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ABSTRACT. A semiotic perspective on mathematical activity provides a way of concep-

tualizing the teaching and learning of mathematics that transcends and encompasses both

psychological perspectives focussing exclusively on mental structures and functions, and

performance-focussed perspectives concerned only with student’ behaviours. Instead it con-

siders the personal appropriation of signs and the underlying meaning structures embodying

relationships between signs. It is concerned with patterns of sign use and sign production,

including individual creativity in sign use, and the underlying social rules and contexts of

sign use. It is based on the concept of a semiotic system, comprising signs, rules of sign

production, and an underpinning meaning structure. This theorisation is applied to the learn-

ing of number, from counting to calculation. Historical, foundational and developmental

(i.e., learning) perspectives are explored and contrasted. It is argued that in each of these

domains, the dominant significant activity concerns the production of sequences of signs.
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INTRODUCTION

In proposing a semiotic view of mathematics education as an additional

way of conceptualising the teaching and learning of mathematics, a ratio-

nale is called for. Some justification needs to be given for the proposal

of yet another perspective, given the range of theories already utilised in

mathematics education. The justification is multiple, and is based on the

role of semiotics as the study of signs encompassing all aspects of human

sign making, reading and interpretation, across the multiple contexts of

sign usage. Mathematics is an area of human endeavour and knowledge

that is known above all else for its unique range of signs and sign-based ac-

tivity. So it seems appropriate to apply the science of signs to mathematics.

Likewise in schooling, learners meet a whole new range of signs and sym-

bolising functions in mathematics. So again it seems appropriate to adopt

a sign-orientated perspective from which to examine school mathematics.

This is not an isolated view or application of this approach. A grow-

ing number of scholars are applying the tools of semiotics to mathematics

and mathematics education, the work of Anderson et al. (2003), Chapman

(1992), Ernest (1997), 1998a, 2003; Kirshner and Whitson (1997), Morgan
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(1998), Pimm (1995), Radford (1998) and Rotman (1987, 1993), and oth-

ers testifies, as does the existence of this collection. In addition, a semiotic

approach follows naturally from some of the recent Vygotskian, Activity

Theoretic, socio-cultural and social constructivist theorisations of mathe-

matics and its teaching and learning. So this newer approach holds promise

and is already bearing fruit. Ultimately, the value of such a theorisation

must be judged on the new insights it provides and on any enhancement of

school practices in mathematics to which it leads. Only the beginnings of

such contributions are offered here.

A semiotic perspective of mathematical activity provides a way of con-

ceptualising the teaching and learning of mathematics driven by a primary

focus on signs and sign use.1 In providing this viewpoint it offers an alterna-

tive to psychological perspectives that focus exclusively on mental struc-

tures and functions. It also rejects any straightforwardly performance or

assessment focussed perspectives concerned only with student behaviours.

Instead it offers a novel synthesis that encompasses but also transcends

these two types of perspective, driven by a primary focus on signs and sign

use in mathematics. Beyond the traditional psychological concentration

on mental structures and functions ‘inside’ an individual it considers the

personal appropriation of signs by persons within their social contexts of

learning and signing. Beyond behavioural performance this viewpoint also

concerns patterns of sign use and production, including individual creativity

in sign use, and the underlying social rules, meanings and contexts of sign

use as internalised and deployed by individuals. Thus a semiotic approach

draws together the individual and social dimensions of mathematical activ-

ity as well as the private and public dimensions. These dichotomous pairs

of ideas are understood as mutually dependent and constitutive aspects of

the teaching and learning of mathematics, rather than as standing in rela-

tions of mutual exclusion and opposition. Individual learning is initiated by

participation in and partaking of the social. Likewise, the effective public

use of signs rests on the private construction of meaning. This is perhaps

the main justification for the adoption of a semiotic perspective on math-

ematics and on the teaching and learning of mathematics. It transcends

the limits of purely cognitive and behavioural psychological approaches

through providing a basic and natural unit of intelligent action, the sign.

A semiotic perspective also transcends the traditional subjective-

objective dichotomy. For signs are intersubjective, and thus provide both

the basis for subjective meaning construction, as well as the basis for shared

human knowledge, which as I have argued elsewhere, is what is taken for

objective knowledge (Ernest, 1991, 1998a). This has deep epistemological

implications. But it also opens up new ways of exploring the teaching and

learning of mathematics.
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The primary focus in a semiotic perspective is on communicative ac-

tivity in mathematics utilizing signs. This involves both sign reception and

comprehension via listening and reading, and sign production via speaking

and writing or sketching. While these two directions of sign communication

are conceptually distinct, in practice these types of activity overlap and are

mutually shaping in conversations, i.e., semiotic exchanges between per-

sons within a social context. Sign production or utterance is primarily an

agentic act and often has a creative aspect. For the speaker has to choose

and construct texts to utter, i.e., to speak or write, on the basis of their ap-

propriated and learned repertoire of signs. In so doing, speakers are taking

risks in exposing themselves to external correction and evaluation against

the rules of appropriate utterances. However, except in pathological situ-

ations, such as the speaker having a history of stigmatised failure (which

is not uncommon in mathematics, Buxton, 1981; Maxwell, 1989), such

risks are not usually perceived as threatening, or even as risky. For there

is a joy in utilizing ones powers to participate in social activities, to ar-

ticulate one’s response or self-initiated meanings in some text. (Here, as

is widespread in semiotics, ‘text’ denotes more than a piece of writing. A

text is a compound sign made up of constituent signs, and can be uttered or

offered in a conversation in many ways. It may be spoken, written, drawn,

represented electronically and may include gestures, letters, mathematical

symbols, diagrams, tables, etc., or some selection or combination of these

modes.)

The perspective I wish to sketch here focuses on mathematical sign

systems and the mathematical content, skills and capacities developed and

elaborated during the educational process. However, from a semiotic per-

spective it is always the case that signs and sign use can only be understood

as part of more complex systems. First, all sign use is socially located and

is part of social and historical practice. In Wittgensteinian (1953) terms

sign use comprises ‘language games’ embedded in social ‘forms of life’

(Ernest, 1998a). Second, signs are never used in isolation, for signs are

always manifested as part of semiotic systems, with reference implicitly or

explicitly, to other signs. The term semiotic system is here used to comprise

three necessary components. First, there is a set of signs, each of which

might possibly be uttered, spoken, written, drawn, or encoded electroni-

cally. Second, there is a set of rules of sign production, for producing or

uttering both atomic (single) and molecular (compound) signs. These rules

concern much more than the definition and determinants of a well-formed,

i.e., grammatically correct, sign. They also concern the sequencing of signs

in conversation, i.e., what sign utterances may legitimately follow on from

prior signs in given social contexts. In mathematics this includes rules

that legitimate certain text transformations, e.g., ‘canceling’, the common
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division of numerator and denominator, in fractions. Third, there is a set of

relationships between the signs and their meanings embodied in an under-

lying meaning structure.

This three component model is a simplified one which foregrounds the

system of signs in order to facilitate the explication of mathematical struc-

tures without indicating the irreducible and ever-present social dimensions,

such as the roles of speakers, social functions, and so on. Halliday (1978)

and Halliday and Martin (1993), for example, provide a powerful theo-

retical treatment of these missing dimensions that has been used in other

semiotic and linguistic studies in mathematics education (e.g., Chapman,

1992; Morgan, 1998; Pimm, 1995). The social and historical embedding

of semiotic systems concerns both their structural dimension, Saussure’s

langue, and in their functional role, parole (Saussure, 1916). The evolution

of semiotic systems can be examined historically in terms of both of these

dimensions. While theoretically separable, the two dimensions are woven

together in socio-historical practice, where the underlying given is people’s

actual use of signs in a variety of social settings and epochs.

Although the structural dimension of semiotic systems is, in the main, a

theoretical abstraction, the unusual occurs in mathematics, namely, this di-

mension is also manifested in practice. Mathematical theories representing

the structural part of mathematics are part of the functional parole, rather

than being solely post hoc theoretical constructions within the langue. The

construction and explicit formulation of mathematical theories has been an

important and recognised part of mathematical practice ever since Euclid’s

articulation of the Elements of geometry. To put it another way, metamath-

ematics is a part of mathematics.

To a mathematician it might be tempting to represent a semiotic system

as defined above in the style of a mathematical structure, as an ordered

triple 〈S, R, M〉, where S is a set of signs, R is a set of rules, and M the

underlying meaning structure. However, this temptation should be resisted

for it gives a misleading sense of precision and definiteness to the idea of a

semiotic system. R is at best a fuzzy set and the potential members of M can

never be made explicit, let alone represented as definite and well-defined

set.

Although mathematical theories are manifested in mathematical prac-

tice, they cannot make semiotic systems fully explicit. For while it is diffi-

cult to render all of the rules of sign production explicit in a formal theory,

theoretically it might be done. The more abstract and formal the theory,

the further removed from actual social use, the easier it is. But even where

this is accomplished, if indeed it can be accomplished at all, the underlying

meaning structure cannot be so represented. Just as in any language, there

is an irreducible tacit knowledge element (Ernest, 1999; Polanyi, 1958).
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Despite the pull towards abstraction, semiotic systems cannot be severed

from human understanding and use. They lose meaning once isolated as

purely structural systems.

