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The Zeta Function, Non-differentiability of Pressure,
and the Critical Exponent of Transition
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The main purpose of this paper is to analyze the lack of differentiability of the
pressure and, from the behaviour of the pressure around the point of non-differen-
tiability, to derive an asymptotic formula for the number of periodic orbits (under
certain restrictions related to the norm of the periodic orbit) of a dynamical system.
This kind of results is analogous to the well known Theorem of Distribution of
Primes of “Introduction to Analytic Number Theory” (T.M. Apostol, 1976,
Springer-Verlag, New York/Berlin). This result follows from analysis of the
dynamic zeta function and Tauberian theorems. We introduce a functional equation
relating the pressure and the Riemann zeta function, and this equation plays an
essential role in the proof of our results. We can say, in general terms, that the
result presented here extends some well known results obtained for expanding
dynamical systems to a certain class of non-expanding dynamical systems. From
another point of view, we can say that we are analyzing thermodynamic formalism
for non-Hélder functions (or for functions not in the class F; considered by
D. Ruelle, W. Parry, and M. Pollicot). As an example of the results presented here,
we show that for the Manneville—-Pomeau map f: [0,1] — [0, 1], given by f(x)=
x+x'** (mod 1), where s is a positive real constant, 0.5<s< 1, the pressure
PU1)=SUp, ar ) {A(v) — 1 [ log | f'(x)| dv(x)} is such that

pu)z{h(p)(l —+B(1—1)", for 1<1

0, for =1,
where B is a constant and A(u) is the entropy of the Bowen-Ruelle—Sinai measure.
The above result is an example of a first order phase transition. In this case,
the pressure is not differentiable at ¢=1, and s~! will be the critical exponent of
transition. Some of the results can also be seen as a result in number theory for
partitions with weights. We give a proof of a result of B. Felderhof and M. Fisher
(1970, Ann. Phys. (N.Y.) 58, 176-281; 1967, Physica 3, 255-283) concerning the
critical exponent of transition in the setting of thermodynamic formalism.  © 1993

Academic Press, Inc.

INTRODUCTION

We consider ¢ the shift in two symbols in the one-dimensional lattice N.
The Bernoulli space {0, 1}"™ is denoted by ZX.
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Our results can be stated in more general terms, but in order to avoid
a more complicated notation, we are restricted to consider here such a
dynamical system. We also consider later the Manneville-Pomeau map
(see Section 3).

Consider g a continuous real valued function on the Bernoulli space Z.
If g is in the class Fj (see Section 1) or Holder-continuous, the variational
problem

sup {h(ﬁ)—j g(x) dﬁ(x)}

e M(o)

has a unique solution [31], as is very well known.

Here M(o) is the set of g-invariant probabilities, and A(7) is the entropy
of the measure ¢ (see [22] for references).

We denote by P(g) the above supremum value of the variational
problem. We call P(g) the pressure associated with the potential g. We
also denote by 7, the equilibrium state (the unique solution of the varia-
tional problem) associated with g. That is, P(g)=~h(7,) + | g(x) dt,(x)}.

It is also known that, when g is in the class F,, then P(g) is differen-
tiable in g, and the Ruelle zeta function

L) =exp ¥ —Z—"( y eﬂrézwn)
n=0

= J periodic
orbit of
period n

is meromorphic and has a simple pole at z=e"® [23,26,27,31]. A
related result is shown in Section I. In Section 2 we consider a different
kind of zeta function introduced by W. Parry [24]. We call this function
the dynamic zeta function.

We analyze here a class of potentials g (not in the class F,) that were
previously considered by F. Hofbauer [13]. For some of these potentials g,
equilibrium states are not unique (see [13]).

Now consider g a fixed potential. We introduce an external parameter ¢
(as in [17,19]) and analyze the one parameter family of the equilibrium
state 7, for the potentials of form rg.

In [19] we analyze phase transition properties of the above family of
potentials in the setting of the generalized dimension of the maximal
measure. An announcement of the results of the present paper appeared in
1990 in the mentioned paper.

In our considerations here, we denote u,=#,,. The probabilities u, are
unique and will change in a continuous fashion, until we reach a transition
value of the parameter t =1t,, where 4, is not continuous in .

For g in the class F,, the above property cannot occur. That is,
equilibrium states always change in a continuous fashion with ¢ [26, 327.
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In other words, phase transitions do not occur for g in the class Fy
[25, 26, 32].

For the class of potentials g that we consider here, at the transition value
t=1,, there exist two possibilities depending on g: two equilibrium states
or one equilibrium state. Following the usual terminology of statistical
mechanics, we say that in the first case we have a first order phase
transition and in the second case a second order transition. In the first case
there exists lack of differentiability of the function p(r)= P(1g) at r=1t,. In
the second case p(¢) is differentiable in 7 =1¢, (and also for all values of ¢)
but it is not C*. The function p(t) is sometimes called free energy
associated with g [6, 17, 19]. The important point here is that depending
on the class H, (see Section 1) to which the potential g belongs, we are
able to express the kind of lack of differentiability one has for p(¢) at ¢ =¢,.

In concrete terms we have the following resuit: there exists 4 >0 such
that

_ At — 1)+ B(to—1)%, t<t,
P(t)—P(tg)~{O’ > 10,
where 4 and B are constants (see Theorem 1).

The value 4 depends on the function g (see the definition of H.,
Section 1) and is called the critical exponent of transition.

We mentioned, some paragraphs above, the existence of two possibilities:
two equilibrium states or one equilibrium state. In the first case, the
constant A above is different from zero; in the second case it is zero.

We would like to point out the use of the above notation: we say that
a,~b,, neN, when a2C,, C,> 0 such that C, <a,/b, < C,, when n goes to
0. We also use the notation P(¢)=x A(t,—t)+ B(ty— t)? (or sometimes
a,=b,), which means that the quotient

. P(1) ( . a, )
lim =1 when lim -2=1).
t—x Alto— 1)+ B(ty—t) n~oc b,

The symbols ~ and = used in this paper should be consider as a device
for simplification of the notation, and not as a lack of mathematical
precision. We also use the capital letters 4, B, C, D and C,, C, for general
constants that can change from one place to another.

Now that we have explained our notation, let us continue with the
explanation of the results that we show here.

From the above analytical type of lack of differentiability, we will be able
to derive a result about the asymptotic growth number of periodic orbits
(see Theorem 2). We also analyze in Section 3 a related problem. For a
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given fixed value of s > 0, consider the map from the interval [0, 1] in itself
given by
fx)y=x+x'** (mod 1).

This map is sometimes called the Manneville-Pomeau map [4, 37]. This
map is not expanding. The fixed indifferent point 0 has derivative 1 and the
analytical expression of f'(x) for x around zero is f'(x)=1+(s+ 1)x’. We
refer the reader to [4] for an interesting explanation of how this map was
obtained from Poincaré sections related to the Lorenz attractor.

In Section 3 we consider the variational problem

P(1)= sup {h(ﬁ)—t [1og 1/7(x)] dﬁ(x)},
se M(f)
where M(f) is the set of invariant measures of f.

