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Bootstrap Confidence Intervals

Thomas J. DiCiccio and Bradley Efron

Abstract. This article surveys bootstrap methods for producing good
approximate confidence intervals. The goal is to improve by an order of
magnitude upon the accuracy of the standard intervals 6 &+ 2(®&, in a
way that allows routine application even to very complicated problems.
Both theory and examples are used to show how this is done. The first
seven sections provide a heuristic overview of four bootstrap confidence
interval procedures: BC,, bootstrap-¢, ABC and calibration. Sections 8
and 9 describe the theory behind these methods, and their close connec-
tion with the likelihood-based confidence interval theory developed by
Barndorff-Nielsen, Cox and Reid and others.

Key words and phrases: Bootstrap-¢, BC, and ABC methods, calibra-

tion, second-order accuracy

1. INTRODUCTION

Confidence  intervals have become familiar
friends in the applied statistician’s collection of
data-analytic tools. They combine point estima-
tion and hypothesis testing into a single inferen-
tial statement of great intuitive appeal. Recent
advances in statistical methodology allow the con-
struction of highly accurate approximate confidence
intervals, even for very complicated probability
models and elaborate data structures. This article
discusses bootstrap methods for constructing such
intervals in a routine, automatic way.

Two distinct approaches have guided confidence
interval construction since the 1930’s. A small cata-
logue of exact intervals has been built up for special
situations, like the ratio of normal means or a sin-
gle binomial parameter. However, most confidence
intervals are approximate, with by far the favorite
approximation being the standard interval

(1.1)

,Here 6 is a point estimate of the parameter of in-
terest 0, & is an estimate of #’s standard deviation,
and 2(® is the 100ath percentile of a normal devi-

6+ 29,
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ate, 2(09) = 1.645 and so on. Often, and always in
this paper, 6 and & are obtained by maximum like-
lihood theory.

The standard intervals, as implemented by maxi-
mum likelihood theory, are a remarkably useful tool.
The method is completely automatic: the statisti-
cian inputs the data, the class of possible probabil-
ity models and the parameter of interest; a com-
puter algorithm outputs the intervals (1.1), with no
further intervention required. This is in notable con-
trast to the construction of an exact interval, which
requires clever thought on a problem-by-problem
basis when it is possible at all.

The trouble with standard intervals is that they
are based on an asymptotic approximation that can
be quite inaccurate in practice. The example below
illustrates what every applied statistician knows,
that (1.1) can considerably differ from exact inter-
vals in those cases where exact intervals exist. Over
the years statisticians have developed tricks for im-
proving (1.1), involving bias-corrections and param-
eter transformations. The bootstrap confidence
intervals that we will discuss here can be thought
of as automatic algorithms for carrying out these
improvements without human intervention. Of
course they apply as well to situations so compli-
cated that they lie beyond the power of traditional
analysis.

We begin with a simple example, where we can
compute the bootstrap methods with an exact inter-
val. Figure 1 shows the cd4 data: 20 HIV-positive
subjects received an experimental antiviral drug;
cd4 counts in hundreds were recorded for each sub-
ject at baseline and after one year of treatment, giv-
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FIG. 1. The cd4 data; cd4 counts in hundreds for 20 subjects,
at baseline and after one year of treatment with an experimental
anti-viral drug; numerical values appear in Table 1.

ing data, say, x; = (B;, 4;) fori =1,2,...,20. The
data is listed in Table 1. The two measurements are
highly correlated, having sample correlation coeffi-
cient § = 0.723.

What if we wish to construct a confidence inter-
val for the true correlation §? We can find an exact
interval for 0 if we are willing to assume bivariate
normality for the (B;, A;) pairs,

B.
(12) (Al) ~iid. NZ(/\’ F) for i= la 2> ceey 207

1

where A and T' are the unknown expectation vec-
tor and covariance matrix. The exact central 90%
interval is

(1.3) (frxacr[0.05],

This notation emphasizes that a two-sided interval
is intended to give correct coverage at both end-
points, two 0.05 noncoverage probabilities in this
case, not just an overall 0.10 noncoverage probabil-
Jity. ’

The left panel of Table 2 shows the exact and
standard intervals for the correlation coefficient of
the cd4 data, assuming the normal model (1.2). Also
shown are approximate confidence intervals based
on three different (but closely related) bootstrap
methods: ABC, BC, and bootstrap-¢. The ABC and
BC, methods match the exact interval to two dec-
imal places, and all of the bootstrap intervals are
more accurate than the standard. The examples
and theory that follow are intended to show that
this is no accident. The bootstrap methods make

Orxact[0.95]) = (0.47, 0.86).

TABLE 1
The cd4 data, as plotted in Figure 1

Subject Baseline One year Subject Baseline One year

1 2.12 2.47 11 4.15 4.74
2 4.35 4.61 12 3.56 3.29
3 3.39 5.26 13 3.39 5.55
4 2.51 3.02 14 1.88 2.82
5 4.04 6.36 15 2.56 4.23
6 5.10 5.93 16 2.96 3.23
7 3.77 3.93 17 2.49 2.56
8 3.35 4.09 18 3.03 4.31
9 4.10 4.88 19 2.66 4.37
10 3.35 3.81 20 3.00 2.40

computer-based adjustments to the standard in-
terval endpoints that are guaranteed to improve
the coverage accuracy by an order of magnitude, at
least asymptotically.

The exact interval endpoints [0.47, 0.86] are de-
fined by the fact that they “cover” the observed value
6 = 0.723 with the appropriate probabilities,

(1.4) Prob,_q 4;{0 > 0.723} = 0.05
and
(1.5) Proby_gge{6 > 0.723} = 0.95.

Table 2 shows that the corresponding probabilities
for the standard endpoints [0.55, 0.90] are 0.12 and
0.99. The standard interval is far too liberal at its
lower endpoint and far too cautious at its upper end-
point. This kind of error is particularly pernicious if
the confidence interval is used to test a parameter
value of interest like 8 = 0.

Table 2 describes the various confidence intervals
in terms of their length and right-left asymmetry
around the point estimate 6,

length = §[0.95] — 6[0.05],

(1.6) 6[0.95] — 6
ape = —————
6 — 6[0.05].

The standard intervals always have shape equal to
1.00. It is in this way that they err most seriously.
For example, the exact normal-theory interval for
Corr has shape equal to 0.52, extending twice as far
to the left of § = 0.723 as to the right. The stan-
dard interval is much too optimistic about ruling
out values of 6 below §, and much too pessimistic
about ruling out values above . This kind of error
is automatically identified and corrected by all the
bootstrap confidence interval methods.

There is no compelling reason to assume bivariate
normality for the data in Figure 1. A nonparamet-
ric version of (1.2) assumes that the pairs (B;, A;)
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TABLE 2
Exact and approximate confidence intervals for the correlation coefficient, cd4 data; 6 = 0.723: the bootstrap methods ABC, BC,,
bootstrap-t and calibrated ABC are explained in Sections 2-7; the ABC and BC, intervals are close to exact in the normal theory
situation (left panel); the standard interval errs badly at both endpoints, as can be seen from the coverage probabilities in the bottom rows

Normal theory Nonparametric
Exact ABC BC, Bootstrap-¢ Standard ABC BC, Bootstrap-¢ Calibrated Standard

0.05 0.47 0.47 0.47 0.45 0.55 0.56 0.55 0.51 0.56 0.59
0.95 0.86 0.86 0.86 0.87 0.90 0.83 0.85 0.86 0.83 0.85
Length 0.39 0.39 0.39 0.42 0.35 0.27 0.30 0.35 0.27 0.26
Shape 0.52 0.52 0.54 0.52 1.00 0.67 0.70 0.63 0.67 1.00
Cov 05 0.05 0.05 0.05 0.04 0.12

- Cov 95 0.95 0.95 0.95 0.97 0.99

are a random sample (“i.i.d.”) from some unknown
bivariate distribution F,

B, .
(1.7) (A‘l) ~ia F, 1=12,...,n,
n = 20, without assuming that F' belongs to any
particular parametric family. Bootstrap-based confi-
dence intervals such as ABC are available for non-
parametric situations, as discussed in Section 6. In
theory they enjoy the same second-order accuracy as
in parametric problems. However, in some nonpara-
metric confidence interval problems that have been
examined carefully, the small-sample advantages of
the bootstrap methods have been less striking than
in parametric situations. Methods that give third-
order accuracy, like the bootstrap calibration of an
ABC interval, seem to be more worthwhile in the
nonparametric framework (see Section 6).

In most problems and for most parameters there
will not exist exact confidence intervals. This great
gray area has been the province of the standard in-
tervals for at least 70 years. Bootstrap confidence in-
tervals provide a better approximation to exactness
in most situations. Table 3 refers to the parameter
0 defined as the maximum eigenvalue of the covari-
ance matrix of (B, A) in the cd4 experiment,

(1.8) 6 = maximum eigenvalue {cov(B, A)}.

The maximum likelihood estimate (MLE) of 6, as-
suming either model (1.2) or (1.7), is 6 = 1.68. The
bootstrap intervals extend further to the right than
to the left of § in this case, more than 2.5 times as
far under the normal model. Even though we have
no exact endpoint to serve as a “gold standard” here,
the theory that follows strongly suggests the supe-
riority of the bootstrap intervals. Bootstrapping in-
volves much more computation than the standard
intervals, on the order of 1,000 times more, but the
algorithms are completely automatic, requiring no
more thought for the maximum eigenvalue than the
correlation coefficient, or for any other parameter.

One of the achievements of the theory discussed
in Section 8 is to provide a reasonable theoretical
gold standard for approximate confidence inter-
vals. Comparison with this gold standard shows
that the bootstrap intervals are not only asymptot-
ically more accurate than the standard intervals,
they are also more correct. “Accuracy” refers to the
coverage errors: a one-sided bootstrap interval of
intended coverage « actually covers 6 with proba-
bility & + O(1/n), where n is the sample size. This
is second-order accuracy, compared to the slower
first-order accuracy of the standard intervals, with
coverage probabilites a + O(1/+/n). However con-
fidence intervals are supposed to be inferentially
correct as well as accurate. Correctness is a harder
property to pin down, but it is easy to give exam-
ples of incorrectness: if x;, x5, ..., x,, is a random
sample from a normal distribution N(6, 1), then
(min(x;), max(x;)) is an exactly accurate two-sided
confidence interval for 6 of coverage probability
1—1/2"71, but it is incorrect. The theory of Section
8 shows that all of our better confidence intervals
are second-order correct as well as second-order
accurate. We can see this improvement over the
standard intervals on the left side of Table 2. The
theory says that this improvement exists also in
those cases like Table 3 where we cannot see it
directly.

2. THE BC, INTERVALS

The next six sections give a heuristic overview
of bootstrap confidence intervals. More examples
are presented, showing how bootstrap intervals
can be routinely constructed even in very compli-
cated and messy situations. Section 8 derives the
second-order properties of the bootstrap intervals in
terms of asymptotic expansions. Comparisons with
likelihood-based methods are made in Section 9.
The bootstrap can be thought of as a convenient
way of executing the likelihood calculations in para-
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TABLE 3
Approximate 90% central confidence intervals for the maximum eigenvalue parameter (1.7), cd4 data; the bootstrap intervals extend
much further to the right of the MLE 6 = 1.68 than to the left

Normal theory Nonparametric
ABC BC, Standard ABC BC, Calibated Standard
0.05 1.11 1.10 0.80 1.15 1.14 1.16 1.01
0.95 3.25 3.18 2.55 2.56 2.55 3.08 2.35
Length 2.13 2.08 1.74 1.42 1.41 1.92 1.34
Shape 2.80 2.62 1.00 1.70 1.64 2.73 1.00

metric exponential family situations and even in
nonparametric problems.

