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Abstract. Recently, Wu and Xia [Proc. Amer. Math. Soc. 151 (2023), 4389-

4403] presented a characterization of nonuniform exponential dichotomy via
admissibility for difference equations. They have improved previously known

results by removing the use of Lyapunov norms and the assumption of bounded

growth of the system. However, they have restricted their attention to the
case of finite dimensional and invertible dynamics. In the present work we go

one step further and extend their results to the case of possibly noninvertible

and infinite dimensional dynamical systems. We emphasize that our method
of proof is different and significantly simpler than the one presented in the

aforementioned work.

1. Introduction

Let (X, | · |) be an arbitrary Banach space. Given a nonautonomous dynamical
system

xn+1 = Anxn, n ∈ J, (1)

where An : X → X, n ∈ J , are bounded linear maps and J ∈ {Z,Z+,Z−} with
Z+ = Z∩ [0,+∞) and Z− = Z∩ (−∞, 0], for m,n ∈ J , let us consider the evolution
operator associated to (1) which is given by

Φ(m,n) =

{
Am−1 · · ·An for m > n;

Id for m = n,

where Id denotes the identity operator on X. We say that (1) admits a nonuniform
exponential dichotomy (NED, for short) if the following conditions are satisfied:

(1) there exists a family of projections Pn, n ∈ J , such that

AnPn = Pn+1An; (2)

(2) An|KerPn : KerPn → KerPn+1 is an invertible operator for each n ∈ J ;
(3) there exist D > 0, 0 < α < 1 and ε ≥ 1 such that

|Φ(m,n)Pn| ≤ Dαm−nε|n| for m ≥ n (3)

and
|Φ(m,n)(Id− Pn)| ≤ Dαn−mε|n| for m ≤ n (4)

where

Φ(m,n) :=
(
Φ(n,m)|KerPm

)−1
: KerPn → KerPm,

for m ≤ n.
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We note that in the particular case when ε = 1, we recover the classical concept of
(uniform) exponential dichotomy.

The notion of NED along with its counterpart in smooth dynamics known as
nonuniform hyperbolicity is ubiquitous in dynamical systems (see for instance [6,
7]). On the other hand, in general, it may be very difficult to verify directly
if a system admits a NED. Therefore, an important problem is to find different
characterizations of this property.

In this paper we will turn our attention to the problem of characterizing NED in
terms of the admissibility of certain pairs of Banach spaces. We say that the pair
(Y, Z) is (properly) admissible for Eq. (1), where Y and Z are subspaces of XJ , if
for every sequence (yn)n∈J in Y there exists a (unique) sequence (xn)n∈J in Z such
that

xn+1 = Anxn + yn+1, for all n ∈ J.

We emphasize that the characterizations of uniform asymptotic behaviours (uni-
form exponential stability or dichotomy) of continuous and discrete dynamical sys-
tems in terms of admissibility have a long history that goes back to the pioneer-
ing works of Perron [23] and Li [17]. These were followed by seminal contribu-
tions of Massera and Schäffer [18, 19], Coffman and Schäffer [8], Dalec’kĭı and
Krĕın [10], Coppel [9] and Henry [13]. For more recent contributions, we refer
to [14, 15, 16, 21, 22, 24, 26] and references therein. Finally, for a comprehensive
overview of this line of research we refer to the book [5].

The first characterizations of NED’s via admissibility relied on the use of the so-
called Lyapunov norms which transform nonuniform behaviour into a uniform one
(see [2, 3, 4, 31]). For earlier work which was concerned with some different concepts
of nonuniform dichotomies we refer to [20, 25, 28]. On the other hand, we stress
that Lyapunov norms are difficult to construct without knowing that our dynamics
exhibits nonuniform exponential behaviour, and consequently it was natural to
explore the relationship between nonuniform behaviour and admissibility avoiding
the use of such norms. In this direction, Zhou and Zhang [30] obtained a complete
description of NED’s using admissibility of two pairs of weighted sequence spaces.
We stress that the results in [30] deal with the case when coefficients An in (1) are
invertible linear operators on X = Rd. Moreover, it was assumed that (1) exhibits
the so-called bounded growth property (see [30, (2.3)]). In the recent work [27], Wu
and Xia obtained characterizations of NED’s in terms of admissibility analogous to
those in [30] but eliminating the assumption of bounded growth.

