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ABSTRACT. To understand the difficulties that many students have with comprehension

of mathematics, we must determine the cognitive functioning underlying the diversity of

mathematical processes. What are the cognitive systems that are required to give access

to mathematical objects? Are these systems common to all processes of knowledge or,

on the contrary, some of them are specific to mathematical activity? Starting from the

paramount importance of semiotic representation for any mathematical activity, we put

forward a classification of the various registers of semiotic representations that are mobilized

in mathematical processes. Thus, we can reveal two types of transformation of semiotic

representations: treatment and conversion. These two types correspond to quite different

cognitive processes. They are two separate sources of incomprehension in the learning

of mathematics. If treatment is the more important from a mathematical point of view,

conversion is basically the deciding factor for learning. Supporting empirical data, at any

level of curriculum and for any area of mathematics, can be widely and methodologically

gathered: some empirical evidence is presented in this paper.1
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How can we understand the difficulties, frequently insurmountable, that

many students have with comprehension of mathematics? What is the na-

ture of these difficulties? Where are they located? These questions have

taken on a particular magnitude and importance with the recent pressure

for more initial mathematical training to be given to all students in order to

prepare them to face a technological and computer-oriented environment of

perpetually increasing complexity. They are both an educational challenge

in classrooms and a theoretical challenge to research on the development

and learning of mathematical knowledge. The processes of mathematical

knowledge acquisition are so complex that quite different approaches seem

required. The most predominant, and sometimes opposite, are the episte-

mological and the educational. But they have in common the use of the

notion of representation to characterize the kind of phenomena that occur

in any knowledge process or that constitute it.

This basic notion of representation is very old and accurate. A represen-

tation is something that stands for something else. But at the same time this

notion can be elusive or too formal. What is the nature of this “something
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standing for . . .”? You can get quite a wide range of answers, depending on

whether you consider the representations with regard to the concrete indi-

vidual and his or her experiences, to the mind structures, or on the contrary,

to the knowledge objects with their specific epistemological requirements

(Hitt, 2002). Thus, representations can be individuals’ beliefs, conceptions

or misconceptions to which one gets access through the individuals’ ver-

bal or schematic productions. This answer, first developed in two major

studies of Piaget (1923, 1926), is now one of the major methodological

and theoretical frameworks for investigating and explaining mathemati-

cal knowledge acquisition. But representations can also be signs and their

complex associations, which are produced according to rules and which

allow the description of a system, a process, a set of phenomena. There

the semiotic representations, including any language, appear as common

tools for producing new knowledge and not only for communicating any

particular mental representation. This answer, which has been progres-

sively developed since Frege and Hilbert with regard to epistemological

and metamathematical requirements, has also taken on a great importance

in the investigation about cognition (Duval, 1998a). Any research about

the learning of mathematics involves some theoretical choice about the

possible relationship and the respective role of these quite opposite kinds

of representation, which are all “standing for something else”, that is rep-

resented objects of knowledge.

It seems obvious that research about the learning of mathematics and

its difficulties must be based on what students do really by themselves, on

their productions, on their voices. But how can we analyze the processes

of knowledge acquisition from the students’ conceptions and find out the

sources of their difficulties? Representations are only the surface results of

the functioning of deep mind structures that do not depend on the actual

awareness of individuals (Piaget, 1967, pp. 78–79). Underlying the two

quite opposite kinds of representation, there is an organization of cognitive

structures that make individuals able to perform the various kinds of knowl-

edge activity (Duval, 1996a). Thus, the characteristic feature of a cognitive

approach is to seek first to determine the cognitive functioning underlying

the various mathematical processes. In order to determine the origin of the

students’ incomprehension we must first determine the cognitive conditions

that make comprehension possible. For that we must ask the question:

1. What cognitive systems are required and mobilized to give access to

mathematical objects and at the same time make it possible to carry out

the multiple transformations that constitute mathematical processes?

It is generally assumed that the way of thinking is basically the same in

the different areas of knowledge even though mathematical knowledge is
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more abstract, and even if specific language or coding are used in mathemat-

ics. Observations I have practiced in classrooms and outside the classroom

for many years led me not only to change from an approach focusing on

students’ conceptions (Duval, 1983) to a cognitive approach, but also above

all to ask the question:

2. Is the way of thinking the same in mathematics as in the other areas of

knowledge? In other words, does mathematical activity require only the

common cognitive processes or, indeed, certain very specific cognitive

structures whose development must be taken care of in teaching?

This issue about the learning of mathematics has a great significance

if the goal of teaching mathematics, at the primary and secondary level,

is neither to train future mathematicians nor to give students tools, which

can only possibly be useful to them many years later, but rather to con-

tribute to the general development of their capacities of reasoning, analysis

and visualization. In any case, it makes it necessary to consider semiotic

representations at the level of mind’s structure and not only with regard

to the epistemological requirement for getting access to knowledge ob-

jects (Duval, 1995a, pp. 3–8, 15–35). And from this cognitive approach it

appears that the opposition between mental representations and semiotic

representations is no longer relevant, because it rests on the confusion be-

tween the phenomenological mode of production and the kind of system

mobilized for producing any representation (Duval, 2000a, pp. 59–60).

I shall present here some of the main results I have obtained. They are

related on the one hand to the predominant role played by transformations

of semiotic representations in any mathematical activity, and, on the other

hand, to the kind of the semiotic system used for these transformations. The

cognitive complexity underlying the thinking processes in mathematics

lies in the fact that there are two quite different forms of transformations

that are never taken explicitly into account in teaching. And from the

mathematical point of view, one of them commands the most attention,

while it is the other that causes the greatest difficulties for students. After

a description of the various cognitive processes required by mathematical

thinking, I will present some empirical data for showing how these

two kinds of transformations are specific and independent sources of

incomprehension in the learning of mathematics.

1. WHAT CHARACTERIZES MATHEMATICAL ACTIVITY

FROM A COGNITIVE POINT OF VIEW?