The bootstrap was introduced as a nonparametric
device for estimating standard errors and biases.
Confidence intervals are inherently more delicate
inference tools. A considerable amount of effort has
gone into upgrading bootstrap methods to the level
of precision required for confidence intervals.

The BC, method is an automatic algorithm for
producing highly accurate confidence limits from a
bootstrap distribution. Its effectiveness was demon-
strated in Table 2. References include Efron (1987),
Hall (1988), DiCiccio (1984), DiCiccio and Romano
(1995) and Efron and Tibshirani (1993). A program
written in the language S is available [see the note
in the second paragraph following (4.14)].

The goal of bootstrap confidence interval theory
is to calculate dependable confidence limits for a pa-
rameter of interest 6 from the bootstrap distribution
of 6. Figure 2 shows two such bootstrap distribu-
tions relating to the maximum eigenvalue param-
eter 6 for the cd4 data, (1.8). The nonparametric
bootstrap distribution (on the right) will be dis-
cussed in Section 6. .

The left panel is the histogram of 2,000 normal-
theory bootstrap replications of 6. Each replication
was obtained by drawing a bootstrap data set anal-
ogous to (1.2),

(2.1) (Bi)fvi.i,d. Ny(A,T), i=1,2,...,20,

Aj

and then computing 6*, the maximum likelihood
estimate (MLE) of 6 based on the boostrap data. In
other words 6* was the maximum eigenvalue of the
empirical covariance matrix of the 20 pairs (Bj, A}).
The mean vector A and covariance matrix I' in (2.1)
were the usual maximum likelihood estimates for
A and I, based on the original data in Figure 1.
Relation (2.1) is a parametric bootstrap sample,
obtained by sampling from' a parametric MLE for
the unknown distribution F. Section 6 discusses
nonparametric bootstrap samples and confidence
intervals.

The 2,000 bootstrap replications #* had standard
deviation 0.52. This is the bootstrap estimate of
standard error for §, generally a more dependable
standard error estimate than the usual parametric
delta-method value (see Efron, 1981). The mean of
the 2,000 values was 1.61, compared to § = 1.68,
indicating a small downward bias in the Maxeig
statistic. In this case it is easy to see that the down-
ward bias comes from dividing by n instead of n — 1
in obtaining the MLE I of the covariance matrix.

Two thousand bootstrap replications is 10 times
too many for estimating a standard error, but not too
many for the more delicate task of setting confidence
intervals. These bootstrap sample size calculations
appear in Efron (1987, Section 9).

The BC, procedure is a method of setting approx-
imate confidence intervals for 6 from the percentiles
of the bootstrap histogram. Suppose 6 is a param-
eter of interest; (x) is an estimate of 6 based on
the observed data x; and 6* = A(x*) is a bootstrap
replication of  obtained by resampling x* from an
estimate of the distribution governing x. Let G(c)
be the cumulative distribution function (c.d.f.) of B
bootstrap replications 6*(b),

(2.2) G(c) = #{0*(b) < c}/B.

In our case B = 2,000. The upper endpoint
9Bca[a] of a one-sided level-a BC, interval, 6 <
(—o0, 6 Bc,[a]) is defined in terms of G and two
numerical parameters discussed below: the bias-
correction z, and the acceleration a (BC, stands for
“bias-corrected and accelerated”). By definition the
BC, endpoint is

A A—1 2+ Z(a)
(23) OBCG [a] =G qJ(ZO + m)
Here @ is the standard normal c.d.f, with 2(® =
®~1(a) as before. The central 0.90 BC, interval
is given by (¢ [0.05], O [0.95]). Formula (2.3)
looks strange, but it is well motivated by the trans-
formation and asymptotic arguments that follow.
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Fi1G. 2. Bootstrap distributions for the maximum eigenvalue of the covariance matrix, cd4 data: (left) 2,000 parametric bootstrap
replications assuming a bivariate normal distribution; (right) 2,000 nonparametric bootstrap replications, discussed in Section 6. The
solid lines indicate the limits of the BC, 0.90 central confidence intervals, compared to the standard intervals (dashed lines).

If a and z, are zero, then fp¢ [a] = G(a), the
100ath percentile of the bootstrap replications. In
this case the 0.90 BC, interval is the interval be-
tween the 5th and 95th percentiles of the bootstrap
replications. If in addition G is perfectly normal,
then 6 Bc,la] = 6+ 2( &, the standard interval end-
point. In general, (2.3) makes three distinct correc-
tions to the standard intervals, improving their
coverage accuracy from first to second order.

The c.d.f. G is markedly long-tailed to the
right, on the normal-theory side of Figure 2.
Also a and z, are both estimated to be positive,
(d, 29) = (0.105, 0.226), further shifting pc [a] to
the right of Agpan[a] = 6 + 2(®é. The 0.90 BC,
intervel for 0 is

(2.4)  (G71(0.157), G"1(0.995)) = (1.10, 3.18),

compared to the standard interval (0.80, 2.55).

The following argument motivates the BC, def-
inition (2.3), as well as the parameters ¢ and z,.
Suppose that there exists a monotone increasing
transformation ¢ = m(6) such that é = m(0) is
normally distributed for every choice of 6, but pos-
sibly with a bias and a nonconstant variance,

(25) ¢~ N(¢— 2004, 02),

Then (2.3) gives exactly accurate and correct confi-
dence limits for 6 having observed .

The argument in Section 3 of Efron (1987) shows
that in situation (2.5) there is another monotone
transformation, say ¢ = M(6) and £ = M(6), such

that £ = £ + W for all values of &, with W always
having the same distribution. This is a translation
Qroblem so we know how to set confidence limits
&[] for &,

(2.6) fla] = & - W,

where W(-9) ig the 100(1 — @)th percentile of W.
The BC, interval (2.3) is exactly equivalent to the
translation interval (2.6), and in this sense it is cor-
rect as well as accurate.

The bias-correction constant z, is easy to inter-
pret in (2.5) since

(2.7) Prob{¢ < ¢} = ®(z,).

Then Prob{f < 8} = ®(z,) because of monotonicity.
The BC, algorithm, in its simplest form, estimates
zo by

(2.8) 2 =¢‘1{ﬂ&21@},

®~1 of the proportion of the bootstrap replications
less than . Of the 2,000 normal-theory bootstrap
replications 6* shown in the left panel of Fig-
ure 2, 1179 were less than 6 = 1.68. This gave
3, = ®1(0.593) = 0.226, a positive bias correction
since 6* is biased downward relative to 6. An often
more accurate method of estimating z, is described
in Section 4.

The acceleration a in (2.5) measures how quickly
the standard error is changing on the normalized
scale. The value @ = 0.105 in (2.4), obtained from
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formula (4.9) of Section 4, is moderately large. Sup-
pose we think we have moved 1.645 standard errors
to the right of ¢, to

é = ¢+ 1.6450;.
Actually though, with a = 0.105,
o3 = (1+1.645a)0; = 1.1730;,

according to (2.5). For calculating a confidence level,
¢ is really only 1.645/1.173 = 1.40 standard er-
rors to the right of ¢, considerably less than 1.645.
Formula (2.3) automatically corrects for an acceler-
ating standard error. The next section gives a ge-
ometrical interpretation of a, and also of the BC,
formula (2.3).

The peculiar-looking formula (2.3) for the BC,
endpoints is designed to give exactly the right an-
swer in situation (2.5), and to give it automatically
in terms of the bootstrap distribution of *. Notice,
for instance, that the normalizing transformation
¢ = m(6) is not required in (2.3). By comparison,
the standard interval works perfectly only under the
more restrictive assumption that

(2.9) 6~ N(0, d?),

with o2 constant. In practice we do not expect ei-
ther (2.9) or (2.5) to hold exactly, but the broader
assumptions (2.5) are likely to be a better approxi-
mation to the truth. They produce intervals that are
an order of magnitude more accurate, as shown in
Section 8.

Formula (2.5) generalizes (2.9) in three ways, by
allowing bias, nonconstant standard error and a
normalizing transformation. These three extensions
are necessary and sufficient to give second-order
accuracy,

(2.10) Prob{6 < ¢ [a]} = a+ O(1/n),

compared with Prob{6 < fspax[a]} = a + O(1/4/n),
where n is the sample size in an i.i.d. sampling situ-
ation. This result is stated more carefully in Section
8, which also shows the second-order correctness of
the BC, intervals. Hall (1988) was the first to es-
tablish (2.10).

The BC, intervals are transformation invariant.
If we change the parameter of interest from 6 to
some monotone function of 0, ¢ = m(6), likewise
changing 8 to ¢ = m(8) and 6* to ¢* = m(6*), then
the a-level BC, endpoints change in the same way,

(2.11) ngca[a] = m(éBCa[a])-

The standard intervals are not transformation in-
variant, and this accounts for some of their practi-
cal difficulties. It is well known, for instance, that

normal-theory standard intervals for the correlation
coefficient are much more accurate if constructed on
the scale ¢ = tanh™(6) and then transformed back
to give an interval for 6 itself. Transformation in-
variance means that the BC, intervals cannot be
fooled by a bad choice of scale. To put it another way,
the statistician does not have to search for a trans-
formation like tanh™ in applying the BC, method.

In summary, BC, produces confidence intervals
for 6 from the bootstrap distribution of 6*, requir-
ing on the order of 2,000 bootstrap replications
6*. These intervals are transformation invariant
and exactly correct under the normal transforma-
tion model (2.5); in general they are second-order
accurate and correct.

3. THE ACCELERATION a

The acceleration parameter a appearing in the
BC, formula (3.2) looks mysterious. Its definition
in (2.5) involves an idealized transformation to nor-
mality which will not be known in practice. Fortu-
nately a enjoys a simple relationship with Fisher’s
score function which makes it easy to estimate. This
section describes the relationship in the context of
one-parameter families. In doing so it also allows
us better motivation for the peculiar-looking BC,
formula (2.3).

Suppose then that we have a one-parameter fam-
ily of c.d.f’s G4(6) on the real line, with 8 being an
estimate of #. In the relationships below we assume
that 6 behaves asymptotically like a maximum like-
lihood estimator, with respect to a notional sample
size n, as made explicit in (5.3) of Efron (1987). As
a particular example, we will consider the case
(3.1) 6 ~ 0%, n =10,
where Gamma indicates a standard gamma variate
with density ¢* ! exp{—t}/I'(n) for ¢ > 0.

Having observed 6, we wonder with what confi-
dence we can reject a trial value 6, of the parameter
6. In the gamma example (3.1) we might have

(3.2) 6=1 and 6,=1.5.

The easy answer from the bootstrap point of view is
given in terms of the bootstrap c.d.f. G(c) = Gy(c).
We can define the bootstrap confidence value to be

(3.3) a = G(6y) = Gy(6y).

However, this will usually not agree with the more
familiar hypothesis-testing confidence level for a
one-parameter problem, say

(3.4) a=1-G,(h),
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the probability under 6, of getting a less extreme
observation than 6. (For convenience these defini-
tions assume 6 < 6,.) In the case of (3.1)~(3.2) we
have & = 0.930 while & = 0.863.