However, the results in [27] were still restricted to the case of finite dimensional
and invertible dynamics. The main objective of the present work is to go one step
further and extend their results to the case of possibly noninvertible and infinite
dimensional dynamics. Moreover, we emphasize that our method of proofs is dif-
ferent and significantly simpler than the one presented in [27]. The importance
of our results stems from the fact that NEDs are ubiquitous in the context of er-
godic theory even in the infinite-dimensional case when the appropriate versions of
the multiplicative ergodic theorem can be applied (see for example [1, Proposition
3.2]). In this setting (as well as in many others) the assumption that the dynamics
is invertible is way too restrictive, and returns us to the finite-dimensional case. We
stress that similar results were obtained in [11, 12] where it was shown that NED’s
can be characterized in terms of admissibility of three pairs of spaces. On the other
hand, in the present work we show that the same can be achieved by using only
two pairs.
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2. Main results

For δ > 0, let us consider

L∞
δ (J) :=

{
f : J → X : sup

k∈J

(
|f(k)|δ−|k|

)
< +∞

}
,

which is a Banach space with respect to the norm

|f |δ,J := sup
k∈J

(
|f(k)|δ−|k|

)
.

Moreover, for m ∈ Z+ let

Uδ,Z+(m) :=

{
v ∈ X : sup

k≥m
(|Φ(k,m)v|δ−k) < +∞

}
.

Clearly, Uδ,Z+(m) is a subspace of X.
The following is a generalization of [27, Lemma 2.1] to the case of noninvertible

dynamics on arbitrary Banach spaces. We note that our arguments are much
simpler than those in [27].

Proposition 2.1. Assume that there are 0 < δ ≤ γ such that the pair (L∞
δ (Z+),L∞

γ (Z+))
is admissible. Furthermore, suppose that Uγ,Z+(0) is closed and complemented in
X. Then, there is a sequence of projections Pn, n ∈ Z+ on X such that (2) holds
for n ∈ Z+ with An|KerPn : KerPn → KerPn+1 being invertible, and a constant
D > 0 such that

|Φ(n,m)Pm| ≤ Dγn−m
(γ
δ

)m

n ≥ m, (5)

and

|Φ(n,m)(Id− Pm)| ≤ Dγn−m
(γ
δ

)m

n < m. (6)

Proof. We divide the proof of Proposition 2.1 into several lemmas. To this end, let
Z ⊂ X be a closed subspace of X such that

X = Uγ,Z+(0)⊕ Z. (7)

Lemma 2.2. For each f ∈ L∞
δ (Z+) there exists a unique xf ∈ L∞

γ (Z+) such that
xf (0) ∈ Z and

xf (n+ 1) = Anxf (n) + f(n), n ∈ Z+. (8)

Proof of the Lemma 2.2. Indeed, we know that there exists x ∈ L∞
γ (Z+) such that

x(n+ 1) = Anx(n) + f(n), n ∈ Z+. (9)

Write x(0) = v1 + v2 where v1 ∈ Uγ,Z+(0) and v2 ∈ Z. Define

xf (n) := x(n)− Φ(n, 0)v1, n ∈ Z+.

Then, xf ∈ L∞
γ (Z+), xf (0) = v2 ∈ Z and (8) follows from (9). Therefore, we have

established the existence of xf .
We now prove that xf is unique. To this end, suppose that x̃f : Z+ → X belongs

to L∞
γ (Z+), x̃f (0) ∈ Z and satisfies

x̃f (n+ 1) = Anx̃f (n) + f(n), n ∈ Z+. (10)

By (8) and (10), we have that

xf (n)− x̃f (n) = Φ(n, 0)(xf (0)− x̃f (0)), n ∈ Z+.

