(C−(K)+δ)
n .

Then, if t > C−(K) + δ

mt(k) ≤ lim
n→∞

εtnε
−(C−(K)+δ)
n = 0

Hence HD(K) ≤ C−(K) + δ
Since δ > 0 is arbitrary, the result follows.

Lemma 6.5. Suppose that there exist a probability µ over K and numbers
δ− > 0 and δ+ > 0 with the following property:

δ− ≤ lim inf
r→0

log µ(Br(x))

log r
≤ lim sup

r→0

log µ(Br(x))

log r
≤ δ+

for all x ∈ K. Then δ− ≤ HD(K) ≤ C−(K) ≤ C+(K) ≤ δ+.
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Proof. Given δ > 0 it follows from the first inequality that µ(Br(x)) ≤ rδ
−−δ

if r is small enough. Therefore if Γr is a collection of balls of radius smaller
than r covering K

1 ≤
∑
B∈Γr

µ(B) ≤
∑
B∈Γr

r(B)δ
−−δ.

It follows that HD(K) ≥ δ− − δ. Since δ > 0 is arbitrary it results that
HD(K) ≥ δ−.

A set S ⊂ K is called ε-separated if for any x, y ∈ S, d(x, y) > ε. Denote
by S(ε,K) the maximum number of elements in a ε-separated set. It is easy
to verify that N(ε,K) ≤ S(ε,K) ≤ N(ε/2, K).

Hence

C+(K) = lim sup
ε↘0

logS(ε,K)

− log ε

C−(K) = lim inf
ε↘0

logS(ε,K)

− log ε

Given δ > 0, it follows from the third inequality in the hypothesis
of the lemma that µ(Br(x)) ≥ rδ

++δ if r is small enough. Take a set
{x1, ..., xS(r,k)} r-separated. Then the balls B(xi, r/2) are disjoint and so

1 ≥
∑
i

µ(B(xi, r/2)) ≥
(
r

2

)δ++δ

S(r, k).

It follows that C+(K) ≤ δ+ + δ. Since δ is arbitrary it results that C+(K) ≤
δ+. This concludes the proof of the lemma.

Definition 6.6. A probability µ ∈ m(k) is called a δ-probability if there exists
C > 0 such that

C−1 ≤ µ(Br(x))

rδ
≤ C

for any x ∈ k and r > 0.

Lemma 6.7. If K admits a δ-probability then HD(K) = C−(K) = C+(K) =
δ. Any two δ-probabilities are equivalent.
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Proof. The first part of the lemma is an easy corollary of Lemma 6.5. To
prove the second part observe that if µ is a δ-probability then for every k > 1
there exists α(K) > 0 such that

µ(Bkr(x))

µ(Br(x))
≤ α(K)

for any x ∈ K and r > 0. This implies that Vitali’s recovering theorem holds
for µ (just repeating the usual proof in the case of the Lebesgue measure).
A ⊂ K is a Borel set there exists a covering of A by disjoint balls Bri(xi),
{xi} ⊂ A, with supi ri arbitrarily small and such that µ(A \ ∪iBri(xi)) = 0.
Let ν be another δ-probability, where the associated constant in Definition
6.6 is given by C (and not C). Given ε > 0 take U ⊃ A on open set such
that ν(U) ≤ ν(A) + ε. Suppose that supi ri is so small that U ⊃ ∪iBri(xi).

Then
µ(A) = µ(A ∩ (∪iBri(xi))) ≤ µ(∪iBri(xi))

=
∑
i

µ(Bri(xi))

≤ C
∑
i

rδi

≤ CC
∑
i

ν(Bri(xi))

= CCν(UiBri(xi))

≤ CCν(U)

≤ CC(ν(A) + ε)

Since ε > 0 is arbitrary, this proves that µ << ν. Inverting the roles
of µ and ν we can prove that ν << µ. It follows then that µ and ν are
equivalent.
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7 Differentiability of the Hausdorff Dimen-

sion of Julia sets

It this chapter we shall prove differentiability results for Julia sets of rational
maps on the Riemann sphere. Let us recall the notation. Rd is the space of
rational maps f : C←↩ of the Riemann sphere of degree d > 1, endowed with
the C0 topology. Ad ⊂ Rd is the set of Axiom A rational maps (see definition
in [9] or [2]). J(f) is the Julia set of f and δ(f) its Hausdorff dimension. For
more details on the dynamics of rational maps see [5], [9], [7] or [2].