The BC, formula (2.3) amounts to a rule for con-
verting bootstrap confidence values & into hypothe-
sis-testing confidence levels &. This becomes crucial
as soon as we try to use the bootstrap on problems
more complicated than one-parameter families. De-
fine

(35) :=0a) and 2=d'(a).

For a given value of 6, and & above, let @ = & and
6pc, [a] = 6y in (2.3). If (2.3) works perfectly, then
we have

N 2o+ 2
3.6 O 1G(6)) = 2 = —-——0———,
( ) (0) 2 ZO+ l_a(zo_'_zA)
or

. zZ—2
3.7 = — — Z,.
(3.7) T 1Y a2z

The fact that the BC, intervals are second-order
accurate implies that the conversion formula (3.7)
itself must be quite accurate.

To use (3.7), or (2.3), we first must estimate the
two parameters z, and a. The bias-correction z, is
estimated by

(3.8) 5, = D 1G(0) = DG y(6)

as in (2.8). The acceleration a is estimated in terms
of the skewness of the score function

(3.9) iy(8) = - log{g(D)},

where g,4(6) is the density dG4(0)/d8. Section 10 of
Efrgn (1987) shows thaAt one-sixth the skewness of
£,(0) evaluated at 6 = 6,

(3.10) i = SKEW,_s{(,(0)}/6,

is an excellent estimate of a.

Both z, and a are of order O(1/4/n), with the
estimates £ and @ erring by O(1/n). For the gamma
problem (3.1) it is easy to calculate that

(3.11) 2,=0.106 and & = 0.105.

If 6 is the MLE in a one-parameter family (but not
in general), then Z;, and @ are nearly the same, as
is the case here. .

The usable form of (3.7) is

5 2, .

3.12 P N
(3.12) T 1vd(E-2g °

We can list three important properties of the (2, 2)
curve (3.12) near Z = 2,:

(3.13) (N, é) = (20 - 20) at Z = ZAO;
dz . .
(3.14) i 1 at zZ=2,,
and
d?z . 5
(3.15) ke —24 at z=2%,.

The last of these relationships is of special interest
here. It says that the curvature of the (2, 2) curve at
2, is directly proportional to the acceleration 4.

In any given one-parameter problem we can find
the actual (2, 2) curve, at least in theory. This is ob-
tained by keeping 6 fixed and varying the trial point
0o in (3.3)—(3.5). Figure 3 shows the (2, 2) curve for
the gamma problem, with 6 any fixed value, say
6 = 1. In this case the BC, approximation formula
(3.12) matches the actual (2, 2) curve to three deci-
mal places over most of the range of the graph. At
6 =1, 6, = 1.5 for example, 2 equals 1.092 both
actually and from (3.15).

The fact that the BC, formula (2.3) is second-
order accurate implies that the conversion formula
(3.12) errs only by O(1/n). This means that rela-
tionships (3.13)—(3.15) must have the same order of
accuracy, even in quite general problems. In partic-
ular, the curvature of the actual (2, 2) plot, if it were
possible to compute it, would nearly equal —2a, with
a given by the skewness definition (3.10).

None of this is special to one-parameter families
except for the skewness definition (3.10), which does
not allow for nuisance parameters. The next section

2 4

Fic. 3. Plot of 2 versus Z in the gamma problem (3.1); the BC,
approximation (3.12) or (2.3), matches the actual curve to three
decimal places. The central curvature of the (2, 2) plot is propor-
tional to the acceleration G.
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shows how to extend the skewness definition of ¢ to
multiparameter situations. This gives an estimate
that is easy to evaluate, especially in exponential
families, and that behaves well in practice. In fact
a is usually easier to estimate than z,, despite the
latter’s simpler definition.

4. THE ABC METHOD

We now leave one-parameter families and return
to the more complicated situations that bootstrap
methods are intended to deal with. In many such
situations it is possible to approximate the BC,
interval endpoints analytically, entirely dispens-
ing with Monte Carlo simulations. This reduces
the computational burden by an enormous fac-
tor, and also makes it easier to understand how
BC, improves upon the standard intervals. The
ABC method (“ABC” standing for approximate boot-
strap confidence intervals) is an analytic version
of BC, applying to smoothly defined parameters
in exponential families. It also applies to smoothly
defined nonparametric problems, as shown in Sec-
tion 6. DiCiccio and Efron (1992) introduced the
ABC method, which is also discussed in Efron and
Tibshirani (1993).

The BC, endpoints (2.3) depend on the bootstrap
c.d.f G and estimates of the two parameters a and
2o. The ABC method requires one further estimate,
of the nonlinearity parameter c,, but it does not in-
volve G.

The standard interval (1.1) depends only on the
two quantities (6, 5). The ABC intervals depend
on the five quantities (é, g,a, 2y, ¢,). Each of the
three extra numbers (4, 2, ¢,) corrects a deficiency
of the standard method, making the ABC intervals
second-order accurate as well as second-order cor-
rect.

The ABC system applies within multiparame-
ter exponential families, which are briefly reviewed

below. This framework includes most familiar .

parametric situations: normal, binomial, Poisson,
gamma, multinomial, ANOVA, logistic regression,
" contingency tables, log-linear models, multivariate
normal problems, Markov chains and also nonpara-
metric situations as discussed in Section 6.

The density function for a p-parameter exponen-
tial family can be written as

(4.1) 8u(x) = exp[n'y — ¥(n)]

where x is the observed data and y = Y (x) is a p-
dimensional vector of sufficient statistics; 7 is the
p-dimensional natural parameter vector; u is
the expectation parameter u = E, {y}; and ¥(n),

the cumulant generating function, is a normalizing
factor that makes g,(x) integrate to 1.

The vectors w and 7 are in one-to-one correspon-
dence so that either can be used to index functions
of interest. In (4.1), for example, we used u to index
the densities g, but n to index . The ABC algo-
rithm involves the mapping from 7 to u, say

(4.2) p=mu(n),

which, fortunately, has a simple form in all of the
common exponential families. Section 3 of DiCic-
cio and Efron (1992) gives function (4.2) for several
families, as well as specifying the other inputs nec-
essary for using the ABC algorithm.

The MLE of u in (3.1) is i = y, so that the MLE
of a real-valued parameter of interest 0 = #(u) is

(4.3) 6= t() = ().

As an example consider the bivariate normal model
(12). Here x = ((B]_, Al)’ (Bz, A2), ceny (B20, Azo))
and y = Y2 (B, A;, B, B;A;, A?)/20. The bivari-
ate normal is a five-parameter exponential family
with

(44) = (A1, Agy AT+ g, AAg + T, A3 + ).
Thus the correlation coefficient is the function #(u)
given by '

(4 5) P Mg — MM

[(u3 — 35 — u3)]V2°
) = t(j1) is seen to be the usual sample correlation
coefficient.

We denote the p x p covariance matrix of y by
S(n) = cov,{y}, and let 3 = 3(4), the MLE of .
The delta-method estimate of standard error for 6=
t() depends on 2. Let ¢ denote the gradient vector

of 6 =t(n)at p =i,

) J !
(4.6) t=<..., t) .
Im; p=p
Then
(4.7) & = (£34)*

is the parametric delta-method estimate of standard
error, and it is also the usual Fisher information
standard error estimate.

The & values for the standard intervals in Tables
2 and 3 were found by numerical differentiation,
using
ot | . t(a+ee;) —t(h— ee;)

&Mi i 2e

for a small value of &, with e; the ith coordinate

vector. The covariance matrix 2, is simple to calcu-
late in most of the familiar examples, as shown in

(4.8)
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DiCiccio and Efron (1992, Section 3) giving ¢ from
(4.7). This assumes that ¢(u) is differentiable. In
fact we need ¢(u) to be twice differentiable in order
to carry out the ABC computations.

The ABC algorithm begins by computing ¢ from
(4.7)~(4.8). Then the parameters (a, 2, c,) are esti-
mated by computing p + 2 numerical second deriva-
tives. The first of these is

P . .
gg[t mu(’r) +8t)]f=0/60'3,

when 7 is the MLE of the natural parameter vec-
tor 7. This turns out to be the same as the skew-
ness definition of @, (3.10), in the one-parameter
family obtained from Stein’s least favorable family
construction [see Efron, 1987, (6.7)]. Formula (4.9)
uses exponential family relationships to compute
the skewness from a second derivative.
The second ABC numerical derivative is

. 2 (. &St .
(4.10) Cq = ﬁ—gt(ﬂ + 5 ) ‘_0/20';

¢, measures how nonlinear the parameter of inter-
est 0 is, as a function of u.

The final p second derivatives are required for
the bias-correction parameter z,. The parametric
delta-method estimate of bias for § = #() can be
expressed as

(49) 4=

p

;ﬂgzt( i+ ed)?y;) -

(4.11) b=

where d; is the ith eigenvalue and v; is the ith
eigenvector of 3. Then

(4.12) 2y = D 1(2.9(a) ®(¢,~b/&)) = a+¢,-b/6.

This involves terms other than b becuase z, relates
to median bias. For the kind of smooth exponential
family problems considered here, (4.12) is usually
more accurate than the direct estimate (2.8).

The simplest form of the ABC intervals, called
ABCquadratic or ABCq, gives the a-level end-
point directly as a function of the five numbers
(6,6.,4,2,¢6,):

a - w=2y+ 29
w
(1-aw)?

—> éABCq[a] = é+6‘§.

(4.13) - A= = E=A+80°

The original ABC endpoint, denoted ,pc[a], re-
quires one more recomputation of the function #(-):
w

a —> w=ZAo+2(a) —> )\ZW

(4.14) &
— Oapcla] = t(ﬁ‘lr 5 )

Notice that ¢
in (4.12).

Formula (4.14) is the one used in Tables 2 and 3.
It has the advantage of being transformation invari-
ant, (2.11), and is sometimes more accurate than
(4.13). However, (4.13) is local, all of the recompu-
tations of #(«) involved in (4.8)—(4.13) taking place
infinitesimally near 4 = y. In this sense ABCq is
like the standard method. Nonlocality occasionally
causes computational difficulties with boundary vi-
olations. In fact (4.13) is a simple quadratic approx-
imation to (4.14), so ABC and ABCq usually agree
reasonably well.

The main point of this article is that highly ac-
curate approximate confidence intervals can now be
calculated on a routine basis. The ABC intervals are
implemented by a short computer algorithm. [The
ABC intervals in Tables 2 and 3 were produced by
the parametric and nonparametric ABC algorithms
“abcpar” and “abecnon.” These and the BC,, program
are available in the language S: send electronic mail
to statlib@lib.stat.cmu.edu with the one-line mes-
sage: send bootstrap.funs from S.] There are five in-
puts to the algorithm: @, 3, 9 and the functions #(-)
and mu(-). The outputs include Ogpan[a], Oapcle]
and éABCq[a]. Computational effort for the ABC in-
tervals is two or three times that required for the
standard intervals.

The ABC intervals can be useful even in very
simple situations. Suppose that the data consists
of a single observation x from a Poisson distribu-
tion with unknown expectation 6. In this case 6 =
t(x)=x and ¢ = V. Carrymg through definitions
(4.9)-(4.14) gives G = 2, = 1/(66'/2), ¢, =0, and so

q 18 still required here, to estimate 2,

OABC[a] = 0 + — \/0 w = 20 + z(“).