Using the preceding results obtained in Sections 1 and 2, we show
(depending on s) the type of lack of analyticity of the function P(¢) around
t=1. (See Theorem 3 in Section 3.)

In order to have a correct perspective of the results presented here in
Sections 1, 2, and 3, we believe it is now worthwhile to give a brief histori-
cal description of the evolution of the analysis of the physical problems
related to the lack of differentiability of the free energy p(¢)= P(1g), also
known as phase transition problems.

An example of this kind of problems is the sudden magnetization that
occurs at low temperature for some ferromagnetic materials.

First we point out that we are analyzing equilibrium states (Gibbs
states) in the setting of entropy and pressure in the sense of thermodynamic
formalism [31]. This theory was devised by R.Bowen, Ya. Sinai, and
D. Ruelle and gives a rigorous mathematical formulation to several problems
{no phase transition) in statistical mechanics in one-dimensional lattices
[26, 27, 31, 36]. The classical references of thermodynamic formalism do
not consider problems of phase transition in general. The procedure most
physicists use to analyze statistical mechanics in one-dimensional lattices
is different from that mentioned previously (see [19] for a brief explana-
tion of the differences). In fact, the mathematical theory proposed by
Bowen, Sinai, and Ruelle is much more recent than the theory used by
most physicists [31].

An important result of D. Ruelle shows that by choosing the correct
potential g in the lattice Z, one can recover the exact Gibbs state that
physicists have long known (see {31] for references).

The pressure of thermodynamic formalism is minus the pressure of
classical statistical mechanics used by most physicists.

Recall the critical exponent of transition A in the local expression of P(t)
around ¢=1¢, mentioned above. This 4 appears in the thermodynamic
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formalism setting, and there is also an analogous 4 for the free energy as
considered by physicists. In fact, the 4 of the physicists came first, and we
are just formalizing in the context of thermodynamic formalism the 4 that
they have measured experimentally.

It was a long time before an explanation in physical terms for the value
A measured by physicists in phase transition problems was given.
B. Felderhof and M. Fisher in [9, 11], 1967, 1970, made a major contribu-
tion in statistical physics by presenting an explanation for the phenomena
(in the setting used by physicists). We are not able to understand the
nature of this explanation.

We also point out the very important contribution in the physics
literature of the papers of Wang [37,38] (see also [4,5,7,8,12,33]).
These paper analyze the free energy P(f) in the setting of thermodynamic
formalism for a kind of piecewise linear version of the Manneville-Pomeau
map. Such maps are supposed to model and explain transitions
from laminar to intermittent behaviour (see [37, 4] for explanations of a
physical nature related to renormlization group, noise, universality, etc.).

The expression of P(r) for ¢ around ¢, (the transition value) that we
rigorously prove here for the Manneville-Pomeau map and for the shift
was predicted by Wang [37, 387 for the piecewise linear approximation of
the Manneville-Pomeau map.

The essential tools with which to formalize the results stated in
(4, 37, 38] are the Ruelle-Perron—Frobenius operator techniques. We use
some nice theorems obtained for such operators by F. Hofbauer [13], in
order to obtain rigorous mathematical proofs of the above-mentioned
results stated in [37, 38]. We do not assume a Markow property as in
[37, 38].

Our proof in Sections 1, 2, and 3 has no intersection with the ideas of
Wang [37, 38]. The proof in Section 1 is more analytic, and the dynamic
part is contained in the use of F. Hofbauer’s results.

In Section 4 we give another demonstration (again using the
Ruelle-Perron-Frobenius operator techniques of F. Hofbauer) of the same
Theorem 1 obtained in Section 1, but this time we give rigorous mathe-
matical proofs of the beautiful ideas of Wang. This proof is purely dynamic
and follows from considerations of random walks in the lattice N and
recurrent events.

The results obtained here, together with considerations of Wang [38],
formalize in a rigorous way interesting considerations of 1/f noise in [39]
(see the end of Section 4).

We also mention that in [17, 20] the phenomenon of phase transition is
related to the fact that sometimes the critical points are eventually periodic.
In another way, the phase transition presented in [19] and also in this
paper is related to indifferent (or neutral) periodic orbits.
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As is well known, the two main obstructions of the expansion of one-
dimensional maps are the possibilities of the existence of critical points and
the existence of indifferent periodic points in the non-wandering set.

It follows from the above considerations that either of the two cases can
produce lack of differentiability for the pressure. The lack of differen-
tiability in any case is not very serious: we have limits for the derivative at
the left and right sides of the transition value. In this situation, large devia-
tion results also apply [6, Chap. 6] and the theorems obtained in [16, 17]
(with obvious modifications) can also be obtained for the Manneville-
Pomeau map.

In [19], a detailed expository explanation of “generalized dimension
transitions for the maximal entropy measure” is presented, and the relation
of this mathematical setting to problems in physics is explained to a more
general audience. For example, a Dirac delta in a fixed point should be
seen as a magnetization (see [19]). Antiferromagnetic arrangements also
occur in the transition value for some models given by polynomial maps
(see [20]).

Some of the statements in [19] are referred to the mathematical proofs
given here.

In general terms, the two settings “pressure” and “generalized dimension
spectrum of the maximal entropy measure” are equivalent points of view of
the same problem [16-19]. They are related by Legendre transforms in the
same way as Lagrangian and Hamiltonian mechanics [19].

In Appendix B in [29], it is mentioned that the Blaschke product
F(2)=((3z+ 1)/{3 + 2))? restricted to the unit circle has no f-invariant
probability equivalent to the arc length. The point p=1 is fixed and
indifferent (that is, | f’(1)] = 1). The Ruelle-Perron-Frobenius operators do
not have all the good properties of the expanding case, as is mentioned
in [29]; however, the considerations of Section 3 here will apply to this
situation. We will not have exponential decay of correlation, as we see at
the end of Section 4. See also [30,41] for results related to the above
considerations.

In [14], some of the ideas presented here are applied to geodesics in a
manifold of constant negative curvature.

1. THE FUNCTIONAL EQUATION AND
THE CRITICAL EXPONENT OF TRANSITION

We consider a slight modification of the examples mentioned in [13, 19].

Denote M= {(0, x,, x5, ..) | x,€{1,0}, i>1} and M, = {xeX | x;,=1
for 0<igk—1, x,=0} for k=1,2,... We denote, as usual, { the
Riemann zeta function [3].
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For each value of ye (1, o) consider the scalar-valued function

k+1
gﬁ)=au=—vbg<—%—>, xeM,, k+#0,
g(x)=ao= —log({(y}) xeM,
and
g(111-.)=0.

Note that lim,_ ,a,=0 (see [13, (a), p.238]). In fact, the results
presented in Sections 1 and 2 apply for a more general class of potentials g.

We say that g belong to the class A, if 3C,, C,>0 such that
Cia,<gx)<Cya, for all keN, xeM,, and y as above. The results
presented here can be extended to potentials g in H,.