Since xf − x̃f ∈ L∞
γ (Z+), we conclude that xf (0) − x̃f (0) ∈ Uγ,Z+(0). On the

other hand, xf (0)− x̃f (0) ∈ Z. Then, (7) yields that xf (0) = x̃f (0) and therefore
xf ≡ x̃f . □
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Lemma 2.3. We have that

X = Uγ,Z+(m)⊕ Φ(m, 0)Z, m ∈ Z+. (11)

Proof of the Lemma 2.3. For m = 0 there is nothing to prove as the desired con-
clusion follows from (7). Take m > 0 and v ∈ X. We define f : Z+ → X by

f(n) =

{
0 n ̸= m− 1

v n = m− 1.

Then, f ∈ L∞
δ (Z+). By Lemma 2.2, there is a unique xf ∈ L∞

γ (Z+) such that
xf (0) ∈ Z and that (8) holds. Then,

xf (m)−Am−1xf (m− 1) = v

and
xf (n) = An−1xf (n− 1) n ̸= m.

In particular,
Am−1xf (m− 1) = Φ(m, 0)xf (0) ∈ Φ(m, 0)Z.

Moreover,
xf (n) = Φ(n,m)xf (m) n ≥ m,

and thus, since xf ∈ L∞
γ (Z+), we have that xf (m) ∈ Uγ,Z+(m). Hence, v ∈

Uγ,Z+(m) + Φ(m, 0)Z.
Suppose now that v ∈ Uγ,Z+(m)∩Φ(m, 0)Z. Thus, there exists z ∈ Z such that

v = Φ(m, 0)z. Set
x(n) := Φ(n, 0)z, n ∈ Z+.

Then, x ∈ L∞
γ (Z+), x(0) ∈ Z and (9) holds with f ≡ 0. From Lemma 2.2 we

conclude that x ≡ 0 which implies that v = 0. This completes the proof. □

Set
Z(m) := Φ(m, 0)Z, m ∈ Z+.

Clearly,

AmUγ,Z+(m) ⊂ Uγ,Z+(m+ 1) and AmZ(m) = Z(m+ 1), (12)

for m ∈ Z+.

Lemma 2.4. For m ∈ Z+, Am|Z(m) : Z(m) → Z(m+ 1) is invertible.

Proof of the lemma 2.4. The surjectivity is obvious. Suppose that there exists v ∈
Z(m) such that Amv = 0. We write v = Φ(m, 0)z for z ∈ Z. Set

x(n) := Φ(n, 0)z, n ∈ Z+.

Since x(n) = 0 for n > m, we have that x ∈ L∞
γ (Z+). Moreover, x(0) ∈ Z and (9)

holds with f ≡ 0. Thus, x ≡ 0 and v = 0 and Am|Z(m) : Z(m) → Z(m + 1) is
injective. The proof is complete. □

By Lemma 2.2, we may define a map from L∞
δ (Z+) into L∞

γ (Z+) by f 7→ xf . It
is easy to see that this is a linear operator. Moreover, the following holds.

Lemma 2.5. The linear operator f 7→ xf is bounded.

Proof of the Lemma 2.5. We will prove that f 7→ xf is a closed operator, which due
to the closed graph theorem implies the desired result. Let (fn)n∈N be a sequence
in L∞

δ (Z+) that converges to f in L∞
δ (Z+). Moreover, assume that the sequence

(xfn)n∈N converges to x in L∞
γ (Z+). We have that

xfn(m+ 1) = Amxfn(m) + fn(m), m ∈ Z+. (13)

Since fn → f in L∞
δ (Z+) and xfn → x in L∞

γ (Z+), we conclude that fn(m) → f(m)

and xfn(m) → x(m) for each m ∈ Z+. Since xfn(0) ∈ Z for each n ∈ N, we have
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that x(0) ∈ Z (since Z is closed). Moreover, by passing to the limit when n → ∞
in (13) we have that

x(m+ 1) = Amx(m) + f(m), m ∈ Z+.