(1-dwy?

For x = 7, the interval (f,pc[0.05], O45c[0.95])
equals (3.54, 12.67). This compares with the exact
interval (3.57, 12.58) for 0, splitting the atom of
probability at x = 7, and with the standard interval
(2.65,11.35).

Here is a more realistic example of the ABC al-
gorithm, used in a logistic regression context.
Table 4 shows the data from an experiment con-
cerning mammalian cell growth. The goal of this
experiment was to quantify the effects of two fac-
tors on the success of a culture. Factor “r” measures
the ratio of two key constituents of the culture
plate, while factor “d” measures how many days
were allowed for culture maturation. A total of
1,843 independent cultures were prepared, investi-
gating 25 different (r;, d ;) combinations. The table

lists s;; and n;; for each combination, the num-
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TABLE 4
Cell data: 1,843 cell cultures were prepared, varying two factors, r (the ratio of two key constituents) and d (the number of days of
culturing). Data shown are s;; and n;j, the number of successful cultures and the number of cultures attempted, at the ith level of r and
the jth level of d

dl d2 d3 d4 d5 Total
ry 5/31 3/28 20/45 24/47 29/35 81/186
ro 15/77 36/78 43/71 56/71 66/74 216/371
r3 48/126 68/116 145/171 98/119 114/129 473/661
T4 29/92 35/52 57/85 38/50 72/77 231/356
rs 11/53 20/52 20/48 40/55 52/61 143/269
Total 108/379 162/326 285/420 256/342 333/376 1144/1843

ber of successful cultures, compared to the number
attempted.

We suppose that the number of successful cul-
tures is a binomial variate,

8;7 ~iiq binomial(n;;, ;;),

(4.15)
i>j= 1)2’3’4’5’

with an additive logistic regression model for the
unknown probabilities ;;,

7Tij
log( L~ ) =n+a +B,
1_7Tij
(4.16) 5 S
Zai = Zﬁj = O.
1 1

For the example here we take the parameter of in-
terest to be

4.17 6= 18

(4.17) el
the success probability for the lowest r and highest
d divided by the success probability for the highest
r and lowest d. This typifies the kind of problem
traditionally handled by the standard method.

A logistic regression program calculated maxi-
mum likelihood estimates f, &;, 8 j» from which we
obtained
1+ exp[—(i + a5 + Bi]
1+ exp[—(4& + @ + Bs)]
The output of the logistic regression program pro-
vided fi, 2 and % for the ABC algorithm. Section 3
of DiCiccio and Efron (1992) gives the exact speci-
fication for an ABC analysis of a logistic regression
problem. Applied here, the algorithm gave standard
and ABC 0.90 central intervals for 6,

(0s7an[0.05], Agran[0.95]) = (3.06, 5.26),
(0apc[0.05], ,pc[0.95]) = (3.20, 5.43).

The ABC limits are shifted moderately upwards
relative to the standard limits, enough to make the
shape (1.6) equal 1.32. The standard intervals are

(4.18) 6= = 4.16.

(4.19)

not too bad in this case, although better perfor-
mance might have been expected with n = 1, 843
data points. In fact it is very difficult to guess a pri-
ori what constitutes a large enough sample size for
adequate standard-interval performance.

The ABC formulas (4.13)—(4.14) were derived as
second-order approximations to the BC, endpoints
by DiCiccio and Efron (1992). They showed that
these formulas give second-order accuracy as in
(2.10), and also second-order correctness. Section
8 reviews some of these results. There are many
other expressions for ABC-like interval endpoints
that enjoy equivalent second-order properties in
theory, although they may be less dependable in
practice. A particularly simple formula is

(4.20) Bapcle] = Bgranlal + 6{20 + (24 + ¢,)2“’}.

This shows that the ABC endpoints are not just a
translation of fgpan[a].

In repeated sampling situations the estimated
constants (a, 2y, ¢,) are of stochastic order 1/,/n in
the sample size, the same as ¢. They multiply o
in (4.20), resulting in corrections of order &/./n to
bgran[]. If there were only 1/4 as much cell data,
n = 461, but with the same proportion of successes
in every cell of Table 4, then (d, 2y, ¢,) would be
twice as large. This would double the relative dif-
ference (Oxpc[a] — Ogran[a])/d according to (4.20),
rendering Ogran[a] quite inaccurate.

Both & and 2, are transformation invariant, re-
taining the same numerical value under monotone
parameter transformations ¢ = m(6). The nonlin-
earity constant ¢, is not invariant, and it can be
reduced by transformations that make ¢ more lin-
ear as a function of u. Changing parameters from
0 = my5/m5 to ¢ = log(0) changes (4, 2, ¢;) from
(—0.006, —0.025, 0.105) to (—0.006, —0.025, 0.025)
for the cell data. The standard intervals are nearly
correct on the ¢ scale. The ABC and BC, methods
automate this kind of data-analytic trick.

We can visualize the relationship between the
BC, and ABC intervals in terms of Figure 3. The
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BC, method uses Monte Carlo bootstrapping to
find Z, as in (3.3) and (3.5), and then maps Z into
an appropriate hypothesis-testing value 2 via for-
mula (3.7). The ABC method also uses formula
(3.7) [or, equivalently, (2.3)], but in order to avoid
Monte Carlo computations it makes one further
analytic approximation: Z itself, the point on the
horizontal axis in Figure 3, is estimated from an
Edgeworth expansion. The information needed for
the Edgeworth expansion is obtained from the
second derivatives (4.9)—(4.11).

5. BOOTSTRAP-t INTERVALS

The BC, formula strikes some people as
complicated, and also “unbootstraplike” since the
estimate @ is not obtained directly from bootstrap
replications. The bootstrap-t method, another boot-
strap algorithm for setting confidence intervals, is
conceptually simpler than BC,. The method was
suggested in Efron (1979), but some poor numeri-
cal results reduced its appeal. Hall’s (1988) paper
showing the bootstrap-t’s good second-order proper-
ties has revived interest in its use. Babu and Singh
(1983) gave the first proof of second-order accuracy
for the bootstrap-t.

Suppose that a data set x gives an estimate 6(x)
for a parameter of interest 0, and also an estimate
o(x) for the standard deviation of 6. By analogy
with Student’s ¢-statistic, we define
(5.1) T = o - o

o

and let 7@ indicate the 100ath percentile of T'. The
upper endpoint of an a-level one-sided confidence
inteval for 0 is

(5.2) 6— 6T,

This assumes we know the T-percentiles, as in the
usual Student’s-¢ case where T(® is the percentile
of a ¢-distribution. However, the T-percentiles are
unknown in most situations.

The idea of the bootstrap-¢ is to estimate the per-
. centiles of T' by bootstrapping.. First, the distribu-
tion governing x is estimated and the bootstrap data
sets x* are drawn from the estimated distribution,
as in (2.1). Each x* gives both a 6* and a ¢*, yielding

b

0".*

>

(5.3) T*

a bootstrap replication of (5.1). A large number B
of independent replications gives estimated per-
centiles

T@ — B . ath ordered value of

(5.4)
{T*(b),b=1,2,..., B}.

[So if B = 2,000 and & = 0.95, then 7 is the
1,900th ordered 7™ (b).] The 100ath bootstrap-z con-
fidence endpoint 65[a] is defined to be

(5.5) bp[a] = 6 — 6T,

following (5.2).

Figure 4 relates to the correlation coefficient for
the cd4 data. The left panel shows 2,000 normal-
theory bootstrap replications of

6—0 1- 62
5.6 T=—"), 6="1on.
(5.6) p %%

Each replication required drawing ((Bj, A%),...,
(B3, A%y)) as in (2.1), computing §* and &*, and
then calculating the bootstrap—¢ replication T* =
(6*—6)/6*. The percentiles (7005 7©0-9)) equalled
(—1.38, 2.62), giving a 0.90 central bootstrap-¢ in-
terval of (0.45,0.87). This compares nicely with the
exact interval (0.47, 0.86) in Table 2.

Hall (1988) showed that the bootstrap-¢ limits
are second-order accurate, as in (2.10). DiCiccio and
Efron (1992) showed that they are also second-order
correct (see Section 8).

Definition (2.17) uses the fact that (1 — 62)//n is
a reasonable normal-theory estimate of standard er-
ror for 6. In most situations ¢* must be numerically
computed for each bootstrap data set x*, perhaps
using the delta method. This multiplies the boot-
strap computations by a factor of at least p + 1,
where p is the number of parameters in the prob-
ability model for x. The nonparametric bootstrap-¢
distribution on the right side of Figure 4 used ¢*
equal to the nonparametric delta-method estimate.
The main disadvantage of both BC, and bootstrap-
t is the large computational burden. This does not
make much difference for the correlation coefficient,
but it can become crucial for more complicated sit-
uations. The ABC method is particularly useful in
complicated problems.

More serious, the bootstrap-¢ algorithm can be nu-
merically unstable, resulting in very long confidence
intervals. This is a particular danger in nonpara-
metric situations. As a rough rule of thumb, the BC,,
intervals are more conservative than bootstrap-t,
tending to stay, if anything, too close to the stan-
dard intervals as opposed to deviating too much.

Bootstrap-t intervals are not transformation in-
variant. The method seems to work better if 0 is
a translation parameter, such as a median or an
expectation. A successful application of the type ap-
pears in Efron (1981, Section 9). Tibshirani (1988)
proposed an algorithm for transforming 6 to a more
translation-like parameter ¢ = m(6), before apply-
ing the bootstrap-¢t method. Then the resulting in-
terval is transformed back to the 6 scale via 6 =
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FIG. 4. Bootstrap-t distributions relating to 6 the cd4 data correlation: (left) 2,000 normal-theory bootstrap relications of T using
* = (1 — 6*)2//20; (right) 2,000 nonparametric bootstrap replications of T using &* given by the nonparametric delta method; dashed

lines show 5th and 95th percentiles.

m~1(¢). See DiCiccio and Romano (1995, Section
2.b) or Efron and Tibshirani (1993, Section 12.6).

The bootstrap-¢ and BC, methods look completely
different. However, surprisingly, the ABC method
connects them.

The ABC method was introduced as a non—Monte
Carlo approximation to BC,, but it can also be
thought of as an approximation to the bootstrap-¢
method The relationships in (4.13) can be reversed
to give the attained significance level (ASL) a for
any observed data set. That is, we can find a such
that éAch[a] equals an hypothesized value 6 for
the parameter of interest:

o - ¢ = 220
g
2¢
A=
(5.7) - 1+ (1 +46,8)'?
2
%

YT 1+ 2a0) + (1+4ar)172

- a=0(w-—2).

If the ABCq method works perfectly, then the ASL
as defined by (5.7) will be uniformly distributed over
[0, 1], so

(5.8) Z =dY(a)

will be distributed as a N(0, 1) variate.

Notice that T in (5.1) equals —¢ in (5.7). The
ABCq method amounts to assuming that

(5.9) b, 5,6,(T) ~ N(0, 1)

for the transformation defined by (5.7)—(5.8). In
other words, ABCq uses an estimated transforma-
tion of T to get a pivotal quantity. The bootstrap-¢
method assumes that T itself is pivotal, but then
finds the pivotal distribution by bootstrapping. The
calibration method discussed in Section 7 uses both
an estimated transformation and bootstrapping,
with the result being still more accurate intervals.

