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 The Future of Statistical Computing
 Leland Wilkinson

 SYSTAT Inc.
 225 West Washington St.

 Chicago, IL 60606
 (leland. Wilkinson @ systat.com)

 This article forecasts the path of statistical computing in the next decade. Its premise is that technology
 will influence statistical computing more than other factors. This forecast is based on contemporary ob
 servations of the field over the last 40 years and on a supposition that extrapolating these trends is not
 unreasonable. The technology driving this forecast includes not only hardware, but also the software that
 provides the infrastructure for individual and community interaction with computers. We should not be
 surprised to see a proliferation of intelligent data analysis systems embedded in everyday objects and

 Web sites; automated visualizations for data discovery; analytic systems that are accessible by nonstatis
 ticians (a trend toward simplicity and away from comprehensiveness); distributed analytic systems that
 talk to each other, fuse disparate data in real time, and draw conclusions on the evidence; and communi
 ties of open-source developers exceeding the scope and capabilities of commercial companies. Whether
 computer scientists eventually take over this field will depend on how actively statisticians participate.
 Statisticians interested in statistical computing and its future incarnations will have to engage in joint
 research with computer scientists to continue to have an influence.

 KEY WORDS: Computer software; Statistical graphics; Visualization.

 1. INTRODUCTION

 Technology transforms science. The telescope dispelled the
 scholastic view of the cosmos. X-ray diffraction revealed the
 structure of DNA. The microarray accelerated genomics. Not
 all of the effects of technology on science are positive, of
 course; how many scientists have wasted thinking time on in
 stalling device drivers, rebooting the blue screen of death, or
 wading through spam? And some effects are mixed. Easy-to
 use structural equation modeling software, for example, has in
 creased the number of correlational studies in the social sci

 ences at the expense of designed experiments (Hershberger
 2003).

 This article concerns the likely effects of future computing
 technology on statistical computing. It presumes, of course, that
 we can predict future computing technology. It also presumes
 that we can infer the effects this technology is likely to have on
 the ways we analyze data. And it presumes that we are fearless,
 because technology predictions have a steep survival curve, and
 everyone loves to lampoon old ones.

 1.1 The Perils of Prediction

 Bold predictions can seem foolish:

 Everything that can be invented has been invented
 Charles H. Duell, U.S. Patent Office (1899).

 Fortunately for Duell's reputation, there is no evidence that he
 actually said this (Sass 1989). Unfortunately for Duell's reputa
 tion, the quotation is cited almost 50,000 times on the Internet.

 We can do our best to predict boldly, but we have to be prepared
 to be misquoted and misattributed, especially on the Internet.

 Prudent predictions can seem quaint:

 Where a calculator like the ENIAC today is equipped with 18,000 vacuum tubes
 and weighs 30 tons, computers in the future may have only 1,000 vacuum tubes

 and perhaps weigh only 1 ^ tons (Hamilton 1949).

 This prediction was proportionate to the contemporary evi
 dence. Although the transistor had been invented at Bell Labs

 2 years earlier, there is scant evidence that anyone envisioned
 transistorized computers, much less microcomputers, in 1949.

 Moreover, there is scant evidence that any of the thousands of
 Internet bloggers who have quoted (or more often misquoted)
 this statement have read the original article.

 In short, we cannot expect to predict the effects of disruptive
 technologies (although see Talmage 2008 and the remarkably
 prescient video 7999 A.D., produced by Philco-Ford in 1967).
 As a Bell Labs engineer is said to have noted,

 Asking us to predict what transistors will do is like asking the man who first
 put wheels on an ox cart to foresee the automobile, the wristwatch, or the high
 speed generator (Farley 2007).

 Regardless of the risk, this article contains many predic
 tions concerning future trends in computing, more specifically,
 the relationship between future trends in computing to future
 trends in statistical computing. How will we be analyzing data
 25 years from now? How will our data-analytic needs affect the
 development of computing methods? How will computing de
 velopments affect how we look at data?

 Because these questions involve a relationship, we need to
 consider where computing itself is headed in the next few
 decades. There is a growing body of predictions in this area,
 some of which we cite. We attempt to discern how future soft

 ware and hardware might affect statistical computing, similar
 to how the development of the microprocessor in the 1970s af
 fected desktop data analysis in the 1980s.
 We also consider where statistical computing is headed. We

 discuss trends that reveal impacts similar to the way in which
 the data mining movement in the 1990s affected grid computing
 and database design in this decade. Before we do this, however,
 we consider the most important past predictions regarding the
 future of statistical computing.

 ? 2008 American Statistical Association and
 the American Society for Quality
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 1.2 John Tukey

 Almost half a century ago, Tukey (1962) introduced statis
 ticians to a new field, called data analysis. Today, many prac
 titioners of data analysis or data mining take for granted the
 arguments, in that and subsequent articles, that upset many of
 Tukey's contemporaries.

 Many of Tukey's ideas are now conventional wisdom. For
 example, Tukey accorded algorithmic models the same foun
 dational status as the algebraic models that statisticians had
 favored in the previous half-century (see also Breiman 2001).
 Tukey also emphasized the recursive aspect of model build
 ing; information in the residuals should induce an analyst to
 go beyond checking assumptions to consider alternative mod
 els. Furthermore, Tukey urged us to explore data for surpris
 ing insights, to "let the data speak" (although it is unlikely that
 Tukey ever used this popular descriptive phrase). And, perhaps
 most significant for the future that he forecast, Tukey argued
 that data analysis would become so computationally intensive
 that it would push the limits of existing computer systems. In
 a talk at the 14th Interface symposium (Tukey 1982), he noted
 that:

 this means (i) large systems, (ii) systems planned both for growth and for easy
 specialized attachment, (iii) cooperation between a variety of insightful data
 analysts on the one hand and a variety of computer experts on the other?
 each group with diverse skills. Success will not be easy, but starting now poses
 no major barriers. There are people with enough insights of the needed kinds,
 though they may be hard to find and assemble. And we can expect the 4th or 5th
 generations of such systems to be far, far better than anything we have today.