When f ∈ Ad there exists a unique f -invariant probability Mf on the
Borel σ-algebra of J(f) such that there exists C > 0 satisfying

C−1 ≤ uf (Br(x))

rδ(f)
≤ C

for all x ∈ J(f) and r > 0. The main result in this section is the following

Theorem 7.1. The functions
Ad 3 f → δ(f)
Ad 3 f → hµf (f) and

Ad 3 f →
∫
ϕdµf ∈ R where ϕ : C → R is any Hölder continuous

function, are real analytic.

In the proof of this theorem we shall use the following proposition:

Proposition 7.2. Suppose f ∈ Ad and ∞ 6∈ J(f). Then there exist a
neighborhood U of f in Ad and an analytic map h : U → Cγ(J(f),C) such
that g ◦ hg(z) = hg ◦ f(z) for every g ∈ U and z ∈ J(f). Moreover J(g) =
hg(J(f)).

Proof. Given f ∈ Ad with ∞ 6∈ J(f) take δ > 0 and a neighborhood U0 of f
such that d(z, J(f)) < δ implies g(z) 6=∞, for any g ∈ U0. Given 0 < γ < 1
let W be the ball of radius δ centered at the identity I in Cδ(J(f),C). Define
Φ : U0 ×W → Cγ(J(f),C) by Φ(g, h) = g ◦ h− h ◦ f .
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It is straightforward to verify that Φ is anlytic. More over,

∂Φ

∂h
(f, I)ϕ(z) = f ′(z)ϕ(z)− ϕ ◦ f(z).

We claim that
∂Φ

∂h
(f, I)

is an isomorphism. We shall prove this by showing that

L : Cγ(J(f),C)←↩

given by

Lϕ(z) =
∞∑
j=0

ϕ(f jz)[(f j+1)′(z)]−1 (6)

for ϕ ∈ Cγ(J(f),C) is an inverse to

∂Φ

∂h
(f, I).

Observe first that since f ∈ Ad, there exists a metric ‖.‖ in J(f) such
that f |J(f) : J(f)←↩ is an expanding map. Therefore we can prove a lemma
similar to Lemma 3.3.

Lemma 7.3. There exist r > 0 and a constant A > 0 such that if x, y ∈ J(f)
with d(f jx, f jy) ≤ r, 0 ≤ j ≤ n, then

A−1 ≤ d(f jx, f jy)

d(x, y)|(f j)′(x)|
≤ A

∣∣∣∣ (fn)′(y)

(fn)′(x)
− 1

∣∣∣∣ ≤ Ad(fny, fnx).

Proof. Take r > 0 such that B(n, r, x) = g(Br(f
nx)) with g a contractive

branch of f−n with g(fnx) = x as in Lemma 3.1. Then if y ∈ B(n, r, x) and
0 ≤ j ≤ n

(f j)′(y)

(f j)′(x)
=

j−1∏
i=0

f ′(f iy)

f ′(f ix)
=

j−1∏
i=0

f ′(f iy)− (f ′(f ix)

f ′(f ix)
+ 1.
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Hence ∣∣∣∣ (f j)′(y)

(f j)′(x)
− 1

∣∣∣∣ ≤ [j−1∏
i=0

|f ′(f iy)− f ′(f ix)|
|f ′(f ix)|

+ 1

]
− 1 ≤

≤
[j−1∏
i=0

|f ′(f iy)− f ′(f ix)|
c

+ 1

]
− 1

where
c = inf

x∈J(f)
|f ′(x)| > 0.

Then ∣∣∣∣ (f j)′(y)

(f j)′(x)
− 1

∣∣∣∣ ≤ [j−1∏
i=0

1 +
C

c
d(f iy, f ix)

]
− 1

where
C = sup

x∈bar C
|f ′′(x)|.