Therefore, xf ≡ x and the desired conclusion follows. □

For m ∈ Z+, let Pm : X → Uγ,Z+(m) be the projections associated with the
splitting (11). Clearly, (12) implies (2). Using the notation as in the proof of
Lemma 2.3 we have for m > 0 that Pmv = xf (m). Thus,

|Pmv| = |xf (m)| ≤ γm|xf |γ,Z+ ≤ Kγm|f |δ,Z+ = Kδ(γ/δ)m|v|, (14)

where K > 0 denotes the norm of the operator f 7→ xf . Take now v ∈ Uγ,Z+(m),
m > 0 and define f : Z+ → X by

f(n) =

{
0 n ̸= m− 1

v n = m− 1.
(15)

Then, f ∈ L∞
γ (Z+). It is easy to see that

xf (n) =

{
Φ(n,m)v n ≥ m;

0 n < m.

Hence,

|Φ(n,m)v| ≤ γn|xf |γ,Z+ ≤ Kγn|f |δ,Z+ ≤ Kδγnδ−m|v| = Kδγn−m
(γ
δ

)m

|v|,

for n ≥ m. We conclude (see (14)) that

|Φ(n,m)Pmv| ≤ K2δ2γn−m
(γ
δ

)2m

|v|, n ≥ m > 0.

We now consider the case m = 0. If n > 0, then

|Φ(n, 0)P0v| = |Φ(n, 1)P1A0v| ≤ K2δ2γn−1 γ

δ
|A0v| ≤ K2δ|A0|γn|v|.

On the other hand,
|Φ(0, 0)P0v| ≤ |P0| · |v|.

Hence,

|Φ(n,m)Pmv| ≤ D1γ
n−m

(γ
δ

)2m

|v| n ≥ m, (16)

where
D1 := max{|P0|,K2δ2,K2δ|A0|}.

Take now v ∈ Z(m) with m > 0. We define f : Z+ → X by

f(n) =

{
−v n = m− 1

0 n ̸= m− 1.

Then, f ∈ L∞
δ (Z+) and the corresponding xf is given by

xf (n) =

{
Φ(n,m)v n ≤ m− 1

0 n ≥ m.

Hence,

|Φ(n,m)v| ≤ γn|xf |γ,Z+ ≤ Kγn|f |δ,Z+ ≤ Kδγnδ−m|v| = Kδγn−m
(γ
δ

)m

|v|

for n < m. Thus, by (14) we have

|Φ(n,m)(Id− Pm)v| ≤ K(1 +Kδ)δγn−m
(γ
δ

)2m

|v|, (17)

for n < m.
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Finally, for v ∈ X and m > 0, let f be given by (15). Moreover, let x : Z+ → X
be given by

x(n) =

{
Φ(n,m)Pmv n ≥ m;

−Φ(n,m)(Id− Pm)v n < m.

It is easy to verify that (9) holds. Moreover, (16) and (17) imply that x ∈ L∞
γ (Z+).

Since x(0) ∈ Z we conclude that x = xf . Then,

|Φ(n,m)Pmv| ≤ γn|xf |γ,Z+ ≤ Kγn|f |δ,Z+ = Kδγnδ−m|v| = Kδγn−m
(γ
δ

)m

|v|,

for n ≥ m, which together with (16) applied for m = 0 yields (5). Similarly, one
can prove (6). This ends the proof of Proposition 2.1. □

Remark 2.6. We note that in comparison to [27, Lemma 2.1] in (5) and (6) we
have (γ/δ)m instead of (γ/δ)2m.

We now state our first main result.

Theorem 2.7. Assume that there are 0 < δi ≤ γi, i ∈ {1, 2} with γ1 < 1 and
γ2 > 1 such that the pairs (L∞

δi
(Z+),L∞

γi
(Z+)) are admissible for i = 1, 2. Moreover,

suppose that

Uγ1,Z+(m) = Uγ2,Z+(m) for m ∈ Z+, (18)

and that Uγ1,Z+(0) is closed and complemented. Then, (An)n∈Z+ admits NED.

Proof. Let Z be a closed subspace of X such that

X = Uγ1,Z+(0)⊕ Z = Uγ2,Z+(0)⊕ Z.

