Instituto de Matemática - UFRGS - Mat01009 - Métodos Aplicados de Matemática I Recuperação Geral 2023/1

Nome: Cartão:

Instruções: (1) Essa prova tem duração de 1h40min; calculadoras não podem ser usadas; você pode escrever à lapis. (2) A correta interpretação dos enunciados faz parte da verificação; leia atentamente. (3) Nesta prova: e = número de Euler. (4) Resposta correta mas sem justificativa matemática terá 50% do escore.

Questão 1 ESCOLHA QUATRO.

(A). (1.5pt) Obtenha a solução do PVI
$$\left\{ \begin{array}{l} y'=-3t^2(y+2)^2, t>0 \\ y(0)=2 \end{array} \right.$$
 ,

(B). (1.5pt) Obtenha
$$y(t)$$
 tal que $\left\{ \begin{array}{l} 3ty'+5y=10 \quad , t>0 \\ y(1)=1 \end{array} \right.$

(C). (1.5pt) Taxa de variação é proporcional à diferença de temperaturas. Um termômetro em equilíbrio é retirado de um forno para um refrigerador onde a temperatura é de 12^o F. Após 1 minuto no novo ambiente, o termômetro marca 62^o F, e após 3 minutos no novo ambiente o termômetro marca 14^o F. Calcule a temperatura do forno. Obtenha expressão analítica da temperatura T(t) em função do tempo transcorrido t.

(D)(1.5pt) Obtenha a solução
$$y(x)$$
 do PVI $\left\{ \begin{array}{l} x^2y''+xy'+4y=2, x>1\\ y(1)=1, y'(1)=3 \end{array} \right.$, se possível, na forma explícita.

(E) (1.5pt) Obtenha a expressão analítica de uma sequência $\{p_n\}$ que satisfaz a recorrência $\begin{cases} p_{n+1}=3p_n+4p_{n-1}+9 &, n>0\\ p_0=3, p_1=4 \end{cases}$

(F). (1.5pt) Obtenha a solução
$$y(x)$$
 do PVI $\left\{ \begin{array}{l} x^2\frac{dy}{dx}+y^2=xy,x>1\\ y(1)=1 \end{array} \right.$, se possível, na forma explícita.

Questão 2. ESCOLHA DUAS.

(A). (2.0pt) Resolva o PVI
$$\begin{cases} y'' + 4y' + 3y = 4e^{-3t}, & t > 0 \\ y(0) = 1, y'(0) = -1 \end{cases}$$
 usando qualquer técnica trabalhada em aula.

(B). (2.0pt) Sejam x_1, x_2 funções de uma variável t. Encontre a solução geral de $\begin{cases} dx_1/dt = -2x_1 + 3x_2 + 2e^{4t} \\ dx_2/dt = 3x_1 - 2x_2 + 2e^{4t} \end{cases}$

(C). (2.0pt) Sejam
$$x_1,x_2,x_3$$
 funções de uma variável t . Encontre a solução geral de
$$\begin{cases} dx_1/dt=-x_1+x_2\\ dx_2/dt=x_1-2x_2+x_3\\ dx_3/dt=x_2-x_3 \end{cases}$$

Bom trabalho.

Formulário da Área 1 para P1 e Exame.

$$\frac{dy}{dx} + P(x)y = f(x) \Leftrightarrow y_p = e^{-\int P(x)dx} \int e^{\int P(x)dx} f(x)dx$$

M(x,y)dx+N(x,y)dy=0 possíveis fatores integrantes: $\mu(x)=e^{\int \frac{M_y-N_x}{N}}$ e $\mu(y)=e^{\int \frac{N_x-M_y}{M}}$ se as expressões forem funções somente de x ou de y, respectivamente.

$$\begin{split} y'' + P(x)y' + Q(x)y &= 0, y_1 \text{ solução conhecida } \Rightarrow y_2 = y_1(x) \int \frac{e^{-\int P(x)dx}}{y_1^2(x)} dx \\ y'' + P(x)y' + Q(x)y &= f(x), y_1, y_2 \text{ soluções homogêneas conhecidas } \Rightarrow \\ &\Rightarrow y_p = u_1y_1 + u_2y_2, \text{ onde } u_1 = -\int \frac{y_2(x)f(x)}{W(x)} dx, \ u_2 &= \int \frac{y_1(x)f(x)}{W(x)} dx \end{split}$$