 Although Tukey started a revolution in computerized data
 analysis, he was not addicted to the computer. The Blackberry
 user, the video game player, the social network groupie?these
 prototypical users probably spend more hours on the computer
 each day than Tukey did. Indeed, while proficient on many op
 erating systems and hardware, Tukey nevertheless advocated
 paper and pencil throughout the pages of Exploratory Data
 Analysis (Tukey 1977). His overhead transparencies were more
 effective than some people's PowerPoint presentations. Tukey
 understood that a computer is at its best a mental amplifier, not
 a toy. Like Herbert Simon and Marvin Minsky, Tukey was able
 to recognize the wide-ranging potential of computer technol
 ogy for research?for thinking itself. In contrast, most statisti
 cians of his era concerned themselves with statistical packages
 and subroutine libraries. They projected a future in which large
 multivariate models could be solved with faster and larger com
 puters. They looked forward to high-resolution color graphics
 and three-dimensional scientific visualization. Tukey thought
 instead about intelligent analytic systems, interactive graphics
 (Fisherkeller, Friedman, and Tukey 1988), automated graphics
 (Tukey 1982, 1986), and analytic assistants for working scien
 tists.

 Some of the predictions in this article follow Tukey's because
 some of his predictions have yet to be realized. Although The
 Future of Data Analysis is in our past, it remains part of our
 future. This article does not address perhaps the most impor
 tant consequence of that article, however. As Donoho (2000)
 argued, Tukey tore apart the world of statistics, and it may
 take a century to reassemble the pieces. Donoho foresaw a pe
 riod in which mathematicians will formalize many of the high
 dimensional problems that Tukey attacked, as classical and
 Bayesian statisticians formalized inference in the last century.
 More recently, Efron (2007) predicted a similar future.

 1.3 Jerome Friedman

 Tukey's article on the future of data analysis was extraordi
 narily clairvoyant. More than 3 decades after that article was
 published, Jerome Friedman gave a landmark keynote address
 at the 29th Symposium on the Interface (Friedman 1997). In his
 talk Friedman warned statisticians that a preoccupation with al
 gebraic (as opposed to algorithmic) statistical models would ex
 clude them from the next revolution in statistical computing?
 data mining.

 The data mining revolution has now passed. The classic data
 mining algorithms are available in a variety of introductory text
 books, and Microsoft now includes them in its basic business

 package called Analysis Services. A decade later, we are in
 an era of machine learning. Computer scientists no longer talk
 about mining large data warehouses; rather, their discussions
 focus on fusing data from different sources?sensor networks,
 relational databases, broadcast media, the Web, and wireless
 wearable computers. And the systems that they develop are
 designed to analyze intelligently and automatically the data
 from these disparate sources. Friedman's projections were cor
 rect, however. Those statisticians who ignored the data mining
 movement have now been ignored by computer scientists.

 Like Tukey, Friedman's experiences outside of statistics
 transformed his view of statistics. (It also could be said that
 Friedman's experiences outside of physics transformed his view
 of physics.) In his talk, Friedman spoke of the inexorable push
 of technology:

 Every time a technology increases in effectiveness by a factor often, one should
 completely rethink how to apply it. Consider the historical progression from
 walking to driving to flying. Each increases speed by roughly a factor of ten.
 However, each such purely quantitative increase has completely reoriented our
 thinking on the use of transportation in our society. A favorite quote of Chuck
 Dickens (former Director of Computing at SLAC) over the years has been
 "Every time computing power increases by a factor of ten, we should totally
 rethink how and what we compute." A corollary to this might be "every time
 the amount of data increases by a factor of ten, we should totally rethink how
 we analyze it.

 With Tukey and Friedman as guides, this article examines
 the impact of future technology?for good or ill?on statis
 tical computing itself. Whatever paths statisticians may take
 in the future, analytic thinking will be inexorably influenced
 by the ubiquitous computers in our lives. The outcome of all
 this, as we summarize in the last section of this article, will
 determine the prevalence of statistical thinking in future tech
 nologies. Technological developments will force the statistical
 profession to redefine itself to avoid becoming a subtopic of
 theoretical mathematics. If this effort succeeds then statistical

 computing will become central, rather than peripheral, in the
 statistics departments of the future.

 2. THE FUTURE OF COMPUTING

 We begin with the obvious. Computers are now a commod
 ity. Our long-term predictions rest on this observation. From a
 short-term perspective, journalists and prognosticators tend to
 pay attention to developments that have revolutionary impact?
 the invention of the word processor, the invention of the spread
 sheet, the invention of the Internet. But often it is evolutionary
 trends that have greater influence. It can be argued that the pro
 liferation of cheap computers caused many of the developments
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 that we consider revolutionary. Cheap microprocessors demand
 applications. To push the evolutionary metaphor to its limits,
 cheap and powerful processors provide the soup in which mu
 tations produced by curious and playful inventors lead to amaz
 ing new developments. The more prevalent the computers, the

 more likely the inventions.
 It is from this perspective that we view the future. How will

 the ubiquitous computer stimulate new developments affecting
 ordinary life and, in turn, the analysis of data? We first con
 sider a world of ubiquitous computers. To avoid footnotes on
 acronyms, a glossary of computing terms is provided at the end
 of this article.