Explicitly formulated mathematical theories are not conducive to stu-

dents’ learning of mathematics for the reason that they do not and cannot

communicate the meanings underlying the signs and rules (in addition to

the difficulties associated with the abstraction and generality of their for-

mulation). Philosophers of mathematics, especially formalists like David

Hilbert and logicists like Bertrand Russell have aspired to expressing math-

ematical knowledge completely in formal mathematical theories. However,

one of Imre Lakatos’ (1976, 1978) enduring contributions is his stubborn

insistence, and compelling reasoning, that formal mathematical theories

always have a ‘shadow’, the informal realm of meaning roughly corre-

sponding to the meaning structure in a semiotic system, as defined above.

Any formal moves to sever this realm of meaning not only render math-

ematical theories meaningless to learners, but also cut off the sources of

intuition and renewal from research mathematicians. Some meanings can

be expressed textually (i.e., using signs) but there must always be a residual

rump of unexpressed meaning. By definition, and on pain of circularity, the

production of new signifiers always implicates new signifieds. Or to put it

another way, understanding can never be abstracted out of its living human

contexts. There are also more technical problems in the foundations of

mathematics resulting from attempts to replace meaningful informal the-

ories by rigorous axiomatic formulations. For example, as Gödel (1931)

demonstrated, no formal theory can accurately and consistently express

the content of an informal theory as complex as arithmetic. Further, as

Skolem showed, every formal (first-order) theory for arithmetic, set the-

ory, etc., always admits large numbers of unintended nonstandard domains

as legitimate interpretations (Machover, 1996).

In an educational context, when semiotic systems are presented only one

component is made explicit, namely, the set of signs. Even in this case only

some signs are explicitly presented. All atomic signs, the base symbols,

e.g., single digit numerals, and later operator symbols such as +, −, =, will

normally be explicitly displayed, but typically the set of compound signs,

e.g., multi-digit numerals, is inexhaustible, and new signs are continuously

being produced. As the product of creative use, these signs cannot all be

anticipated. The rules of sign production are in most cases implicit, and are

acquired by ‘case law’ by novice users of a semiotic system. That is, they

are learned by seeing their applications and uses in social practice. Once a

semiotic system is fully developed historically or mathematically the rules

might be made more explicit. But from a developmental, i.e., a learner’s

perspective, a semiotic system is mostly in the process of unfolding and
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emerging in classroom practice. In this, and indeed in any other context,

the set of underlying meanings can never be rendered explicitly.

From a semiotic perspective, none of this comes as a surprise. Semiotic

systems involve signs, rules of sign use and production, and underlying

meanings. All of these depend on social practices, and human beings as

quintessentially sign using and meaning making creatures can never be

eliminated from the picture, even if for some purposes we foreground signs

and rules and background people and meanings.

Historical and cultural developments in mathematics give rise to the

semiotic systems that provide the underlying structure to the learning en-

vironments planned for students, namely, mathematical theories. These

are selected from, reduced, adapted and recontextualised as the systematic

topic domains of school mathematics (Dowling, 1988). The relationship

between the topic areas and structures of the planned and taught mathe-

matics curriculum and the learned curriculum as appropriated by students

embodies the well known dictum of Vygotsky (1978: 128) “Every function

in the child’s cultural development appears twice, on two levels. First, on

the social and later on the psychological level; first between people as an

interpsychological category, and then inside the child as an intrapsycho-

logical category.” Likewise, the historical and mathematical developments

in semiotic systems, when suitably recontextualised and reconfigured, be-

come the subject matter for the teaching and learning of mathematics,

which individual students master. In simplified terms, the social becomes

personal, and the public becomes private.

Figure 1 below illustrates the stages in such transformations of semiotic

systems in school mathematics. It begins where, for educational purposes,

Figure 1. The transformations of semiotic systems in school mathematics.
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a selection is made of some target mathematical theory from the totality of

publicly available mathematical knowledge. Given this selection, elements

of a mathematical theory are recontextualised into a school mathematics

topic. This is transformed through the teacher’s presentation and appropri-

ated by a student into their own mastery of the associated semiotic system.

The planned becomes the taught becomes the learned mathematics curricu-

lum (Robitaille and Garden, 1989).

Even in terms of this very simple model, there are a number of complex-

ities to be remarked upon. First of all, for any particular theory or area of

mathematics, there is no fixed or unique mathematical theory formulation

as a source. There are always multiple formulations by different mathemati-

cians and groups of mathematicians constructed and published at different

times. Furthermore, most school mathematics topics are no longer a part of

academic (university) mathematics and thus figure in no contemporary aca-

demic textbooks. Examples include whole number, fractional and decimal

operations; ratio; percentages; trigonometry; elementary algebra. These

tend to be regarded as trivial prerequisites to more advanced mathematical

expositions. The most common sources of exposition of these mathematical

topic areas are textbooks designed for use in schools or teacher education.

Such textbooks are not always reliable, as unlike papers in mathematical

journals, there is no guarantee that they have been checked scrupulously

or with sufficient rigour by experts.

Although not mentioned in contemporary advanced academic text-

books, elementary topics like those listed above are treated in historical text-

books, such as The Treviso Arithmetic, R. Recorde’s Arithmetic, S. Stevin’s

Decimal Fractions (see Smith, 1959), and more recent (but still historic)

publications. At the time of publication these historical sources were both

advanced academic treatises for scholars, as well as teaching texts. Even

today most published volumes of academic mathematics (as opposed to

journal papers) are advanced exposition for educational purposes. Never-

theless, virtually none of current school mathematics has been the subject

of leading edge mathematical research in the past century or two, except

for foundational purposes unsuitable for teaching.

Second, given the choice of any particular formulation of a mathemati-

cal theory, there is no limit to the number of ways of recontextualising it as

a school mathematics topic in the planned mathematics curriculum. Third,

every realisation of the planned mathematics curriculum as the taught cur-

riculum is potentially unique. For the presentation of this public structure

has elements of performance in it, in the live interactions between teacher

and students, and these can never be repeated identically, even if the same

textbook selections, chalkboard notes, worksheets, etc., are used again. To

some extent this mirrors the relationship between langue, corresponding to
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the planned topic structure, and its manifestation in parole, corresponding

to the sequence of utterances by the teacher, including all representations

used in classroom teaching. Fourth, there is learned mathematics curricu-

lum, which because of the idiosyncratic nature of the process of appropria-

tion and the underlying personal construction of meaning by learners, also

results in widely varying outcomes.

One of the dangers of a simple model like the above is that it might

appear to correspond to an educational and epistemological misconcep-

tion about teaching and the transmission of knowledge. As is now widely

accepted, knowledge is not analogous to a material entity that can be trans-

mitted from one person to another, or delivered like a book or computer

disc. Signs and rules can, in the extreme case, be ‘transmitted’, i.e., directly

communicated, although this is not an effective teaching strategy. Seeger

and Steinbring (1990) directly address the problems of the transmission

metaphor in education and underscore its weaknesses. In addition, there is

a large literature on the problems of teaching solely by exposition and direct

instruction, and learning solely by rote and the practice and reinforcement

of skills (Ausubel, 1968; Bell et al., 1983; Skemp, 1976). The key issue is

that meanings have to be constructed by each human being in turn, and the

making of meanings by a person always draws upon their active (if uncon-

scious) mobilisation of existing elements of meaning and understanding.

These are enduring insights offered by cognitive, constructivist as well as

social theories of learning, irrespective of any controversies between them

(Ernest, 1994b; Steffe and Gale, 1995).

In contrast to simplistic transmission approaches, great pedagogical

knowledge and skill is needed for the successful teaching of a mathemati-

cal topic. It needs to be presented within a supportive social context using

a variety of representations and tasks with sufficient redundancy so that

rules and relationships are inferred and meanings constructed and elabo-

rated. This normally takes place during an asymmetric dialogue between a

teacher and a class of students in which burgeoning capabilities are elicited

and assessed. For inevitably a student’s understanding and construction of

meaning can only be assessed indirectly through their public performance.

Using the signs of mathematics, in a variety of tasks and settings, is nat-

urally also the main means of acquiring mastery over them for learners

too.

Some of the ways in which the teaching of mathematics is much more

difficult than the transmission model suggests is illustrated by what might

be termed the ‘General-Specific paradox’. Typically a teacher wishes the

learner to learn some general item of knowledge (sign or rule) that is appli-

cable in multiple and novel situations, such as a mathematical concept, rule,

generalised relation, skill or strategy. However if this item of knowledge
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is presented explicitly as a general statement, often what is learned is pre-

cisely this specific statement, such as a definition or descriptive sentence,

rather than a human capability. As such it loses its generality and functional

power. In order to communicate the content more effectively it needs to be

embodied in specific and exemplified terms, typically in a sequence of rel-

atively concrete examples so that the learner can construct and observe the

pattern and generalise it, as part of an underlying meaning structure. Thus

the paradox is that general understanding is achieved through concrete par-

ticulars, and specific responses only may result from general statements.