Let εi = 0 or 1, for 0 ≤ i ≤ j − 1. Then∣∣∣∣ (f j)′(y)

(f j)′(x)
− 1

∣∣∣∣ ≤ [j−1∏
i=0

1 +
C

c
λj−id(f jy, f jx)

]
− 1

=
∑

(ε0,...,εj−1) 6=(0,...,0)

j−1∏
i=0

(
C

c
λj−id(f jy, f jx)

)εi
=

= d(f jy, f jx)
∑

(ε0,...,εj−1)6=(0,...,0)

(j−1∏
i=0

C

c
λj−i

)εi
d(f jy, f jx)

∑
εi−1.

Since d(f jx, f jy) < r, d(f jy, f jx)
∑
εi−1 < 1. Hence∣∣∣∣ (f j)′(y)

(f j)′(x)
− 1

∣∣∣∣ ≤ d(f jy, f jx)

[(j−1∏
i=0

1 +
C

c
λj−i

)
− 1

]
.

Since the last product is bounded by

∞∏
i=0

(
1 +

C

c
λi
)

the second part of the lemma follows. The first part follows easily from the
second.
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Let us prove now that L of expression (6) is well defined and continuous.
Take ϕ ∈ Cγ(J(f),C) and two points x, y ∈ J(f) with d(x, y) < r. Let N
be the greatest integer such that d(f jx, f jy) ≤ r, for 0 ≤ j ≤ N .

Observe that

Cλ−N ≤ (fN)′(x) ≤ rA

d(x, y)
.

Therefore

N ≤ log rA− logC + log d(x, y)

log λ−1
.

Hence there exists a constant E > 0 such that Nd(x, y) ≤ Ed(x, y)γ. Then

|Lϕ(x)− Lϕ(y)| ≤
∞∑
0

|[(fn+1)′(x)]−1ϕ(fnx)− [(fn+1)′(y)]−1ϕ(fny)|

≤
N∑
0

|[(fn+1)′(x)]−1ϕ(fnx)− ϕ(fny)|+

+|(fn+1)′(x)−1 − (fn+1)′(y)−1||ϕ(fny)|+

+
∑
n>N

|(fn+1)′(x)|−1|ϕ(fnx)|+ |(fn+1)′(x)||ϕ(fny)|

Therefore

|Lϕ(x)− Lϕ(y)| ≤ ‖ϕ‖γ
N∑
0

|(fn+1)′(x)|−1d(fnx, fny)γ+

+‖ϕ‖0

N∑
0

|(fn+1)′(x)|−1

∣∣∣∣1− (fn+1)′(x)

(fn+1)′(y)

∣∣∣∣+
+‖ϕ‖0

[
|(fN+2)′(x)−1

∞∑
0

|(fn)′(fN+1x)|−1+

+|(fN+2)′(y)|−1

∞∑
0

|(fn)′(fN+1y)|−1

]

≤ Aγ‖ϕ‖γd(x, y)γ
N∑
0

|(fn+1)′(x)|−1+γ+
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A‖ϕ‖0

N∑
0

|(fn+1)′(x)|−1d(fny, fnx)+

+‖ϕ‖0C
1

1− λ
[|(fN+2)′(x)|−1 + |(fN+2)′(y)|−1]

≤ Aγ‖ϕ‖γd(x, y)γC1−γ λ1−γ

1− λ1−γ+

+A2‖ϕ‖0Nd(x, y) + C
1

1− λ
‖ϕ‖02

A

r
d(x, y)

≤ F‖ϕ‖γd(x, y)γ

for same constant F > 0.
This estimatives proves that Lϕ ∈ Cγ(J(f),C) and that |Lϕ|r,γ ≤ F‖ϕ‖γ.

It is very easy to prove that ‖Lϕ‖0 ≤ B‖ϕ‖0 for some constant B > 0. We
conclude that ‖Lϕ‖γ ≤ max(B,F )‖ϕ‖γ and therefore L is continuous.

It is a straightforward verification that L is indeed the bilateral inverse
of

∂Φ

∂h
(f, I).

We can now apply the implicit function theorem to obtain a neighborhood
U of f and an analytic function h : U → Cγ(J(f),C) such that hf = I and
Φ(g, hg) = 0.

If hg(x) = hg(y) then hg(fnx) = hg(fny) for all n ≤ 0. This implies
that d(fnx, fny) ≤ 2d0(hg, I). Therefore, restricting if necessary the neigh-
borhood U , hg is injective. It remains to prove that hg(J(f)) = J(g).