 2.1 Computers Everywhere

 We have already passed from a microcomputer era to an em
 bedded computer era. Our cars are run by computers. The Toy
 ota Prius is a computer. This provocative statement is intended
 to steer our thinking away from the idea of a computer having
 a keyboard, mouse, and display, or a computer having a proces
 sor, memory, and peripherals. A computer will be increasingly
 regarded as a body of functions, just as the brain is no longer
 regarded as a computer sitting inside a body. The Prius driver
 is a computer operator, and the mechanicals (brakes, motor, en
 gine, transmission) are peripherals. In the Prius, the only direct
 linkage between driver and mechanicals is in the steering sys
 tem. In future cars, mechanical linkages will disappear entirely,
 and the road network, not the driver, will determine the route

 and the speed.
 Computers are now embedded in our cell phones. They

 are embedded in our watches, in our pacemakers. When we
 take public transportation, pay tolls, enter buildings, and amble
 through public spaces, our movements are recorded on video
 cameras networked wirelessly. In some public areas, we are
 scanned by face-recognition software. And in some areas of the
 world (especially battlefields), people and vehicles are followed
 by remote sensors that respond to movement, vibration, temper
 ature, odor, electromagnetic radiation, and sound. Whether we
 like it or not, the data from all of these perceptrons are stored in

 government and private networks. We live in a computational
 ether. This ether is still relatively thin; our movements are sam
 pled, not continuously monitored. But we are a short step, at
 least in our cities, from being observed constantly by ubiqui
 tous computers.

 2.2 Communities of Computers

 We hear often about the new world of networks: cloud com

 puting, social networks, Semantic Web, grid computing. And
 we hear a lot about networking sites: YouTube, Facebook,
 Linkedln, MySpace, World of Warcraft, Second Life. Perhaps
 the easiest prediction to make about social networking enter
 prises is that most will be out of business in the coming decades.
 The novelties that make social networking so fascinating to so
 many today are likely to go out of fashion, to be replaced with
 other forms of social interaction and community organization.

 Our question about networks concerns what their future
 topology will be. We know that the Internet today is a multiscale
 sparse graph (Faloutsos, Faloutsos, and Faloutsos 1999; Baldi,

 Frasconi, and Smyth 2003). We also know that its structure is
 under transformation from several sources: commercial com

 panies gaining control of U.S. and overseas infrastructure, gov
 ernments censoring content, and service providers restricting
 transmissions through packet-level analysis. We have already
 seen a stratification to serve high-bandwidth scientific commu
 nities (http://www.teraflowtestbed.net/; http://www.gloriad.org/
 gloriaaVindex.html). It is not unreasonable to expect that addi
 tional stratification will emerge to satisfy powerful commercial
 interests. In short, the Internet may evolve toward a a multi
 graph or hypergraph.
 We should expect a parallel evolution in algorithms for dis

 tributed computing. We have already seen viruses, worms, bots,
 and zombies navigate the network, spreading their mischief.
 These agents depend on the specific protocols and operating
 systems on the network itself. We should also expect agent
 based modelers to exploit similar methods for beneficial pur
 poses.

 Finally, to exploit one more time the evolutionary metaphor
 (and to risk a pathetic fallacy, for imputing motivation and feel
 ings to nature or machines), we need to understand that com
 puters want to talk to each other. In some fashion, we will hear

 their request and implement the kinds of network connections
 needed to enable this. We have already done so in subnets,
 where we wirelessly connect printers and and other peripher
 als to local computers. We should expect that we will do so
 more globally to enable systems to talk to each other without
 humans in the loop. We do not anticipate the doomsday sce
 nario depicted in the movie Colossus: The Forbin Project, but
 the premise is not fantastical. Perhaps it has already happened:

 Machines are typically made by other machines these days, albeit with plenty
 of help and guidance from humans. So perhaps the entire industrial enterprise
 constitutes a swarm of self-replicating robots (Cho 2007).

 2.3 Generic Computers

 In software design, the term "generic" refers to software
 components that are flexible enough to be used in a wide va
 riety of situations. There are many nuances and applications
 of the term, including the older concept of polymorphism, in
 which an object can perform services dynamically across a va
 riety of parameter types.

 The term "generic computers" refers to the exchangeability
 of hardware platforms. It is related to the term "virtualization,"
 whose recent popularity indicates that we often care less about
 hardware and software than we do about functionality. We used
 to care about the precision of registers, the width of buses,
 RISC (reduced instruction set) versus CISC (complex instruc
 tion set) architecture, and other hardware details. Increasingly,
 these concerns are irrelevant to most users. We do not care

 about the operating system running our servers or the proces
 sors in our cell phones.

 Of course, hardware and software designers care greatly
 about these things, but the differences in human interfaces to
 computers often outweigh considerations of internal architec
 ture. We care about Windows versus Mac in part because of
 the human interface to these systems. Windows and OS-X now
 run on the same processor. Few noticed the performance differ
 ences when Apple switched from a RISC to a CISC processor,
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 and even fewer care that a Mac and the iPhone use different

 processors running the same operating system.
 We should expect this trend to continue. In the future, com

 puters will increasingly be regarded as service providers. The
 service they provide?processing a phone call, playing a video,
 searching for a quotation, identifying a thief, monitoring a con
 versation, recognizing a face, designing a cover for a magazine,
 diagnosing a patient, choosing a statistical model, spamming a
 network, cooking a steak, deciding whether to use the brakes or
 flywheel to slow down a Prius, deciding how closely to follow
 another car, avoiding a skid or collision?will define their func
 tionality. The same service will in most cases be implemented
 across a variety of processors and operating systems.