This resembles the Topaze effect (Brousseau, 1997), according to which

the more explicitly the teacher states what it is the learner is supposed to

learn, the less possible the learning becomes. For the learner is not doing the

cognitive work (meaning making) that constitutes learning, but following

social cues to provide the required sign (the desired response or answer).

This can degenerate into the Jourdain effect (Brousseau, 1997) in which

the teacher prematurely accepts a specific and low level sign as evidence

of general and higher level understanding.

The model embodied in Figure 1 incorporates a number of complex

one-many transformations, as well as manifestations of structures, to a

greater or lesser degree of effectiveness, in terms of patterns of utterances.

These utterances, including various representations, tasks, conversational

exchanges and so on, take place over extended periods of time, which intro-

duces a further dynamic. For just as semiotic systems change and develop

over history, so too the semiotic systems mastered by learners change and

develop over the course of their learning careers, becoming more elabo-

rated and providing the basis for more complex and abstract systems. It has

been found that the private, individual structures, the learned mathemat-

ics curriculum as appropriated by students, continue to grow and develop,

even without further intentional activity by the teacher (Denvir and Brown,

1986). Although student understanding and mathematical capabilities are

described here in terms of the personal construction of private meaning

structures, this description is intended to be metaphorical. It is not known

how knowledge is privately represented for knowers, and indeed the static,

structural language of knowledge structures is purely hypothetical, and in

some respects, problematic. The only observable given is student utterances

in a variety of modes over a period of time. Once again there is an analogy

with the theoretical langue versus the realised parole. Mental structures

are purely hypothetical (and debatable), whereas patterns of utterances and

performances are empirically observable. It is the latter that a semiotics

approach to mathematics education emphasises.

However, beyond the learners’ growing mastery of semiotic systems

over time, the planned mathematics curriculum (serving as the basis for
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the taught and learned curriculum) is also intentionally and systematically

changed by the teacher. This is true even within single topic areas, when

a new topic area encompasses and subsumes a previously learned topic.

Mastering these enlarging semiotic knowledge systems constitutes an im-

portant dimension of learning. But such growth and development is not

simply a matter of cumulative growth. Nor is it simply a matter of reor-

ganizing the existing elements (signs and rules) or an expanded domain

of elements. It is true that as learners near mastery of a particular system,

the teacher often extends the system with new signs, relationships, rules

or applications. However, sometimes the growth of school semiotic sys-

tems involves the negation of existing rules and the change of underlying

meaning structures, through the adoption of new rules of sign usage that

contradict one or more of the old rules. For example, for a young child

mastering elementary calculation, the task 3–4 is impossible. But later it

has a determinate answer: 3 − 4 = −1. Similarly 3 divided by 4 (3/4) is at

first an impossible task. Later it is not only a possible task, but 3/4 names

the answer to it, i.e., becomes a new kind of semiotic object, a fractional

numeral. In early multiplication tasks children learn implicitly or explicitly

that “multiplying always makes bigger”. Later when the domain of num-

bers they operate on is expanded to include fractional and decimal numbers

(i.e., Rationals), or even just zero, this rule is contradicted.

In these and many comparable cases the rule changes are necessitated

by changes in the underlying meaning of the operations. Thus subtraction,

initially, is usually understood in enactive or metaphoric terms as resulting

from the partitioning of a collection of concrete objects and the removal of

one part. Hence 3 − 4 is impossible. Subsequently in learner development

subtraction is commonly understood more structurally as the inverse of

addition applied to an enlarged and more abstract domain of numbers.

Hence since 3 − 3 = 0, 3 − 4 = −1. It is very likely that the later more

abstract meaning of subtraction cannot be developed without the earlier

concrete meaning, so the apparent contradiction is unavoidable.

These, together with more complex changes in the rules that occur, i.e.,

are imposed, as semiotic systems are extended, and the problems they cause,

have been named epistemological obstacles (Bachelard, 1951; Brousseau,

1997; Sierpinska, 1987). For the student has to ‘unlearn’, that is relinquish

something already learned, i.e., part of the meaning structure and any cor-

responding rules, in order to make further progress. Thus a structural view

of semiotic systems can provide only a freeze-frame picture of a growing

entity that in its changes almost seems to be alive. Furthermore, not only do

individual semiotic systems change and grow. In practice it is difficult to

clearly distinguish and demarcate the range of different semiotic systems

encountered in school mathematics because of this growth and because of
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their mutually dependent and constitutive inter-relationships, as elements

from one are absorbed into another.

Successful mathematical activity in school requires at least partial mas-

tery of some of the semiotic systems involved in schooling at the appropriate

level. It also involves a number of complex socio-cultural factors that, as is

mentioned above, are backgrounded here in order to focus on the mathe-

matical content of sign systems in school. Thus the roles of speaker-teacher,

listener-student; the associated power relations; classroom ‘contracts’; the

aims and purposes of school mathematical activity and tasks, etc., important

as they are, are all largely ignored here.

A number of different but interrelated semiotic systems are important

in the learning of mathematics. These include, first and foremost, numbers,

counting and computation, which together make up the primary semiotic

system encountered in school mathematics. This is discussed in detail be-

low. There are several other semiotic systems that students meet in the

learning of mathematics over the course of their primary (elementary) and

secondary (high) school studies. These include fractions (rational numbers)

and their operations, various measures and their means of computation,

geometry, probability and statistics, and elementary algebra including the

solving of simple equations, both linear and quadratic. Advanced students

of mathematics go on to master further, more abstract systems such as cal-

culus or analysis and abstract (axiomatic) group theory, if they continue far

enough in their mathematical studies.

There is partial overlap between the different semiotic systems learned

in school mathematics; some are learned in parallel and others develop

and extend topics met earlier in study. As the discussion of Figure 1 indi-

cated, mathematical topic areas can be, and often are, ‘cut up’, constituted

and defined differently in different contexts and periods of time. Neverthe-

less, those listed make up a central part of taught mathematics currently

straddling the years of study from kindergarten to university.

In the following I concentrate on sketching just the first named semiotic

system. It is indicative of some of the most central features of mathemat-

ics and its learning, and it forms the basis for virtually all later learned

mathematical topics. The intention is to throw some additional light on a

well known mathematical topic through the adoption of a semiotic systems

perspective.

NUMBERS, COUNTING AND COMPUTATION

This semiotic system initially comprises a particular set of signs, namely

numerals, whether they be spoken or written, as well as rules for operating
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on them and underlying meanings. This is both historically and develop-

mentally the first mathematical semiotic system to emerge, although certain

tribal peoples develop ethnogeometry before ethnonumber, e.g., Australian

Aboriginal tribes and Navajo Indians (Pinxten, 1987). In order to contrast

three important but distinct dimensions of this system I distinguish three

different perspectives, the historical, mathematical and developmental per-

spectives.

Historical perspective on number, counting and computation

The origins of counting and number stretch back many tens or possibly hun-

dreds of thousands of years into prehistory, bathed in the mists of antiquity

and mystery. How far back one needs to go to find the origins of speech,

language and the full range of communicative activity is unknown. Twenty

to fifty thousand years ago repetitive tally-like markings were made by hu-

mans in the forms of artefacts (e.g., African and European notched bones)

and paintings (e.g., the Lascaux cave paintings). The extent to which these

indicate tallies used for calendrical prediction, counting and calculation,

ritual markings or cultural symbols used for other unimagined purposes

is unknown, but the results of uniform repetitive activity are evident. It

therefore appears very likely that some enactive proto-counting activities

existed in these pre-historic times.

Linguistic theorists have conjectured, based on comparative analyses

of language, that the earliest shared human proto-language of more than

10,000 years ago contained numerical words including ‘tik’ for one, digit,

and finger, and ‘pal’ for two (Lambek, 1996). The modern ambiguity of

the word digit signifying both ‘one’ and ‘finger’, links numerals with the

embodied action of tallying or the display of a number of fingers. The

identification of numbers and counting with body parts and gestures has

survived as functional systems of numeration into modern times worldwide

among tribal peoples and traditional cultures (Ifrah, 1998; Zaslavsky, 1973).

Prior to written language and numeration it is believed that small clay

tokens served as accounting representations of trade goods, with multiple

tokens indicating numerical quantities of the goods represented (Schmandt-

Besserat, 1978; Radford, 1998). Thus number was represented iconically,

through the repetition of tokens or icons, as it is in tallies. The clay tokens

were sealed into marked clay ‘envelopes’, with the pictogrammatic mark-

ings indicating the contents. The earliest numeration systems of 5,000 years

ago, most notably the Sumerian and Egyptian, represented small numbers

by means of tally signs (‘I’ = 1, ‘II’ = 2, ‘III’ = 3, ‘IIII’ = 4, and so on).

Once again, this is an iconic sign form, as the numeral comprises a collec-

tion of equivalent parts which has the cardinality of the number denoted,
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and which therefore can be put into one-one correspondance with any in-

stance of it.