When trying to analyze what constitutes mathematical comprehension and

to explain the obstacles to understanding that students experience, people
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often bring up the concepts and their epistemological complexity. And

this epistemological complexity can be explained by the history of their

discovery. But such an approach is not sufficient to characterize what is

novel and specific to thought processes in mathematics in contradistinction

to other domains of scientific knowledge such as astronomy, biology, etc.

The difference between the cognitive activity required for mathematics

and that required for other domains of knowledge is not to be found in

the concepts – because there is no domain of knowledge that does not

develop a set of more or less complex concepts – but in the following three

characteristics.

1.1. The paramount importance of semiotic representations

One has only tò̀ look at the history of the development of mathematics

to see that the development of semiotic representations was an essential

condition for the development of mathematical thought. For a start, there is

the fact that the possibility of mathematical treatment, for example calcu-

lation, depends on the representation system. Because the leading role of

signs is not to stand for mathematical objects, but to provide the capacity of
substituting some signs for others. Thus, there is an enormous gap between

these two kinds of number representation: stick or stroke collections and

base systems within which the position gives the meaning. And here the

trouble appears with this very strange sign “0” which does not belong to
the chosen base, but to a powerful semiotic system of number representa-
tion. Thus, because a true use of decimal notation system is not necessary

for working with small integers and for doing additive operations, we can

consider that the decimal notation “10” stands for the quasi-material rep-

resentation “ ” of the number “ten” and gives the meaning. But

beyond that, does not its use require understanding the way in which the

used representation system functions? For example, in such expressions as

38.45 × 10; 38.45 × 100 or 38.45 : 0.1; 38.5 : 0.01? How many young stu-

dents do truly get to this stage of comprehension? And students’ acquisition

of these systems is not simple. One might think that employing the number

system from the beginning of pre-school would make its use progressively

more transparent. French national assessment surveys (MEN, 1993, 1997)

showed that that is not yet the case at the beginning of secondary school:

only one student in three appeared to have grasped the functioning of the

decimal system and to be able really to make use of its possibilities in

order to succeed with a set of items about the simplest operations of mul-

tiplication and division of decimals (38.45 × 10 : 45 × 0.1). In addition,

there is the fact that mathematical objects, starting with numbers, are not

objects that can be directly perceived or observed with instruments. Access
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to numbers is bound to the use of a system of representations that allows

them to be designated.

But the key point is not there. The part played by signs, or more exactly

by semiotic systems of representation, is not only to designate mathemat-

ical objects or to communicate but also to work on mathematical objects

and with them. No kind of mathematical processing can be performed

without using a semiotic system of representation, because mathematical

processing always involves substituting some semiotic representation for
another. The part that signs play in mathematics is not to be substituted

for objects but for other signs! What matters is not representations but

their transformation. Unlike the other areas of scientific knowledge, signs

and semiotic representation transformation are at the heart of mathematical

activity. Why?

1.2. The cognitive paradox of access to knowledge objects

From an epistemological point of view there is a basic difference between

mathematics and the other domains of scientific knowledge. Mathemati-

cal objects,2 in contrast to phenomena of astronomy, physics, chemistry,

biology, etc., are never accessible by perception or by instruments (micro-

scopes, telescopes, measurement apparatus). The only way to have access

to them and deal with them is using signs and semiotic representations. That

means that we have here only a single access to the knowledge objects and

not a double access, mainly non-semiotic and secondarily semiotic, as is

the case in the other areas. This very specific epistemological situation of

mathematics changes radically the cognitive use of signs. Any learner is

faced with two quite opposite requirements for getting into mathematical

thinking:

– In order to do any mathematical activity, semiotic representations must

necessarily be used even if there is the choice of the kind of semiotic

representation.

– But the mathematical objects must never be confused with the semiotic

representations that are used.

The crucial problem of mathematics comprehension for learners, at

each stage of the curriculum, arises from the cognitive conflict between

these two opposite requirements: how can they distinguish the represented
object from the semiotic representation used if they cannot get access to
the mathematical object apart from the semiotic representations? And that

manifests itself in the fact that the ability to change from one representation

system to another is very often the critical threshold for progress in learning

and for problem solving.
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1.3. The large variety of semiotic representations used in mathematics

Highlighting the utmost role of semiotic representations in mathemati-

cal activity, which necessarily involves sign substitution, is not sufficient.

Mathematical activity needs to have different semiotic representation sys-

tems that can be freely used according to the task to be carried out, or

according to the question that is asked. Some processes are easier in one

semiotic system than in another one, or even can be made in only one

system. But in many cases it is not only one representation system that is

implicitly or explicitly used but at least two. Thus, in geometry it is nec-

essary to combine the use of at least two representation systems, one for

verbal expression of properties or for numerical expression of magnitude

and the other for visualization. What is called a “geometrical figure” always

associates both discursive and visual representations, even if only one of

them can be explicitly highlighted according to the mathematical activity

that is required. Then, students are expected to go to and fro between the

kind of representation that is explicitly put forward and the other that is

left in the background of this discursive/visual association that forms any

geometrical figure. And this association is cognitively complex because

in most cases it goes against the common association between words and

shapes and because its use runs against the perceptual obviousness (Duval,

1998b, pp. 38–44).

Mathematics is the domain within which we find the largest range

of semiotic representation systems, both those common to any kind of

thinking such as natural language and those specific to mathematics such

as algebraic and formal notations. And that emphasizes the crucial problem

of mathematics comprehension for learners. If for any mathematical object

we can use quite different kinds of semiotic representation, how can

learners recognize the same represented object through semiotic represen-

tations that are produced within different representation systems? More

deeply than the epistemological difficulties peculiar to each introduction

of new concepts, would not the most recurrent obstacles in mathematics

comprehension come from these specific ways of thinking involved in any

mathematical activity?

2. HOW TO ANALYZE THE THINKING PROCESSES INVOLVED

IN MATHEMATICAL ACTIVITY?