 2.4 Immersive Interfaces

 Before making the film Minority Report, Steven Spielberg
 convened a committee of 23 experts to help him envision a
 world of computing set approximately 50 years in the fu
 ture. Among the members of this group were Harald Belker
 (a graphic designer), Bill Mitchell (MIT architect), Neil Ger
 shenfeld (MIT Media Lab), John Underkoffler (MIT Tangi
 ble Media Group), Peter Calthorpe (urban designer), Peter
 Schwartz (a futurist and chairman of the Global Business Net
 work), Steward Brand (The Whole Earth Catalog), Nat Gold
 haber (CEO of Cybergold, an Internet advertising company),
 Shaun Jones (first director of DARPA's Unconventional Coun
 termeasures program), and Jaron Lanier (virtual reality artist).
 Spielberg realized that forecasting trends in computing required
 a committee of Delphic oracles more diverse than a core group
 of computer scientists.

 Among the many ideas from this group that made their way
 into the film was perhaps the most radical?a holographic wall
 of graphical analytics that the leading actor, Tom Cruise, ma
 nipulated with his hands and voice. This technology stems from
 the voice and gesture interface, called "Put That There" (Bolt
 1980), developed at Nicholas Negroponte's MIT Media Lab.
 We are so used to the window, icon, menu, pointing device

 (WIMP) interface that we seldom realize it is obsolescent. In
 fact, WIMP was senescent by the time it appeared in commer
 cial software, according to its inventors (Wadlow 1981; Kay
 1990). Larry Tessler, working at Xerox PARC when the origi
 nal windowed GUI was developed, promoted the slogan "Don't
 mode me in" (Tessler 1981) to describe the problem. The Xe
 rox GUI was designed to minimize the use of modes or state
 dependent actions (insert/delete mode, edit/preview mode, etc.).
 A real GUI (in the sense of following the rules of objects in the
 physical world) should enable a user to explore and act without
 worrying about context?a stateless interface. Dialogs, wizards,
 hierarchical menus, and mouse-click modes are antithetical to
 this idea.

 It is easy to say that WIMP is obsolescent. It is more dif
 ficult to identify its successor. Achieving a modeless inter
 face is more difficult than implementing an ordinary WIMP.
 There are some examples pointing in the direction of future
 interfaces, however. The most popular is the Apple iPhone.
 This device has no mouse or windows, yet navigating the Web
 is simpler and faster than working with a standard browser

 on a WIMP machine. Other examples are the Microsoft Sur
 face (http://www.microsoft.com/surface/), the Cave and Immer
 saDesk (http://www.evl.uic.edu), Multi-Touch (http://www.ted.
 com/index.php/talks/view/id/65), and BumpTop (http://www.
 ted. com/index.php/talks/view/id/131).

 2.5 Competition

 It is hard to imagine a field in which competition has been
 more intense than in computing. The positive effects of this
 competition are obvious. Apple forced Microsoft to develop

 Windows. Advanced Micro Devices (AMD) forced Intel to
 accelerate the introduction of new processor architectures.
 Netscape and Sun forced Microsoft to pay attention to the In
 ternet. The open-source movement forced companies to rethink
 their pricing strategies.
 We expect such competition to continue. Many of the tech

 nology areas affecting statistical computing are beginning to
 mature, however. As such, we expect that some of the negative
 forces arising from competition between mature entities will be
 dominant in the future. We conclude this section by considering
 some negative influences on technology due to competition. We
 can forecast the role of these negative influences in the comput
 ing future with considerable confidence.

 2.5.1 Sabotage. Technologists often marvel at inventions
 and extrapolate them to a future of boundless gadgets. Few
 technologists include sabotage in their predictions. Perhaps few
 enjoy being labeled a cynic. More likely, technical people often
 assume that inventions swamp their opponents?new toys are
 so much fun that they cannot be resisted, devices are so neces
 sary for health and welfare that they cannot be suppressed, or
 gadgets are so powerful that they cannot be opposed.

 History reveals otherwise. There is too much evidence of sab
 otage in the history of technology to ignore its effects (see, e.g.,

 Wang 1986; Hsu 2004). Monopolies often sabotage their oppo
 nents, but so do associations, religious groups, academics, and
 governments. There are few innocents in this regard.

 Sabotage suppresses competitors. It is the undermining of
 a competitors' idea or product without offering a superior al
 ternative. In technology, a popular stratagem is often called
 fear, uncertainty, and doubt (FUD)?make customers or clients
 believe that a competitor's solution is unreliable or even dan
 gerous. Another is Embrace, Extend, and Extinguish (EEE)?
 adopt open standards or a competitor's standards, extend them
 in proprietary directions, and use the resulting differences to
 put competitors at a disadvantage. Another is vendor lock-in?
 deny a customer the ability to adopt a competitor's product or
 service by inserting incompatibilities (e.g., proprietary file for

 mats, sockets, interfaces) that make switching or integration in
 ordinately expensive. Another is legal?sue a competitor that
 cannot afford the negative publicity or expense of litigation.
 And yet another is political?lobby a foreign or domestic gov
 ernment or agency to impose regulation that makes a competi
 tor's product illegal or impractical to market.

