GENERIC PROPERTIES FOR RANDOM REPEATED QUANTUM
ITERATIONS

ARTUR O. LOPES AND MARCOS SEBASTIANI

ABSTRACT. We denote by M" the set of n by n complex matrices. Given a fixed density
matrix 3 : C" — C" and a fixed unitary operator U : C" @ C" — C" ® C", the transformation
DM — M"
0—2(0) =T (U(Q®B)U)

describes the interaction of Q with the external source . The result of this operation is
®(Q). If Q is a density operator then ®(Q) is also a density operator. The main interest
is to know what happen when we repeat several times the action of @ in an initial fixed
density operator Qp. This procedure is known as random repeated quantum iterations and
is of course related to the existence of one or more fixed points for ®.

In [3], among other things, the authors show that for a fixed 8 there exists a set of full
probability for the Haar measure such that the unitary operator U satisfies the property that
for the associated @ there is a unique fixed point Q¢. Moreover, there exists convergence
of the iterates ®"(Qp) — Qa, Wwhen n — oo, for any given initial Qg

‘We show here that there is an open and dense set of unitary operators U : C" @ C" —
C" ® C" such that the associated ® has a unique fixed point.

We will also consider a detailed analysis of the case when n = 2. We will be able to
show explicit results. We consider the C° topology on the coefficients of U. In this case we
will exhibit the explicit expression on the coefficients of U which assures the existence of
a unique fixed point for ®. Moreover, we present the explicit expression of the fixed point

Os

1. INTRODUCTION

We denote by M" the set of n by n complex matrices. Given a fixed density matrix
B :C" — C" and a fixed unitary operator U : C" ® C" — C" ® C", the transformation
oM =M

Q— ®(Q) =T (U (Q®P)U™)
describes the interaction of Q with the external source f3.

We assume that all eigenvalues of 3 are strictly positive.

In [3] the model is precisely explained: Q is in the small system and 3 describes the
environment. Then ®(Q) gives the output of the action of 8 over Q for the system which
is under the influence of the unitary operator U.

Other related papers are [2] and [4].

The main question is about the convergence of the iterates ®"(Qy), when n — oo, for
any given Qp. It is natural to expect that any limit (if exists) is a fixed point for ®.

Our purpose is to show the following theorem:

Theorem 1. Given a fixed density matrix 3 : C" — C", for an open and dense set of unitary
operators U : C" @ C" — C" ® C" the transformation ® : M" — M"

Q—@(Q)=Tn(U(Q®B)U")
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has a unique fixed point Qg. In the case n =2 we present explicitly the analytic character-
ization of such family of U and also the explicit formula for Q.

This result implies one of the main results in [3] that we mentioned before.

2. THE GENERAL DIMENSIONAL CASE

Suppose V is a complex Hilbert space of dimension n > 2 and .# (V') denotes the space
of linear transformations of V in itself.

Then, Try : Z(VRV) — Z(V) satisfies Tr,(A® B) = Tr(B) A.

There is a canonical way to extend the inner producton Vto V®V.

We fix a density matrix f € .2 (V). For each unitary operator U € .Z(V ® V') we denote
by @y : L(V) = Z (V) the linear transformation

Py (A)=Tr,(UA®B)U).

We denote by I' C £ (V) the set of density operators. It will be shown that @ preserves
I'. AsT"is a convex compact space it has a fixed point.

The set of unitary operators is denoted by 7% .

If A is such that @y (A) = A, then it follows that the range of ®y — I is smaller or equal
ton®—1.

We will show that there exists a proper real analytic subset X C % such that if U is not
in X, then the range ®y — I = n” — 1. In this case the fixed point is unique. More precisely

X ={U e : range(dy —1I) <n*—1}.

This X C 7% is an analytic set because is described by equations given by the deter-
minant of minors equal to zero. It is known that the complement of an analytic set, also
known as a Zariski open set, is empty or is open and dense on the analytic manifold (see
[1]). Therefore, in order to prove our main result we have to present an explicit U such that
range of (®y —1)isn*>—1.

This will be the purpose of our reasoning which will be described below.

The bilinear transformation (A, B) — Tr(B)A from £ (V) x £ (V) to £ (V) induces the
linear transformation

Try: L(VaV)=[ZL(V)0ZLV)] = ZLV).