Then, it follows from the proof of the previous proposition that we can choose the
same projections Pm, m ∈ Z+ associated to both admissible pairs. In particular,
we have

|Φ(n,m)Pm| ≤ Dγn−m
1

(
γ1
δ1

)m

n ≥ m,

and

|Φ(n,m)(Id− Pm)| ≤ D′γn−m
2

(
γ2
δ2

)m

n < m.

This readily implies the desired conclusion. □

Remark 2.8. In the case when operators Am are invertible, one can easily verify
that Uγ,Z+(m) = Φ(m, 0)(Uγ,Z+(0)) for m ∈ Z+. Thus, in this case (18) can
be replaced by the requirement that Uγ1,Z+(0) = Uγ2,Z+(0). Moreover, when X
is finite-dimensional, the assumption that Uγ1,Z+(0) is closed and complemented is
automatically satisfied. Finally, when X is a Hilbert space, it is sufficient to assume
that Uγ1,Z+(0) is closed.

Let us now discuss the case of dichotomies on Z−. For m ∈ Z−, let Ũδ,Z−(m)
consist of all v ∈ X with the property that there is a sequence (x(n))n≤m ⊂ X such

that x(m) = v, x(n) = An−1x(n − 1) for n ≤ m and supn≤m(|x(n)|δ−|n|) < +∞.

Then, Ũδ,Z−(m) is a subspace of X.

Proposition 2.9. Assume that there are 0 < δ ≤ γ such that:

(a) the pair (L∞
δ (Z−),L∞

γ (Z−)) is admissible;

(b) Ũγ,Z−(0) is closed and complemented in X;
(c) if x ∈ L∞

γ (Z−), x(n) = An−1x(n− 1) for n ≤ 0 and x(0) = 0, then x ≡ 0.
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Then, there is a sequence of projections P−
m , m ∈ Z− on X such that

AmP−
m = P−

m+1Am m ≤ −1 (19)

with Am|KerPm
: KerPm → KerPm+1 being invertible, and a constant D > 0 such

that

|Φ(n,m)P−
m | ≤ Dγm−n

(γ
δ

)|m|
n ≥ m, (20)

and

|Φ(n,m)(Id− P−
m)| ≤ Dγm−n

(γ
δ

)|m|
n < m. (21)

Proof. Let Z be a closed subspace of X such that

X = Z ⊕ Ũγ,Z−(0). (22)

Lemma 2.10. For each f ∈ L∞
δ (Z−) there exists a unique xf ∈ L∞

γ (Z−) such that
xf (0) ∈ Z and

xf (n+ 1) = Anxf (n) + f(n), n ≤ −1. (23)

Proof of the Lemma 2.10. The existence of xf can be established by arguing as in
the proof of Lemma 2.2. The uniqueness follows from (c). □

For m ∈ Z−, let

Z(m) := {v ∈ X : Φ(0,m)v ∈ Z}, m ∈ Z−.

Note that Z(m) is a subspace of X and Z(0) = Z.

Lemma 2.11. For m ∈ Z−,

X = Z(m)⊕ Ũγ,Z−(m). (24)

Proof of the Lemma 2.11. For m = 0 there is nothing to prove as the desired con-
clusion follows from (22). Take now m < 0. For v ∈ X, we define f : Z− → X
by

f(n) =

{
v n = m− 1;

0 n ̸= m− 1.

Then, f ∈ L∞
δ (Z−). Let xf ∈ L∞

γ (Z−) be given by Lemma 2.10. Then,

xf (m)−Am−1xf (m− 1) = v

and

xf (n) = An−1xf (n− 1), n ̸= m.

In particular, xf (0) = Φ(0,m)xf (m) yielding that xf (m) ∈ Z(m) (since xf (0) ∈ Z).

Moreover, Am−1xf (m− 1) ∈ Ũγ,Z−(m). Hence, v ∈ Z(m) + Ũγ,Z−(m).

Take now v ∈ Z(m) ∩ Ũγ,Z−(m). Then, there exists a sequence (x(n))n≤m ⊂ X

such that x(m) = v, x(n) = An−1x(n − 1) for n ≤ m and supn≤m(|x(n)|γ−|n|) <
+∞. We define

x̃(n) :=

{
x(n) n ≤ m;

Φ(n,m)v n > m.