It is worthwhile to have a visualization of the action of ¢ in the partition
M,, ke N, in an equivalent setting. The map / from [0, 1] to itself, such
that /(x) = 2x for x € [0, ) and /(x)=2(x —3) for xe [}, 1], is conjugated
with ¢. In Fig. | we show the graph of / and the intervals M,. Note that
M)=M,_, and /* is a diffeomorphism from M, to M, for all ke N.

Consider s, =ao+a,+ --- +a,, keN, as in [13].

The sum

k=0 k=
=cwr‘(1+ 5 (k+1)-7)
k=1

MO .
" P
X
VD —

M, M )

FiGure 1
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is therefore equal to 1 (see [ 13, (b), p. 238]). Note that

o

Y htl)et=e® T (k+1) 7
k=0

k=1

is finite for ye (2, 3) and infinite for ye(1,2] (see [13, condition (c),
p. 238]).

From now on we consider a fixed value of y. When differences between
the value of y (ye (1, 2] or ye (2, 3)) imply different results, we point out
the separate result in each situation.

Note that g depend on y and we write g, when we want to emphasize
this fact.

For each fixed value of y consider g(x) as above and also for e R the
function p(t)= P(tg), where the last expression is the pressure of the scalar
function tg(x) in the variable x.

For a continuous function f: 2 —» R and n >0 we define

var, f=sup{|f(x)—f(y) | x,= y,, i<n}.

If one considers the space Fy={/f|/f continuous, var,f<C8";, neN for
some C >0}, where 8 is fixed, then for fe F,, the real function of e R,
p(t)y= P(tf), is infinitely differentiable, and for each reR the equilibrium
measure for the variational problem

p01=Puf) = sup L)+ [ fx) doix}
ve M(a)
is unique [27]. Therefore, phase transitions do not occur [16, 25, 32].
The functions g that we consider here are not in F, for 6 e R.
Following F. Hofbauer, we consider C(2) the Banach space of real
valued continuous functions with supremum norm |-||. We define, for each
@ € C(X), the operator &, on C(Z) by

Zf(x)= 3 e"Vfl(y).

yea l(x}

Then
Lrf(x)= Y, exp( w(o"(y))>f(y)-
=0

yeo "(x) i=

Denote by M(Z) the space of probabilities on Z. We say that ¢ satisfies
the RPF condition (Ruelle-Perron-Frobenius condition) if there are 4 >0,
he C(X) with h>0, and ve M(Z) for which

Loh=3h — Lrv=l, fh(x) dv(x) = v(h) =1
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and

lim |2 "L ~v(f)hl=0 forall feC(Z).

m— X

The measure p defined by u(f)=v(#f) is called the RPF measure, and
it will belong to M(o).

When ¢ satisfies the RPF condition, then p=vhA is the unique
equilibrium state for ¢ (see Theorem 1.1 of [13]); that is, u is the only
solution to the variational problem

P(¢)= sup {h(v) + [ o(x) dv(x)}.

ve M(o)

Note that y is an invariant probability, but v not necessarily. This point
will be important later. Note also that from the theorem on page 226 in
[13], it follows that, for each 1t <1, 3 °_, e > 1, and therefore 1g satisfies
the RPF condition.

For a fixed y we denote yu,, t <1, the unique equilibrium state for rg..
We denote by v, the associated probability in M(X) (for ¢t < 1), as above.

The problem is, of course, with the value r=1, because for r>1, it
follows from [13, Lemma 4.6, p. 235] that the Dirac d,,, . is equilibrium
state for 1g.

Now we must make a distinction for different values of y. Suppose
ye(1,2]); then 37 ,(k+1)e*=o0, and for t=1,g has a unique
equilibrium state (see [13, table on p. 239]), namely J,,,....

If ye(2,3), then 27, (k+1)e* < oo and there exist two equilibrium
states. One equilibrium state in J,,,... and the other is denoted by u.

In any case p(t)=0for 1= 1.

Remark 1. Note the important point that all results presented here
depend on ¢* ~ k7 and not on the exact value of g,, ke N.

We want to show that for r close to the left of the value 1 we have the
following behaviour of p(f):

THEOREM 1. Under the above definitions we have two possibilities:
(a) l1<y<2; then for t<1,t -1,

(1) = (C(?) log {(7) —»{'(y)
—I'(1=7y)

V-1
) (1 — )"0~V 4 high order terms,

or
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(b) 2<y<3; then fort<1,t—>1

() log {(y)—7{'(y)
yWiy—1)

In the last case, it follows that the entropy of u (equilibrium state for g)
is

p()= (1=0)+ A1 =)~ (1 +o(1)).

{(y)log {(v)—v{'(v)
'(y—1) '

The case y > 3 is also analyzed at the end of our proof of Theorem 1. The
formulas are more complex in this case.

Proof. The above result follows from the following functional equation
satisfied by p(¢): for 1< 1,

From this equation it also follows that p(t) is real analytic for 1 < 1.

Remark 2. The value of the entropy of u above can be directly
obtained by taking the derivative of the functional equation and evaluating
at 1.

Let us first show the functional equation. Recall from page 226 of [13]
that v, , =4, %+ Ve k30, and vy, =e®-1", where log 4, = p(1). We
also have ¥*_, v, ,=1, and therefore,

e}
1 = "% o =P 4 ptao Z e~(k+1)p(r)(k+ 1)—17
k=1

=emo< i e*{k+l)p(!)(k+ l)_'v>.

=0

As e®={(y) ', the functional equation is shown to be true.

Now we show property (a). First we need a lemma.

LemMa 1. If r> —1, then

I'(l+r)
#1+r

oA
Y ne ™~ as p N\ O
n=1

The proof of the lemma follows easily by approximating the sum by an
integral.
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Now we proceed with the proof of (a).

Set t=1-¢ and p(r}=0 (J will be small because p(1}=0). First
consider the Taylor expansion

) =) — Ly log L(»)E + O(EY).

Consider now

© o
Y et =0 — Y n (1 —e )
n=1 n=1

~tn- ¥ n‘”“‘f‘(—%) (e —1)

={(y)— ), n“""*""f e "du
7=

]
= 0
& A
=C('yt)*_|.0 ( Y ntorEn e‘"“) du.

The last equality follows from the positivity of the summands.
Now using the last lemma above, we have

- e " SI(2—y+7y¢)
3 =0 = [ = el du

0

F2-y+y0)1 +o(1))
7=1-%¢

=N =P+ O+ T (1 =y +3E)(1 +o(1)) 8771,

Sy

={(r(1-¢)—

since I'(2Q—y+vy8)=(1—y+yE) I'(1 —y+y&). Hence

e—na

) =) =y (D) E+ OED) + T(1—y)(1 +o0(1)) &7~ 71,

Pt
1f’l

Now from the functional equation

{y)— L) log Ly)E + O(&?)

kS )

=U0)' =)= T e = Y e

n=1 =

=L =M -TU=y)(1+0(1)) 6"~ +0(£?),
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we conclude that

w1 N ity — 1 —%¢&)
- [0 °ﬁ(51‘fy)¢‘y’y’(1+a<1))] |

This is the end of the proof of (a).
Now let us show (b). Suppose 2 <y < 3. Again consider r=1—¢ and

plt)=34.
From the identity
3
e’"‘szl—n(5+nzj (6—p)e " du

0

we deduce
o0 i F o0
Z n= e " ={(y1) — 8L (yt — l)+£) (5—/1)( Z nZA"ﬂe—n#) du.
n=1 n=1

From the lemma (note that 2 —yr> —1 for ¢ close enough to 1), we have

yr--1 5}!I~ i

=2 W_}):ru—w)(swfl

as 0 — 0. Hence for r=1—¢ with ¢ and 6 small we have

Y e =) = (e + O = 8y — 1)

+08e)+ (I(1—7)+o0(1)) 8" 1.
On the other hand,
L)' =Cy) e 28 8 = () —el(y) log {(7) + O(&?).