	g(x) (exemplo)	fórmula de y_p
1	1 (qq constante)	A
2	5x - 7	Ax + B
3	$3x^2 - 2$	$Ax^2 + Bx + C$
4	$x^3 - x + 1$	$Ax^3 + Bx^2 + Cx + E$
5	sen(4x)	$A\cos(4x) + B\mathrm{sen}(4x)$
6	$\cos(4x)$	$A\cos(4x) + B\mathrm{sen}(4x)$
7	e^{5x}	Ae^{5x}
8	$(9x-2)e^{5x}$	$(Ax+B)e^{5x}$
9	x^2e^{5x}	$(Ax^2 + Bx + C)e^{5x}$
10	e^{3x} sen $(4x)$	$Ae^{3x}\cos(4x) + Be^{3x}\sin(4x)$
11	$5x^2$ sen $(4x)$	$(Ax^2 + Bx + C)\cos(4x) + (Ex^2 + Fx + G)\sin(4x)$
12	$xe^{3x}\cos(4x)$	$(Ax + b)e^{3x}\cos(4x) + (Cx + E)e^{3x}\sin(4x)$

Formulário para Área 2

autovalores repetidos:

$$\begin{cases} X_1 = Ke^{\lambda_i t} \\ X_2 = (Kt + P)e^{\lambda_i t} \\ X_3 = (\frac{Kt^2}{2} + Pt + Q)e^{\lambda_i t} \end{cases}, \text{ onde } \begin{cases} (A - \lambda_i I)K = 0 \\ (A - \lambda_i I)P = K \\ (A - \lambda_i I)Q = P \end{cases}$$

decomposição polar:
$$\mathbf{i}^2 = -1$$
 $x + \mathbf{i}y = \rho e^{i\theta}, \, \rho = \sqrt{x^2 + y^2}$ $\tan(\theta) = \frac{y}{x}, x \neq 0$ $\theta = \left\{ \begin{array}{l} \frac{\pi}{2} & , y > 0, x = 0 \\ -\frac{\pi}{2} & , y < 0, x = 0 \end{array} \right.$

Teorema 8.2.3. Seja $\lambda_i=\alpha+i\beta$ um autovalor complexo da matriz de coeficientes A no sistema homogêneo X'=AX e sejam K_1 e K_2 os respectivos autovetores, $B_1=Re(K_1)$, $B_2=Im(K_1)$. Então

$$X_1 = [B_1 \cos(\beta t) - B_2 \text{sen}(\beta t)]e^{at}$$

$$X_2 = [B_2 \cos(\beta t) + B_1 \text{sen}(\beta t)]e^{at}$$

são soluções linearmente independentes no intervalo $(0, \infty)$.

Transformadas de Laplace: supomos $e^{-st}f(t) \to 0$ ao $t \to \infty$, $F(s) = \mathcal{L}\{f\}$

instormation to Euplace: supomos $e = f(e) = e (f) = e (f)$				
$\mathcal{L}\{1\} = \frac{1}{s}$	$\mathcal{L}\{t^n\} = \frac{n!}{s^{n+1}}$	$\mathcal{L}\{e^{at}\} = \frac{1}{s-a}$		
$\mathcal{L}\{\operatorname{sen} kt\} = \frac{k}{s^2 + k^2}$	$\mathcal{L}\{\cos kt\} = \frac{s}{s^2 + k^2}$	$\mathcal{L}{f'} = s\mathcal{L}{f} - f(0)$		
$\mathcal{L}\{e^{at}f\} = F(s-a)$	$\mathcal{L}\{f(t-a)\mathcal{U}(t-a)\} = e^{-as}F(s)$	$\mathcal{L}\{t^n f\} = (-1)^n \frac{d^n}{ds^n} F(s)$		
$\mathcal{L}\{f*g\} = \mathcal{L}\{f\}\mathcal{L}\{g\}$	$\mathcal{L}\left\{\int_0^t f(s)ds\right\} = \frac{\mathcal{L}\{f\}}{s}$	$\mathcal{L}\{\delta(t-t_0)\} = e^{-st_0}$		
$a(c(n))$ $n \cdot a(c)$ $n-1 \cdot c(n)$ $n-2 \cdot c(n)$ $c(n-2) \cdot c(n-1) \cdot c(n)$				

$$\mathcal{L}\{f^{(n)}\} = s^n \mathcal{L}\{f\} - s^{n-1} f(0) - s^{n-2} f'(0) - \dots - s f^{(n-2)} - f^{(n-1)}(0)$$

$$\mathcal{U}(t-a) = \left\{ \begin{array}{ll} 0 & , 0 \leq t < a \\ 1 & , t \geq a \end{array} \right. \ \, \text{\'e a função degrau unit\'ario. } \delta(t-t_0) \ \, \text{\'e o impulso unit\'ario em } t=t_0.$$