Then, x̃ ∈ L∞
γ (Z−) and

x̃(n) = An−1x̃(n− 1), n ≤ 0.

Since x̃(0) ∈ Z, by Lemma 2.10 we have that x̃ ≡ 0, and thus v = 0. □

Lemma 2.12. For m ≤ −1, Am|Ũγ,Z− (m) : Ũγ,Z−(m) → Ũγ,Z−(m+1) is invertible.
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Proof of the Lemma 2.12. The surjectivity is obvious. Let v ∈ Ũγ,Z−(m) be such
that Amv = 0. Let (x(n))n≤m ⊂ X be a sequence such that x(m) = v, x(n) =

An−1x(n− 1) for n ≤ m and supn≤m(|x(n)|γ−|n|) < +∞. We define

x̃(n) :=

{
x(n) n ≤ m;

0 n > m.

Then, x̃ ∈ L∞
γ (Z−), x̃(0) ∈ Z and x̃(n) = An−1x̃(n−1) for n ≤ 0. By Lemma 2.10,

we have that x̃ ≡ 0. Hence, v = 0 and Am|Ũγ,Z− (m) is injective which together with

the previous observation yields our claim. □

Using Lemma 2.10 we may define a map from L∞
δ (Z−) into L∞

γ (Z−) by f 7→ xf .
It is easy to see that this is a linear operator and, moreover, by proceeding as in
the proof of Lemma 2.5 we get the following result.

Lemma 2.13. The linear operator f 7→ xf is bounded.

Let P−
m : X → Z(m), m ≤ 0 be the projections associated to the splitting (24).

Then, using the notation as in the proof of Lemma 2.11 we have that P−
mv = xf (m)

and, consequently,

|P−
mv| = |xf (m)| ≤ γ|m||xf |γ,Z− ≤ Kγ|m||f |δ,Z− =

K

δ

(γ
δ

)|m|
|v|, (25)

for m ≤ 0, where K > 0 is the norm of the operator f 7→ xf . We now take
v ∈ Z(m) and define f : Z− → X by

f(n) =

{
v n = m− 1;

0 n ̸= m− 1.

Then, f ∈ L∞
δ (Z−) and xf is given by

xf (n) =

{
Φ(n,m)v n ≥ m;

0 n < m.

Therefore,

|Φ(n,m)v| ≤ γ|n||xf |γ,Z− ≤ Kγ−n|f |δ,Z− =
K

δ
γ−nδm|v|,

and thus

|Φ(n,m)v| ≤ K

δ
γm−n

(γ
δ

)|m|
n ≥ m.

Consequently (see (25)),

|Φ(n,m)P−
m | ≤ Cγm−n

(γ
δ

)2|m|
n ≥ m, (26)

where C := K2/δ2 > 0.

Take now v ∈ Ũγ,Z−(m). Let f : Z− → X be given by

f(n) =

{
−v n = m− 1;

0 n ̸= m− 1.

Then, f ∈ L∞
δ (Z−) and the corresponding xf is given by

xf (n) =

{
Φ(n,m)v n < m;

0 n ≥ m.

Consequently,

|Φ(n,m)v| ≤ γ−n|xf |γ,Z− ≤ Kγ−n|f |δ,Z− =
K

δ
γ−nδm|v|,
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and thus

|Φ(n,m)(Id− P−
m)| ≤ C ′γm−n

(γ
δ

)2|m|
n < m, (27)

for some C ′ > 0. Finally, proceeding as we did in the end of the proof of Proposition
2.1, we can improve the exponent “2|m|” to “|m|” in (26) and (27). Hence, (20)
and (21) hold and the proof of the proposition is complete. □

The proof of the following result is analogous to the proof of Theorem 2.7.

Theorem 2.14. Assume that there are 0 < δi ≤ γi, i ∈ {1, 2} with γ1 < 1 and
γ2 > 1 such that:

(a) the pairs (L∞
δi
(Z−),L∞

γi
(Z−)) are admissible for i = 1, 2;

(b) for m ∈ Z−,

Ũγ1,Z−(m) = Ũγ2,Z−(m); (28)

(c) Ũγ1,Z−(0) is closed and complemented;
(d) if x ∈ L∞

γ1
(Z−), x(n) = An−1x(n− 1) for n ≤ 0 and x(0) = 0, then x ≡ 0.