In the transition from the act of tallying to the completed tally marks we

also have the shift from action in time to a timeless sign; from verb to ad-

jective or noun; from ordinality to cardinality. Likewise, the iconic marks

become part of a fully symbolic sign-system in which more non-iconic

numerals are included and the iconic features of the smaller numerals like

‘IIII’ are backgrounded. In Roman numerals ‘IIII’ becomes ‘IV’, and in

doing so the numeral for four ceases to bear an iconic relationship to the

act of counting to four, or to the cardinal number four, and instead refers

within the semiotic system to the result of taking one from five (or in or-

dinal terms, to the step preceding the fifth step). But of course this is a

recent development of less than 2500 years ago. This heralds the next stage

of development of abstract numeration systems which occurred in many

locations world wide, including Central America, North Africa, the Mid-

dle East, the Indian subcontinent, and China. In these locations, different

numerals for different denominations were developed leading to a variety

of place value systems. Crucial further steps in the development of the

modern decimal counting system took place in India and were effectively

completed in the 7th century with the introduction and use of zero as a

number, circa 600 AD (Ifrah, 1998).

Because of its ubiquity throughout every aspect of modern life the huge

magnitude of this conceptual achievement, i.e., the completion of the place

value numeration scheme, is easily underestimated. It represents an inno-

vation of the highest level equaled only by (and intertwined with) the de-

velopment of writing.2 But despite the widespread myths about its origins,

it was not the untrammeled development of human speculative and abstract

thought that led to the invention of the semiotic system of numeration and

calculation. Numeration arose primarily as an accounting system out of the

desire by central rulers of ancient empires to systematically record, docu-

ment and thus control, wealth, taxation and trade (Høyrup, 1994). In ancient

Mesopotamia and Egypt where written arithmetic first originated, it was

the knowledge of an elite class of scribes and priests. These practitioners

of the arts of early mathematics were primarily the servants of the rich and

powerful rulers, serving their purposes. However they also enjoyed refining

their arts for their own sake, as well as for educational purposes, as ancient

lists of recreational problems demonstrate. In addition, the associations of

the study and use of number with religion, astrology and numerology also

added mystical and further non-utilitarian dimensions to this knowledge.

Wilder (1974) claims that such developments, through positing additional

meanings for ciphers, helped to extend numeral signs into fully fledged

number signs. Thus numerals as signifiers were firmly welded to individual
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signifieds within the deeper and more elaborated meaning structures of

number and numeration systems that emerged.

In ancient Greece the clear social distinctions between slaves and citi-

zens helped to further, and more fully, bifurcate mathematical knowledge

into two types, the secular practical knowledge of calculation and mea-

sures and the pure discourse of an elevated leisure class. Logistic, the

study and practice of applied numeration and calculation, was viewed dis-

paragingly as a low-level activity suitable only for slaves and lesser beings

concerned with day-to-day activities. In contrast, the number mysticism of

the Pythagoreans was an abstract and philosophical study entirely divorced

from practical calculation. Likewise geometry, despite its utilitarian origins

in practical measurement, calculation and applied reasoning, as indicated

in the original meaning of its name ‘earth-measure’, was elevated to the

status of a pure science for the exercise of logic and reasoning, for their

own sake alone. This gave rise to a more philosophical approach to both

geometry and number theory.

Despite their ideological differences, these two dimensions of mathe-

matics, the applied and the pure, have persisted ever since, in a fruitfully

synergistic relationship. They have driven developments in both the pro-

cedural and the conceptual aspects of number. Practical requirements have

driven notational innovations such as the refinement of place value sys-

tems and the introduction of negative number notation. Conceptual devel-

opments have underpinned these developments, ensuring that the rules of

procedure reflect the underlying meaning structures, as well as developing

knowledge of other properties. The dichotomy between the pure and the

applied dimensions of number has also been bridged by teachers. Like the

scribes they systematised knowledge of number for expository purposes,

and sometimes pursued pure enquiries for their own satisfaction alone.

As this sketch reveals, the history of number and counting is also the

story of the development of semiotic systems of numeration and calcula-

tion. In this development the set of primitive signs used became codified

and circumscribed, and elaborate and systematic rules for the production of

compound signs emerged. The implicit meaning structures underpinning

this information technology are those of preserving and extending verifi-

able operations on sets of tangible objects and on accretions of material

produce and substance (e.g., crops, arable land). The operations of num-

bering (counting) tangible collections of discrete objects or unit measures

of continuous material aggregations are predicated on the conservation

and replicability of the outcomes. In other words, counting gives rise to

invariant and stable semiotic outcomes. Operations of combining and shar-

ing collections of objects form the basis for the numerical operations of

addition/multiplication and subtraction/division, respectively.
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In acknowledging enactivity, i.e., bodily activity, as a source of meaning

for signs I am drawing in part on Bruner’s (1960, 1964) synthesis of Piaget

and Peirce. Bruner claims that root meanings for signs are often constructed

by individuals on the basis of enactive, bodily experiences. Subsequently,

Bruner argues, these meanings are further developed through internalisa-

tions of iconic representations before being fully represented symbolically.

The enactive basis for meaning in mathematics has been more fully devel-

oped by Lakoff and Nunez (1997, 2000) who claim that meanings in arith-

metic rest on bodily and material metaphors. According to their scheme,

numbers are (metaphorically) collections of physical objects, addition is

(metaphorically) putting collections of objects together to form larger col-

lections, and more generally arithmetical operations are (metaphorically)

acts of forming a collection of objects. In each of these cases it is an

imagined agent who performs the (imagined) operations. Enactivism thus

provides a useful way of conceptualizing the primitive basis for the mean-

ing structures in semiotic systems And this does not necessarily require

subscribing to the epistemological assumptions of cognitivism.3 Rotman

(1987, 1993) has developed a model of mathematical agency within a fully

semiotic theorisation that potentially builds on these enactive insights with-

out the assumptions of cognitivism.

Historically, preserving the stability of the original concrete operations

motivates the basic and growing meaning structure underpinning general

numerical operations. This extends and preserves the stable outcomes of

these operations when applied to elaborate and complex compound numer-

als and repeated symbolic operations on them. The principle of conservative

extension, which is first observed in the development of number systems

(conserving key principles of the underlying meaning structure while ex-

tending the domain of signs or rules in semiotic systems), is a central and

enduring dynamic of theory growth throughout all of mathematics, from

ancient to modern (Pickering, 1995).

Mathematical perspective on number, counting and computation

Mathematically, the foundational basis of number and counting is reduced

to the action of just two primitive arithmetical symbols, ‘0’ for the starting

numeral and ‘′‘ for the successor symbol. Historically Peano used the two

signs ‘1’ and ‘+1’, respectively for these primitives (Heijenoort, 1967), but

modern scholarship has ruled that there is something unsatisfactory in one

primitive sign (+1) incorporating the other (1). (Some modern formulations

still choose ‘1’ as the starting numeral, as do educational presentations.)

By the repeated combination of these two symbols any numeral can be

represented and hence defined. Thus by definition 1 = 0′, 2 = 1′, 3 = 2′
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and so on. In terms of the primitive symbols 2=0′′ and 3=0′′′, and so if

the nth successor of 0 is symbolised 0(n), then 999 = 0(999), and in general,

n = 0(n). These definitions seem circular because brevity and manageability

is achieved in the metalanguage by using numbers, but it is not a vicious

circle. By definition 5 = 0′′′′′ (or 4′), and 0(5) is merely a metalinguistic

abbreviation. So all of the symbols can be reduced to combinations of the

primitives in a non circular and non-self-referential way.

As this shows, at the core of the semiotic system of number and counting

is the iterated use of the successor operation. This preserves by analogy the

repeated tallying that lies at the heart of number historically (and devel-

opmentally). For example, III = 3 = 0′′′, i.e., repetitions of the successor

operation are denoted analogously to tallies. One outcome of these foun-

dations is that both ordinal and cardinal aspects of number are effectively

represented in the semiotic system. For iterated counting (succession) is

the basis of ordinal number and hence ordinality, whereas the invariance of

the end product of this process is the basis of cardinality. Thus the search

for the foundations of arithmetic leads back to the same primitive notions

as are found in historical and developmental studies, and has a legitimate

place at the heart of the semiotic analysis of number.

Peano arithmetic is a powerful theory in that on the basis of the two

primitive symbols and five axioms (together with logical symbols includ-

ing ‘=’ and axioms of logic and identity), all of the required operations

and properties of arithmetic can be established. The axioms of identity are

the usual reflexivity (x = x), symmetry (x = y → y = x), and transitivity

(x = y & y = z → x = z). Peano’s axioms of arithmetic in simplified

terms are: 0 is a number (0 ∈ N , the set of Natural Numbers). The successor

of any number is also a number (n ∈ N → n′ ∈ N ). Each number has a

different successor (n′ = m ′ → n = m). Zero (0) is not a successor number

(0 �= n′). Last but by no means least, there is the induction axiom (If K is

a set, 0 ∈ K , and n ∈ K → n′ ∈ K , then N ⊆ K ).4 The induction axiom,

deceptively simple as it is, is the basis for proof by induction through-

out all of mathematics,5 as well as of the inductive definition of functions

and properties. This latter property permits all of the usual arithmetical

operations to be defined. Thus the binary operation of RHS (right-hand

side) addition of a number n to m (i.e., m + n) is defined inductively as

follows: m + 0 = m, m + n′ = (m + n)′. The binary operation of post-

multiplication of m by n is defined by m × 0 = 0, m × n′ = (m × n) + m.