Equating these two expressions gives d= A, e+ (C+o(1)) e’ ' with

(Y log {(y) — 0 (M) =F(1 -7’)Ay
y—1) ’ y=1 7"

A|=

as claimed.
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Remark 3. In the same way, using the identity

—n m—'l(_l)j JsJ (—l)m
D M T

S
nm'[ (5_H)m_le—nu dH’
0

we find for m<yr<m+ 1 (m=2) the expansion

@ mt(—1y |
Saer=y S0 pe

it
n=1 ji—o J*

+((1=yy+o(1))6"""  (8-0)

and hence for t —» 1 the expansion
p)=A 1=+ A, (1 -1+ -+ A4, _(1-n"""
+(CH+o(I))(1—r)y~! (m<y<m+1,t-1)

with certain constants 4,, A,, .., 4,,_; and C, the formulas for 4, and C
being the same as those given above. In particular, C#0 and C— o« as
y—m or y > m+ 1. Thus there are higher order phase transitions at each
integral value y=2, 3,4, ...

In the case y =2 we have p(7)~ ({(2) log {(2) &/log(1/E)).

Note that depending on the class H, to which the potential g belongs,
we are able to specify the order of lack of differentiability of p(z).

Now we want to compute the moment generating function associated
with our model. Define

po= 3 eE™ (n=1,2,..),

a’(x)=x

where the summation is over all periodic x of (not necessarily minimal)
period n and S, g(x) denotes 3.7+ g(o(x)). Then we prove

ProvposiTION. lim,, _, . (1/n) log p,(t) = p(?).

To prove this, we compute the generating function 37_, p,(7) z" and see
where its poles lie. The sum defining p,(¢) has 2" terms, corresponding to
the possible choices of the first n of the a;. If a; =0, then we can write these
as

agy s, _=0---0 1-.-1 0---0---1.--1 0-.-0,

e e ettt el e N el e
mo =1 mz21i my =1 21 m, =0

where r is the number of blocks of 1’s (r =0 corresponds to x = (000 ...)).
In this case there are mg+ --- +m,=m values of ie {0,1,..,n—1} for
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which ¢'(x) is in state 0, while during the remaining r blocks of length n,
the state of o'(X) is successively 1,2, ... n, (v=1, .., r). Hence

Sng(x)=(m0+ +mr)a0+ Z (al+ +anv)

v=1

= —(mg+ o +m)log(l(y)~7 ¥ log(n,+1).

yv=1

The contribution to p,(r) of this x is thus
L) tmor ™ (n 4 1) (0, + 1) 77
Similarly, if a, = | then we can write a, ..., a,_, as

1---1 0---0 1---1---0...0 1---1.

R e e
ny=1 my=1 m=z1 my=1 nz0

If r=0, then x=(111..) and S, g(X)=0. If r>0, then the period of x
consists of r blocks of 0’s of total length m, + --- +m, and r blocks of 1’s
of lengths n,, n,, .., n,_,, and ny+n,, so the contribution of x to p,(1) is

Lyt M+ 1), + 1) T (g 41, 1)

This proves the formula

Pa()= % 2 Ly) =ty + )T (1)
r=0 mg, ny, .21
m,z0
mo+n+ - +m=n
+ 3 Y {y)y~ (4 1) 77
rzl no, my,...m, =1
n =0

ng+mp+ - +n,=n

e, A+ )T (g tn, _ + 1)

Introducing the generating function simplifies this:

€0

f pa()2"= 5 (mf ()2

r=0

r

SPRTREIN D (4 1)) =1
m=1 n=1
+_z__+ i < i C(.y)—mlzm>r

m=0

1—z &

x(i (n+ 1)""2”)"1<§ n(n+l)_"’z”)

n=1 n=1
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(in the last term the extra factor n arises because each #n > 1 can be written
as ng+n, with n=1, n, 20 in exactly » different ways)

B 2 1 C(“,’)\'Z >r( s :n >r_
_Z‘O(l—c(w)':)(l—cwwz ,E,(nﬂ)“

z o C(,},)—lz >r< - Zn )r— 1( o HZ" )
+ + v —t T PR
1—= ,‘é‘l(l—g(}') z ngl(n%—l)' ng‘l(n+l)'
IERI ) N0 VN EG L)
l—z 1=4y) ' 2, (27/n7)
For t=1, we have > 7, (z"/n")y<¥ (1/n”")={(y1) <{(y)" for all z <1,
so the power series ¥ p,(r)z” has its first pole at z=1 and
lim,_ .. p,(1)"""=1, in accordance with the theorem. For r<1, the
denominator of the second term vanishes at z=¢ ") so the radius of
convergence lim, _, . p, (1) V" of ¥ p, (¢) z" is e """, The theorem follows.

From the above considerations is easy to see that the Ruelle zeta
function (see the Introduction) is given by ( (z)=(1—z)""(1={(y)""
oy (")) 7

2. THE DYNAMIC ZETA FUNCTION ASSOCIATED WITH
THE POTENTIAL g AND THE DISTRIBUTION OF PERIODIC ORBITS

The dynamic zeta function associated with the potential g is by
definition

Cg(l)=CXP Z l( Z ef—tA§ng1x)>2—-tn’
n=1 n a'(x)=x
where S, g(x) =327 g(67(x)).

The reason for the factor 2~ above is that the entropy of the shift is
log 2.

It is well known that when g is in F, (see the definition in Section 1),
then {,(1)/{,(1) has a simple pole at r=e”# (see [26, 27]). This fact is
related to differentiability of pressure [32]. In this case, a result analogous
to the “distribution of prime number theorem” was obtained by Parry
[24]. Several nice theorems related to this result are also known
[15,23,26]. We refer the reader to a forthcoming book by W. Parry
and M. Pollicot for an extensive exposition about the subject [26]. The
main ingredient for obtaining such a “distribution of periodic orbits”
type of result is the Tauberian theorem of lkehara and Wiener and its
generalizations [26, 40].