Then, (An)n∈Z− admits NED.

Remark 2.15. If operators Am are invertible, then (28) can be replaced by the

requirement that Ũγ1,Z−(0) = Ũγ2,Z−(0). Moreover, in this case the assumption (d)
can be eliminated.

Finally, we discuss the case of dichotomies on Z.

Theorem 2.16. Assume that there are 0 < δi ≤ γi, i ∈ {1, 2} with γ1 < 1 and
γ2 > 1 such that:

(1) the pairs (L∞
δi
(Z),L∞

γi
(Z)) are properly admissible for i = 1, 2;

(2) we have that

Uγ1,Z+(m) = Uγ2,Z+(m) for m ∈ Z+

and

Ũγ1,Z−(m) = Ũγ2,Z−(m) for m ∈ Z−;

(3) Uγ1,Z+(0) and Ũγ1,Z−(0) are closed.

Then, (An)n∈Z admits NED.

Proof. Firstly, it follows easily from the first assumption of the theorem that the
pairs (L∞

δi
(Z+),L∞

γi
(Z+)) and (L∞

δi
(Z−),L∞

γi
(Z−)), i = 1, 2, are admissible. More-

over, by arguing exactly as in the proof of [27, Theorem 2.2.] we obtain that

X = Uγ1,Z+(0)⊕ Ũγ1,Z−(0) = Uγ2,Z+(0)⊕ Ũγ2,Z−(0).

Thus, Uγ1,Z+(0) and Ũγ1,Z−(0) are complemented. Furthermore, by the proper
admissibility of (L∞

δ1
(Z),L∞

γ1
(Z)) we get that the assumption (d) of Theorem 2.14 is

also satisfied. Consequently, by Theorems 2.7 and 2.14 we have that (An)n∈Z+ and
(An)n∈Z− admit NED with projections P+

n , n ∈ Z+ and P−
n , n ∈ Z−, respectively.

Therefore, there exist D ≥ 1, α ∈ (0, 1) and ε ≥ 1 such that

|Φ(m,n)P+
n | ≤ Dαm−nεn m ≥ n ≥ 0, (29)

|Φ(m,n)(Id− P+
n )| ≤ Dαn−mεn 0 ≤ m < n, (30)

|Φ(m,n)P−
n | ≤ Dαm−nε|n| 0 ≥ m ≥ n, (31)

and

|Φ(m,n)(Id− P−
n )| ≤ Dαn−mε|n| m < n ≤ 0. (32)

Moreover, we can choose P+
0 and P−

0 so that

ImaP+
0 = ImaP−

0 = Uγ1,Z+(0) and KerP+
0 = KerP−

0 = Ũγ1,Z−(0).
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Hence, P+
0 = P−

0 . Set

Pn =

{
P+
n n ≥ 0;

P−
n n < 0.

Then, AnPn = Pn+1An for each n ∈ Z. Moreover, An|KerPn
is invertible for every

n ∈ Z. For m > 0 > n we have using (29) and (31) that

|Φ(m,n)Pn| = |Φ(m, 0)P+
0 Φ(0, n)P−

n | ≤ Dαm|Φ(0, n)P−
n | ≤ D2αm−nε|n|.

This together with (29) and (31) yields that

|Φ(m,n)Pn| ≤ D2αm−nε|n|, for m,n ∈ Z such that m ≥ n.

Similarly, (30) and (32) imply that

|Φ(m,n)(Id− Pn)| ≤ D2αn−mε|n|, for m,n ∈ Z such that m ≤ n.

Hence, we obtain the conclusion of the theorem. □

Remark 2.17. We observe that, since we improve the main results of [27] to the
case of infinite dimensional and noninvertible dynamics and shorten their proofs
via different methods, we also improve the previous literature [2, 4, 5, 31, 30] in the
sense that neither bounded growth nor Lyapunov norms are necessary in this paper.
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