 The sabotage most likely to affect our predictions concern
 ing data analysis lies in the area of Internet technology. The
 software platforms needed to foster widespread collaborative
 computing have been subject to considerable sabotage in the
 last decade, and we expect this to continue. There is no single
 culprit.
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 Client-side graphics is a typical example. John Gage, a prin
 cipal at Sun Microsystems, invented the slogan "The network
 is the computer" in 1984 (Perry 2004). In the mid-1990s, Sun
 executives recognized that they could realize Gage's slogan
 through the Java language, which had been created by James
 Gosling and other Sun researchers in 1991 as a platform
 independent programming environment. Java thrived on the

 Web for several years until competition between Sun and Mi
 crosoft stifled it. The chief FUD spread by Java's opponents
 was that Java was slow, a claim eventually shown to be false
 (Prechelt 1999). Nevertheless, Java applets faded as a client
 side solution, Microsoft dropped Java from its browser, and
 other graphics technologies were promoted as substitutes (Flash
 animation, Scalable Vector Graphics, .NET, AJAX, etc.).

 A single instance is sufficient to make this point. Visit http://
 mrl.nyu.edu/~perlin/experiments/orange/ to see a ray-traced,
 dancing female torso that can be rapidly rotated in any direc
 tion under user control in real time. This applet was written by
 Ken Perlin using Java 1.0 with no external libraries. It loads in a
 browser in a few seconds. Imagine a three-dimensional scatter
 plot, regression surface, or density rotating this fast. More than
 10 years after the introduction of Java, one searches the Web in

 vain to find a competitive example that uses newer technology
 (e.g., Flash, AJAX, SVG).

 2.5.2 Monopoly. Much has been written about the nega
 tive effects of monopoly on the proliferation of computing tech
 nology. Many writers note that monopolies stifle innovation,
 but fewer note the tendency of information technologists and
 end-users to prefer technology monopolies. IT managers do not
 like mixed-vendor environments. Multiple vendors mean multi
 ple fingers pointing at multiple culprits. And end-users prefer to
 look for a little help from their friends who share the same oper

 ating system. Finally, standards committees (e.g., IEEE, W3C)
 tend to favor uniformity. Knowing this, we should not be sur
 prised to hear that the business market share of IBM in 1970 is
 comparable to that of Microsoft today (Ceruzzi 2003).

 Some vendors manage to coexist in a monopolistic business
 computing world as long as they are plug-compatible and do
 not interfere with a target market coveted by the monopolist.
 Sooner or later, however, the monopolist will overwhelm these
 so-called "frenemies." As this happens, innovations are spread
 to the monopolist's community. It's not clear that this is always
 such a bad thing (Kurokawa 1997).
 We should not expect to see a major change in Microsoft's

 current monopoly on business computing for at least a decade.
 The conventional wisdom expected a major destabilization in
 the 1990s due to Internet technology, but we saw Microsoft
 eventually adapting to this environment. To be sure, there have
 emerged steady sources of erosion in Microsoft's dominance?
 Linux, open-source software, open standards, Apple's exploita
 tion of consumer-oriented technology (iPod, iPhone)?but
 these have not been sufficient to alter the overall imbalance.

 Most importantly from our viewpoint, Microsoft has aggres
 sively focused on analytics for business (Analysis Services,
 Dynamics) and (as with many of its products) has served milk
 to ordinary users and left the cream to companies like SAS and
 SPSS and groups like the R Project. The cream is no less im
 portant than the milk, particularly for current and future readers
 of Technometrics.

 3. THE FUTURE OF STATISTICAL COMPUTING

 We now consider the future of data analysis in this future
 technological world. The major headings are Data, Humans,

 Machines, and Providers. We anticipate fundamental changes
 in the way we look at data, the way we understand the analyti
 cal user's interaction with the computer, the way the computer
 interacts with the user and with other computers, and the way
 analytic software is provided.

 3.1 Data

 Data are given. They are the information that we receive
 from a variety of sources in the physical world. For statistical
 packages, data reside in tables; the rows represent observations
 (cases, replications, instances), and the columns represent vari
 ables. Even the latest incarnations of these packages view data
 in this way; if received data do not fit this frame, then the pack
 ages import data and transform them to a table.

 Databases use a relational model: a relation between "rows"
 and "columns" in a set of tables. The relational model can han

 dle any data structure consisting of indexed sets. Because in
 dexes can point to indexes (pointers to pointers, so to speak),
 the model is quite general.
 Most real data do not fit these models, however. Of course,

 any form of data (text, numbers, images, video, audio, etc.) can
 be trivially transformed into the relational model, because a re
 lation can be drawn between any two sets. Forcing blobs of
 data into a procrustean relational bed may sacrifice efficiency,
 however. For example, the Daytona database at AT&T is cus
 tomized for streaming telephony records and can store more
 than 11 times the data volume of its relational competitors
 (Greer 2007).

 Forecasting the demise of relational databases would be as
 foolish as forecasting the end of COBOL or FORTRAN. Com
 mercial databases and their clones serve many different needs.
 Primary among these needs is the control of data and of infor
 mation flow. To the extent that corporations and governments
 need to maintain control of relatively static data, relational and
 transactional databases will thrive. Other data will overwhelm
 these containers, however. Remote and local sensor data, Web
 click data, financial trading data (in thousands of trades per
 stock per second per market), and other real-time data sources
 will overwhelm the indexing mechanisms of relational data
 bases. Other data, such as free text and dynamic random arrays,
 will elude standard indexing methods.