In the considerations of our paper, the map g is not in Fy, and, in fact,
p(1) is not differentiable. As we know, for the type of singularity of p(t) for

607:101,2-2
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t close to 1, we will be able to apply a Tauberian theorem and obtain a
“distribution of periodic orbits theorem.”
We indicate now how to obtain such a result. The reader can check that
in the considerations of Section 1, about the functional equation
% npt1)
=Y -
n=1
we can consider t=x + yi a complex vale in an angle sector centered in 1
intersecting the semi-axis x < 1. This allows one to take a branch of log and
to consider derivatives. In this way, the estimates of the theorem in
Section 1 are also true for r complex in the sector (see Postnikov [28,
Sect. 3, Theorem 3, p. 11]).
We showed in the last section that p(t)=lim,_, .. (1/n)log ¥ »,_«
From canonical considerations [287], for 1~ 1, we can therefore derive
that {;(¢)/{,(¢) has the same behaviour as

(didt)(exp 7_ | (1/n) "D 2= ™)

n=1
eXp Ly (1) P27
_(d/dt) exp(log(1 —e?"27")) (d/dt)(1 —e”"27")
T exp(log(l—e”277)) l—eft02-r
(a) Let us now consider 2<y. As we had seen before, p(f)=
h(u)1—1)+ A(1—1)" "'+ high order terms. Therefore, ( (1)~1—

w3

n'

e Seg(x)

eM 0+ A0 and consequently as y > 2
(didt)(1 —er' 2 %)
T—er2

(—h(p) = A(y — 1)(1 —1)7—2) et -0+ A -0
h(u)(1 — 1)+ A(1 — )Y ! + high order terms
1

~ ———

1—¢

Now following [24, p. 46, (1.1); 26 ] we have that

=1
[ (f)=exp Y ;2”" Yy efses™

n=1 oM(x) =x

— k1S, g(x) 2 — tnk

o
—ep Y. T Y e
n= n g’{x)=x k=1
h least per.
o
— CXp < _Z z %eklsng(l] 2"!/(),
n k=1
Jof per.n

where J denotes a periodic orbit of minimum period » and A(J)= S, g(J).
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Now define N(J)=e~*"2" (sometimes called the norm of the periodic
orbit J). Therefore, we can conclude that

(ol

g

« 1
0_ Y Y log NJ)N(J) *= —T-—+bounded.
1) k=1 J -1

T

Now defining

S(x)= Y logN(J)= Y nlogN(J)

NIV < x NN <x

{where n = [log x/log N(J}], i.e., the largest integer such that N(J)" < x) we
see that

o 1
= —j x ™ dS(x) = —7—+bounded.
1 -

Using classical results of Tauberian type [24, 26, 28], we obtain S(x)~ x
for x ~ 00, As in [26], we therefore conclude that if n(x) =3 5, < 1, then
for 2<y and x~ oo we have n(x)~ x/log x.

(b) Now we consider 1<y<2 In this case p(f)xB(1—¢)"v-1,
Therefore, { (1) ~1—e”"=1—¢" =0"" " and consequently we have

0 _ B(1— )= D=1l -0tTh 1

La g
L) A= n)7F D 21— -0 T Ty

Again using the reasoning of (a), we apply the Tauberian theorem to
obtain, for x ~ o0, that S(x)~ x and n(x)~ x/log x.
In conclusion to the above considerations we prove the following result:

THEOREM 2. Consider n(x) as X ny<. 1, where J are orbits with
minimal period n and N(J) = e~ 528/ 2" Then we have T1(x)~ x/log x.

3. THE PRESSURE ASSOCIATED WITH THE MANNEVILLE-POMEAU MAP

The Manneville-Pomeau map f is a map from the interval [0, 1] in
itself given by

f(x)=x+x'** (mod 1),

where s is a positive constant.
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In this section we are interested in analyzing the variational problem

P(1)= sup {h(f’)— t J‘ log | £'(x)| (117(—\’)},
ve M(f)
where M(f) denotes the set of f~invariant probabilities.

The dynamics of f is quite simple (see Fig. 2). In fact, f is conjugated
with the shift in two symbols. The big trouble in analyzing such a map is
related to the fact that f is not uniformly expanding (or sometimes called
hyperbolic), because of the fixed indifferent point 0.

The important point in our considerations is that we have an analytical
expression for f’(x) for x close to 0. This expression is given by

S(x)y=14+(1+s)x%, for x around 0.

M. Thaler [34], using the above fact, shows the following result: there
exists a density A(x), xe (0, 1), such that A(x)dx is invariant for f and
there exist also constants C,, C, >0 such that C,x *Zh(x)<C,x "

The measure A(x) dx is ergodic [34, 35] and is the Bowen—Ruelle-Sinai
measure of our system.

In the case s< 1 we have that A(x)dx is a probability, and in the case
s> 1 we have that A(x) dx is an invariant infinite measure.

In terms of the notation of Section 1 concerning the Ruelle-Perron-
Frobenius operator, we should view h(x) dx as du and dx as dv. Note that
neither of these two measures is the maximal entropy measure.

From [35], the basic properties of the Ruelle-Perron-Frobenius
operator that we need here can be derived from more general results.

We know from [21] that for any invariant measure 7 the relation

- (o)
HD(7) =
O = Tlog 17/ (v o)
] -’-
MO )
’
“AMI" My

FIGURE 2
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is true. Here HD(§), the Hausdorff dimension of the measure 7, is formally
defined as inf{HD(A) | #(A4)=1}. Therefore, HD(7) < 1 for any e M(f).

From the above fact, it follows easily that P(t)=0for t=1, and P(1)<0
for r<1.

As f7{0) =1, it also follows that P(1) =0 for 1 >0 and the Dirac delta is
zero in the equilibrium state for P(r) in this case.

Now we show the following results:

THEOREM 3. Suppose [ from [0, 1] to itself is given by f(x)=x+x'**
(mod 1) with s> 0. Then the pressure

P(t)= sup {h(ﬁ)—zjlog Lf7(0)) dﬁ(x)}

teM(f)

is zero for t =1 and for t <1, we have the above expression for t close to
zero:

P~ A(1—1)+ B(1 —n)'", for s<l,s>05
(')”{Cu—r)*, for s>1.

Proof. We use the results previously obtained for the shift ¢ and poten-
tials g in Section 1.

Consider ae (0, 1) such that 1 = f(a)=a+a'*". Denote x,=a, x, = the
solution of f(x,)= x, such that x, < x;,, and inductively x, the solution of
f(x,)=x,_,, such that x,<x, ,. In this way we obtain a partition of
[0, 17 in intervals of the form

e (X}, .’('2], (xls xl]s (xls xo](xo» 1]

In order to stress the analogy with Section 2 (and the conjugation of f
with the shift o), we denote (x,, x,,_,]} by M, for ne N and M,=(x,, 1].
Note that f"],, is a diffeomorphism over M.

It follows from Proposition 2.4 in [35] that

(X1 =x,)~ sup {/"(x)}~ inf {f"(x)}

xe M, xeM,

(that is, all are of the same order).

Recall that there exists a natural change of coordinates for {0, 1] to X2
such that f is conjugated with g. We can transfer results about pressure
from one setting to another. In this way we make no distinction between
a set in I and its correspondent under a change of coordinates on [0, 1].
In this sense, the sets M,, ne N, from Section 1 and those mentioned above
are the same for us.
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Consider the two variational problems
Pi= sup {h)—t [ g0 doto)
and
Pa= sup {ho)= [ gst0) doto},

where for xe M,, ne N,

g1(x)=sup {log|/"(y)l}=a)

VEM,

and
g2(x)= inf {log|f"(y)|}=a;.