Denote by e, e, ...,e, an orthonormal basis for V. We also denote L;; € .Z(V) the
transformation such that L;;(e;) = ¢; and L;j(ex) =0 if k # j.

The set of L;; provide a basis for £ (V).

IfA € Z(V) wecanwrite A=Y, ; a;;L;j and we call [a;;]1<; j<, the matrix of A.

Note that e; ®e;, 1 <17, j < nis an orthonormal basis of V ® V. Moreover,

Ly®Lj(ex@e) = e;Qej,
and
Lik ®le(ep®eq) =0if (paQ) 7é (kal)
It is also true that:
a) Liijq =0ifj 7’é P>
b) LijLpj = Lig,
¢) Tr (L;j) =0ifi# jand Tr (L;) = 1.
One can see that Ly @ Lj;, 1 <i,k, j,I <nis abasis for Z(VaV).
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GivenT € Z(V®V)denote T =Y t; j x 1Lix ®Lj;. Then,
Try(T) = Y tijujLic =} (Y tijkj) Lie
ik j
In the appendix we give a direct proof that: if A € T', then ®y(A) € T, forallU € % .

Now we will express @y in coordinates. We choose an orthonormal base ey, e3,..,e, €V
which diagonalize 8. That is

B=Y ALgg, Ag>0,1<q<n Y A,=1
q q

Given r,s, | <r,s <n, we will calculate @y (Lyy).
Suppose U = Y u; jxiLix ®Lj;, then U* =Y u; 1/ Lix ® Lj; and

(Lrs®ﬁ U* Z)L Lrs®qu U* Z}L Mkls] rk®L]l

Now, we write U = Zuaﬂﬁ_’%(gLay ®Lgs- Then, we get

( rs®ﬁ Zl uaﬁrjukISJLak®Lﬁl
Finally,
Dy (Lys) = Z/lj Ug lrj Wklsj Lok = Z (Z/lj UalrjUkisj M) Lak-
ak jl

As I is convex and compact and ¢y is continuous then (as we said before) there exists
a fixed point A € I'. In particular the range of ¢y is smaller or equal to n% — 1.

We will present an explicit U such that range of (®y —1I) is n> — 1.

This will be described by a certain kind of circulant unitary operator

Suppose uy,u, ...,u,» are complex number of modulus 1. We define U in the following
way

Uler®@er) =ui(e1®e2), Uler®er) = uz (e1 ®e3),...,U(e1 ®en) = up (e2®ey),

Ulea®er) =1 (e2®e2), Ulea®@er) = upy2 (e2®e3),...,U(ea®ey) = uan (€3 @ e1),

Ulen®@er)=up_, (en®e2), Ule,@e2) =up_, 5 (ea®e3),....,U(e,Qe,) =u,n (e1@ey),

We will show that for some convenient choice of u1,uy,...,u,» we will get that the range
of ®y —ITisn?—1.
Suppose

U=Y uijriLixc ®Lj,
in this case
U(6k®€l) = Z Ujjkiei  ej.
ij

By definition of U we get
a)ifl <n,thenu; j;; #0,ifand only if, i =k, j =141;
b)if k <n,thenu; jx, #0,if and only if, i = k+ 1, j = I;
C)ujjnn#0,ifandonlyif, i=j=1.
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For fixed r,s such that 1 <,r,s <n we get from a), b) and c):
1<r<n,1<s<n,implies
n—1
CDU(Lrs) = ( Z Uy j+1,r,j Us j+1,s,j lj )Lrs + Ur 1,1, Us+1, 150 lrz L(r+1)(s+1)?
j=1
1 <s < n, implies
n—1

Py (Lus) = () tn,j+inj s jrtsj A ) Lns + 11 nn Bt Tom An L (s11);
=

1 <r < n, implies

n—1

<I)U(Lm) = ( Z Uy j+1,r,j m/’l‘] )Lrn + Uri-1,1,rn Wln L(r+1)1'

j=1
In particular for 1 < r < n we have ®y (L,,) = (1 — A,) Ly +lnL(,+1)(,+1).
In order to show that the range of &y —1I is n? — 1 we will show that the Ou(Lys) — Lys

are linearly independent for (r,s) # (n,n)
Suppose that
Z Crs (‘PU (Lrs) _Lrs) =0.
(rs)#(n,n)

The coefficient of Ly is —A,, c11, then c¢11 = 0.
The coefficient of Ly; is A, c11 — AnC22, then c22 = 0.