(It is readily established that RHS and LHS addition operations are identi-

cal, as are pre- and post-multiplication.) The unary operation of exponen-

tiation of m to the power n is defined m0 = 1, mn′ = mn × m.

Foundationally, the very possibility of functions, including these

arithmetical operations, is predicated on their well-definedness and the
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uniqueness of each of their applications and values. Indeed, it is a sine
qua non in this domain, although such constant and invariant features

are far from automatic accomplishments in historical and developmen-

tal terms. Not only does induction permit such operations to be defined

(well defined even), and their properties to be proven, it also provides

an effective means of carrying out the operations. That is it results in a

precise algorithm for computing the value for any specific application of

these operations. For example, by definition (and in abbreviated form)

2 + 2 = 2 + 1′ = (2 + 1)′ = (2 + 0′)′ = (2 + 0)′′ = 2′′ = 3′ = 4.6 For

such a simple computation this is a somewhat tedious proof, but it demon-

strates how every step follows a predetermined algorithm and the number

of steps can be predicted in advance from the size of the numbers being

operated upon. Thus, N + M can be computed in these basic terms in at

most 3 M steps. The regular algorithmic nature of arithmetical operations

is a vital constituent in the practicability of arithmetic from its origins in ac-

counting 5,000 years ago to its present near instantaneous use in automated

electronic computing, with billions of calculations per second.

The foundational studies of Dedekind, Frege, Peano and others in the

late 19th century (Heijenoort, 1967) reduced the number of primitive signs

and rules in the semiotic system of number to a minimum. However modern

mathematics as taught and practised, both in the academy and in worldly

applications, has increased (or rather, maintained that which it inherited

from history) the number of primitive numerals from one to 10, namely

1, 2, 3, . . . , 9, 0. It has also added a moderately large number (200) of

basic facts (concrete rules), where Peano arithmetic has none (only abstract

axioms), and utilizes once again Peano’s original notation for succession

(‘+1’). The basic facts assumed are the 100 addition facts: 0 + 0 = 0,

1 + 1 = 2, 4 + 9 = 13, 9 + 9 = 18, etc., and the 100 multiplication facts

0 × 0 = 0, 1 × 1 = 1, 2 × 3 = 6, 9 × 2 = 18, 9 × 9 = 81, etc.

The utilisation of the increased quantity of primitive numerals in standard

notation also depends on the introduction of the place value numeration

system, for more than half of these basic facts involve two digit numerals.

The modern academic mathematics of number is couched in philosoph-

ically and logically basic terms, as the discussion of foundational work

has shown. From this perspective, the complexities introduced by place

value notation are regarded as purely notational, and the nature of number

is elucidated independently of notational considerations. Notwithstanding

this purist view, the origins of which can be traced back to the ancient

Greeks, and the philosophers’ eschewal of Logistic, much of the historical

development of number has concerned the refinement of place-value nu-

meration systems, and the associated algorithms and means of calculation.

Evidently a very important dimension of the semiotic system of numerals
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(and calculation) is the elaboration of the highly economical place value

notation system for representing numerals. This offers the means of pro-

ducing an endless set of compound numeral signs representing numbers

of potentially boundless size. For example the compound sign 2134 is a

polynomial comprising 2 thousands, 1 hundreds, 3 tens, and 4 units (ones).

These numerals of different denominations (themselves the product of a nu-

meral by a power of 10) are combined together by addition. The system of

representation of numerals in this general and uniform way has immediate

consequences in terms of the relationships between the different positions,

such as one Ten is equivalent to ten Ones. More generally, if numeral A is

in column n counting from the right (i.e., is a multiple of 10n−1), then it has

a positional value of 1/10th of A in position n + 1 (i.e., a multiple of 10n).

Thus, a unit in any position has a value 10 times greater (10ntimes greater)

than one immediately adjacent (removed by n places, respectively) on the

right, and 1/10th of the value of a unit adjacent on the left.

A powerful consequence of this notational system, which will not be

explored any further here, is that (positive) rational numbers, i.e., the whole

or fractional results of the division of one natural number by another (non-

zero), can be represented through the utilisation of further positions to the

right of the ‘Unit column’, i.e., utilizing denominations of 10 to negative

powers. (Indeed, the generalisation of place value notation as the limit of

a power series permits the representation of real and complex numbers.)

The system of compound numeral meanings, as well as that of numerical

calculations, is underpinned by a system of rules and principles including

the following:

Associativity: (a + b) + c = a + (b + c) · (a × b) × c = a × (b × c).

Commutativity: a + b = b + a · a × b = b × a.

Distributivity of × over +: a × (b + c) = a × b + a × c · (b + c) ×
a = b × a + c × a.

From the perspective of Peano arithmetic, these rules are all demon-

strable through the use of induction. In the socially widespread semi-

otic system of arithmetic with compound place-valued numerals, which

is utilised throughout practical, educational and mathematical applica-

tions, these rules and principles together with those underpinning nu-

merical operations and place value, are part of the underlying meaning

structure.

These signs, properties, relationships and principles together with all

of the definitions, facts, and rules of the semiotic system support the

different algorithms and methods for numerical computation. For exam-

ple, there are standard taught algorithms such as column addition and

multiplication, which are applied to tasks in presentations such as the
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following.

e.g., 132 263

+792 ×17

Computing the answer to the first of these typically abbreviates the

following calculations:

1 × 102 + 3 × 101 + 2 × 100

+ 7 × 102 + 9 × 101 ± 2 × 100

= (1 + 7) × 102 + (3 + 9) × 101 + 4 × 100

(1 + 7) × 102 + 12 × 101 + 4 × 100

= (1 + 7 + 1) × 102 + 2 × 101 + 4 × 100

= 9 × 102 + 2 × 101 + 4 × 100

The correctness of these algorithms depends on the associativity, com-

mutativity and distributivity of the two operations involved. However to

work them correctly only requires knowledge of the 200 number facts

mentioned above, as well as knowledge of the algorithmic procedures them-

selves.

Mathematically, the inverse operations of subtraction and division re-

ceive a different treatment from addition and multiplication, despite their

analogous original meanings in operations on groups of objects (partition-

ing and taking away, and repeated sharing or partitioning with removal).

This is because mathematically the operations of subtraction and divi-

sion do not share the ‘nice’ properties of associativity, commutativity and

distributivity that make them so amenable to symbolic manipulation and

transformation. Instead, subtraction, of say, 3, must be conceptualised as a

compound operation, i.e., the addition of the inverse of 3 (n −3 = n +− 3).

By this elegant redefinition subtraction is replaced by the ‘nice’. operation

of addition at the expense of extending the set N of natural numbers to the

integers Z. The integers forms an additive group (under the operation of

addition), with the required identity (0), and the properties of closure under

addition, inverse operator, and additive associativity.

Developmental perspective on number, counting and computation

The learning of counting and number typically begins as part of language,

and persons acquire knowledge and facility of it through participation in

language games and conversations situated in forms of life (Ernest, 1998a;

Wittgenstein, 1953). Vygotsky (1978) argues that all semiotic functioning
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is first developed in the young human being through the convergence of

several modes of representation, including spoken language, bodily move-

ments associated with drawing and painting, and the use of physical objects

as signs, standing for imagined objects in play. Through such modes of ex-

pression the power and general properties of the semiotic relation between

sign and object, representation and meaning, signifier and signified is first

learned and developed.

This can be observed in the development of number competency through

the elaboration and convergence of different modes of representation. Num-

ber is typically first encountered through repetitive activity in the forms

of speech (e.g., ‘da’, ‘da’, ‘da’, . . . ; ‘one’, ‘one’, ‘one’, . . . ; ‘one’, ‘two’,

‘three’, . . . ); in repeated bodily movements (e.g., repetitive stepping, point-

ing, or taking, sweets, pebbles, counters, etc., one by one from a collection);

or in making repeated scribbles, brush strokes or tally marks. In such ways

counting commonly originates in the child in association with rhythmic

and repetitive activity, that is, in enactive representations. As discussed

above, this results in basic and deep seated enactive meanings. Initially

this gives rise to an ordinal conception of number, as embodied rhythmic

activity extended in time, and as iconic sets of marks both resulting from

and symbolizing the repetitive activity through which they were created.

The experience of completing such activities with their end product, such

as a set of marks or a terminal count, also gives rise to a cardinal concep-

tion of number as a representation of quantity. Hughes’ (1986) experiment

with preschool children showed that iconic representations of quantity in

the form of tally-like markings can provide an intermediate step between

spoken and written (symbolic) signs.

However, it would be a mistake to believe that counting activities and

signs emerge in any fixed predetermined order (contra Bruner, 1960, 1964).