It follows from the definition of P(r) in the enunciation of Theorem 3,
above, and Theorem 9.7(it) in [36] that

P,(y < P(YKS P (1)
Note that
log | f'(x,) = rierlﬁfh {log|/'(y)I}=a,
sup {log f'(»)}=a;,,
YEMys
and that

S ()~ (x, = x,4)  (see [35]).

From the last expression we can apply the results of F. Hofbauer
mentioned at the beginning of Section 1.

Using the notation of Section 1 we denote by u,, v, and u},v;, ke N,
the measures and real values obtained by the Ruelle-Perron-Frobenius
theorem for g given by the a}, ne N (see [13]).

In the same way we denote by u,, v, and 4}, vi, k€ N, the measures and
real values obtained from the Ruelle-Perron-Frobenius theorem for g
given by the a2, ne N (see [13}).

The measures g, v obtained from the Ruelle-Perron-Frobenius theorem
for g(x)= —log |f'(x})|, x€ [0, 1], are squeezed as in a sandwich between
#, and u,, respectively, and v, and v,, respectively.
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From the same considerations of F. Hofbauer on page 226 of [13],
we obtained that v,=v(M,) and u,=u(M,) are, respectively, of the
same order as v,,v; and p,, u;. Therefore, p, has the same order as

* . (1/i), and this summation has the same order as 3%, [/ (x,)| ~
Z, p (o —x)=x .

The value fe=pu(M) =[P h(x)dx~x >t —x, " As x,/x, | goes
to one as k goes to oo (because f'(0)=1) we have x°, —x .~ C, where
C is a constant. From this it follows easily that (see [1, p.250])
x, ~ (Ck)~"*. Therefore,

Y+

Xp g1 ™ X=X+ X, 77— Xy

is of order k' **") = k=" with y = 1 + I/s. Remember that x; ., —x, is of
the same order as e®* 1+ %

From Remark 1 in Section 1 we conclude that P, (¢) and P,(¢) have the
behaviour given by Theorem 1 and depend on y=1+ 1/s

As P {t)< P(1) < P,(1), the same conclusions apply for P(¢). Note that
s>1ifand only if 1 <y <2

This is the end of the proof of Theorem 3.

4, RANDOM WALKS IN THE LATTICE N

In this section we give another proof of Theorem | concerning
the asymptotic behaviour of p(¢) for values of ¢ close to 1. We present a
mathematically rigorous proof of the reasoning considered in Gaspard and
Wang [12] and Wang [37, 38]. We do not obtain in this way the exact
values of the constants in the asymptotic expansion of p(t), as in the last
section, but following the beautiful ideas of X.-J. Wang [37, 38], we show
a relation of the model considered above with random walks in lattices.

Consider the random walk on N by the transition probabilities

Pon=C(y) ' (n+1)77,  neN

and the transition matrix

P 1 0 0 O
P 0 1 0 0
A=|pp 0 0 1 0
000 1

The invariant vector for A is the infinite sequence (u(M,), u(M,),
u(M,), ..), as we show Ilater.
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Following F. Hofbauer, consider for y fixed and € R the values
Vi =AY T k1) T =y, (M), keN
and
vo =4 ()T = v (M),

where

log A,= p(t)= sup {h(ﬁ)—rf g],(z)dﬁ(z)}.

e M{o)
We also use the notation below:
For t=1, v,=v, =v and the equilibrium state u, = u, = y. Consider also
/1=(Z;O:ljvjfl~l)*l' In the case 1 <y <2, we have u=0 and for 2 <y < 3,
we have u={()/{(y—1)> 0,

(a) First we consider the case 2<y<3. For ¢=1g,, 2<y<3, the
eigenfunction /#, mentioned in Section 1, the eigenvalue of the Ruelle-
Perron-Frobenius operator (that is, %, h=4ih,) satisfies 4, (x)=
W S v, for xeM,, and A (1111 .)=p¥ 7 A, . We denote A,
by 4. Note that for r=1, A(111 ...) = c0. Note also that in any case (that is,
1<1), h(x)zu>0 (see [13, p.229]) for xe & —{(1,1,1,..)}. We also
have that for xe M, u, = u(M,)=h(x)v,,. Denote v, , = v,; therefore,

18

we=p Y vi=p Y i+ 1) T =p Y, po
i=k f

k i=k

i

il

and this shows that (u,) is invariant for A, that is, A((ux)) = (u,) (see
[2, p. 105]).

Finally, from elementary calculus p, grows like k'~ 7. This fact will be
important later.

We also know that u(M,)=u,, where u is the eigenmeasure of &£
when ¢ = g,, 2<y<3. This fact creates a relation of y and the random
walk. The reason to consider the random walk is related to the future use
of Feller’s result concerning recurrent events and its relation to the stable
law of Levy [10].

We explain now the reason why it is natural to consider the random
walk with such transition probabilities. We want to associate with each
element (x) in the lattice the infinite sequence (random walk path)
{ko, ky, ks, k3, ...) such that o'(x)e M,. We do not want to consider
x={1,1,..,1..) or its inverse images. Therefore, this identification is
considered in £ =2 — {67"{(1,1,..)} | ne N}. Therefore, an element xe &
can be seen as a random walk path.
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We explain now why we define p,, in the above way.

Let us compute the transition probabilities in a certain way that is
closely related to u. If x e M, then the condition probability of a(x)e M,
is associated with the set My = {(0,0, y,,..)| y,€{0,1}, i=2}. In fact,
u(Myo)/u(My) is the conditional probability of o(x) seen in M, given that
XxeM,.

As u(My) = u(My) + u(M,) (because u is invariant), then

w(Myy)  w(M,) u(M,y)

T (M) u(Mg)” PO u(My)

or, in other terms,
u(My)=u(M )+ poo (M)

Now, if xe M,, the conditional probability that o(x)e M, is given by
Por = 1{(My)/u(M,), where Mo, = {(0, 1, y,, v5,..) | »,€{0,1}, i=22}. As
w is invariant (M )= u(M,,) + 1(M,); therefore,

WM o)
w(My) o u(M,)

and
H(M )= po, p(My) + u(My).
By induction we have

}“(Mn—])=p0n711u(M0)+H(Mn) rorall ﬂGN,

and
(Mo . 10)
(M, _ )______'il__’
M7 M)
where
Moy 0={0,1,1,.,1,0, .3 Vosar | ¥i€{0, 1}, izn+3}.

n+2 n+2

As o(M,)= M, _,, the conditional probability of ¢(x)e M, _, given that
xe M, is one (that is, p,,_, =1 for all n>1). All other p, different from
those considered above are zero. Therefore, in this way we have another
proof that the infinite vector z= (u(M,), u(M,), u(M,),..) is invariant
when we apply the infinite matrix A, that s, A(z)==z.
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From the above considerations, one can see that it is quite reasonable to
consider such a random walk with the transition probabilities assigned
above.