The role of semiotic representations is not confined to designating objects,

to standing for something else, or to being themselves considered as ob-

jects. Their use is determined by the possibility of mathematical processing
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that they permit. Whatever semiotic representations are used, they can be

changed into other semiotic representations without the support of new

data or empirical observations. Otherwise, the basic cognitive operation of

substituting some semiotic representation for another would not be possi-

ble. But that depends on the semiotic system within which semiotic rep-

resentations are produced. Each semiotic system provides quite specific

possibilities. The variation of “capacity”, which was mentioned by Peirce

(CP: 2.228) for the representamen, is not on the level of particular repre-

sentations, but on the level of the semiotic system within which they are

produced. Thus, for analyzing the complex and specific thinking processes

that underlie mathematical activity, we must take into account the differ-

ences between the various semiotic representation systems that are used.

Do these differences play an important part in the mathematical processes?

Whenever we analyze the student’s difficulties and blocks in learning of

mathematics, we are faced with this issue.

2.1. How to describe the various mathematical processes?

Given the cognitive paradox of access to knowledge objects in mathematics,

such a description must be supported by the variety of semiotic represen-

tation systems that are used and by the specific “capacity” of each one for

performing mathematical processes.

The most widespread way to classify is to oppose language, natural

or symbolic, and image. However, this is general and above all it is far

from sufficient. There is also another essential difference that is very often

missed. Some semiotic systems can be used for only one cognitive func-

tion: mathematical processing. On the other hand, other semiotic systems

can fulfill a large range of cognitive functions: communication, informa-

tion processing, awareness, imagination, etc. (Duval, 1995b, pp. 89–90).

This functional difference between the various semiotic representation sys-

tems used in mathematics is essential because it is intrinsically connected

with the way mathematical processes run: within a monofunctional semi-

otic system most processes take the form of algorithms, while within a

multifunctional semiotic system the processes can never be converted into

algorithms. For example, in elementary geometry, there is no algorithm

for using figures in an heuristic way (Duval, 1995a) and the way a mathe-

matical proof runs in natural language cannot be formalized but by using

symbolic systems. Proofs using natural language cannot be understood by

most students (Duval, 1991).

From these observations, we can get a quick outline of the various

forms of mathematical processes, as the superposition of a graph on the

classification table shows.
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Figure 1. Classification of the registers that can be mobilized in mathematical processes.

What matters for understanding the thinking processes involved in any

mathematical activity is to focus on the level of semiotic representation sys-

tems and not on the particular representation produced. And the following

two points are essential. Firstly, it is only at this level that the basic prop-

erty of semiotic representation and its significance for mathematics can be

grasped: the fact that they can be exchanged one for another, while keeping
the same denotation (Frege, 1971). Secondly, a mark cannot function as a

sign outside of the semiotic system in which its meaning takes on value

in opposition to other signs within that system (an example is given later

in Figure 15). This idea was the main contribution of Saussure (1973, pp.

158–168) to the analysis of language as a semiotic system. That means, too,

that there are rules for producing relevant semiotic representations. Thus,

all monofunctional semiotic systems that are characteristic of mathematics

are based on rules of representation formation. That can be easily checked

for any numeric notation system or for Cartesian graphs.

Of course, some representations that do not depend on a semiotic system

are used in mathematical activity. The best example is the matchstick use

for representing small integers. They have neither rules of formation nor

specific possibilities of transformation. These are used like a material for

free manipulations. In that sense, they fit perfectly the third determination

of representamen given by Peirce: “something that stands to somebody . . .”
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(1931, p. 2.228). Their use depends only of the interpretant. They appear

most frequently as transitional auxiliary representations (Hitt, 2003).

Thus, with regard to the property of semiotic representations that is basic

for mathematical activity, we can distinguish four very different kinds of

semiotic systems. Taking again the word already used by Descartes, in La
Geométrie (Descartes, 1954, p. 8 (p. 300)), and keeping also its modern

meanings we call them “representation registers” (Duval, 1995b, p. 21). Not

all semiotic systems are registers, only the ones that permit a transformation

of representations. We have highlighted the very genuine case of natural

language. There, production of semiotic representations can be achieved

according to two quite phenomenological modalities. From one to the other

there is a big gap, which is very often underestimated (Duval, 2000b).

This classification provides the tools for analyzing mathematical activity

and for identifying the root of the troubles with mathematics understand-

ing and not only about such-and-such concept comprehension that many

students have.

2.2. The two types of transformation of semiotic representations

Insofar as mathematical activity intrinsically consists in the transformation

of representations, it becomes obvious that there are two types of transfor-

mations of semiotic representations that are radically different: TREAT-

MENTS and CONVERSIONS.

Treatments (curved arrows in the Figure 1) are transformations of rep-

resentations that happen within the same register: for example, carrying

out a calculation while remaining strictly in the same notation system for

representing the numbers, solving an equation or system of equations,

completing a figure using perceptual criteria of connectivity or symme-

try, etc. That gives prominence to the intrinsic role of semiotic systems in

mathematical processes. The treatments, which can be carried out, depend
mainly on the possibilities of semiotic transformation, which are specific
to the register used. Two examples suffice to show this.

The procedures for carrying out a numerical operation depend just as

much on the system of representation used for the numbers as on the math-

ematical properties of the operations. Thus, the algorithms are different for

a decimal notation and a fractional notation of the same numbers:

12 + 13 = . . .

0.20 + 0.25 = . . . 1/5 + 1/4 = . . .

0.20 : 0.25 = . . . 1/5 : 1/4 = . . .

That means that the processes of calculation are never purely mathematical.

They depend on the type of representative functioning that the system in
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use permits. For reasons of economy or visibility one may be led to change

notation systems to carry out the treatment.

It is the register of figural transformations of gestaltist order that is often

called on to solve and justify heuristically many problems of elementary

geometry. These transformations are purely visual transformations that can

either be carried out simply by changing the vantage point from which they

are observed, or be realized materially as if in a jigsaw puzzle. Here are

three classical examples where the visual transformations consist of an

operation of reconfiguring the original figure (Figure 2).