6. NONPARAMETRIC CONFIDENCE INTERVALS

The BC,, bootstrap-t, and ABC methods can be
applied to the construction of nonparametric confi-
dence intervals. Here we will discuss the one-sample
nonparametric situation where the observed data
x = (x4, Xg, ..., X,) are a random sample from an
arbitrary probability distribution F,

(6.1) X1s X9y ¢+

The sample space 2 of the distribution can be any-
thing at all; 2" is the two-dimensional Euclidean
space R? in (1.7) and on the right side of Table 1, and
is an extended version of R® in the missing-value ex-
ample below. Multisample nonparametric problems
are mentioned briefly at the end of this section.
The empirical distribution F puts probability 1/n
on each sample point x; in x. A real-valued param-

» Xy ~iia F-
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eter of interest 6 = ¢(F') has the nonparametric es-
timate

(6.2) 0= t(F),

also called the nonparametric maximum likelihood
estimate. A nonparametric bootstrap sample x* =

(x7, x5, ..., %) is a random sample of size n drawn
from F,
(6.3) X7, %5, ...,%5 ~ F.

In other words, x* equals (x;,x;,,...,x; ) where
Ji>Jo»---» Jn 18 @ random sample drawn with re-
placement from {1,2,...,n}. Each bootstrap sam-
ple gives a nonparametric bootstrap replication of 6,

(6.4) 6 = t(F),

where F* is the empirical distribution of x*.

Nonparametric BC, confidence intervals for 6
are constructed the same way as the parametric
intervals of Section 2. A large number of indepen-
dent bootstrap replications 6*(1), 6*(2),..., 6*(B)
are drawn according to (4.3)—(4.4), B =~ 2,000, giv-
ing a bootstrap cumulative distribution function
G(c) = #{6*(b) < c}/B. The BC, endpoints @BCa[a]
are then calculated from formula (2.3), plugging in
nonparametric estimates of z, and a.

Formula (2.8) gives 2, which can also be obtained
from a nonparametric version of (4.12). The acceler-
ation a is estimated using the empirical influence
function of the statistic § = t(F),

e)F + ¢8;)
8 )

=1,2,...,n.

(65) U, = lim U

Here §; is a point mass on x;, so (1 — &)F + &8;
is a version of F putting extra weight on x; and
less weight on the other points. The usual nonpara-
metric delta-method estimate of standard error is
[SU?/n?]Y/2, this being the value used in our exam-
ples of the standard interval (1.1).

The estimate of a is
.1 YU}
(6.6) b= S T
This looks completely different than (4.9), but in fact
it is the same formula, applied here in a multino-
mial framework appropriate to the nonparametric
situation. The similarity of (6.6) to a skewness re-
flects the relationship of @ to the skewness of the
score function, (3.10). The connection of nonpara-
metric confidence intervals with multinomial esti-
mation problems appears in Efron (1987, Sections 7
and 8).

There is a simpler way to calculate the U; and 4.
Instead of (6.5) we can use the jackknife influence
function

(6.7) U; =(n—1)0. - b))

in (6.6), where é(i) is the estimate of 6 based
on the reduced data set x;), = (xq, x9,...,%;_1,
Xit1s-+-»%,). This makes it a little easier to cal-
culate the BC, limits since the statistic (x) does
not have to be reprogrammed in the functional
form § = t(F).

The nonparametric BC, method is unfazed by
complicated sample spaces. Table 5 shows an artifi-
cial missing-data example discussed in Efron (1994).
Twenty-two students have each taken five exams la-
belled A, B, C, D, E, but some of the A and E scores
(marked “?”) are missing. If there were no missing
data, we would consider the rows of the matrix to
be a random sample of size n = 22 from an un-
known five-dimensional distribution F. Our goal is
to estimate

(6.8) 6 = maximum eigenvalue of 3,

where X is the covariance matrix of F.

An easy way, though not necessarily the best way,
to fill in Table 5 is to fit a standard two-way additive
model » + a; + B to the non-missing scores by least
squares, and then to replace the missing values

TABLE 5
Twenty-two students have each taken five exams, labelled A, B,
C, D, E. Some of the scores for A and E (indicated by “?”) are
missing. Original data set from Kent, Mardia and Bibby (1979)

Student A B C D E
1 ? 63 65 70 63
2 53 61 72 64 73
3 51 67 65 65 ?
4 ? 69 53 53 53
5 ? 69 61 55 45
6 ? 49 62 63 62
7 44 61 52 62 ?
8 49 41 61 49 ?
9 30 69 50 52 45

10 ? 59 51 45 51
11 ? 40 56 54 ?
12 42 60 54 49 ?
13 ? 63 53 54 ?
14 ? 55 59 53 ?
15 ? 49 45 48 ?
16 17 53 57 43 51
17 39 46 46 32 ?
18 48 38 41 44 33
19 46 40 47 29 ?
20 30 34 43 46 18
21 ? 30 32 35 21
22 ? 26 15 20 ?
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Xij by

(6.9) £, =0p+a + B

The filled-in 22 x 5 data matrix has rows %£;, i = 1,
2,...,22, from which we can calculate an empirical

covariance matrix

. 22 22
(6.10) 2 =55 > (& — A& — &), fi=g5 ) &,
1

i=1
giving the point estimate

(6.11)  § = maximum eigenvalue of 3 = 633.2.

How accurate is 6?

It is easy to carry out a nonparametric BC,
analysis. The “points” x; in the data set x =
(21, %9, ..., %,), n = 22, are the rows of Table 5, for
instance x99 = (?, 26, 15,20,7?). A bootstrap data
set x* = («x7, x3,...,x%) is a 22 x 5 data matrix,
each row of which has been randomly selected from
the rows of Table 5. Having selected x*, the boot-
strap replication §* is computed by following the
same steps (4.9)—(4.11) that gave f. Figure 5 is a
histogram of 2,200 bootstrap replications 6*, the
histogram being noticeably long-tailed toward the
right. The 0.90 BC, confidence interval for 6 is

(6.12)  (0pc,[0.05], Opc,[.095]) = (379,1,164),
extending twice as far to the right of 6 as to the left.
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F1G. 5. Histogram of 2,200 nonparametric bootstrap replications
of the maximum eigenvalue statistic for the student score data;
bootstrap standard error estimate & = 212.0. The histogram is
long-tailed to the right, and so is the BC, confidence interval
(6.12).

It is easy to extend the ABC method of Section
4 to nonparametric problems, greatly reducing the
computational burden of the BC, intervals. The
formulas are basically the same as in (4.9)—(4.14),
but they simplify somewhat in the nonparametric—
multinomial framework. The statistic is expressed
in the functional form § = #(¥) and then reevalu-
ated for values of F very near F, as in (6.5). The
ABC limits require only 2n + 4 reevaluations of the
statistic. By comparison, the BC, method requires
some 2,000 evaluations §* = #(F*), where F* is a
bootstrap empirical distribution.

The nonparametric ABC algorithm “abcnon” was
applied to the maximum eigenvalue statistic for the
student score data. After 46 reevaluations of the
statistic defined by (6.9)—(6.11), it gave 0.90 central
confidence interval

(6.13)  (0apc[0.05], 5pc[0.95]) = (379,1,172),

nearly the same as (6.12). The Statlib program abc-
non used here appears in the appendix to Efron
(1994); Efron (1994) also applied abcnon to the full
normal theory MLE of 6, (6.8), rather than to the ad
hoc estimator (6.9)—-(6.11). The resulting ABC inter-
val (353, 1307) was 20% longer than (6.13), perhaps
undermining belief in the data’s normality.

So far we have only discussed one-sample non-
parametric problems. The K-sample nonparametric
problem has data

Xh1s Xh2s - - > Xhny, ~idd Pk
(6.14)

for k=1,2,..., K,

for arbitrary probability distributions F'; on possi-
bly different sample spaces 2;. The nonparamet-
ric MLE of a real-valued parameter of interest 0 =
t(F]_,F2,...,FK) is

(6.15) 6=t(F,,F,,... 6 Fg),

where F, is the empirical distribution correspond-
ing to X;, = (X1, X2, - - - » X, )-

It turns out that K-sample nonparametric confi-
dence intervals can easily be obtained from either
abcnon or becanon, its nonparametric BC, counter-
part. How to do so is explained in Remarks C and
H of Efron (1994).

7. CALIBRATION

Calibration is a bootstrap technique for improving
the coverage accuracy of any system of approximate
confidence intervals. Here we will apply it to the
nonparametric ABC intervals in Tables 2 and 3. The
general theory is reviewed in Efron and Tibshirani
(1993, Sections 18.3 and 25.6), following ideas of
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Loh (1987), Beran (1987), Hall (1986) and Hall and
Martin (1988).

Let 6 [a] be the upper endpoint of a one-sided
level-a approximate confidence interval for parame-
ter 6. If the approximation is actually working per-
fectly then the true probability of coverage

(7.1) B(a) = Prob{6 < § [a]}

will equal «. If not, we could use the calibration
curve B(a) to improve the approximate confidence
intervals. For example, if B[0.03] = 0.05 and
B[0.98] = 0.95, then we could use (6[0.03], 6[0.98])
instead of (6[0.05], /[0.95]) as our approximate
central 0.90 interval.

Of course we do not know the calibration curve
B(a). The interesting fact is that we can apply the
bootstrap to estimate B(a), and then use the esti-
mate to improve our original approximate intervals.
The estimated calibration curve is

(7.2) B(a) = Prob,{0 < 6 [a]*}.

Prob, indicates bootstrap sampling as in (2.1) or
(6.3) (so 0 is fixed), where 0 [a]* is the upper « end-
point of an interval based on the bootstrap data.

It looks like we have to do separate bootstrap cal-
culations in (7.2) for every value of «, but that is
unnecessary if § [a] is an increasing function of «,
as it usually is. For a given bootstrap sample, let
a* be the value of o that makes the upper endpoint
equal 0,

(7.3) & 0[a] = 6.

Then the event {&* < a} is equivalent to the event
{0 < 6 [a]*}, so

(7.4) B(a) = Prob,{&* < a}.

In order to calibrate a system of approximate con-
fidence intervals we generate B bootstrap samples,
and for each one we calculate a*. The estimated cal-
ibration curve is

(7.5) B(a) = #{&*(b) < a}/B.

In other words, we estimate the c.d.f. of &*. If the
+ ¢.d.f. is nearly uniform, B(a) = «; then this indicates
accurate coverage for our system of intervals. If not,
we can use B(a) to improve the original endpoints
by calibration.

This idea was applied to the nonparametric ABC
intervals of Tables 2 and 3, the correlation coef-
ficient and maximum eigenvalue statistic for the
cd4 data. Figure 6 shows the result of B = 2,000
bootstrap replications for each situation. The cal-
ibration shows good results for the correlation
coefficient, with B(a). = a over the full range of
a. The -story is less pleasant for the maximum

eigenvalue. At the upper end of the scale we have
B(@) < a, indicating that we need to take a > 0.95
to get actual 95% coverage. According to Table 6,
which shows the percentiles of the a* distributions,
we should take o = 0.994. This kind of extreme
correction is worrisome, but it produces an interest-
ing result in Table 3: it moves the upper endpoint
of the nonparametric interval much closer to the
normal-theory value 3.25.