A simple computation shows that u{(111,..)} =v{(111, ..)} =0; there-
fore, ¥ , = 1. In other words, u(X—£)=0.

Now we would like to make clear an important point (see [2, p. 104]).
Given (p,), the invariant vector for 4 (recall that 3 ,u,=1 and p,,
are the transition elements of 4), we can obtain a Markov shift in the
following way: consider

X={(xg, X, X35 00 X, ..) | X;€N, ieN}
and define

;1,,([x,,=s,,,x,,+ 1= Sn 415 xn+k=sn+k])
R Psuscr """ Psak15m1s
for k=1,5,,8,,15»Sher€N.

We can identify points in the lattice £'=X%— {e7"(1,1,1,..) | neN}
with paths in the random walk mentioned above.

The measure u, defined above is the same measure u in the identified
spaces (respectively, random walk and ). Therefore, we can identify the
random variable N, (in the random walk setting), the number of passages
to 0 during » units of time with the random variable (in £ or £), as

n—1

Nn(x)= Z IMO(O'j(X)),
f=0

Jj=

where I,,, is the indicator of the set M.
The probability that p% returns at time » for the first time to zero
beginning in zero is given by

(M. 10)

n+2

These values can be obtained by the fact that ue M(o). For instance,
(Moo} + (M) = p(M); therefore, p(Mpo)=p(1-E 2, (n+1)77 {(y) 7).
As for (Moy0) + p(M;) = p(M ), then u(Moo) = p2~7((y)~".

Inductively

Moy, o) =pn+1)77(y) ",

e
n+2

and therefore, p2° decreases like n 7.
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For each ne N, we denote

MOll---lO

——————
n+1

by @,. Note that a(M,)=0(Q,)=M, . In particular My =Q, and
6(My)=0(0,)=0(M,)=M,.
Define F(x)=Y 1) p% as the distribution function of first return in the

random walk. Note that we use the identification of u, and u as above.
From the above, we know that 1 — F(x) decreases like x' 7.
Following Wang [37,38], we use 1 -~ F{x)~x""*'=x"* and Feller
[10, Theorem 7, p. 106] to conclude that N, has a distribution G, _, of
Levy type, that is,

k b
Pr {N,(ZH—-ATM:—,,X}—’G:_JX),

where &, is such that 1 — F(b,)~ 1/k, and M is the mean recurrence time

M= z np®.

n=1\

Remark 4. From the results obtained here we have the more precise
estimate 1 — F(x)x x!~7-{(y) ! (see Remark 9).

We point out the importance of the identification considered above
(lattice £ and random walk), because now we have a non-trivial result for
u on £ obtained by means of random walk considerations.

Consider now, for ¢ >0, ¢(g) =lim,, _. ..(1/n) log { e ~****) du(w), the free
energy associated with the random variable I, [37]). Now we use an
important technical lemma proved by Wang in Appendix C of [38]. The
proof presented there is rigorously correct mathematically.

LEMMA 2. Under the above definitions

" )_{|CI|+AIQ|’(r(1—0€)/J’+1) if g<0
70 if ¢>0,

where y=a+ 1, and A, J are constants.

We refer the reader to the proof in [38]. The main idea of the proof is
to use the known fact that N, has a distribution of Levi type, and proper-
ties of the Laplace transform.

Now we must show a delicate estimate relating ¢(g) to p(r), where



158 A. O. LOPES

(1 —1)=gq. In fact, we show that for ¢ close to 1 (and ¢ close to zero), we
have p(1) ~ ¢(q).

In this part we were not able to follow the reasoning of [37, 38]. It is
not clear to the author of this paper if the reasoning can be done in that
way. We present a different reasoning to show the claim.

The main point in the proof below is that instead of finding universal
constants C,; and C, (depending only on y) to bound the quotients

WXy, X15 o X0 1)
| < Tl sl 0, XEXy, Xpr o X1, nEN,
exp(S, (g(x)))
where X, X, ., X, is the cylinder {(xg, X1, X0, «s X0 15 Zpps Xy 10 ) |

z,€ {0, 1}, iz m}, we consider bounds of the form n~, 4 € R. Therefore,
instead of using lim,_,  (1/n)log C =0, where C is a constant, we use the
fact that lim, ., (1/n)logn~“ =0, to obtain our result.

Remark 5. Note that the measure u is not a homogeneous measure (see
the theorem on page 230 of [13]); that is, there are no constants C; and
C, independent of » such that the last inequalities occur.

The above claim is used in [19, Sect. 2] in an essential way.

We now begin the proof of the claim p(t)~¢(g), (1 —t)=4.

For each ne N we have 2" cylinders of the form ¥, x;, .., x,_. Denote
the 2"~ ' cylinder of form 1, x,, x,,..,x,_; by C', ie{l,2,.,2"" '},
and denote the 2"~ ' cylinders of form 0, x,,x,,..,x, , by di,
ie{l,2,.,2"" '}

We denote C!=TI11---11 and d!=0111---1. Note that >, d' = M,
and Y, CI =X — M,

Denote by P, the set of C, and d’, ie {1, 2, .., 2" '}. Therefore, P, has
cardinality 2"

We need the following lemma, which we prove later:

LEMMA 3. Under the above definitions, we have that

1 . #(C)
0= lim -log inf ———%~—
n—wx N g(':'epnexpsn(g(x))
xeC,
i>1

. u(C,)
= lim -log sup ———*————
n—oc N clep, CXP S, (g(x))
xeC,
i»1
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and also

1 i
0= lim Llog inf —H@n)__
nexh " gcp, €Xp S, (g(x))
xed:,
n>1

= lim llog sup —-“—(ijli)——
n—xh " gop, eXp S,(g(x))
xed:,
n>1

Remark 6. Note the important restriction i>1 in the claim of the
lemma above.

Let us suppose that Lemma 3 is proved. Note that for given w, w,e C,
(orw,,wyed!), ie{1,2,3,.,2" 1}, e 4hnlwl—an  pmalNalnn) o= aNalud) v an,
Therefore, we have

1
—g+ lim -log J- e "Vt du(w)

n-x N

!
< lim —log Y e M pu(x)
n—x N X€pn

(Y)ex
atly)=y

{
<g+ lim —logJ-e“"N"‘”"dp(w).
n

n— X1

As we consider ¢ small, ¢(g) has the same order as

o1
lim —log Y e M yu(x)
n—oc N X€E py

yex
aly) =y
For ye C! and a™(y) =y, we have e ~#"¥ y(Cy=p(C}) of order n' 7.

For yed! and ¢"(y)=1y, we have also that e ™Y u(d))=e"9u(d)) is
of order n 7.

We use the following notation: X' denotes summation over xe P,,
x#C, x#d), yex, o"(y)=y. Therefore, ¢(g) has the same order as
lim,, _, . (1/n)log X’e ~9™¥ u(x) (here we use ¢(q) >0, ¢ >0).