 3.1.1 Heterogeneous Data. How do we describe these
 new data sources? One important category has been called
 streaming data (Scott 2003)?sources such as multichannel
 streams of financial or sensor data. In the future, we also will

 be concerned with heterogeneous data. Streaming data have
 a built-in time stamp and are thus automatically indexed and
 presumably storable if enough memory and processor band
 width are available. Heterogeneous data?images, video, audio,
 text?are not easily indexed and do not necessarily come pack
 aged in multichannel continuous streams. Fusing these data will
 require inferential algorithms and heuristics. Even deciding on
 how indexing should be defined will pose a major challenge.
 Data processing will have to be integrated into the analytics and
 statistical models.
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 Temporal random graphs are a typical example of a heteroge
 neous data structure. Although nodes and edges can be stored
 in relational form, this method is ill-suited for dynamic ran
 dom graphs with different node sets at different points in time.
 Random graphs analyzed in the future will consist of millions
 of nodes and billions of edges. Furthermore, these graphs will
 evolve over time in many real applications. (Social networks
 provide a hint of what we should expect.) Processing these
 kinds of data in current networks is impractical for example,
 Internet game sites occasionally must restrict the number of
 players because the distributed server farms hosting them are
 overwhelmed. Experimental systems are emerging to deal with
 these problems (Stoica, Morris, Karger, Kaashoek, and Balakr
 ishnan 2001).

 3.1.2 Data Fusion. We expect that one of the most chal
 lenging data problems in the next decade will involve fusing
 disparate data sources and preparing them for statistical model
 ing. Analytics will have to be embedded in the process, because
 raw data will continue to overwhelm storage capacity. Aggre
 gation algorithms, such as data squashing (DuMouchel 2002),
 will be required to construct archives that can be analyzed fur
 ther when time permits.

 One approach, called ontologies, suggests a possible path
 way for data fusion in the future (Gruber 1993). An ontology
 is a data model representing a set of concepts within a domain
 as well as the relationships between those concepts. Ontologies
 generalize the relational data model beyond simple indexed sets
 to a web of relations. As such, ontologies can be used to reason
 about (not simply retrieve) objects within that domain. Ontolo
 gies also generalize the object-oriented data model beyond sim
 ple inheritance and aggregation relationships. The ultimate goal
 of this approach is to model knowledge itself?a metaphysical
 enterprise. One might say this is a hopeless endeavor, but some
 progress has already been made (Corcho and Grez 2000).
 What will be needed in the future is an inferential engine

 to construct ontologies by observing data. Current technologies
 require schemas to be applied before processing and catego
 rizing data. Schemas have been constructed for many domains
 and are constantly being updated. Not yet practical, however,
 is the efficient automated construction of new schemas through
 ontology learning (Decker, Erdmann, Fensel, and Studer 1999;
 Maedche 2002). Concept learning is a huge problem that has
 frustrated many AI attacks, but it will doubtless prove to be
 central to the analysis of data in the future.

 3.1.3 The Semantic Web. Berners-Lee, Hendler, and Las
 sila (2001) extended the idea of ontologies to construct a
 global scheme for relating resources on the World Wide

 Web. The Semantic Web is being built from various tools
 archived in a central public repository (http://www.w3.org',
 http://www.semanticweb.org/ 2007; Ontoworld.org 2007). The
 basic organization for this architecture is a resource description
 framework (RDF). RDF constitutes a language for describing
 resources. Its fundamental building block is a triple consisting
 of an entity, a property, and a value (which may be another en
 tity). An entity consists of a resource encoded in a universal
 resource identifier (URI). A URI may be a uniform resource
 locator (URL) for identifying a Web resource, or another type
 of resource predefined in a schema. In any case, the RDF is a
 simple, yet expressive way to construct a network or directed
 graph with nodes and edges qualified by attributes.

 The idea is simple and revolutionary but the execution in
 volves a mass of details. To succeed, the Semantic Web project
 must convince Web developers to use URIs (instead of peculiar
 URLs), to use them consistently, and to coordinate their efforts.
 If they do, then the impact of the Semantic Web project on data
 analysis should not be underestimated. Even if this effort fails,
 it is reasonable to predict that another, more powerful schema
 will take its place. In either case, we probably will witness the
 end of meta-analysis as it is currently practiced, that is, by pool
 ing summary statistics. Instead, future studies will be published
 with their data, and the data will be accessible to researchers
 who will not have to worry about file formats, data dictionaries,

 and other peculiar templates for organizing data. Pooling will
 happen on raw data, guided by ontologies to maximize compat
 ibility, security, and homogeneity.

 Pooling will not be the only benefit of this technology. Se
 mantic Web languages will enable logical relations that can be
 used to facilitate data mining and inference. Pilot projects are
 already demonstrating feasibility. Semantic Web technology is
 helping preclinical researchers to integrate disparate sources
 of data in single files for analysis, trace logical implications
 through multiple experimental results, and relate descriptive

 metadata to their own findings. Some have already been able
 to identify possible causal connections between genomic sig
 natures and clinical diseases by mining scientific databases, ref
 erence bibliographies, and data repositories (Feigenbaum, Her
 man, Hongsermeier, Neumann, and Stephens 2007).

 The rate of innovation in this area is so fast that it is diffi

 cult to assemble a set of predictions that will characterize the
 full impact of this technology. Several Web sites give a fla
 vor of what is happening in tool development. The SIMILE
 project at MIT (http://simile.mit.edu/) offers various program
 ming and visualization tools. Michael Bergman (http://www.
 mkbergman.com/) maintains a comprehensive list of Seman
 tic Web tools by various developers. Hewlett-Packard (http://
 www.hpl.hp.com/semweb/tools.htm) provides several Java
 based toolkits. And the ESW Wiki (http://esw.w3.org/topic/
 SemanticWebTools) explains, before listing available tools, that
 "Keeping such lists up-to-date is obviously a problem when
 the number of Semantic Web tools increases every day." Fi
 nally, it is probably safer to steer readers to a regularly updated
 site containing books on the Semantic Web (http://esw.w3.
 org/topic/SwBooks) than to cite them separately in the refer
 ences of an archival print journal. Because "Semantic Webbers"
 obsess over keeping URI's consistent and durable, we should
 have some hope that these URL's will still work in a few years.