Calibrating the ABC intervals improves their
accuracy from second to third order, with coverage
errors, as in (2.10), reduced to O(1/n%?). We are
talking about a lot of computation here, on the or-
der of 1,000 times as much as for the ABC intervals
themselves. The computational efficiency of ABC
compared to BC, becomes crucial in the calibration
context. Calibrating the BC, intervals would re-
quire on the order of 1,000,000 recomputations of
the original statistic 6.

8. SECOND-ORDER ACCURACY
AND CORRECTNESS

This section derives the second-order properties of
the various bootstrap intervals. In order to validate
the second-order accuracy and correctness of boot-
strap confidence intervals we need asymptotic ex-
pansions for the cumulative distribution functions
of § and T = (0 — 0)/6. Later these expressions
will be used to connect bootstrap theory to several
other second-order confidence interval methods. In
many situations, including those considered in the
preceding sections, the asymptotic distribution of
U = (§ — 0)/o is standard normal, and the first
three cumulants of U are given by

kl k3
E(U) - \/_ﬁ, ﬁ)
where k; and kg are of order O(1); the fourth-
and higher-order cumulants are of order O(n~!) or
smaller. It follows that the first three cumulants of
h_ A2 _ 2
-0 _yls 1) o0

T= Uil
o { 2 o2

var(U) =1, skew(U)=

are given by

ky— ik
E(T)= == 2= +0(n""),

Tn
var(T) = 1+ O(n™%),
skew(T) = w + 0(n7h),

where

by =E{<&2—02)<é—e>}.

o3

B
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FI1G. 6. Estimated calibration curves for the nonparametric ABC method, cd4 data: (left panel) correlation coefficient as in Table 2; (right
panel) maximum eigenvalue as in Table 3; each based on 2,000 bootstrap replications.

TABLE 6
Percentiles of the distributions of &@* shown in Figure 6; the 0.05 and 0.95 values were used for the calibrated ABC endpoints in
Tables 2 and 3

Actual alpha 0.025 0.05 0.1 0.16 0.84 0.9 0.95 0.975
Nominal, corr 0.0196 0.0482 0.0984 0.164 0.843 0.898 0.953 0.980
Nominal, maxeig 0.0243 0.0515 0.1051 0.156 0.879 0.964 0.994 0.999

Observe that k, is of order O(1), since o2 is of order
O(n') and 62 generally differs from o? by order
O ,(n3/). The fourth- and higher-order cumulants
of T are of order O(n~') or smaller. Thus, when
is continuous, the cumulative distribution functions
H(u) and K(t) of U and T typically have Cornish—
Fisher expansions”

H(u) = pr{(§ - 6)/o < u}
= ®[u —n"V2{(ky — Lks) + Lksu?}]
+0(n™h),

(8.1)

K(t)=pr{(6—0)/6 < ¢t}
(8.2) =@[t—n"?{(k) — }ks)
+ 0(n7 ).

= (k2 = 5ks)t?}]
Furthermore, the inverse cumulative distribution
functions H~!(a) and K~!(«) have expansions

8.3) HY(a) =2® + n"1’/2[(k1 —lkg) + %k3{z(“)}2]
| +0(n™Y),

KYa) =2 + n~12
B4 - [(kr = §h) = (5ho — §ry){2)"]
+0(n™).

To compare approximate confidence limits, Hall
(1988) defined an “exact” upper a confidence limit
for 6 as fygaet[@] = § — 5 K~1(1—a). This limit is ex-
act in the sense of coverage; note that pr{K—(1 —
@) = (0 - 0)/5) = a implies pr{d < Opuula]] =
1 — a. It requires the cumulative distribution func-
tion K, which is rarely known in practice; however,
although usually unavailable, §,,,.[«] does provide
a useful benchmark for making comparisons. By us-
ing (8.4), the exact limit is seen to satisfy

éexact[a] =0+62@ —n"126
2
(8.5) : [(kl - %k3) - (%kz - %k3){z(a)} ]
+ 0,(n~3?).
An approximate a confidence limit (9[a]Ais said to
be second-order correct if it differs from 6,,,.[a] by
order O,(n~%2). It is easily seen from (8.2) that a

second-order correct limit 0[] is also second-order
accurate, that is, pr{6 < 0[]} = a + O(n™1).
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Let K (¢) be the bootstrap cumulative distribution
function of T', so that K(¢) is the cumulative distri-
bution function of T* = (* — §)/6*. The first three
cumulants of T* typically differ from those of T' by
order O p(n‘l), and K (t) has the expansion

K(t) = q)[t — n_1/2{(l’é1 b %I;:;)
— (3ky — Lhg)?}] + 0, (n7Y),
where k; = k; + 0,(n"/?). Hence, K(¢) = K(¢) +
0,(n"') and K~(a) = K~(a)+ 0 ,(n"!), and since

& is of order O,(n~'/2), the bootstrap-¢ confidence
limit f,[c] satisfies '

Op[a]=6—- 6K '(1—-a)
(8.6) =0-6K(1-a)+0,(n"%?)
= éexact[o“] + Op(n_3/2)'

Expression (8.6) shows that the bootstrap-t method
is second-order correct.

To demonstrate the second-order correctness of
the BC, method, let H(u) be the cumulative boot-
strap distribution function of U, so that H(x) is the
cumulative distribution function of U* = (8* — §)/5-.
It is assumed that the estimator 62 is such that the
bootstrap distribution of § has variance that differs
from 6% by order O,(n"2), that is, var(*) = 62 +
O,(n72). The first three cumulants of U* typically
differ from those of U by order O ,(n"'), so H(u) =
H(u)+ O,(n"!) and HY(a) = H ' (a) + O, (n ).
The bootstrap cumulative distribution function G(c)
of 6 satisfies G(c) = H{(c — §)/&}, and G (a) =
0 + 6 H'(a). Thus, (8.3) gives

G Ya)=0+ 62 Fn125
[(ky = Lkg) + Lks{2@)?] + 0 (n=%72),
and, by definition (2.3),

+ 2(®
o L A
[ ot 1—a(zy+ z(a))
= G_1{¢(2(a) +220+a{z(a)}2)} + Op(n_3/2)
(87) = é + &z(a) + n_l/26'

. [2ﬁzo - (kl - %k:;)

D
o]
Q
Q
2,
|
[

+ (x/ﬁa + %kg,){z(“)}z] + 0,(n%?).

Comparison of (8.5) and (8.7) shows that éBCa[a]
is second-order correct when a and z, are defined by
(8.8) a = (3ky — 5ks)/V/m,

(8.9) 2) = _(kl — %k3)/\/ﬁ.

- (8:12)

The quantities a and z, are of order O(n~%/2). The
quantity a satisfies

a = —3{skew(U) + skew(T)} + O(n™?),

and interpretation (2.7) for z, is easily seen from
(8.1), for

D(zg) = q){_(kl - %k3)/ﬁ}
= H(0)+ O(n71)
= pr{é <6} + O(n™).

In practice, 6 Bc,[a] is calculated using estimates @
and 2, that differ from a and z, by order O,(n71);
expression (8.7) shows that this change does not af-
fect the second-order correctness of 6 sc,[@]- The es-
timate Z, given in expression (2.8) has this property,
since

20 =D HG(H)) = 1 H(0))
=® HH(0)}+ 0,(nh)
= (D_l[‘b{—(kq - %k3)/\/ﬁ}] + Op(n_l)
=2 + OP(n_l).

The second-order correctness of the bootstrap-¢
and the BC, methods has been discussed by Efron
(1987), Bickel (1987, 1988) Hall (1988) and DiCiccio
and Romano (1995).

Definitions (8.8) and (8.9) for a and z, can be used

to cast expansion (8.5) for 6,,,.[a] into the form of
(4.20). In particular,

éexact[O‘] = é+ &Z(a)

(8.10) + 620 + (20 + ¢ ) {2 @)’
+ OP(n_3/2),

where

(8.11) cq = —(%kz - %k3)/\/ﬁ.

The bias of § is
b=oky/Vn,
and z, can be expressed in terms of a, ¢, and b by
zp=a+c,—b/o

= &1 (20(a)P(c, — b/0))

+ O(n71).

If ¢, and b are estimates that differ from ¢, and b
by order O ,(n™'), then estimate (4.12),
(8.14) 2o = 71(2D(a)D(¢, — b/5))

differs from z, by the same order.
Once estimates (6, 7, 4, 2y, ¢,) are obtained, the
quadratic version of the ABC confidence limit,

(8.13)
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Oapc,[a] = 6+ G¢, can be constructed according to
definition (4.13). This limit is second-order correct.
Since

w=2+ 2% =2+ 2+ 0,(n7),
—2

Ar=w(l-d4w)
« )12 —
(8.15) =2 4 25+ 2a{z @} + 0, (n7),
E=A+¢,M2

2 -
=2 4 20+ (2a + cq){z(“)} + O0,(n 1),

04 BC, [¢] agrees with (8.10) to error of order
19 (n—3/2)

In many contexts, there exists a vector of pa-
rameters { = ({;,...,{,) and an estimator ¢ =
({1,...,¢,) such that the parameter of interest is
6 = t({), and the variance of the estimator 8 = #({)
is of the form o2 = v(¢{) + O(n~?), so the variance
is estimated by 62 = v({). This situation arises in
parametric models and in the smooth function of
means model. For the smooth function model, in-
ference is based on independent and identically dis-
tributed vectors x4, ..., x,,, each having mean u; the
parameter of interest is 6 = #(u), which is estimated
by 6 = t(%). In fact the smooth function model is
closely related to exponential families, as shown in
Section 4 of DiCiccio and Efron (1992).

Assume that /n({ — {) is normally distributed
asymptotically. Typically, the first three joint cumu-
lants of fl, ceey fp are

cov({;, £) = K js

i,j,k=1,...,p

E(§) =6+,
cum((;, £, &) = ki jope

where «; and «; ; are of order O(n™!) and «; ;,
is of order O(n %), and the fourth- and hlgher-
order joint cumulants are of order O(n~3) or
smaller. Straightforward calculations show that
o? = Kk jt;it; + O(n7?), where t; = 9t({)/dL;,
i =1,..., p. In this expression and subsequently,
the usual convention is used whereby summation
over repeated indices is understood, with the range
of summation being 1, ..., p. Now, suppose ¢ is suf-
ficiently rich so that «; ; depends on the underlying
distribution only through ¢ for indices i and j such
that ¢, and ¢; are nonvanishing. Then it is possible
to write

() = k; J(Ot(DE(L) + O0(n™?)

and

82 = v(d) = k; (DDt () + 0,(n7?).

In this case, the quantities &, k9, k3 are given by
ky = /n(k;t; + %Ki,jtij)/(Ki,jtitj)l/Z,
ky = K j0it i) (i tit )
= (K, juKp it ity +2xk;
(s, jtit )",
ks = /n(k; ; ptit;ty + 3k;,
(<, jtit)"
to error of order O(n~%/2), where t;; = *¢({)/d{;9¢,

v = ()3, ki i = Ik ()], &, J, k=
1,..., p. It follows from (8.8), (8.11) and (8.12) that

(8.16) iKeatitgt )/

ke atitgt )/

a= (3K j1Kn 1 — 5Ki, j )tit jtr/
3/2
(ki jtit;)™"
b=t + k; -tij,
(8.17) 1
cq = —( K;, j/lKkl K;, 7 k) itjtk/
3/2
(Kz jtitj )

+ §Ki,ij,ltitktjl/(Ki,jtitj)3/2

to error of order O(n~!). An expression for z, having
error of order O(n~1) can be deduced from (8.17) by
using (8.13).