Figure 2. Visual transformations of shapes.

In these examples, the figural units of an original figure can be visually

reconfigured without any recourse to a mathematical property. This purely

visual operation of reconfiguring an original figure underlies most of the

examples of visual evidence that are used in teaching to give “intuitive”

explanations of certain mathematical results. But, in most cases it does not

work because the visual processes of gestalt recognition do not run in the

same way as required and expected from a mathematical point of view

(Duval, 1995a).

Conversions (straight arrows in Figure 1) are transformations of repre-

sentation that consist of changing a register without changing the objects

being denoted: for example, passing from the algebraic notation for an

equation to its graphic representation, passing from the natural language

statement of a relationship to its notation using letters, etc. Conversion

is a representation transformation, which is more complex than treatment

because any change of register first requires recognition of the same repre-

sented object between two representations whose contents have very often

nothing in common. It is like a gap that depends on the starting register and

the target register (straight arrows in Figure 1). Too often, conversion is

classified as translation or encoding. And examples such as the following

are put forward (Figure 3).

Figure 3. Congruent conversion.
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But that is deceptive because a minor modification can cause the rules

of encoding or translation to fail (Figure 4).

Figure 4. Non-congruent conversion.

Let us now look at a register for which a rule of conversion can be

explicitly given. To construct a graph it suffices to have only the following

rule: to every ordered pair of numbers one can associate a point on a coor-

dinate plane with given increments on the two axes. And the construction

of graphs corresponding to linear functions appears to give students no dif-

ficulties whatever. But one has only to reverse the direction of the change

of register to see this rule ceases to be operational and sufficient (Figure 5).

Figure 5. A recognition task.

The task proposed was a task of simple recognition, not one of con-

struction or of reading coordinates of points: choose among many possible

expressions (for example, among y = x , y = −x , y = x + 1) the one

which corresponds to the graph (Duval, 1988). Naturally, if we had asked

that the two graphs be constructed the successes would have exceeded 90%

in both cases. In standard teaching, the tasks offered are never recognition,

but simply reading tasks that require only a process of placing points guided

by local understanding and not a process of global interpretation guided

by understanding of qualitative visual variables (Figure 15). Converting a

semiotic representation into another one cannot be considered either as an

encoding or a treatment.
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In these two examples, conversion is explicitly required and it appears

that it can be confined to transitory situations for solving some particular

problem. But most often it is implicitly required whenever two, or even

three, registers must be used together in an interactive way. We have al-

ready mentioned the case of geometry. There, we are facing something

like a hidden gap between the visual process of treatment and the various

discursive processes that can be used (Duval, 1998c). And in the classroom

we have a very specific practice of simultaneously using two registers. It

is spoken in natural language, while it is written in symbolic expressions

as if verbal explanations could make any symbolic treatment transparent

(Duval, 2000b, pp. 150–155).

Through the various kinds of conversions more than through treatments

we touch on the cognitive complexity of comprehension in learning math-

ematics and on the specific thinking processes required by mathematical

activity.

2.3. How to recognize the same mathematical object through two
representations whose contents are heterogeneous?

In making a distinction, for mathematical signs, between sense and ref-

erence Frege (1971, pp. 89, 102–103) emphasized the difference between

the content of a representation and what the representation refers to. And

between the content of a representation and the represented object there is

no other relation than denotation. Now, and this is the decisive consequence

that is rarely taken into account, the content of a representation depends
more on the register of the representation than on the object represented
(Duval, 1999, pp. 40–46). That is the reason why passing from one register

to another changes not only the means of treatment, but also the properties

that can be made explicit. On the other hand, for the non-semiotic represen-

tations that are produced by physical devices (mirror, camera, microscope,

etc.) or by sensory and brain organizations we have something like a causal-

ity relation. The content of a representation is the indirect effect of object.

Hence, their “intuitive” or more empirical value (Figure 6).

Figure 6. The two kinds of relation between the content of representation and the object

represented.
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The relation between the content of representation and the object repre-

sented depends on the system that is mobilized for producing the represen-

tation. We can get iconicity or non-iconicity for semiotic representation as

well as for non-semiotic representation. And that brings us back to the cog-

nitive paradox of comprehension in mathematics. How can the represented

object be distinguished from the semiotic representation used when there

is no access to mathematical object apart from semiotic representations?

The first problem of comprehension in learning mathematics is a problem

both of recognition and discrimination. When facing two representations

from two different registers, how can one recognize the same object repre-

sented within their respective content? In other words, how can a student

discriminate in any semiotic representation what is mathematically relevant

and what is not mathematically relevant? This issue is particularly obvious

and crucial for all representations that are produced within multifunctional

registers. Does it arise, too, for the representations that are produced within

monofunctional registers? In any case, these problems of recognition and

discrimination are intrinsic to the construction of connections between reg-

isters.

This cognitive paradox makes it possible to put forward the follow-

ing hypothesis (in mathematical terms “conjecture”): comprehension in

mathematics assumes the coordination of at least two registers of semiotic

representation. And one can already pose a first question: does such a reg-

ister coordination come naturally to pupils and students in the context of

mathematical teaching?

3. THE TWO SOURCES OF INCOMPREHENSION IN THE LEARNING

OF MATHEMATICS

The two types of transformation of semiotic representations are quite

different sources of recurrent difficulties in learning mathematics. They are

not at first difficulties particular to this or that mathematical concept, but

rather more global difficulties that can be found at every level of teaching

and in every domain of mathematics. For nearly 20 years, empirical data

have been collected about the relationships between the thinking processes

involved in mathematical activity and troubles of comprehension or even

blockages of most learners. And anybody can get empirical evidence on

the condition that treatment and conversion be methodologically separated

in the tasks that are given to students, which is seldom or never done in

most research studies.