Every point of hg(J(f)) is accumulated by a sequence {pn} of periodic
points pn 6= p. This follows immediately from the fact that the same property
holds for J(f). Hence p ∈ J(g). Therefore we have proved that J(g) ⊃
hg(J(f)). But every point hg(p) ∈ hg(J(f)) has d pre-images (namely, the
points hg(q), with q ∈ f−1({p})). Then g−1(hg(J(f))) ⊂ hg(J(f)). Since
completely invariant set of bar C contains J(g), J(g) ⊂ hg(J(f)).

This completes the proof of our main result.

Given f ∈ Ad and ψ ∈ Cγ(J(f),R) let Lψ : C0(J(f)) ←↩ the Perron-
Fröbenius operator associated to f |J(f) : J(f) ←↩ and ψ. Let λ(ψ, f) be
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the eigenvalue of Lψ given by Ruelle’s theorem. Observe that if U is the
neighborhood of f given by Proposition 7.2 then

Lψ0hg(ϕ0hg) = (Lψϕ) ◦ hg

(0) for every g ∈ U , ϕ ∈ C0(J(g)) and ψ ∈ Cγ(J(g),R). This implies
that the application C0(J(g)) 3 ϕ → ϕ ◦ hg ∈ C0(J(f)) is an equivalence
between Lψ : C0(J(g)) ←↩ and Lψ◦hg : C0(J(f)) ←↩ for every ψ ∈ Cγ(J(g))
and g ∈ U . Then it is easy to verify that λ(ψ ◦ hg, f) = λ(ψ, g) for every
g ∈ U , ψ ∈ Cγ(J(g),R). Besides, it follows from Ruelle’s theorem that

log λ(ψ, g) = lim
n→∞

1

n
logLnψ(1)(x)

for any x ∈ J(g).

Lemma 7.4. If f ∈ Ad and α ∈ R then
(a) The limit below

P (d, f) = lim
n→∞

1

n
log

∑
y∈f−nx

|(fn)′(y)|−α

exists for any x ∈ J(f) and independs on x ∈ J(f).
(b) The function R× Ad 3 (α, f)→ P (α, f) is real analytic.
(c) P (α, f) = log λ(−α log |f ′|, f).

Proof. (a) and (c) are immediate from the previous observation. Let us then
prove (b). Let U be a neighborhood of f in Ad as in Proposition 7.2. Then
if g ∈ U

P (α, g) = log λ(−α log |g,|, g)

= log λ(−α log |g, ◦ hg|, f).

It is easy to see that U 3 g → log |g′ h g| is real analytic. By Theorem 5.1
ψ 3 Cγ(J(f),R) → λ(ψ) ∈ R is real analytic. So P (., .) is the composition
of analytic functions and hence is analytic.
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Lemma 7.5. For each f ∈ Ad there exists C(f) > 0 such that

∂P

∂d
(α, f) ≤ −C(f)

for any α ∈ R.

Proof. Given f ∈ Ad, take x ∈ J(f) and define Pn : R←↩ by

Pn(α) =
1

n
log

∑
y∈f−nx

|(fn)′(y)|−α.

Then

P ′n(α) =
1

n

−
∑

y∈f−nx |(fn)′(y)|−α log |(fn)′(y)|∑
y∈f−nx |(fn)′(y)|−α

.

Since f ∈ Ad, there exists C(f) > 0 such that

1

n
log |(fn)′(z)| ≥ C(f)

for any z ∈ J(f). Hence P ′n(α) ≤ −C(f) for any α ∈ R. This implies that
Pn(α1)−Pn(α2) ≤ −C(f)(α1−α2) for any α1 > α2. Taking the limits when
n tends to infinity P (α1, f)− P (α2, f) ≤ −C(f)(α1 − α2) for any α1 > α2.

We conclude that
∂P

∂α
(α, f) ≤ −C(f)

for any α ∈ R.

Observe that P (0, f) = d. It follows from the lemma above that there
exists a unique δ(f) > 0 such that P (δ(f), f) = 0. We can also apply the
implicit functions theorem to the equation P (α, g) = 0 and conclude that
the function Ad 3 f → δ(f) ∈ R is real analytic.