The ABC method applies to both exponential
families and the smooth function of means model.
For these cases, { is an unbiased estimate of
{, and the cumulant generatmg function of /£,
W(§) = logE {exp(&;4;)}, has an approximation
W(&) such that

¥ (£) ~¢
07'51’ £=0 v
AVE| 2
GEIE, o ki, j(£) + Op(n™7),
P (¢)

=Ki j, kTt Op(n_5/2)'

afiagj‘?‘fk £=0

In particular, it is reasonable to take 62 = ‘i’i jfi t s
where £; = t;({), i = 1,..., p. The ABC algorithm
uses numerical d1fferent1at10n of t(g’ ) and \If (&) to
facilitate calculation of estimates &, @, 2, ¢

In exponential families, the dlstr1but10n of an ob-
served random vector y = (y1,...,y,) is indexed
by an unknown parameter 7 = (7y,...,7,), and
the log-likelihood function for 77 based on y has the
form I(7; y) = n{m;y; — ¢(7)}, where y = E(y) +

0,(n"%%) and both % and w(n) are of order O(1).
In this case, y plays the role of /, and ¢ corresponds
to the expectation parameter u = E(y) = d¥(7)/d7.
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Upon defining 7 and (1) by n = n7 and (n) =
n{(7) = n(n/n), the log-likelihood function for 7
based on y is I(n;y) = 'y — ¥(n), which agrees
with (3.1). The cumulant generating function for y
is W(¢&) = ¢(n + €) — ¢(n), and the approximate cu-
mulant generating function is

V(&) = w(fH + &) — ¥(D),

where 7 is the maximum likelihood estimator ob-
tained from the equations ¢;(%) = y;, i =1,..., p.
The usual information estimate of variance is &2
Y (Mt =88

In the smooth function model, the cumulant gen-
erating function is approximated by

i exp fz l]

n
which is the true cumulant generating function for
the model that puts probability mass 1/n on each
of the observed random vectors x; = (%1, ..., %p;);

j = 1,...,n. The usual estimate of variance ob-
tained from the delta-method is

# = | E =) - %) Jid
£

~ ~

=Vt

(6 = nlog| -

itjs

where x; =3 x;;/n.

Key features of exponential families and the
smooth function model are that «;, = 0 and
Ki jjiKe, 1 = Ki j k> i, ],k = 1,...,p, so the ex-
pressions for a, b and ¢ given in (5.17) undergo
considerable simplification; in particular,

a= tk/( 1)3/2’
b itij

1,
gk
1.
gk ij>
1
2

3/2
Cq = 5Ki, jKp, 1t tkt]l/( ltj)

to error of order O(n1).

The ABC method requires only that #({) and
¥ ;(€) be specified; the estimates &, d, 2, and ¢, are
obtained by numerical differentiation. The details
are as follows. By definition,

> i:]-’-",p’
=0

fi = —t(f"i‘ 8ei)

¥

tj

where e; is the p-dlmensmnal unit vector whose ith
entry is 1. Let ¢ = (f,,...,%,), 3 = (¥, 6% =

'\i,z‘]fzfj = t/it Then

- W bid, a .. .

aI-%}l?l‘—= d—t ‘Pl(&‘t) . B

. U ubid, 1 a2 ¥

=g = (o) »
Now 3 = I'DI", where D is a diagonal matrix of

eigenvalues of 3 and T is an orthogonal matrix
whose columns are corresponding eigenvectors.
Denote the ith diagonal element of D by d; and
the ith column of T by y; = (yh,...,'yp,), S0

that \I'LJ = >, drviYj- The quantity b can be
estimated by ,
. W f P
b= Z (§+sd1/2 )
i=1 e=0

If calculating the elgepvalues and eigenvectors is
too cumbersome, then 6 can be obtained from

p a2

Once 62, 4, b, and ¢ are calculated, then 2, can be

obtained using (8.14). A
The ABC confidence limit 64pc[e] is defined in

(8.14) as
At
Oapcla] = t(Z + i)

This confidence limit is second-order correct; by
(5.10) and (5.15),

t({+ere; + 8226“) .
198198, l 7 (er, e=(0.0)

it £,V f0
OABC[a] _ 0+)\ : ] +/\2 ij zkAjl kYl
o 262

+0,(n"%?%)
=0+6r+ G¢, M +0 (n‘3/2)
= 0+ [ + 2o + 2a{2@)?]
+ cArcq{z("‘)}2 +0,(n"%?)
= busaela] + 0, (n ).

The second-order correctness of the ABC method
for exponential families was shown by DiCiccio and
Efron (1992).

9. PARAMETRIC MODELS AND CONDITIONAL
CONFIDENCE INTERVALS

An impressive likelihood-based theory of higher-
order accurate confidence intervals has been de-
veloped during the past decade. This effort has
involved many authors, including Barndorff-Nielsen
(1986), Cox and Reid (1987), Pierce and Peters
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(1992) and McCullagh and Tibshirani (1990). This
section concerns the connection of bootstrap con-
fidence intervals with the likelihood-based theory.
We will see that in exponential families, includ-
ing nonparametric situations, the bootstrap can be
thought of as an easy, automatic way of construct-
ing the likelihood intervals. However, in parametric
families that are not exponential, the two theories
diverge. There the likelihood intervals are second-
order accurate in a conditional sense, while the
bootstrap intervals’ accuracy is only unconditional.
To get good conditional properties, the bootstrap re-
sampling would have to be done according to the
appropriate conditional distribution, which would
usually be difficult to implement.

Consider an observed random vector y =
(y1,---5¥,) whose distribution depends on an
unknown parameter { = ({y,...,{,), and let
I({) = (¢ y) be the log-likelihood function for ¢
based on y. Suppose the parameter 6 = #({) is es-
timated by 8§ = ¢({), where { = ({4, ..., fp)’ is the
maximum likelihood estimator. Parametric boot-
strap distributions are generally constructed using
samples y* drawn from the fitted distribution for y,
that is, from the distribution having ¢ = £.

Asymptotic formulae for the first three cumulants
of 6 are given by McCullagh (1987, Chapter 7), and
using these formulae in conjunction with (8.16)
shows that o = A"Jt;¢; + O(n"?) and

by =—/n[(3Mi, j 0 + 5y, ) AB AR,
- P04 ) ",

ky = —/n[(Ai, . + 205 1) AP AR L 8,
— 2NNttt ]/ (A i),

ky = —/n[(2A; j 1+ BN p) AN AR 8,
— gAB Nk Ztitktjl]/()‘i’ jtitj)3/2,

to error of order O(n~Y/2), where \; ; = E(l;1),
MNjw = E(lily), A jn = E(L;1), with [; =
9l(£)/9¢; and 1;; = 3*1({)/3L;9¢;, and (A"7) is the
p x p matrix inverse of (); ;). The quantities A; ;,
"Aij,p and A; ;, are assumed to be of order O(n).
The expected information estimate of variance is
6% = AbJEE;, where AbJ = AbJ({), and the vari-
ance of the bootstrap distribution of # satisfies
var(6*) = 62 + 0,(n"2). Thus, if the Studentized
statistic is defined using the expected information
estimate of variance, say Ty = (0 — 6)/&, then the
results of Section 5 show that the BC, method is
second-order correct with respect to T'z. Using (8.8)
in conjunction with (9.1) to calculate a yields

9.2) a =LA Al g (Wt ),

to error of order O(n~1!). This formula for a was
given by Efron (1987).

If nuisance parameters are absent (p = 1) and
0 = ¢, then (8.9), (9.1), and (9.2) show that

a=2zy= é/\l, 1,1(/\\1,1)_3/2
= Lskew(91(0)/90),

to error of order O(n~!). The equality of z, and @ in
this context was demonstrated by Efron (1987).

In addition to being invariant under monotoni-
cally increasing transformations of the parameter
of interest as described in Section 3, the quantities
a and z, are also invariant under reparameteriza-
tions 7 = 1({) of the model. Expression (9.2) for a is
invariant under reparameterizations of the model,
as is the formula for z, obtained by substituting
(9.1) into (8.9). There is no restriction then in as-
suming the model is parameterized so that 6§ = (!
and the nuisance parameters (2, ..., /P are orthog-
onal to 6. Here, orthogonality means A; , = A% =0
(a=2,..., p); see Cox and Reid (1987). In this case,
(6.2) becomes

(9.4) a = %Al, 1,1(/\1,1)_3/2 = %SkeW(&l(g)/(;gl)

Comparison of (9.4) with (9.3) indicates that, to er-
ror of order O(n 1), a coincides with its version that
would apply if the orthogonal nuisance parameters
were known. In this sense, a can be regarded as un-
affected by the presence of nuisance parameters. In
contrast, for the orthogonal case,

20 = (53X, 5,1+ 3205, 1) A (A1, 1) 1/2
+ %)l1,1,1()\1,1)*3/2,

to error of order O(n~1), where, for purpose of the
summation convention, the indices @ and b range
over 2, ..., p. Expression (9.5) shows that z, reflects
the presence of unknown nuisance parameters.
Another possibility for Studentizing is to use
the observed information estimate of variance,
% = —1V{;t;, where (IV) is the p x p matrix in-
verse of (I;;) and [;; = 1;j({). Let Ty = (0 - 0)/@.
Using the bootstrap-t method with Tz and Ty
produces approximate confidence limits éTE[a]
and O ola], which both have coverage error of
order O(n~'). However, & = & + O,(n™'), so
To=Tg+ 0,(n"?), and 07 [a] and 67 [a] typ-
ically differ by order Op(n‘l). The Studentized
quantities Tz and T, produce different definitions
of second-order correctness. In particular, éBCa[a]
differs from §r_[a] by order O,(n"'), and the BC,
method, which is second-order correct with respect
to T'g, fails to be second-order correct with respect
to To. For exponential families, 62 = &2 since

(9.3)

(9.5)
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AoJ = —]9, and no distinction arises between T
and Ty in the definition of second-order correctness.

Although Ty and T, generally differ by order
0,(n~%2%), their first three cumulants agree to er-
ror of order O(n~1!). It follows then from (5.5) that
éTE[a] and O ,[a] have expansions

Op [a] = 0+ 62 — n~126
[(ry = Shg) — (kg — Rg){2)7]
-3/2
9.6) . FO,n ),
bp,[a] = 6+ 72 — n~12G
s = ko) = (o = ) {(2)]
+ OP(n“3/2),

where k4, ko, kg are given by (9.1). Expression (9.6)
shows that if 6p[a] is a second-order correct con-
fidence limit with respect to T'g, such as 6p¢ [@],
then

is second-order correct with respect to T'.

Confidence limits that are second-order correct
with respect to T, agree closely with second-order
accurate confidence limits obtained from likelihood
ratio statistics. The profile log-likelihood function
for 6 is 1,(0) = 1({y), where {, is the constrained
maximum likelihood estimator of ¢ given 0; that is,
£, maximizes I({) subject to the constraint #({) = 6.
Since {; is the global maximum likelihood estima-
tor £, 1 p(0) is maximized at 6. The likelihood ratio
statistic for 0 is

W, (0) = 2{U({) — U(Lp)} = 2{1,(8) — 1,(0)},

and the signed root of the likelihood ratio statistic
is

R ,(6) = sgn(f - 6),/ W ,(6).