The coefficient of Ly is Ay ¢(,—1) (n—1)- then ¢, 1y (n—1) = 0.
Then, we get that

Zcrs (¢U(Lrs) _Lrs) =0. (1)
r#s
We will divide the proof in several different cases.

a) Case n = 2.

Y cr (Qu(Lys) — Lrs) = c12 (9u(L12) — L12) + 21 ($u (Lar) — Loy ).

r#£s
By definition of U we have that Upp1,1 = U, U112 = U, U221 = U3, U1,12,2 = Ugq.
Therefore,

oy (Li2) —Li2 = (uyuz Ay —1)Lip +upliz Ay Ly
and

Ou(La1) — Lot = (uzur Ay — 1)Lo1 +usiz Ao L.
From (1) it follows that

(uiwz A1 — 1) cio +uatiz Acp =0

wiz Myern+ (w3 A — 1) e =0.

Taking U such that u; =i, up = uz = uq = 1 it is easy to see that the determinant of the
above system is not equal to zero. Then we get that ¢ = ¢1 = 0.
Then, we get a U with maximal range.
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b) Case n > 2.

We choose uy,uy,...,u,2 according to Lemma 1 below.

The equations we consider before can be written as
1<r<mn,1<s<n,r#s,then, ®y(L,s) —L;s = (ars— 1) Lrs+brsLiry1y(s+1)5
1 < s < n,then, ®y(Lys) — Lys = (ans — l)L,,S—|—bnsL1(H1),

1 <r < n,then, qﬁ)U(Lm) — L, = (am — 1)Lrn +brnL(,+1) 1
For instance

n—1
s = Y Unjitsj Tsjiie Ay,
j=1

and

by = Ur4+1,1,rn m}m

Note that u,.j1 1 Uy 11, ; has modulus one and also ;11,1 0 Usi1,1,5,1-

Moreover, |b,s| = A, > 0and |a,s| < A1 + ...+ A,—1. Indeed, note first that the products
Urj+1.rj Us 11, are different by the choice of the u; j x ; (see Lemma 1). Furthermore, by
Lemma 2 we get that |a,| can not be equal to A; + .. + o

Therefore, |a,s— 1| > 1—ays| >1-YX7" 1A =24y =|b;j| >0, forall r,s,i,jand r #s,
i .

Suppose 2 < k < n.

Remember that the L;; define a linear independent set.

The coefficient of Ly in (1) is

crk(arx—1) + cu—1) bp(e—1) = 0.

The coefficient of L,, 1) in (1) is

n(k=1) @n(e—1) = 1) + (1) (k=2) (n—1) (k—1) = O-
The coefficient of L, j2)1 in (1) is

k42 1(@n-r12)1 = 1)+ Clnt—1)nP(n—k1)n = 0
The coefficient of L(,, 4 1), in (1) is

C(nkarl)n( (n—k+1)n — 1) + c(nfk)(nfl)b(nfk)(nfl) =0.
The coefficient of L, ) (,—1) in (1) is

Cn—k) (n—1) (A=) (n=1) = 1) + Cln=t=1) (1-2) D(n—k=1) (n—2) = 0.

The coefficient of L, ;1) in (1) is

ki) (@) —1) + c1ebir =0.

If ¢14 # 0, then, from above we get [c1x| < [c,—n)| < - <leasn)| < [e1xl-
Then, we get a contradiction. It follows that cj; = 0.
Therefore,

Cn(k—1) = C(n—1) (k=2) = - = Cln—k+2)1 = Cln—k+1)n = C(n—k) (n—-1) = - = C2(k+1) = 0.

From this it follows that ¢,; = 0 for all r,s, when r # s. This shows that for such U we
have maximal range equal to n> — 1.

Now we will prove two Lemmas that we used before.
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Lemma 1. Given m > 2, there exist complex numbers uy, ..., u, of modulus 1, such that, if
1<i#j<m, 1 <k#I<manduuj=uwuuy theni=k, j=1

Proof: The proof is by induction on m

For m = 2, just take u; u; not in R.

Suppose the claim is true for m > 2 and u, ..., u,, the corresponding ones.
Consider

S={wu; | 1<i,j<m}
and
T:{”p”q | 1<p,g<m}.