We will confine ourselves to giving some examples in order to show the

deep misunderstanding of these two types of transformation at different

levels of teaching and in the various areas of mathematical activity.
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3.1. A first source of incomprehension: The complexity and specificity
of treatments carried out in a multifunctional register

There is a big source of misunderstanding between teachers and students

mainly with regard to basic and complementary thought processes, rea-

soning and visualization. Unlike monofunctional registers, multifunctional

registers seem common and directly accessible to every student. But that is

very deceptive. In fact, the mathematical way of using the multifunctional

registers runs against the common practice, starting with the practice of

natural language (Duval, 1995b, pp. 87–136). We will focus here rather on

the figures in geometry insofar as they explicitly resort to visualization and

not only to discursive knowledge (properties, definitions, theorems). Rec-

ollect that a figure in geometry is always rooted in the functioning of two

registers. And if we want to grasp its cognitive complexity, we must analyze

separately the way in which the treatments are carried out respectively in

the discursive register and the visual register, even though they merge into

the same mathematical process. When we focus on visualization we are

facing a strong discrepancy between the common way to see the figures,

generally in an iconic way, and the mathematical way they are expected to

be looked at. There are many ways of “seeing” (Duval, 1995a). Which is

the one required by the heuristic use of the figures?

We gave earlier three extremely elementary examples of use of figures in

geometry (Figure 2). In these examples, “seeing” consisted of discerning in

the original figure the transformations that permit the reconfiguration into

the other one: the passage from the original figure to the one which is the

goal makes it possible to understand a relation, a computational formula,

etc. Thus, assuming the computation of the area of a rectangle to be known,

one can see how to compute that of a parallelogram and thence that of a

triangle (Figure 7).

Figure 7. Is the figure illustration cognitively congruent to the visual transformation?

What constitutes the fact of “seeing” in geometry? Although the mathe-

matical discourse necessitates looking at the one-dimensional elements of

the figure, the heuristic force of the figure requires that attention be cen-

tered on the two-dimensional elements. This example is cited everywhere

as a demonstration of a spontaneous activity, which should be common
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to beginning students and confirmed mathematicians. In reality, the fac-

tors that here give the figure its heuristic and explanatory clarity can, in

mathematically similar situations, impede seeing, as can be verified in the

following example (Figure 8).

Figure 8. First step of a visual treatment: subfigures required to be discriminated.

The solution of certain problems requires a comparison of certain pos-

sible subfigures obtained by reconfiguration and thus the ability to discern
them rapidly in the original figure. There are factors, which in certain cases

facilitate the recognition of the relevant subfigures and inhibit it in others

(Duval, 1995a, pp. 144, 149–150). But there are other, possibly more in-

teresting, situations that show the complexity and difficulty of figures: the

ones involving a circle and some straight lines. On that subject also we have

very dependable observations available, at different levels of teaching.

At the end of elementary school, the presented in Figure 9 problem

was given to all French students entering middle school and the data that

resulted are the problem in Figure 9. Very often, the same kinds of problem

were asked several years running.

Figure 9. French national assessment (MEN, 1998, 1999).
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In reality, to find the mathematical answer, students had to see within

the figure the two subfigures B (see Figure 10) and not the two subfigures

A. Because it is only in the two subfigures B that one sees the two rays as

a side and a part of the other side of the rectangle. Now it is the subfigures

A that leap to the eye and thus tend to screen out the subfigures B!

Figure 10. Two ways of identifying subfigures within the original figure.

How does one “see” the original figure in the statement accompanying

the statement of the problem (Figure 9)? Most students cannot discriminate

the (B) visual organization.

The second survey occurred close to the end of middle school. The

following problem was posed (Figure 11).

Figure 11. Problem presented to 14-year-olds (Mesquita, 1989, pp. 40, 68–69, 96).

There are two ways of seeing the figure in the statement of the problem,

but only one shows the answer and gives the reason (Figure 12).

Figure 12. Two figural organizations.
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From the figural organization (I) to the figural organization (II) there is

a jump, which depends on visual factors. The spontaneous vision that is

produced has a single axis of symmetry (organization I), while the solution

requires that one give greater importance to two other axes of symmetry

(organization II.) Now passing from (I) to (II) constitutes a leap, which

more than half of the students did not make. In reality, to be able to see

the figure as having two lines of symmetry OB and OC one must break

the simple figure element (organization I) consisting of the segment BC

into two segments (organization II). And in order to have the majority of

the students get to the point of seeing organization (II) in the figure of the

statement, the statement of the problem had to be modified by describing

the division of segment BC: “let I be the point of intersection of AO and

BC; compare BI and IC” (Pluvinage, 1990, p. 27).

These few examples give a good illustration of the complexity of the

mathematical use of figures and the non-natural character for most students

of the act of seeing in geometry. How should it be analyzed? How should

students be introduced to it? As far as observations that can be made in all

of the domains of geometry go, two positions are possible.

The first consists of explaining the persistent difficulties that students en-

counter with figures as misunderstanding of the mathematics represented.

Otherwise stated, it would be comprehension of mathematical properties

that would guide the reading and exploration of the figures toward the solu-

tion of a problem. Good conceptual comprehension ought to lead to seeing

in a figure what has to be seen in order to find there the elements for solving

a problem.

The second position consists of considering that the figures arise in

a system of representation that is independent of the statements and of

the mathematical properties to which they refer. That would mean that

what one sees in a figure depends on factors of visual organization: it is

these factors that determine the discrimination, that is the recognition, of

certain one-, two- and three-dimensional forms in a figure and exclude

the discrimination of other possible configurations and sub-figures in the

same figure. Now “seeing” in geometry frequently requires that one be

able to recognize one or another of these other possible configurations and

sub-configurations. What needs to be recognized in an original figure is
a function of the statement of the problem, but its “visibility”, that is, the
more or less spontaneous character of its recognition, depends on visual
operations of reorganization. There are many factors that can inhibit or

favor this discrimination of these visual operations. They can be studied

experimentally (Duval, 1995a, 1998c; Rommevaux, 1998).