In wide generality, W ,(0) and R ,(6) are asymptot-
ically distributed as x? and N(0, 1), respectively.

Straightforward calculations show that the

derivatives of [ ,(0) satisfy lfpl

and
1D(8) = (<Ll im gy b, 8, + 309 R 88,8 ) o8
(A Al ialmAkn e ¢+ 8AR ARt )/
o5+ Op(nl/2)

=n"Y2(8ky — ky)/0® + Op(nl/z)

=(2a + cq,)/o'3 + Op(n1/2);
these calculations make .use of the Bartlett identi-
ties A;; = E(l;;) = —A; ; and

N = E(Lijr) = =Xy jon — Nijoe — Ain, j— gy i

(B)=0,1;() = —o*

Consequently, W ,(0) and R,(0) have expansions
W,(0) = Th + n 1 2(ky — 5k3)TH
+0,(n ),
R, (0) = To+n~Y2(%ky — Lho)T%
+ 0,(n71h).
Expansion (9.7) shows that
E(R,) = n"V2(ky — Lkg) + O(n")
9.8 =—z0+ O0(n™),
var(R,) =1+ 0(n'), skew(R,)=O(n').

Thus, the distribution of R ,(6)+ 2, is standard nor-
mal to error of order O(n~!), and the approximate
limit 6 ,[«] that satisfies

9.7

(9.9) R (0,[a]) + 2y = —2@

is second-order accurate. Moreover, comparing (9.7)
with the Cornish—Fisher expansion in (8.2) shows
that this limit is second-order correct with respect
to T'p. Approximate confidence limits obtained us-
ing (9.9) have been discussed by several authors,
including Lawley (1956), Sprott (1980), McCullagh
(1984) and Barndorff-Nielsen (1986). McCullagh
(1984) and Barndorff-Nielsen (1986) have shown
that these limits are second-order accurate con-
ditionally; that is, they have conditional coverage
error of order O(n~1) given exact or approximate
ancillary statistics. It follows that second-order
conditional coverage accuracy is a property of all
approximate confidence limits that are second-
order correct with respect to 7. In contrast, limits
that are second-order correct with respect to T'g
typically have conditional coverage error of order
O(n~1/2). Conditional validity provides a reason for
preferring T, over Ty to define “exact” confidence
limits.

The profile log likelihood function /,(6) is not a
genuine likelihood. In particular, the expectation of
the profile score, lg)(B), is not identically 0 and is
generally of order O(1). It can be shown that

E{iP(0)} = (a — z9)/0 + O(n7Y),

and hence, the estimating equation l(pl)(O) = 0,
which yields the estimate 6, is not unbiased.
To eliminate this bias, several authors, includ-
ing Barndorff-Nielsen (1983, 1994), Cox and Reid
(1987, 1993) and McCullagh and Tibshirani (1990),
have recommended that the profile log-likelihood
function /,(0) be replaced by an adjusted version

lap(e) = lp(e) + d(@),
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where the adjustment function d(6) satisfies
(9.10) d(0) =(4—2))To+ 0,(n7"),
so that

dD(0) = —E{I$(0)} + 0, (n 7).

Hence, E{lt%)(e)} = O(n™'), and [,,(0) behaves
more like a genuine likelihood than does /,(6).
For instance, McCullagh and Tibshirani (1990)
suggested the adjustment

0 2 A A
= [, a8 = 20(8)} /(&) du.
The estimator 0 that maximizes /,,(0) satisfies
bop =0+ (20 —a)a+ 0 (n7%/?).

The adjusted likelihood ratio statistic arising from
Lop(0) is

(9.11) m(9) =

Wap(0) = 2{Lap(0ap) — za,,(e)}

and its signed root is R, (0) = sgn ap—
It can be shown that

9.12) Wop(0) = W,(0) + (20 — @)T o + Op(n")
R,p(0) = Ry(0) + (20 —a) + Oy(n71),
so it follows from (6.8) that
E(R,)=-a+ O(n™h),
var(R,,) =14 O(n™?),
skew(R,,) = O(n™1).

Consequently, the approximate confidence limit
0,p[a] that satisfies

(9.13) R,,(0la]) + 4 = —2@

is a second-order accurate confidence limit. Expan-
sion (9.12) shows that §,,[a] = §,[a] + O,(n7%?),
S0 éap[a] is also second-order correct with respect
to T'y. Confidence limits obtained by (9.13) have
been discussed by DiCiccio and Efron (1992), DiCic-

\/ W, (0).

cio and Martin (1993), Efron (1993) and Barndorff- .

Nielsen and Chamberlin (1994).

Numerical examples, especially in cases where
the number of nuisance parameters is large, indi-
cate that the standard normal approximation for
R,,(0) + @ can be much more accurate than for
R ,(0)+2, and hence the limits obtained from (9.13)
have better coverage accuracy than limits obtained
from (9.12). Now, (9.8) suggests that the distribution
of R,(0) is affected by the presence of nuisance pa-
rameters at the O(n~1/2) level through the quantity
z9. However, the distribution of R,,(0) is insensi-
tive to the presence of nuisance parameters at that
level, because of the remarks made about a at (9.4).

Consider again the orthogonal case with 6§ = ¢!
Let R(0) be the signed root of the likelihood ratio
statistic that would apply if the nuisance parame-
ters (2, ..., {P? were known. It follows from the com-
parison of (9.3) and (9.4) that the distributions of
R(6) and R,,(0) agree to order O(n~1), while the
distributions of R(6) and R ,(6) agree only to order
O(n~%2). Since R(0) does not require estimation of
nuisance parameters, its distribution is likely to be
fairly close to standard normal. On the other hand,
because of presence of nuisance parameters, the dis-
tribution of R ,(6) can be far from standard normal,
and asymptotic corrections can fail to remedy ade-
quately the standard normal approximation.

These remarks can be illustrated by taking 6 to
be the variance in a normal linear regression model
with g regression coefficients. In this case, 6 is or-
thogonal to the regression coefficients, and

262 2
2__ — — _1
o° = _ a 3 ,_2n+0(n )s
q -1
——+—+On ,
%0 V2n  3v2n (™)

by (9.4) and (9.5). Note that @ does not involve the
nuisance parameters, while z; reflects the nuisance
parameters through its dependence on q. In this
case, (a — zy)/o = —q/(26), and (9.11) produces the
adjustment function d(0) = (g/2)log 6. The effect
making this adjustment to the profile log-likelihood
is to account for the degrees of freedom; in particu-
lar, (9ap = n6/(n—q). Table 7 shows, in the case n = 8
and g = 3, the true left-hand tail probabilities of ap-
proximate quantiles for R, R,,, R and their mean-
adjusted versions obtained using the standard
normal approximation. Note the accuracy and the
closeness of the approximation for R,, and R; in
constrast, the approximation for R, is very poor.

Approximate confidence limits that are second-
order correct with respect to T can be used to re-
cover the profile and adjusted profile log-likelihoods,
at least to error of order O p(n‘l). Suppose that
6o[a] is second-order correct; then, by (6.9),

RP(éO[a]) + ZAO = —z(a) + Op(n_]_).
It follows that
(9.14) lp(éo[a]) = constantl_ %(z(a) + 20)2
+ Op(n_ )7
and, by (6.10),
Lop(Bola]) = constant — 1 (2(®) + z()®
—{(@~ 20)/7}bola]
+ Op(n—l).

(9.15)
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TABLE 7
True left-hand tail probabilities of approximate percentage points obtained from the standard normal approximation; table
entries are percentages

Nominal R, R, + 2 R, Ry, +a R R+a
1 13.67 2.85 1.81 1.19 1.60 1.04
2.5 22.10 5.69 4.18 2.90 3.75 2.58
5 31.34 9.62 7.83 5.68 7.12 5.13

10 43.68 16.32 14.54 11.09 13.44 10.18

50 84.38 56.81 58.41 51.90 56.65 50.08

90 98.60 91.09 93.06 90.58 92.51 89.88

95 99.44 95.38 96.71 95.30 96.42 94.90

97.5 99.77 97.59 98.43 97.65 98.28 97.43

99 99.93 98.98 99.40 99.06 99.34 98.96

Approximations (9.14) and (9.15) to [,(6) and ,,(6)
are especially useful in complex situations. Efron
(1993) discussed the use of second-order correct
confidence limits, particularly the ABC limits, to
construct implied likelihoods automatically in both
parametric and nonparametric situations.
Second-order accurate confidence limits can also
be constructed by using Bayesian methods with non-
informative prior distributions. Assume 6 = (!, with
the nuisance parameters /2, ..., /? not necessarily
orthogonal to 6, and consider Bayesian inference
based on a prior density #({). DiCiccio and Mar-
tin (1993) showed that the posterior distribution of

1 S
R, + Elog<ﬁ—),

p

(9.16)

is standard normal to error of order O(n~3/2), where

S = L&) |- @)Lt

| =1, 7(&)
and ‘ ij §a ‘ denotes the determinant of the p x p
matrix ( 1;j({s)). Thus, the quantity ,[a] that
satisfies
Ry(Bolal) +
P Rp(éw[a])
(9.17)

.log< ((g ;)> -2y

agrees with the posterior o quantile of 6 to error of
order O(n~2).
From a frequentist perspective,

S=Tp+0,(n"?)=R,+ 0,(n"'?),

so the adjustment term R,'log(S/R ) in (6.16) is of
order O ,(n~ 1/2) under repeated sampling. Indeed,

standard Taylor expansions show that

S i, 1731,1\-1/2
—R-log<R) z0+zd€l{/\ (AbH~12}

p

(9.18) m() i1\ 11\-1/2
+ Akt )y
R
+0,(n71),
where m,({) = dm()/d¢¢. Tt is apparent from (9.18)
that if the prior density 7({) is chosen to satisfy
m({) i,1741,1\-1/2
AV (AS
8 i)

(9.19)
{/\i, 1(/\1, 1)—1/2},

= Z o7
then R;llog(S/Rp) = zy + 0,(n71). In this case,
6,[a], the solution to (9.17), agrees to error of order
0,(n~3/?) with ,[a], the solution to (9.9). Conse-
quently, when the prior 7({) satisfies (9.19), 6, [«]
is second-order correct with respect to T'o, as is the
posterior a quantile of 6. These approximate con-
fidence limits also have conditional coverage error
of order O p(n‘l) given exact or approximate an-
cillary statistics. Prior distributions for which the
posterior quantiles are second-order accurate ap-
proximate confidence limits under repeated sam-
pling are usually called noninformative.

Equation (9.19) was given by Peers (1965). When
the nuisance parameters /2, ..., P are orthogonal
to § = /!, this equation reduces to

1 (£) ~1/2 J
A =—-——=(A
77_(5«)( 1 ) 6'{1( 1,1
Tibshirani (1989) showed that this equation has so-
lutions of the form
7({) o (A, 1),

where g is arbitrary and depends only on the nui-
sance parameters.

)—1/2'
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Professors DiCiccio and Efron have offered a com-
pelling and insightful look at the current state of
research into bootstrap confidence intervals. Their
account is both timely and motivating, drawing to-
gether important connections between bootstrap
confidence intervals and likelihood-based inference
and pointing out that there are no uniformly supe-
rior methods. The paper also raises several issues
that bear further comment, such as those below.
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