From the above we get that for every ψ ∈ Cγ(J(g),R) and g ∈ U

(hg) ∗ νψ◦hg = νψ

hψ◦hg = hψ ◦ hg
and hence

(hg) ∗ µψ◦hg = µψ.
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Define µg = µψ with ψ = −δ(g) log |g,|.
Then µg = (hg) ∗ µ−δ(g) log(|g,|◦hg).
Hence ∫

ϕdµg =

∫
(ϕ ◦ hg)dµ−δ(g) log(|g,|◦hg)

for any ϕ ∈ C0(C,R).
From this relation and the last part of Theorem 5.1 we conclude that

Ad 3 f →
∫
ϕdµf ∈ R is real analytic if ϕ ∈ Cγ(C,R) (2)

Note also that

log λ(−δ(g) log |g′|g) = hµg(g) +

∫
(−δ(g) log |g′|)dµg.

But
log λ(−δ(g) log |g,|g) = P (δ(g), g) = 0.

Hence

hµg(g) = δ(g)

∫
log |g,|dµg

= δ(g)

∫
log(|g,| ◦ hg)dµ−δ(g) log(|g,|◦hg)

since g → δ(g) is analytic it follows again from the last part of Theorem
5.1 that g → hµg(g) is analytic. (3)

Proposition 7.6. If there exists a probability ν ∈M(J(f)) whose Jacobian
with respect to f is equal to |f ′|δ, then ν is a δ-probability.

Proof. Let r0 > 0 be such that there are contractive branches of f−n defined
in Br0(x), for any x ∈ J(f) and n > 0. Take z ∈ J(f) and contractive
branches ϕn : Br0(f

nz)→ C of f−n such that ϕn(fnz) = z. Define 0 < ρn ≤
rn by

rn = min{r|Br0(z) ⊃ ϕn(Br0(f
nz))}

ρn = max{r|Br0(z) ⊂ ϕn(Br0(f
nz))}

By using Lemma 7.3 we obtain

A−1r0|(fn)′(z)|−1 ≤ ρn ≤ rn ≤ Ar0|(fn)′(z)|−1(∗)
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and

A−2 ≤ |(f
n)′(x)|

(fn)′(y)|
≤ A2(∗∗)

for all x, y ∈ ϕn(Br0(f
nz)).

So

ν(Br0(f
nz)) = ν(fn(ϕn(Br0(f

nz)))) =

∫
ϕn(Br0 (fnz))

|(fn)′|δdν.

Since ν is positive on open sets, ν(Br0(x)) ≥ c > 0 for some constant
c > 0 and all x ∈ J(f). This together with (**) proves that there exist a
constant B > 0 such that

B−1 ≤ |(fn)′(z)|δν(ϕn(Br0(f
nz))) ≤ B.

Therefore
ν(Bρn(z)) ≤ B|(fn)′(z)|−δ ≤ BAδr−δ0 ρδn

ν(Brn(z)) ≥ B−1|(fn)′(z)|−δ ≥ B−1A−δr−δ0 rδn.

Given 0 < r < ρ0 take n such that rr+1 < r < rn. Then

ν(Br(z)) ≥ ν(Brn+1(z)) ≥ B−1A−δr−δ0 rδn+1.

It follows easily from (*) that there exists a constant D > 0 such that

D−1 ≤ rn+1

rn
≤ D

and
D−1 ≤ ρn+1

ρn
≤ D.

It follows that

ν(Br(z)) ≥ B−1A−δr−δ0 Dδrδ
def
= C−1rδ.

Using now the sequence {ρn} in the role of {rn} we can prove that
ν(Br(z)) ≤ Crδ.

This proves the proposition.

Observe now that if ψ = −δ(g) log |g,| then νψ has Jacobian Jνψg =

|g,|δ(g). This implies that νψ is a δ(g)-probability. Therefore µg = µψ is also
a δ(g)-probability. Since any two δ(g)-probability are equivalent and µg is
ergodic it follows that µg is the unique invariant δ(g)-probability in J(g).
Therefore µg is the probability mentioned in Theorem 7.1. Hence (1), (2)
and (3) proves the theorem.
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