Another observation made by Schoenfeld with older students after a

semester of work in geometry shows the independence of figures relative
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Figure 13. The construction problem posed by Schoenfeld.

to conceptual knowledge and acquired capacities of proving. The con-

struction problem (Figure 13) was proposed to them. The students man-

aged to solve it without much difficulty, but by proceeding entirely em-

pirically. But for them, there was absolutely no connection with all of

the mathematical properties they knew on the subject (Schoenfeld, 1986,

pp. 243–244, 256).

Note the difference between this construction problem and the preceding

problem of comparison of lengths (Figure 11). Success in this construction

problem only requires taking into account one axis of symmetry, as in

organization (I) of Figure 11. Success in the problem of comparison requires

that one recognize the two other axes of symmetry BO and CO, which are

“hidden” by the visually predominant AO. Visual recognition does not

depend first on conceptual knowledge of properties.

Now we can only mention the important case of language in geome-

try. We can observe a big gap between a valid deductive reasoning using

theorems and the common use of arguments. The two are quite opposite

treatments, even though at a surface level the linguistic formulations seem

very similar. A valid deductive reasoning runs like a verbal computation of

propositions while the use of arguments in order to convince other people

runs like the progressive description of a set of beliefs, facts and contra-

dictions. Students can only understand what is a proof when they begin

to differentiate these two kinds of reasoning in natural language. In order

to make them get to this level, the use of transitional representation activ-

ity, such as construction of propositional graphs, is needed (Duval, 1991,

1995b, 1998b).

This first source of difficulty is well known. It gives rise to recurrent

observations, which teachers can make, no matter what their level of teach-

ing. It is moreover the reason that in teaching one tends to marginalize, as

far as possible, the recourse to multifunctional registers and stay within the

monofunctional ones, where treatments can take the form of algorithms.

However, the use of natural language cannot be avoided (Duval, 2000b,

2003) and it raises the issue of articulation with the representations pro-

duced within the monofunctional registers. And that requires explicit or

implicit conversion of representations.
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3.2. A second source of incomprehension: Conversion of representations
or change of register.

Unlike the first, the second type of difficulty has rarely been noticed as such

because no sooner do difficulties of conversion appear that they are taken

as a sign of conceptual incomprehension. Moreover, to be able genuinely

to see the size of the difficulties linked to the conversion of representations,

one must set up a mechanism of observation that lets it manifest itself,

which assumes for a start that one has become conscious of the difference

between treatment and conversion in a mathematical process! In any case,

it is this second type of difficulty that limits considerably the capacity of

students to use the acquired knowledge as well as their capacity to acquire

new knowledge in mathematics. And which very rapidly leads to a limit in

progress of comprehension and learning for many students.

The insuperable difficulties raised by conversion can be observed for

the different kinds of conversion, which is for each couple of registers to

be used together (straight arrow in Figure 1). Thus, the obstacles raised

by the simple “translation” of the terms of a word problem into symbolic

expressions are also well known. It is a gap that many students cannot

succeed getting over, whatever the mathematical content (additive or mul-

tiplicative operations on relative numbers, statements to put into equations,

etc.). That is the reason why most research has focused on the resorting

to transitional auxiliary representations, those spontaneously developed

by learners or those to introduce in teaching. In previous studies (1988,

1996b), I gave evidence of a strong failure in converting a Cartesian graph

into the corresponding equation. And that failure is quite independent from

understanding the concept of function. Figure 5 presents an example of the

task of recognition that was used. So we can increase the observations

about the conversion troubles for each kind of conversion and in all areas

of mathematics teaching. Methodology for that does not at all require only

that students be placed in a problem-solving situation or in an application

activity. It requires that students be given tasks that are varied systemati-

cally not only as a function of the original register but also as a function

of internal variations within each register. It can be seen, thus, that it is

not just a matter of focusing on errors, which can be observed directly and

which recur from one year to another, but that one must dig down to deeper

difficulties to be able to analyze problems of comprehension of students

of mathematics. When you do that you are facing very deep and amazing

phenomena about the cognitive complexity of conversion, in any area of

mathematics education.

When you systematically vary a representation within a source regis-

ter to its converted representation in the target register, you can observe a
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systematic variation of performances. That happens as if success or sys-

tematic mistakes depend on the cognitive distance between the source rep-

resentation content and the target representation content. In some cases, it

is like a one-to-one mapping and the source representation is transparent

to the target representation. In these cases, conversion seems nothing more

than a simple coding (Figure 3). But in other cases, it no longer runs at all

like that (Figure 4). In other words, between a source representation and its

converted representation in a target register, there is either congruence or

non-congruence. And a more detailed analysis allows us to identify three

factors for describing this phenomenon (Duval, 1995b, pp. 49–57):

– A one-to-one mapping between all the meaningful constituents (sym-

bols, words, or visual features) of the contents of the source representa-

tion and the target representation is or is not possible.

– The choice for each meaningful constituent of the target representation

is or is not univocal.

– For the meaningful constituents that can be mapped, the organization

order within the source representation is kept or changed within the

target representation.

The second phenomenon is the direction of conversion. When the roles

of source register and target register are inverted within a semiotic repre-

sentation conversion task, the problem is radically changed for students. It

can be obvious in one case, while in the inverted task most students system-

atically fail. It suffices to refer to the example given in Figure 5, recalling

that if we had requested the construction of the graphs of the functions

y = x and y = 2x or even y = 1/2x there would have been no significant

difference in their performances. But the following observation within a

domain that seems to give many students difficulties, linear algebra, gives

a striking example (Figure 14). Does comprehension in linear algebra not

presuppose that students be able to change registers rapidly in an implicit

or explicit manner? Would not their difficulty in conversion be one of the

major obstacles to surmount? Here, in any case is how one can see the

magnitude of this type of difficulty.

We can note the magnitude of the variations in success each time that

one reverses the direction of the conversion. Furthermore, not one register

considered in isolation appears better mastered than another: performances

vary according to the pairs source register, target register. Here we get to

the root of trouble in mathematics learning: the ability to understand and to

do by oneself any change of representation register. The troubles that many

students have with mathematical thinking lie in the mathematical specificity

and the cognitive complexity of conversion and changing representation.