 3.1.4 Distributed Processing. We hear much today about
 parallel, distributed, and grid computing helping us to solve
 huge problems in scientific data analysis. Most new micro
 computers contain multicore processors, and several scien
 tific languages and statistical packages (Python, Stata, SAS)
 already exploit this capability. Distributed capabilities exist
 on several scales?the chip, the computer, the local area net
 work, and the Internet. This multiscale architecture makes gen
 eral distributed algorithms more difficult, but not intractable.
 Google uses distributed analytical architecture on its own server
 farms. On a global scale, SETI@home (http.V/setiathome.
 berkeley.edu), Folding@home (http://folding.stanford.edu), and
 Genome @home (http://genomeathome.stanford.edu) are dem
 onstrating the practicality of large-scale distributed analytics.
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 We should keep a caveat in mind, however. Classical statis
 tical iid problems are usually implementable on a gridded sys
 tem, and tools are readily available from companies like IBM
 and Sun, as well from the Globus Alliance (Kesselman and Fos
 ter 1998; Globus 2008). Jerome Friedman (personal commu
 nication) has pointed out that data-dependent statistical algo
 rithms, which include most recent statistical methods, generally
 are not amenable to gridding. Iterators depending on data values
 can lead to performance degradation or even deadlock and fail
 ure of the overall gridding algorithm. We should not expect the
 recent developments on deadlock-avoidance to lead to a general
 breakthrough in general model estimation for huge data sets.

 Finally, we expect agent-based modeling to continue to thrive
 in the world of distributed analytics (Bonabeau 2002; d'lnverno
 and Luck 2003). In many cases, agent-based models can be pa
 rameterized as dynamical systems (Motter, Matas, Kurths, and
 Ott 2006). Either way, more powerful computational environ
 ments will allow researchers to handle much larger problems.

 We also expect that agent-based models will be used to an
 alyze real data (as opposed to simulations). This amounts to
 distributed analytical agents that can seek out specific types of
 data, do their computations on those data, and coalesce their
 results. Similar technology exists in bots and worms today, but
 security issues have prevented legitimate agents from working
 similarly. Better security measures, economic protections, and
 confidentiality standards need to prevail before such technology
 can become more prevalent.

 3.1.5 Security and Confidentiality. Several decades ago,
 the columnist Mike Royko advised his readers to lie to TV exit
 pollsters (Royko 1984). His advice arose out of a widely shared
 frustration that exit polls were biasing the electoral process.
 Today we are seeing a similar erosion in confidence regard
 ing the security of our online personal data (CSIA 2006). This
 could emerge as one of the most significant issues affecting the
 growth of commercial and government social data analysis.

 The crisis has been driven by numerous breaches of commer
 cial and government databases, and it has been intensified by
 the continuing failure of governments and corporations to de
 velop regulations and technical solutions that will assure indi
 viduals that their personal data are safe. Furthermore, frequent
 assurances by corporate public relations that IT departments
 will police themselves better in the future have only made the
 situation worse. It also has not helped that insurance companies
 are now selling policies to cover identity theft.

 The crisis in confidence is unlikely to subside until technical
 solutions to data confidentially are developed. Such solutions
 bear the same relation to analytic databases as security meth
 ods (e.g., RSA, PGP, SSL) have to online commerce. We must
 remember, however, that physical security is not the only prob
 lem. The problem is made more difficult because ensuring the
 security of personal data cannot rest on a single password or
 certificate. Clever data mining algorithms can merge or fuse dis
 parate data sets using subclassifications to identify individuals
 (ASA 2007). This can happen with publicly released informa
 tion (e.g., census data, economic statistics).

 There are signs of progress. The 1996 Congressional Health
 Insurance Portability and Accountability Act (HIPAA) has
 emphasized the need for developing protection for medical
 records, and the National Institute of Statistical Sciences

 (NISS) and the Statistical and Applied Mathematical Sciences
 Institute (SAMSI) have sponsored data security workshops led
 by Alan Karr and supported by the National Science Founda
 tion (Sanil, Karr, Lin, and Reiter 2004; Karr 2006; NISS 2007).
 Stephen Fienberg (Fienberg 1998, 2006, 2007) has played a
 leading role in developing approaches to securing categorical
 data and limiting unauthorized data fusion. Fienberg, Karr, and
 Cynthia Dwork also founded The Journal of Privacy and Con
 fidentiality.

 It is reasonable to expect that privacy and confidentiality will
 be an increasingly important requirement for analytic comput
 ing in the coming decade. Commercial interests will drive this
 trend because companies realize that Mike Royko could inspire
 a younger generation of journalists to campaign for legislation
 restricting online social data.

 3.1.6 Data Quality. Karr, Sanil, and Banks (2006) de
 fined data quality as follows:

 Data quality is the capability of data to be used effectively, economically and
 rapidly to inform and evaluate decisions. Necessarily, DQ is multidimensional,
 going beyond record-level accuracy to include such factors as accessibility, rele
 vance, timeliness, metadata, documentation, user capabilities and expectations,
 cost and context-specific domain knowledge.

 Data quality may emerge as one of the most critical factors
 affecting analysis in the coming decade. As Karr pointed out,
 we often hear that we will drown in a flood of data, but a flood
 of bad data may be more of a threat. The electronic collection
 and assembly of data threatens to swamp the close examination
 of data before analysis. But this threat can be used to advan
 tage if we develop automated assistants that can work with data
 experts to identify problem areas. Wand and Wang (1996) pro
 posed such an approach based on ontologies. Scannapieco, Vir
 gillito, Marchetti, Mecella, and Baldoni (2004) described a data
 quality broker and a quality notification service that can bring
 human analysts into the quality loop.