Then, take u;,,11 such that u,,, 1%, is notin S for all 1 < p < m, and ulszrl isnotinT.
Then, uy, ..., Uy, Uyt satisfy the claim.
(I

Lemma 2. Consider Ay, ..., Ay, real positive numbers and z1,...,2,,, complex numbers of
modulus 1.
Suppose | Y1y Ajzj| =X Aj thenzy =22 = ... =z

Proof: The proof is by induction on m.

It is obviously true for m = 1.

Suppose the claim is true for m — 1 and we will show is true for m.
Note that

m m m—1 m
Y=Y 4z1<| Y Azl + < Y4
j=1 j=1 j=1

J=1

From, this follows that

Then,zi=2=... =741 =2
Therefore,

m—1

m m—1 m
YAi=12)Y i+l <12 ) Al + lzndn| = ) 4,
j=1 j=1 j=1 j=1

Given vy, vy complex numbers such that |[v; +va| = |vi| + |v2], then they have the same
argument.

Then, there exists an s > 0 such that z ):7’;11 Aj = $ZmAn.

Now, taking modulus in both sides of the expression above, we get

m—1 m—1
Z Ai=|z Z Ail = |szmhm| = sAm.
=1 j=1

From this follows that z,,, = z
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3. THE TWO DIMENSIONAL CASE - EXPLICIT RESULTS

Our main interest in this section is to present the explicit expression of the U which is
the unique fixed point. We restrict ourselves to the two dimensional case.

We will consider a two by two density matrix 3 such that is diagonal in the basis f; € C?,
f>» € C%. Without lost of generality we can consider that

B

p1,p2 > 0.

(

P1
0

0
P2

).

We will describe initially in coordinates some of the definitions which were used before

on the paper.

If
Ri1 Rpp
R= ,
( Ry Rxp )
and
S Siz
S = :
< Sa1 S»2 )
then
RiiS11 RSz RSt RSz
RS — R11821 RiiS22 Ri2S21 RipS»
Ry1811 Ra1S12 R2S11 RaaSi2
Ry181 R21S22 RS21 RpnS»
and
Ri1 (S11+52) Ri2(Si1+52)
Tra(R®S) = .
2( ) < Ry1 (S11+822) Ry (S11+82)
Given
Tin Ty Tiz Ty
T— Ty T Tz Ty
T3y T Tsz Tag
Ty Ty Tz Ty
then, in a consistent way we have
_( Tu+Tyn Tiz+Ta
Tra(T) = ( i +Ty Ta3+Ty >

The action of an operator U on M, ® M> in the basis ] ® f1, e2 ® f1, €1 ® f2, e2 R f> is

given by a 4 by 4 matrix U denoted by
o
U1111
el
Usi

U=

and

S5

<
-5

U=

=
o=

<
SIS
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If U is unitary then U U* = I. This relation implies the following set of equations:

DUR U+ U UR+UL UL +U U =1,
yultudt+ultuR +uliud v uliuE =o,
) UN U +U U+ U UL + U3 U2 =0,
YU U3 +UN U+ UL UR + U3 U5 =0,
SYUF U +URU R +UR UL +UB U =0,

O UR UF + U UR + U U + UBUT =1,
U U +UR U+ UL U +UBUL =0,
8)UR U3 + U U +UR U +UR U =0,
U UN +UST U2+ UR UL+ U7 UZ =0,

10) UL, U7 + UJF UF + UB UTT + U U o,
MU U+ v U2+ Uy ul + U U2 =1,

12) UL U] + VS UF, + Ul UF + U2 TZ o,
13U U +UR U +UR UL +UB UL =0.
14) U3 Ul + U U+ U UL + U U =0,
1)U UR + UR U + U U + U U =0.
1)U U +URUR +UR U +UBUE = 1.

Equation 2) is equivalent to 5), equation 12) is equivalent to 13), equation 8) is equiva-
lent to 15), equation 3) is equivalent to 9), equation 7) is equivalent to 10) and equation 4)

is equivalent to 14). Then we have 6 free parameters for the coefficients of U.
Using the entries U7 we considered above we define

2 i i
Z U11 U21 Q(Ulil U1,12>+
i=1 U12 U22 UI21 U£2

2y ( vz v )
D2 4 0 ; ;
,; ( U’L‘2 U2 U Ug

.—«

—_—
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We can consider an auxiliary L;; and express
2

LSS}

i=1 i=1
ZLll OLj+ ZLzZ OLp= Z Ll] QLl]

i.j=1
From the fact that UU* =1 it follows (after a long computation) that

L) =1
Note that L preserves the cone of positive matrices.
Using the entries Uy7 described above we denote

Up) Uilz) Uiy U
1 i 0 : = +
-7 Z ( Uy, U Ul Uil

U)o B B )- f
P2 ) ) Q - - = LQL
Z < Un Uxp U3 U3 L LiQL

ij=1

One can also show that L.(Q) = Tr[U (Q® B)U*] (see [3]).