It is neither a matter of coding nor a matter of mathematical concept alone.
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Figure 14. A recognition task (Pavlopoulou, 1993, p. 84).

This complexity appears through two phenomena, of which variation de-

pends on the nature of the two registers mobilized for a representation

transformation: the variability of congruence/non-congruence for repre-

sentations of the same knowledge object and the non-reversibility. In fact,

whatever the level and whatever the area, the non-congruent conversions

are for many students an impassable barrier in their mathematics compre-

hension and therefore for their learning.

Facing non-congruent representation conversion, learners are trapped

in a conflict between mathematical knowledge requirement and cognitive

impossibility:
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– Conversion of representation requires the cognitive DISSOCIATION

of the represented object and the content of the particular semiotic

representation through which it has been first introduced and used in

teaching.

– But there is a cognitive IMPOSSIBILITY OF DISSOCIATING any

semiotic representation content and its first represented object when

there is no other possible access to mathematical object than semiotic.

That conflict leads to the consideration of two representations of the

same object as being two mathematical objects. The consequence is then the

inability to change register and to use knowledge outside of narrow learning

contexts. The registers of the representations remain compartmentalized,

and only fragmentary and monoregistral comprehension is possible. Under

what conditions can learners be enabled to do such dissociation?

3.3. How to discriminate in any representation content, whatever
the register used, what is mathematically relevant and what is not?

Herein, obviously lies the more crucial issue for mathematics learning.

Let us take the elementary instance of the linear functions that we have

given (Figure 5). Watching their algebraic expression and their graph to-

gether, or knowing how to plot their graph from their algebraic expression,

is not at all enough to recognize the same function through these two kinds

of representation. A deeper cognitive condition is needed: being able to dis-

cern how two graphs that seem visually alike are mathematically different.
When they are taken two by two, they visually contrast by one or several

visual features. When they contrast by two (or more) visual features, these

are merged as if it were only one. Visual discrimination of graphs is nothing

obvious, particularly when they seem very similar in form and content. In

fact, the ability to discriminate what is mathematically relevant in each one

depends on the implicit construction of such a cognitive network as in the

following Figure 15.

In this network, each visual feature matches a symbol category of alge-

braic expression y = ax + b. By “symbol category” we mean a qualitative

opposition (a > 1 a < 1 a = 1 or a = −1) and not merely numerical

variation (a = 1.65 or a = 2.3). Such a network can be extended to all

kinds of function representation and to representations of relations that are

not functions (Duval, 1993, p. 46).
How can one help students realize all these representation discrimi-

nations within the same register? Here we must pay attention to a very

important fact. We have as many visual representations as we want, but

not all of them are relevant from a mathematical point of view. Further-

more, not all numerical value variations (here of linear functions) are
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Figure 15. Early connections of a cognitive network for any graphic representation dis-

crimination.

significant for realizing this cognitive network. In order to make students

notice the basic visual features oppositions that are mathematically rele-
vant and cognitively significant, any representation discrimination task has

to be integrated into a conversion task. It is only by investigating repre-

sentation variations in the source register and representation variations in

a target register, that students can at the same time realize what is math-

ematically relevant in a representation, achieve its conversion in another

register and dissociate the represented object from the content of these

representations.

We have taken a very elementary example that is very simple to analyze

because conversion there occurs between two monofunctional registers,

the one non-discursive (graphs) and the other discursive (algebraic writ-

ing of relations). But the analysis method used in this particular example

goes for every kind of conversion (Figure 1), even for the most complex

ones when cognitive distance is becoming large, as between multifunc-

tional register (mother tongue, natural language) and monofunctional reg-

ister (symbolic system). And at least in its implicit modality, this kind of

conversion is continuously needed in teaching where we have always a dou-

ble semiotic production: oral speech for giving explanations in common

language and symbolic or diagrammatic writing for mathematical treatment

(Duval, 2000b, pp. 152–155). The most surprising is that transitional aux-

iliary representations, even the most iconic or concrete ones, need also

to be integrated with systematic co-variation tasks if we want them to be

efficient!
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From that example we can get a glimpse of the specific thinking

processes that are required in mathematics. Not only do they use semi-

otic representation systems but also above all they require their cognitive

coordination. And for an obvious reason, a double semiotic access must

compensate for the cognitive limitation of the lack of a real double access.

That means dissociation between representation content and represented

object necessarily involves COORDINATION between different represen-

tation registers. Mathematical comprehension begins when coordination of

registers starts up. Recognition of the same mathematical objects through

representations from two different registers is not a local or occasional

operation, but the outcome of global register coordination. Mathematical

thinking processes depend on a cognitive synergy of registers of repre-

sentation. Coordination of registers of semiotic representations provides

something like an extension of mental capacity. In this perspective, the op-

position often made between comprehension as being conceptual or purely

mental and semiotic representations as being external appears to be a decep-

tive opposition. In fact, mental representations that are useful or pertinent

in mathematics are always interiorized semiotic representations.

4. CONCLUSION

When we analyze mathematical activity from a cognitive point of view three

specific characteristics, closely connected, must be taken into account:

(1) It runs through a transformation of semiotic representations, which

involves the use of some semiotic system.

(2) For carrying out this transformation, quite different registers of semi-

otic representations can be used.

(3) Mathematical objects must never be confused with the semiotic repre-

sentations used, although there is no access to them other than using

semiotic representation.

Thus, it appears that the thinking processes in mathematics are based

on two quite different kinds of transformations of representations. Even

if a single representation register is enough from a mathematical point

of view, from a cognitive point of view mathematical activity involves

the simultaneous mobilization of at least two registers of representation,

or the possibility of changing at any moment from one register to an-

other. In other words, conceptual comprehension in mathematics involves

a two-register synergy, and sometimes a three-register synergy. That is the

reason why what is mathematically simple and occurs at the initial stage

of mathematical knowledge construction can be cognitively complex and
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requires a development of a specific awareness about this coordination of

registers.