Enactive, iconic, spoken, written and purely symbolic numerals are utilised

and progressively mastered in various overlapping activities and contexts,

according to social contingencies as they arise in the child’s early experi-

ence. Such activities and experiences are primarily communicative ones, in

the social space between child and adult and between child and child. What

emerges from such communicative activity is partial mastery of the semi-

otic system of number and counting. This system comprises a particular set

of signs, namely numerals, both spoken and written. It is developmentally

(i.e., ontogenetically) and historically the first semiotic system in mathe-

matics to emerge. The most important relationship within this system is

the basic notion of ‘next’ in sequence (immediate successor), as identified

in foundational analysis. (Subsequently the derived notions of ‘further on

in the sequence’, i.e., formally, ‘greater than’ and its converse ‘less than’,

also become important). In addition to this internal relationship (within
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the domain of signs), a further central relationship is the one-one principle

in the pairing of signs to objects. These give rise to the basic underlying

meaning structure for counting. This is developed and elaborated from par-

ticipation in social practices of counting, i.e., children seeing others deploy

numerals in rule governed ways, and copying or otherwise trying out the

use of the signs and rules of the counting system themselves (Gelman and

Galistel, 1978; Saxe, 1991).

Just as in history, the acquisition and deployment of a sequence of nu-

meral words or signs is a vital step for the child’s development of counting

(contrasting with the foundational view that it is secondary). These numeral

signs or ‘tags’ must be deployed in rhythmic iteration with the objects being

counted.7 They must have a stable order so that they embody a single fixed

relation of succession. Using them in the enumeration of a set of objects

names each object in some order, i.e., gives its ordinal position in the count

sequence. When this sequence exhausts the set of objects the last count to

be uttered is defined to give the numerosity (cardinality) of the set. This

procedure is only useful because of the invariance of the result, a property

which must also be learned. The count (cardinality) is conserved by any

complete 1-1 count sequence, and neither the order of counting nor the na-

ture or disposition of the objects being counted affects this. Piaget (1952)

identified the significance of this accomplishment, and termed it the Con-

servation of Number. As is well known, in Piaget’s (1969) theory this is a

key indicator of a child’s progression into the stage of Concrete Operations.

In developmental terms, the principles of counting, which provide a

basis for rule-governed sign production in context, have been explicitly

stated by Gelman and Galistel (1978) as follows.

The principles of counting

1. One-one principle: The child assigns a distinct counting word to each

item to be counted.

2. The stable-order principle: The child becomes consistent in her or his

use of the counting words or ‘tags’, even if they have invented their own.

3. The cardinal principle: The child realizes that counting a set of objects

results in an end product, i.e., an indicator of the size of the set.

4. The abstraction principle: The child recognises that any set of objects,

tangible or imaginary, can be counted, and they do not have to be iden-

tical.

5. The order-irrelevance principle: objects can be counted in any order,

and the result will still be the same.

In elementary mathematics, counting activities will often at first con-

cern manipulating and working with concrete, graphical and symbolic
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representations of number. There will often be ordering by size, match-

ing (e.g., sets of objects), counting (e.g., repeated motifs in diagrams), and

numeral recording activities set for the learner.

Learning the semiotic system of number and counting means that a

learner is able to participate in certain social activities and practices and

within them can utter or produce number signs appropriately. Being able to

participate in such counting conversations, activities and language games

means that the learner can use the semiotic system creatively. Indeed, the

mastery of any self-sufficient part of a semiotic system, with its signs, rules

and meaning structure, enables its user to employ the signs creatively.

Every act of counting requires decisions and choices such as where to

start the count and how to sequence a set of objects in the environment or

imagination so as to respect the principles and meanings involved. Thus

counting, as routine and automatic as it can become in familiar situations,

begins as a creative act of problem solving.

The standard teaching sequence for the semiotic system of number typ-

ically follows on from the partial mastery of counting with the introduction

of number operations. (Inevitably, counting capabilities remain incomplete

until after the mastery of the rules of production of compound numerals,

based on place-value notation with its implicit numerical operations). The

first such operation is addition, beginning with the combined counting of

two sets of objects. Thus to compute 3 + 8 (or rather to give a total count

for sets of 3 and 8 objects) a child typically counts the first set (1, 2, 3)

and then continues the count for the second set (4, 5, 6, 7, 8, 9, 10, 11),

thus treating the two as a single partitioned set. At this stage small two

digit numbers such as 10 and 11 typically have a pre-place value meaning

given by their position in the counting sequence, rather than through their

composition as sums of tens and units, i.e., their place value meaning.

The primordial meaning of addition is that of the combined count of

two sets of objects (or one partitioned set). This is a natural extension of the

principles of counting, as indicated above, which also guarantee a stable

answer to this operation. In the subsequent development of the semiotic

systems of school mathematics this base meaning is added to and deepened

in terms of its application to new and extended sets of signs, rules and un-

derlying meaning structures. In general, as was discussed previously, such

changes and developments in rules and meanings are a source of problems

in the learning of mathematics. But they are also an inescapable source of

the cognitive and expressive power of the semiotic systems of mathematics.

The shifts and growth of meaning structure and rules evolve in parallel

and exemplify the role of metaphor in extending meanings in language.

Some of the subsequent development of competence in addition may

be spontaneous. As researchers have discovered, it is not only in the basic
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operations of counting that children’s procedures are creative. As children

learn the elementary number operations of addition (and later subtraction,

etc.) on small numbers they also typically invent curtailed procedures.

Carpenter and Moser (1982), Fuson (1982), Ginsberg (1977), and others

have identified a multi-stage progression which children use when using

counting in order to add two numbers, say N + M . First, there is the

‘count all’ strategy, discussed above, in which children start by counting

out N and then follow it with M further counts (providing a sequence of

N + M numeral utterances or counts in total). The child may first have

been shown (and practised) performing addition by counting all of two sets

of physical tokens (enactive representation of task), counting all of two

sets of drawn tokens (iconic representation, possibly worked enactively),

and then counting all of two numbers (symbolic representation of task).

Even in this last case there is a vestigial enactive element in counting,

uttering or thinking a sequence of numerals, often indicated by minute

bodily movements, such as finger, lip, or eye movements.

The second stage is ‘counting-on’, where a child starts with the count

of N (without recounting it) and follows this with M further counts (giving

a sequence of 1 + M numeral utterances in total, e.g., for 3 + 8 counting 3,

4, 5, 6, 7, 8, 9, 10, 11). The child may be taught or shown that counting on

shortens the procedure and is a more efficient way of completing the task,

or may infer it during the experience of an extended number of addition

tasks. In reaching this stage the child has thus spontaneously realized or

learned that the same end result can be achieved by an abbreviated and

more economical procedure. Where spontaneous, this is creativity at work.

In the third stage, ‘counting-on from larger’, if M > N then the child

commutes N + M to M + N , and performs the transformed calculation

by ‘counting-on’ as before. This involves 1 + N utterances plus the initial,

possibly unspoken, commutation, e.g., for 3 + 8 counting 8, 9, 10, 11.

Again this can be the result of creative problem solving where the child

combines known procedures to make a new one, having learned from mul-

tiple experiences that larger number first is less effort. Thus the child has

been taught, shown or self-induced the commutativity of addition.

In a fourth stage the child derives the answer to N + M from known

facts. At this stage the child has mastered some but not all of the 100 one

digit addition facts. Chronometric analysis indicates that children memorise

certain additive number facts first, for example 2 + 2, 3 + 3, 4 + 4, . . .

(Resnick and Ford, 1981). Thus, children often come to know ‘doubles’

such as N + N for small values of N before most other number facts, and

they use these to derive other facts. Thus they might compute 4 + 5 as

4 + 4 + 1 = 8 + 1 = 9. More generally, if M = N + K they might choose

to compute N + M as (N + N ) + K (requiring 1 + M − N utterances).
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However, in the case of the example 3 + 8, a learner might instead

transform this into 3+ [7+1], [3+7]+1, 10+1, 11, using the ‘make ten’

bridging strategy (Thompson, 1998, 1999) since using the double 3 + 3

would be inefficient, not curtailing the calculation sequence. Deployment

of this strategy implies a grasp, probably operational and implicit, of the

associativity of addition. Each such derivation from known facts is a cre-

ative act of problem solving, at least initially. It requires knowledge of the

partition of 10 facts (e.g., 1 + 9 = 2 + 8 = 3 + 7 = · · · = 10). It involves

selecting one of these known facts anticipated to be helpful as a starting

point for the given sum in the light of available strategies and then deriving

a sequence of transformations to link them. It also necessitates a degree of

metacognitive monitoring and self-regulation to make an efficient strategic

choice. As before, such a use of facts to derive others may be a self induced

strategy from extensive experience in additive tasks in school, or may be

taught or modeled by more knowledgeable others, or a combination of the

two.

In the fifth stage the child knows all of the 100 addition facts and re-

trieves N + M directly from memory in a single rapid mental operation.