Now from the lemma, we can substitute exp S, g(y) for u(x). Therefore,
¢(q) has the same order as

lim llog 3o ~4NaY) + Suig(y))
n-oc N
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Now we must compare —g¢gN,(y)+S,g(y) with ¢S, g(y). Using the
notation of Section 1, we have that the first summand above is equal to

—gm+log[((n,+ 1) (ne+ 1) 77 Ly) "]

where m= N, (y).
Since
NI _ m
1S, g(y)l 7 Zi_ log(n,+1)+mlog{(y)
m 1
S = 1)
mlog {(y) log{(y)

we conclude that the quotient (—gN,(y)+ S, g(y))/tS, g(y) is of order
(—gq/t)E + 1/1, with g small, 7 close to one, and E constant. Therefore,

llm l Iog E'e{lSn(g(y))}

n—x N

is of the same order as

lim l 10g Ie —9Nn(¥) + Salz(y)

n—soxc N

We showed before that the last expression has the same order as ¢(g).
The value e’**") for ye C} (respectively, yed)) has (by Remark 7,
below, after the proof of Lemma 2) the same order as v(Cl) (respectively,
v(d!)) and decreases like n~7; therefore, lim, . (1/n)log Z'e">"(g(y))
({1 —gE)/1) has the same order as lim, _, . (1/n)log ¥ —Salely))
Finally, we know (see [13, p. 225]) that

ony) =y €

o1
p(t)= lim ~log 3, sup {exp S,(g(x))}.

xe P, XEX

By Lemma 3, for xe x, yex, (x is an atom P,) (exp S,(g(x)))/v(x) and
(exp S, (g(y)))/v(x) are of the same order (up to a factor n? for 4eR).
Therefore, exp S, (g(x})/exp S, (g(y)) are also of the same order (up to a
factor n? for 4eR).

From this we conclude that (see also the proposition in Section 1)

1
p()= lim ~log Y. expi1S,(g(y)

aly)=y

From the considerations above, we conclude that p(z) and ¢(q) are of the
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same order. Therefore, using the lemma of Wang [38] we have that there
exist constants 4, B such that

Al —1)+ B(1—1y ! for t<1
0 for 121

p(t)z{

In this way, we formalize the reasoning of Wang [37, 38].

Now we show the proof of Lemma 3.

Our proof is a variation of the argument used on page 231 of [13]. First
note that even that A is not bounded above, h restricted to the cylinders
Ci, 1<i<2"', and di, 1<i<2""', has an upper bound of order
n*.n'~7=n, and therefore, as u=hv, we can analyze v(C,) instead of
u(C,) for n>1.

Here we again use the fact that for 4 € R, lim,, _, o(1/n) log n? =0. Recall
that e54™" is of the form [(n, + 1)(ny+1)---(n+ 1)]~7L(y) ™, where
m=m,+m,+ --- +m,. Note that all values n,, ..., m,, ..., k, m depend on
W,

If m, =0, then suppose ¢" "™ (w)e M, and therefore ¢"(w)e M, _, . In
this case e5&*7 is equal to

1\
[(n1+1>(n2+1)---(nk1+1)(’+ )] I

I—n,

Now suppose weXg, X;, .., X,_; in our considerations is such that
m, =0. (In the case m, 70 the argument is simpler.) Using the above
notation we have

" (w)e M, and a'(w)eM, ..

Note that / depends on w (see Remark 6). Following page 231 of [13] we
have from the RPF condition

™M

V[XO’ Xpy oo xn~1] =exp Sn-nk(g(y))

i

Vis

n

where yeXg, x;, .., X,_;. This fact follows from & *(v)=v. By another
way

Sn(g(y))=sn-nk(g(y))+al+ +al-nk

I+1\77
=snw(g(y))+log( * ) .

l—n,
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Consider now the quotient

( X, 1) iz m Y
V(X X o X i Vi -
iRad Lo R ol L G for yeXg, X, X, ;. (%)

exp(S,(g(y))}  (U+D/U—m))"

For a fixed ne N, consider a fixed »n, such that 0<n, <n, and /> n,.
The above quotient is up to a constant of the form

T —n‘"”(l+1)y
((I+10)/(—n))7 % \l-n)’

Note that ((/+ 1)+ 1)/(({+1)—n )< (/4 1)/({—n;) and that lim,_ _((/+1)/
{(!—n,))=1. Therefore, we have

1—5 1-7
n Ny

07 W+ DiU=ne) 7

11—z

n>n, > =n, ">n

From the above inequalities, we conclude the proof of the lemma. Here we
again use the fact that lim, _, _(1/n)logn? =0 for 4R fixed.
This handles the part i> 1.

Remark 7. Note that for ye CY, exp(S,(g(y)) and™v(C7) are of the
same order up to some n? (See (*).)
From the remark the result is proved.

{b) Now we consider the case 1 <y <2.

The major difference from case (a) is that the real value
p=[X, jv;_117" is now equal to zero. Nevertheless, there exists a
probability v such that #¥(v)=v and, as before, v, =v(M,)=¢". The
eigenfunction 4 is given by h(x)=v, 'Y, v, (there is no normalizing
factor u).

The measure y is defined by u=hv and it is not a probability but an
infinite measure. Therefore, in the transition value of the parameter t=1,
the only equilibrium state is d,,, .

This fact can be seen as a second order transition (see [19]). Note that
the reasoning used before for p,, p°, and p%° also applies. This follows
from the fact that u(M,) is finite for each ke N. Therefore, we can derive
the same results as before, but with the difference that now

_flgl'*B  if ¢<0
"“‘”‘{0 if ¢>0,

where B is a constant.



CRITICAL EXPONENT OF TRANSITION 163

The computation of the above fact is rigorously obtained in Wang [38].
As in (a) we finally conclude that

cl—nho- <1
0, 121,

P(t)={

where C is a constant (the exact value of C was obtained in Section 1).
Following Wang [38] we can derive the following interesting results,
explained below.
For each natural number ne N consider the autocorrelation function on
C(n),

Clm) = | Tusg(0*()) Lugy (%) du(x),

and S(w), the Fourier transform of the autocorrelation, that is,

Sw)= Y C(n)e™,  wel[-m, n).
n=0
From Theorem 10 of [10] we have
(a) for l<y<2and n~oc, var(N,)~n*" =" E(N,)~n""!, and

(b) for 2<y<3 and n~ oo, var(N,)~n*"% E(N,)~n.

It is well known that

S 2
sm(wn/2)> SOw) db.

var(N,)= Ln (W

Therefore, from the kind of singularity of var(N,), we can obtain
Sw)y~w"Tforw~0if 1 <y<2.

The final conclusion from S(w)=Y7_,C(n)x", x=¢™, and the
Tauberian theorem [10] is that

C(n)~n>"7, when 2<y<3.

In an analogous reasoning C(n)~n 2?~7) when 1 <y<2.

Remark 8. Measures that are equilibrium states of functions g in the class
F, have exponential decay of correlation [26]. In our case we do not have
this property.

607101 2-3
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Remark 9. Note that when 1 <y <2 and n~ oo, there follow from our
results the more precise estimates

BN~ oly) 220D
(y—Dn

This follows from Remark 4 of this paper and Theorem 10 in [10].

Remark 10. The results concerning S(w) are related to interesting
considerations in [39] concerning 1/f and 1//* noise.
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