The first expression is the Kraus decomposition and the second the Stinespring dilation.

Moreover L preserve density matrices. This is proved in the appendix but we can present
here another way to get that. If Q is a density matrix, then

2

2 2
Tr(L(Q)) =Tr(' Y, LiQL}) =Y, Tr(Li;QL;) =Y. Tr(QL}Lij) =

ij=1 ij=1 ij=1

2 2
Tr( Y, OL;Lij) =Tr(Q Y LiLij) =Tr(Q) =1

ij=1 ij=1
_( On On
Q= < 0 On > '

Ui 0 (U = Ulfjl UZZ ( On Qn ) Ulljl % _
Uy, U 0 On vl Ul
Ufjl(U Q11+U12Q21) (U11Q12+U12Q22)

Ulljl(U (011 +U22Q21) (U21Q12+U22Q22)
We have to compute

We denote

Then,

QQ

I:(Q) =pi [U” Q(Ull)*+U21 Q(UZI)*] +p2 [U12Q<U12>*+U22Q(U22)*].

The coordinate a; of L(Q) is
P U U Q1 +UL0n) + UR (U 0+ Ul 0n) 1+

_l’_
pi [71](U11Q11+U12Q21)+ (U Q12+ U 02) |+
P2 [UUT 01 +U300) + UZ (U012 +Ul50n) ]+

L) =Y (ViU o(ypU™) + Z 2(U2))Q (/P2 U?) =

(U11Q11 +U12Q21) + Uéjz(U 01 +U12Q22)
21(U21Q11 +U22Q21) + Uéjz(UﬂQD +U22Q22)

)
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P2 [UR(UR 011 +UB0s) + UB(UR Q1 +UB0»)]. (2)
The coordinate aq, is
pi U (U1 Q11 +UR0a) + UR (U Q2+ U 0) ]+
pi[U3 (U Qu +UR021) + Uz (U] Qu2 + Uy 002 1+
p2 (U2 (U011 +U3001) + U (U012 + U3 02) ]+
P2 (U (U 01 +UB001) + Uzzzz(U1212Q12+U1222Q22)]- 3)
We &ll consider a parametrization of the density matrices taking Q11 = 1 — Q2 and
012 = 0a1.
The variable Q1 is positive in the real line and smaller than one. Indeed, by positivity
of O, we have 0 < 01102 = Q11(1 — Q11) = Q11 — 03,

Qi is in C = R? but satisfying Q11(1 — Q11) — Q120> > 0 because we are interested
in density matrices which are positive operators.

The numbers p; and p; are fixed. Consider the function G such that

G(Q11,0n) =

(Pl[T(U11Q11+U12Q12)+U12(U Qi+Ulh (1-0n)) ]+
[T<U11Q11+U%2Q12>+U (U Qu+UH(1—-0n) ]+
p2 (U (U0 +UB00) + UB(UF0n+UB(1-0n))]+
P2 [UR(URQ1 +UB0n) + UB(URQ+UZ(1-01))] ,
[@(UuQuqunHUz (U Qi+ UL (1-0n) ]+

Pl[i(UanH—Ulelz)+U22(U Q12+ URH (1-0n)) ]+

p2 (U (U0 +UB00) + U (U} 0n+UB(1-0n))]+

p2[UR(UROn +UB0R) + UR(URQn+UE(1-01))))

When is there a unique fixed point for G?

Example: Suppose U = ¢! 29" —cos(B) (I®1) + i sin(B) (0, @ 6,). In this case

cosf3 0 0 isinf
0 cosfB isinf 0

U= 0 isinfB cosp 0
isinf 0 0 cos
Therefore,
G(Q11,012) =

((p1—=p10Q11 +p2 —p2011),
pi (cos B)*Qia +p1 (sinB)’ Q12 + pa (sinB)* Q12 +pa (cos B)* Q12 ) =
(1=Qu1, p1 (cosB)*Qua + pi (sin )01z + p2 (sinB)* Q12 + pa (cos f)* Q12 )
One can easily see that given any a € R we have that Q11 = 1/2, and Q}» = a determine

a fixed point for G. The fixed point matrix will be positive if —1/2 < a < 1/2.
In this case the fixed point is not unique.