Transition to this final stage typically takes several years of practice with

the semiotic system of number, applied to teacher provided addition tasks

and other incidental calculations, and is attained later or never by some

‘learning disabled’, but otherwise normal, students. However even when

this final stage is reached with respect to the 100 addition facts, the methods

and strategies used in the earlier stages continue to be employed creatively

in mental operations. The flexibility and choice of strategies involved are

those that have been identified as the general strategies of problem solving,

that is, procedures that guide the choice of what knowledge and skills to

use at each stage in problem solving. As a number of authors have noted,

e.g., Fischbein (1994) and Plunkett (1979), such mental methods typically

involve repeated operations to facilitate the application of relatively simple

operations. Typically in such working, composite (multi-digit) numerals

are decomposed and recomposed creatively using a variety of equivalence

transformations including the number facts and rules of associativity, com-

mutativity and the distributivity of operations identified above, as best suits

the particular calculation (Plunkett, 1979; Thompson, 1999). Computations

may involve single or multiply branching sequences of multiple decompo-

sitions, distributions, partial calculations and recombinations. The process

is an often fleeting sequence of partial computations represented by mental

imagery or written signs directed towards the desired result.

The learner masters the above sequence of addition skills, usually in the

listed order, in response to demonstrations by, or shared tasks with, more

capable others (within the learner’s Zone of Proximal Development, after
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Vygotsky, 1978). In this progression there are many experiences that con-

tribute to the learner’s developing mastery over the symbolic addition tasks.

These include work with manipulatives and iconically presented tasks, as

well as oral work and a wide range of symbolic tasks solved mentally, with

intermediate recording or with the electronic calculator. The symbolic tasks

can include written addition, subtraction (as well as multiplication and di-

vision) tasks in which numerals are displayed horizontally or vertically,

in column form. The meanings that children attach to the operations of

addition and subtraction are intimately related, and so work with tasks

utilizing both of the operations contributes to the development of their ad-

dition skills. The tasks typically also include word problems, which the

child must analyze and translate into an arithmetical task before operating

on any numerals. Children will have most of these experiences in the class-

room, but other significant areas of activity occur in the home and other

out-of-school locations. Likewise the more knowledgeable guiding other

will most often be the elementary school teacher and sometimes a class-

room peer, but may also include parents and others in the out-of-school

locations.

This account indicates just some of the rich complexity underlying an

individual’s mastery of the semiotic system of number. Being able to add

small numbers, as described, and ultimately, being able to use these ad-

dition facts for other tasks is the culmination of a process which extends

over several years. In this process the learner is internalizing some of the

central functions and structures of the number system, i.e., building up the

underlying meaning structure. This internalisation necessitates the learner

to be continually engaging in conversation, making public utterances and

performances, deriving feedback from others, incorporating confirmations

and corrections in his or her performance and functioning, which helps to

shape the child’s emerging powers. Although the focus in this account has

been on the mastery of the semiotic system of number with the social di-

mension backgrounded, the learner is also learning to read, understand and

respond to the social contexts of number. Thus the learner as an apprentice

mathematical subject also develops the following abilities.

First, there is the ability to identify the particular arithmetical tasks or

activities as set or imposed by others, including in the classroom and at

home. Such identification may also be needed where the tasks are em-

bedded in self-subsistent social forms of life, such as giving the correct

coins in shopping. This capacity involves ‘reading’ (interpreting) the con-

text, that is being aware when a task is signaled within a social situation.

The identification function may become unconscious as the child learns

to recognise, understand and engage with the task in an overall undif-

ferentiated act within a familiar context. However some of the different
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situated practices involved, e.g., performing calculations in the classroom

and calculating correct change in shopping, may be learned as separate

practices and may not lead to transfer of learning or competencies, as both

cognitive-based research (Nunes et al., 1988; Nunes, 1992) and work in

situated cognition (Evans, 2000; Kirshner and Whitson, 1997; Lave and

Wenger, 1991) indicate.

Second, there is the child’s acquired ability to accept the task imposed

by another, or necessitated by the situation, and to engage with its goal

directed nature. This involves being able to accept and internalise the goal

of a task and behave as if it were the subject’s own personal goal. This

capacity does not exclude the possibility of task rejection or goal refusal by

the learner, and this possibility always remains open. However, acceptance

can take place without the child consciously making a decision, or indeed

having any awareness of tacit compliance through subserving his or her

will to that of a directing other. Acceptance and compliance with others’

will is something children learn from the earliest stages from their reliance

on primary caregivers. In my view the existence of the phenomenon of

hypnotism, with its directorial and suggestive potency, suggests that this a

deeply entrenched human capacity. Power is ever-present in conversation

and interpersonal communicative activity and roles, although power in this

sense is productive, and only problematic when used abusively (Foucault,

1981, 1982).

Third, learners also develop the ability to select from their personal

repertoire of knowledge, skills and procedures to perform appropriate func-

tions in response to task representations. Such functions often involve the

transformation of texts, the production of oral responses or other means,

in order to attain the goal of the task. Responses utilise a variety of modes

of representation including literal, symbolic or iconic inscriptions, perhaps

also enactions, gestures, utterances and their combinations. The capacity to

perform an appropriate semiotic function does not preclude the possibility

of failure in selecting an appropriate function, in performing an appropriate

function correctly, or in attaining the task-goal, in any particular instance.

Any performance is creative, at least initially, with the concomitant risks

and satisfactions that the deployment of skill involves.

Successful appropriation and deployment of the semiotic system of nu-

merals and calculation is a process that takes several years and involves

the growing mastery of a range of signs, meanings and rules of calculation

which are combined in different computations in creative ways which can

become routinised with practice. This encompasses the four main algo-

rithms (the ‘four arithmetic operations’) and all the modes and contexts of

presentation outlined above, and constitutes the central emphasis in ele-

mentary school teaching of mathematics.
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These, then, are some of the powers and capacities that the student ap-

propriates and develops in attaining mastery of semiotic system of number.

As this account shows, they are inescapably bound up with the interpre-

tation and production of mathematical text. In the context of schooling,

such texts become increasingly formalised over the passing of the years. In

addition to gradual mastery of the semiotic system of number, a growing

mastery of the broader and more general rhetoric of school mathematics is

also a major expectation of school mathematics (Ernest, 1998a,b; 1999).

This is not to exclude the possibility that each semiotic system of school

mathematics has its own specific modes of formal representation, presen-

tation and rhetorical demands.

One further aspect of the semiotic system of number from a develop-

mental perspective needs to be clarified. This account has focussed on the

counting and calculational aspect of number work in children’s learning. In

the history of mathematics, in addition to the practical, applied-driven and

calculational aspect of number there is also pure number theory, pursued

initially for its own challenges and aesthetic reasons. School arithmetic

also has elements of this dimension, which is a further part of the semiotic

system of number. While children are developing counting, numeration

and calculational skills they are also typically introduced to number prop-

erties and patterns. Children learn about even and odd numbers, primes and

composites, and sometimes, later, square, triangular, and even perfect and

abundant numbers. Further ad hoc properties may be introduced in num-

ber investigations, such as Happy and Sad numbers (Jeffrey, 1981). Even

and odd numbers are represented iconically through rectangular arrays of

dots (just as the Pythagoreans did). Even numbers give two even lines of

dots, whereas odd numbers always have one extra dot. Composite numbers

give rectangular arrays (square numbers make square arrays), and primes

can only be drawn as lines. The introduction of these concepts and their

properties helps to children to develop the relational properties of number

introduced by the operations of addition and multiplication. These prop-

erties extend the meaning structure underpinning numerals and number

representations, as well as the nexus of meanings underpinning the rules

of the semiotic system.

These additional aspects are part of the semiotic system (or systems)

of number, which utilises a variety of signs and representations includ-

ing iconic ones (as here) as well as enactive, verbal and symbolic ones,

discussed above. This raises a deep question. These aspects of number,

presented here and above with greater and lesser thoroughness, are they all

part of the same semiotic system of number? Developmentally, is there only

one semiotic system of number that children, to a varying extents, mas-

ter? More generally, are the different accounts of the semiotic systems of
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number from historical, foundational and developmental perspectives ac-

counts of a single system, or are there many systems involved? My answer

is that there is not a single, uniquely defined semiotic system of number, but

rather a family of overlapping, intertransforming representations of consti-

tuting the semiotic systems of number. It would make no sense to claim the

existence of a single, fixed and essential representation, for in the develop-

mental arena alone there are multiple representations utilised by teachers

at different stages in teaching, as well as the varying systems mastered by

children themselves. Some aspects of this complexity were indicated in the

discussion around Figure 1, above. Likewise, from a historical perspec-

tive, a multiplicity of systems can be described, and it cannot be said by

any means that they converge into a single systematic representation. The

same is true foundationally. Similarities between different system repre-

sentations abound but each version although a representative of the family

of overlapping, intertransforming representations of semiotic systems of

number is also a contingent function and product of its social context and

purposes. Unity and diversity co-exist simultaneously.

CONCLUSION

This paper has analyzed elementary arithmetic from a semiotic systems

perspective. It has shown the importance and interdependence of each of

the components of signs, rules and meanings whether viewed historically,

foundationally or developmentally. Despite the obvious differences be-

tween these perspectives, there is considerable convergence between them.

This is not surprising in view of the central role of the semiotic system of

number in each of these domains.

