Simultaneous Real Eigenvalue Embedding in Second Order Systems

To have a more complete description, click here

To directly go to the computer program, click here.

Given matrices

$\displaystyle \Lambda_1 = \left[
\begin{array}{cccc}
\lambda_1 & & & \\
& \lambda_2 & & \\
& & \dots & \\
& & & \lambda_r \end{array} \right] , $

$\displaystyle \Sigma_1 = \left[
\begin{array}{cccc}
\mu_1 & & & \\
& \mu_2 & & \\
& & \dots & \\
& & & \mu_r \end{array} \right] , $

$\displaystyle X_1 = \left[
\begin{array}{cccc}
x_1 & x_2 & \dots & x_r \end{array} \right] $
where (compatibility equation)
$\displaystyle M X_1 \Lambda_1^2 + D X_1 \Lambda + K X_1 = 0 , $
we calculate matrices $W$ and $Z$, together with diagonal matrices $E_m$, $E_d$, e $E_k$, such that the matrices of the symmetric model $(\tilde{M},\tilde{D},\tilde{K})$, given by
$\displaystyle \begin{array}{l}
\tilde{M} = M - W E_m W^T \\
\tilde{D} = D + Z E_d W^T + W E_d Z^T \\
\tilde{K} = K - Z E_k Z^T
\end{array} $
satisfy the updating equation
$\displaystyle \tilde{M}X_1 \Sigma_1^2 + \tilde{D} X_1 \Sigma_1 +
\tilde{K} X_1 = 0$
and the no spill-over equation
$\displaystyle \tilde{M}X_2 \Sigma_2^2 + \tilde{D} X_2 \Sigma_2 + \tilde{K} X_2 = 0$
where $(\Sigma_2, X_2)$ stands for any set (generally unknown) of eigenvalues - eigenvectors, which are not included in the updating.

Here, we provide an computer program to compute the set of updating matrix parameters $E_m, E_d , E_k, W, Z$. Once given the input data corresponding to matrices $M, D, K$ , $\Lambda_1$ and $X_1$, the quantity

$\displaystyle \Vert M X_1 \Lambda_1^2 + D X_1 \Lambda_1 + K X_1 \Vert _F$
is computed, in order to validate the compatibility equation.

Here we provide a computer program to perform the simultaneous embedding.



Joao Carvalho 2005-08-16