Now we return to the general case.
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It is more convenient to express G in terms of the variables Q;; € [0,1], and (a,b) €
R?, where Q1> = a+ bi. As these parameters describe density matrices there are some
restrictions: 1/4 > Q11(1—Q11) > (@®>+b*)and 1 > Q11 >0

We denote by Re(z) the real part of the complex number z and by Im(z) its imaginary
part.

In this case we get
G(Qll,a7b) =
(Quiou+Bi + (a1 +aix)a+ i(an —an)b,
Re(Qnion+ Br + (azi +an)a+i(az —an)b),

Im(Q”OCz—Fﬁz + (a21 +a22)a+ i(a21 —azz)b)).
where

ar = pi[UNU —ulul + U2lud — v Ul )+
paURUS —UBUE + URUR - UBUE]

B = PI[U12U12 JrU1221U12]Jrl’2[U1122Ulz JrU1222U ],

= p[U3{Ul} - U Ul + U3 UR - U Ul )+
pa[URUR —UBUZ +URUR —UBUE],

Br=piULUY + U UB | + p2 [UBU + UBUB]
an = pi[URU} + UR U |+ p2 [USUR + UBUR
alZ—Pl[Ullllu +U1211U12]+P2[U1112U +U1212U ],
= pi ULV} + U U? U2ul? + v2u}
az = pi[ULU] + UR U |+ p2 [URUF + UBURT]

an = pi[UFU + U UR |+ p2 [URRUS + URUE ],
oy is a real number. As ® takes density matrices to density matrices we have that f; is
also real.
Note that [a;| < 1and 1 > B; > 0.

It is easy to see from the above equations that (a|; +aj2) and i(a;; —a;2) are both real
numbers.

We are not able to say the same for (ap) +a)aor i(ax —axn)b.
In order to find the fixed point we have to solve
Qo+ Pi + (a1 +an)a+i(ain —an)b =0n

0110+ B + (a2 +ax)a+ i(az —axn)b =a+bi,
which means in matrix form

<(061—1) aiit+an i(an —an) ) Q; <—ﬁl>
o antan—1 i(a—an—1) b B2 )

We are interested in real solutions Q11,a,b.
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In the case of the example mentioned above one can show that ¢ = 1 and o = 0 which
means that in the expressions above we get a set of two equations in two variables a, b,

Remember that we are interested in matrices such that 1/4 > Q1 (1 — Q) > (a> +b?).
Notice that 0 < 0y < 1. As d takes density matrices to density matrices there is a fixed
point for G by the Brower fixed point theorem. The main question is the conditions on U
and f such that the fixed point is unique.

If there is a solution (Qu,d,l;) #(0,0,0) in R3 to the equations

O11(a1 — 1)+ (a1 +a)a+i(ai —an)b =0
Q110 + (az1 +azn —1)a+i(ay —an—1)b =0, “)
then, the fixed point is not unique. The condition is necessary and sufficient.
A necessary condition for the fixed point to be unique is to be nonull the determinant of

the operator
K— ( aj+ap i(ai —an) >
S\ antan—1 ila—an-1) )

Notice that if (z;,z;) satisfies K(z1,22) = (0,0), then % is real (because a1 +aj> and
i (a1 —ayy) are real). From this follows that there exist a solution (a,b) € R? in the kernel
of K. In this case (0,a,b) is a nontrivial solution of (4).

The condition det K # 0 is an open and dense property on the unitary matrices U.
Indeed, there are six free parameters on the coefficients U . Consider an initial unitary
operator U. One can fix 5 of them and move a little bit the last one. This will change U
and will move the determinant of Ky in such way that can avoid the value O for some small
perturbation of the initial U.

Suppose U satisfies such property Det U # 0. For each real value Q1 we get a different
(aQ” ’lel) which is a solution of K(a,b) = (— 011 (061 — 1), —0n OCQ).

In this way we get an infinite number of solutions (Q11,ag,,,bg,,) € R x C? to (4).

o is not real.