Following Saussure, diachronic and synchronic modes of analysis can

be applied to semiotic systems. The diachronic mode is a long term view

focussing on the development of the system itself, chronologically. Each

of the three perspectives presented has emphasised this view. The histor-

ical perspective treated key stages in the emergence, social function and

development of systems of number, counting and calculation over five mil-

lennia. The foundational perspective provides a logical narrative of the

emergence and development of number concepts and functions beginning

with primitive notions and then defining new numbers and operations and

establishing their properties by means of deductive proofs. This perspective

is positioned as timeless logico-philosophical narrative, but it too has its

own historical development with different mathematicians providing dif-

ferent and increasingly explicit accounts of the foundations of number. An

extended historical account of foundations could be provided including the
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complete systems or contributions of Pythagoras, Euclid, Al-Khwarizmi,

Pascal, Fermat, Dedekind, Peano, Frege, Russell, Brouwer, Hilbert, Gödel

and others (Benacerraf and Putnam, 1964; Heijenoort, 1967; Grattan-

Guiness, 1994). Such an account would forground the foundational changes

in the evolution and development of semiotic systems of number over nearly

three millennia. Last but not least, the developmental perspective focuses

on children’s learning and mathematical functioning, and is a most dra-

matic picture of rapid development as children grow from babies with no

speech, let alone arithmetic, to fully fledged calculators and junior number

theorists by 10 years of age.

The synchronic view focuses on the role and function of the semiotic

system of number in live conversation. Deployment of this system in each

domain involves the two primary social roles within conversation, sign re-

ceiver (listener or reader), and sign producer (speaker or writer). In each

case, sign construction or utterance involves the production of a sequence.

Historical records provide evidence of completed calculations often con-

cealing the sequential nature of their derivation. But from the methods

embodied in the range of completed calculations discovered, it is clear

that comparable sequential processes in calculation and the production of

text are present throughout history. The process of counting requires the

utilisation of a sequence of signs (numerals). Numerical computation and

calculation requires the production of an elaborated sequence of signs, ul-

timately arriving, if successful, at a terminal text ‘the answer’. Sometimes

this sequence consists of the elaboration of a single compound sign (e.g.,

carrying out a 3 digit column addition). This means that a compound sign

involving symbols becomes also an icon in which annotations, crossings-

out and the spatial dispositions of constituents signify part of the composite

meaning. Sometimes a computation involves a sequence of distinct, spa-

tially extended or temporarily distinct signs such as in mental calculations.

In each case, there is a given text, either chosen or imposed, specifying the

numerical task. This text may include signs from the semiotic system to be

transformed as the starting point for the task, e.g., two numerals to be added,

a word problem incorporating numerals to be solved, or in a foundational

example, a proof of a property such as a proof by mathematical induction

that × is commutative over N. It may draw upon everyday words as syn-

onyms for signs in the semiotic system, such as number words in word

problems. In some tasks the text does not include basic signs from the

semiotic system, e.g., ‘count the animals in the picture’, or has indications

beyond the text, e.g., ‘count the children in your class’. In response children

must introduce the numeral signs themselves, although in these examples

the ‘count’ instruction is a rule governed sign denoting an operation within

the semiotic system of number.
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In performing the task a sequence of signs is produced in conformity

with the rules of the semiotic system. In counting, these are the rules of

counting, and these rest on a meaning structure that conserves the cardi-

nality of counts as invariant. In calculating, these are the rules associated

with arithmetical operations (commutativity of +, etc.). Calculations are

typically presented as sequences of numerical terms, each term derived

from predecessors by the rules of the system. The meaning structure un-

derpinning the rules of calculation concerns the preservation of numerical

value. Multidigit column subtraction algorithms provide a good illustra-

tion, although in this case the sequence tends to be produced as successive

annotations over time, resulting in a single over-inscribed composite. These

algorithms are based on individual subtraction operations applied within

‘columns’, i.e., treating each denomination of powers of ten separately.

Both Equal Addition and Decomposition involve compensatory adjust-

ments within compound numerals in adjacent place value positions so that

the overall operational outcome is preserved. The Equal Addition algorithm

transforms the task into a different but equivalent subtraction, through a

translation ‘up the number line’ to a different ‘sum’ (task) with the same

fixed number difference. In contrast the Decomposition algorithm does not

change the subtraction. In each case, the value of the numerical difference

is preserved invariant.

In foundational treatments, the production of deductive proof sequences

plays a central role. These consist of sequences of sentences, each derived

from predecessors by the rules of the system. The meaning structure un-

derpinning the rules of proof concern the preservation of the truth value

of sentences in each deduction, and hence along the length of the proof

sequence. This may seem very different from the calculation examples dis-

cussed above, but there is a strong analogy between calculation and proof

sequences that is under-remarked in the literature. Calculations utilise the

term as a basic unit of meaning (and which is transformed), whereas deduc-

tive proofs use the sentence as a basic unit. However, there are equivalence

transformations between calculations and proofs. A calculation sequence

of the form s, t , u, v, . . . , can be represented as a deductive proof of the

form s = t, t = u, u = v, . . . , in which each identity asserts that numer-

ical values of adjacent terms are preserved identically in the calculation.

Likewise, a deductive proof of the form P , Q, R, S, . . . , can be represented

as a series of terms, i.e., the values of the truth value function f defined on

numerical representations of true and false sentences to give the values 1

and 0, respectively. For a valid proof these values must be f (P → Q) =
f (Q → R) = f (R → S) = · · · = 1. The formal details are messy and

omitted here (see Gödel, 1931 for the introduction of arithmetisation of

logic, and Kleene, 1952) but the principle is both simple and sound.
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I have suggested that mathematical activity understood semiotically

involves the comprehension and production of mathematical signs with the

following properties:

1. The basic signs and symbols are drawn from a limited ‘alphabet’ but

are combined to make a large number compound signs.

2. The production of signs (always in conversation, be it ‘live’, imagined,

or otherwise attenuated) involves the production of sequences, including

linear, multi-dimensional and juxtaposed or over-inscribed sequences

of signs.

3. Rules and constraints limit the introduction of signs at each stage in

such sequences (i.e., determine which are legitimate and are accepted

as such in the conversation).

4. Despite these constraints, which can be much tighter in formal

mathematical semiotic systems than in spoken and written language

use, there is always an element of creativity in producing such

sequences.

5. Supporting the sign use is a meaning structure that gives meaning to

the signifiers and underpins the rules of sign production in terms of

preserving of key aspects of meaning.

These claims have been directed at a specific semiotic system, namely

that of number and calculation. However, the extension of these proper-

ties, and semiotic systems in mathematics in general, is part of an ongoing

project to develop a semiotics of mathematics and mathematics educa-

tion (see Ernest, 1994a, 1997, 1998a, 1999, 2003, in-press). In the present

context they have served to demonstrate how insights from the disparate

historical and foundational dimensions of number highlight features of the

signs, rules and meaning structures of arithmetic, adding to understanding

of the developmental study of number for the teaching and learning of

mathematics.

NOTES

1. Here and below I make repeated references to ‘sign’. I have in mind primarily the de

Saussurian concept of sign, comprising both signifier and signified. However nothing

I say presupposes this as opposed to the Peircean three part definition of sign. What I

do presuppose is shared by both theoretical perspectives. Namely that a sign involves

an inscription, expression or other means of signification (signifier), and refers to some

content or meaning (signified). However this is susceptible to multiple interpretations

(similar to Peirce’s concept of the interpretant).

2. Rotman (1987) has argued that not only was the introduction of Zero a giant semiotic step

for humankind in its metalinguistic completion of the place value system, but that it also

closely parallels, in conceptual terms, the introduction of paper money in finance and
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the vanishing point in artistic perspective. These audacious analogies are surprisingly

convincing in Rotman’s argument, despite their superficial implausibility.

3. Cognitivism resembles the psychological approaches rejected at the outset of this paper

for foregrounding and privileging the mental structures of individuals. From the per-

spective of semiotics, cognitivism and enactivism helpfully identify embodied personal

experience as a key contributor to meaning-making, but they neglect the importance

of social communicative activity in the formation both of individuals themselves and

in their construction of meaning. The semiotics-based position adopted here sees sign

based activity as straddling the individual-social and private-public boundaries and con-

tributing to the formation of both sides of these dichotomies.

4. For simplicity of expression, universal quantification is assumed for free variables n, m,
x, y, z.

5. In any field of mathematics over any domain of numbers or other objects, any well

defined property or expression (p(n), say) that has one natural number variable, no

matter how many other variables of whatever type, is eligible for proof by induction.

For the induction axiom can be applied to K = {n ∈ N : p(n)} in a standard proof by

induction.

6. It is interesting to note that underlying the proof procedure exemplified here is a formal

version of the ‘counting on’ procedure for addition discussed in the next section.

7. There is a different visual number recognition technique which is instantaneous rather

than a temporal procedure, namely ‘subitising’. This only applies to small numbers of

objects in a recognisable geometric configuration, such as 4 dots in a square pattern.

It usually develops after the acquisition of basic counting skills, but it can be taught

independently of the rules of number, even to some animals.
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