The distinction among four kinds of representation registers highlights

the variety and the cognitive gap of representation conversion according

to the source register and the target register. It also makes it possible to

define some variables for analyzing the cognitive complexity underlying

any mathematical activity, either for a research aim or for an education aim.

And the distinction between multifunctional and monofunctional registers

shows how, for all the transformations that are treatments, visualization

and language can be used in quite different ways than the usual way within

the other areas of knowledge and in everyday life. Practices of these reg-

isters that the students may have outside of mathematics seem often to

screen out the manner in which they should be mobilized in mathematics.

That raises a deep ambiguity in teaching: on one hand, these registers are

avoided because students have a great deal of difficulty carrying out math-

ematical processes there, and on the other hand, they are used for giving

“meaning” to mathematical processes that are carried out within mono-

functional registers. In teaching, we can observe quite opposite practices

of these multifunctional registers.

It is within the framework of such a cognitive model of mathematical

thinking processes that we can analyze in depth the obstacles to mathemat-

ics comprehension. Treatments, mainly within multifunctional registers,

and conversions are quite independent sources of incomprehension. But

the root of the troubles that many students have with mathematical think-

ing lies in the mathematical specificity and the cognitive complexity of

conversion and changing representation. We cannot deeply analyze and

understand the problem of mathematics comprehension for most learners

if we do not start by separating the two types of representation transforma-

tion. This is rarely, if ever, done, either because conversion is judged to be

a type of treatment or because it is believed to depend on conceptual com-

prehension, that is, a purely “mental”, i.e., asemiotic, activity. And there

are always good reasons for that.

In the first place, from a mathematical point of view, conversion comes

in solely for the purpose of choosing the register in which the necessary

treatments can be carried out most economically or most powerfully, or of

providing a second register to serve as a support or guide for the treatments

being carried out in another register. In other terms, conversion plays no

intrinsic role in mathematical processes of justification or proof. Because

these are achieved on the basis of a treatment that is carried out within a sin-

gle register, mainly a discursive one and most often some monofunctional

register. In fact, conversion cannot be separated from treatment because it

is the choice of treatment that makes the choice of register relevant. In the
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second place, research in mathematics education is almost always carried

out on the ways of teaching particular conceptual contents and procedures

for each level of curriculum. What concerns mathematical activity is pushed

back into the background or explained either by conceptual understanding

(or misunderstanding) or by a common pedagogical framework about the

importance of student’ activity and the role of their mental representations

for comprehension. This leads to wiping out the importance of the diversity

of representation registers and to acting as if all representations of the same

mathematical object had the same content or as if content of one could be

seen from another as if by transparency. In other words, some isomorphism

between representations from two different semiotic systems or between

processes that are performed within two semiotic systems is implicitly as-

sumed. Recollect that Piaget made this search for isomorphisms one of the

key principles of an analysis of the development of knowledge in children,

even though, later, he limited himself to the search for “partial isomor-

phisms” (Piaget, 1967, pp. 73–74, 262–266) and great theoretical use was

made of them in the analysis of genetic epistemology as in certain didactical

studies. But does mathematical isomorphism involve the cognitive isomor-

phism between the semiotic representations used? Pushing back into the

background the three specific characteristics mentioned earlier confines

most students in what has been described as “compartmentalization” of

mathematical knowledge.

Changing representation register is the threshold of mathematical com-

prehension for learners at each stage of the curriculum. It depends on coor-

dination of several representation registers and it is only in mathematics that

such a register coordination is strongly needed. Is this basic requirement

really taken into account? Too often, investigations focus on what the right

representations are or what the most accessible register would be in order

to make students truly understand and use some particular mathematical

knowledge. With such concern of this type teaching goes no further than a

surface level. What will the students do when they are confronted by quite

other representations or different situations? Even auxiliary and individual

representations, the most iconic or concrete ones, need to be articulated

with the semiotic representations produced within semiotic systems. The

true challenge of mathematics education is first to develop the ability to

change representation register.

NOTES

1. A first sketch of this paper has been presented in Mediterranean Journal for Research in

Mathematics Education 2002, 1, 2, 1–16. We present here a more developed version of

the cognitive model of mathematical activity and thinking.
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2. The relation of a subject to an object is the basic epistemological distinction for analysing

knowledge (Kant, 1956, p. 63, 296; Piaget, 1967, p. 65 and 1973, p. 31). Thus “object”

can be used with three different meanings:

(1) the invariant of a set of phenomena or the invariant of some multiplicity of possible
representations. In that sense “objects” are KNOWLEDGE OBJECTS.

(2) the target of attention focusing on such or such aspect (shape, position, size,

succession. . .) of what is given. In that sense “objects’ are transient PHENOMENO-

LOGICAL OBJECTS.

(3) the data given by perception, or the physical things. In that sense, “objects” are

CONCRETE OBJECTS.

Mathematical objects (numbers, functions, vectors, etc.) are knowledge objects, and

semiotic representations which can support two quite opposite foci of attention (either

the visual data given or some represented object which can be a concrete one or some in-

variant) are transient phenomenological objects. If we consider an algebraic equation and

the graph of a line, they are first different semiotic representations. They are “mathemat-

ical objects” under the condition that attention can focus on some invariant (the assumed

represented relations) and not only on their visual data and their perceptual organiza-

tion (Duval, 1995b, pp. 53–54; 2002). It is only from a strict formal point of view that

semiotic representations can be taken as concrete objects (Duval, 1998a, pp. 160–163).
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deux pratiques et une troisième’, in M. Kourkoulos, G. Toulis and C. Tzanakis (eds.), Pro-
ceedings 3rd Colloquium on the Didactics of Mathematics, University of Crete, Rethym-

non, pp. 13–33.

Duval, R. (ed.): 1999, Conversion et articulation des représentations analogiques,
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