But, we need solutions on R3. Denote by S = Sy the linear subspace of vectors in C?
of the form p (o — 1, ), where p is complex.

Lemma 3. For an open and dense set of unitary U we get that K~'(S) N R? = {(0,0)}.
For such U, suppose (Q\1,a,b) satisfies equation (4), then the non-trivial solutions (a,b)
of

K(a,b) = (—Qu(on —1),— Q1 @)
are not in R?.

1—(11 —

% a+Bi=7"= z?]. Note that for a generic U we have that

Proof: Suppose

(0] 3&0.
We denote Cy; = aj; + a2, Cip = i(a1; —ai2), C21 = az1 +ax — 1 and finally Gy =

i(ap) —axn—1).

Suppose (Q11,a,b) € R? satisfies equation (4). We know that generically on U the value
Q11 is not zero.

For each C;; we denote C;; = Cilj +Ci2j i, where 7, j =1,2.

If K (a,b) = (— Q11 (0t — 1), — Q1 o), then

Ci1a+4 Ca1h = 20 (Cr1@ + Canb) = (o + Bi) (Ca1@ + Canb).
In this case
Cr1d+Cyb = (aClja— BC3a— BChb — aC,b)+
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i(BCl 4+ aC3a+ aClb— BCLb).

If 4 and b are real, then, as Cj; and Cy are real , then

(BC3y + aC5y) a+ (aC3, — BC)b = 0. 6)
Moreover,
(aCy; —BC3, —C1)a—(BCl, —aC3 —Cay)b=0 ©6)
If
BC +acs, aCy, —BC3, )
Det 0,
( aCy, —BC3 —Cii BCY, —ac3, —Cy 7

then just the trivial solution (0, 0) satisfies (5) and (6).
The above determinant is non zero in an open and dense set of U.
Then, the solution (Q1,a,b) € R? of (4) has to be trivial. O

Under these two assumptions on U (which are open and dense) the fixed point for G is
unique. Then, it follows that the density matrix Q = Qg which is invariant for & is unique.
Given an initial Qy any convergent subsequence @ (Qy), k — oo will converge to the fixed
point (because is unique).

As

G(Qllaavb) =
(Onar+pi + (a1 +an)a+i(ai —an)b,
Re( Qi+ B + (az1 +ax)a+i(ay —axn)b),

Im(Q1100+ B2 + (an +ax)a+i(ay —an)b)),

one can find the explicit solution

O — Qn  a+bi
*=\ a—bi 1-0
by solving the linear problem G(Q,1,a,b) = (Q11,a,b).

4. APPENDIX

Lemmad. GivenA,B€ £L(V), then Tr(A®B) =Tr(Try(A®B) ). Moreover, Tr(Try(T)) =
Tr(T), forallT € L(VRV).

Proof:
Indeed,

Tr(A®B) =Tr(A)Tr(B) =Tr(Tr(A)B) =Tr(Tr(A®B)).

Lemma 5. Given T € Z(V®V),
a) if T is selfadjoint, then, Tr, is also selfadjoint,
b) moreover, if T is also positive semidefinite then Try(T) is semidefinite.
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Proof:
a) If T is selfadjoint, then, #;jx; = fiy;;. This implies that }';7;x; = Y ;xjij. Therefore,
Tr, is selfadjoint.

b) If T is positive semidefinite, then < T(x®x'), x®x" >> 0, for all x,x € V. In
particular, < T(x®ey) , x®e; >>0,forallx=cie;+....+cue, €Vand 1 < g <n.
AsT(x®ey) = Ytiju Li(x) @ Lji(eq) = Ltijigck (ei @ej)., then

<T(x®ey),xRey >:Ztiqchk?i7 qg=1,2,....n.
ik

From this follows that ¥, ¢ , figkq €k €i = Lix (Lqtigkq) cxCi > 0.
Then, < Trp(T) (x),x >> 0.

Note that the analogous property for positive definite 7 is also true.
Lemma 6. IfA €T, then ®y(A) €T, forallU € % .

Proof:

As A and J are selfadjoint and positive semidefinite the same is true for A ® 3. Then,
the same is true for U(A ® B)U*. From Lemma 5 we get that @y (A) = Try(U(AQ B)U™)
is selfadjoint.

By Lemma 4 Tr(®y(A)) =Tr(UA® B)U*) =Tr(A®b) =Tr(A)TR(B) = 1.
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