 As Karr et al. (2006) demonstrated in their case studies, vi
 sualization is a valuable tool in this effort. The information vi

 sualization community has devoted most of its efforts so far
 to high-dimensional data visualization. We expect that it will
 be turning its attention to data quality assurance in the coming
 decade.

 Securing data quality involves, among other things, the def
 inition and search for anomalies. We consider this in the next
 section.

 3.1.7 Anomalies. One field in which statisticians should
 thrive in the coming decades involves the hunt for anomalies.
 Classical statistics framed the idea of an outlier by defining
 an extreme point relative to the location of a specific distrib
 ution (Barnett and Lewis 1994). The most frequent application
 of this idea has been in the diagnosis of residuals (Anscombe
 and Tukey 1963; Cook and Weisberg 1982; Atkinson 1985).

 Outliers are anomalies, but not all anomalies are outliers.
 Consider the anomaly of an IRS return that contains numbers
 backfitted such that they match a regulation too perfectly. Con
 sider the psychologist Cyril Burt's data that were a perfect fit
 to a normal curve (Dorfman 1978). Consider an "inlier" near
 the center of an extremely bimodal distribution. Consider a sys
 tematic drift that does not exceed conventional control limits.

 Consider slope changes (but not spikes) in network activity that
 can signal intrusions (Lambert and Liu 2006; Grossman et al.
 2007).
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 By definition, anomalies require a law or model from which
 to deviate. Unlike most scientific modeling, however, anomaly
 detection, not the model itself is the focus of interest. The grow

 ing interest in anomalies is being driven by fraud detection, ter
 rorism screening, defect identification, micromarketing, ther
 apeutic biomarkers?wherever exceptions to rules are likely
 to yield critical information. Among the many future applica
 tions of conditional probability models, such as those used in
 Bayesian statistics, this is likely to be one of the more preva
 lent. The Bayesian model is ideal for quantifying the degree of
 surprise associated with an anomaly. Because policy decisions
 frequently accompany anomaly detection, the Bayesian formu
 lation is most appropriate.

 3.2 Humans

 We should expect analysts to interact with computers very
 differently in the future. Traditionally, analysts have used pro
 gramming languages or GUIs to specify models and request re
 sults. A few systems (e.g., National Instruments Labview, SPSS
 Clementine) have used iconic data flows to assemble analytics.
 There was a time when visual programming was thought to be
 the future analytic environment. Today, the prospects are more
 limited. Johnston, Hanna, and Millar (2004) provided a survey.
 In the future, programming languages are likely to remain pro
 gramming languages, and visualizations are likely to remain vi
 sualizations. Templates can do many of the things that data-flow
 systems now do, without the complexities of understanding di
 rected graphs. We expect that the exploratory environment of
 manipulable holographic visualizations depicted in The Minor
 ity Report is the most likely visual analytic scenario to emerge.

 3.2.1 Statistical Computing Interfaces. As mentioned
 earlier, we can expect interfaces to move away from WIMP
 models. Statistical packages have become overwhelmingly
 complex for ordinary users. Learning command languages such
 as SAS, R, or Stata can be daunting for casual users (including
 expert statisticians who use software only occasionally). More
 over, menu-based systems for packages like SAS and SPSS
 have become huge; finding choices in these menus (particularly
 deep in hierarchical menus) often wastes time.
 Wilkinson (2008) presented an alternative interface for statis

 tical computing that more closely resembles ones we are likely
 to see in the future. It has a number of distinctive features. First,

 there are no commands; simple words serve as directives. Sec
 ond, there is no menu bar with drop-down menus; each word
 has its own popup. Third, there is no user manual; choices are
 offered as they are needed, and only when they make sense.
 Fourth, the interface does not require a mouse; it can work with
 a mouse but is ideally suited to touch interfaces like the one on
 the iPhone. Fifth, the interface does not require a keyboard; all
 choices are by touch. Sixth, the interface is not modal, and there
 are no dialogs; choices are made initially in a supervised order,
 but may be revisited and changed in any sequence.

 Figure 1 shows an example of an analysis expressed in this
 interface, called a "sentence tree." The program opens with a
 single Start word in the upper left corner of the controller panel.
 Pressing this word produces a second, Get Data, phrase. Press
 ing the Get Data phrase opens a popup showing available data
 files. Choosing a file causes an Analyze word to appear as child

 SUt .... ....,.;........;... ...... ..... .. . ^^B
 ^H ' Get Data mmjtxt ^^H
 ^H y Analyze . ^^H
 ^H Predict Dependent Variable Independent Variables) Options ^^H
 ^H Reduce variables Options ^^^|
 ^H Classify Variables Options ^^H
 ^M '[ '" ^TlS?!e^|:' ^^1

 ^H 1 *- R?bber> I ^^H ^H . J *. Assault f ^^H
 ^H j ' '-Burglary |. ^^H
 ^B 1 *** Larceny I ^^H
 ^H 1 *t. Autotheft f ^^H
 ^^m u* Region | ^^^H

 ^H j ? State I ^^H
 ^B ".immmwmimfW' ^^H

 Figure 1. Sentence-tree interface for statistical analysis. New words
 appear after most recent words are selected, guiding the user through
 the analysis in the same fashion as a Wizard. Unlike a Wizard, prior

 words may be accessed in any order, data sets may be changed, and
 scripts may be saved for subsequent analysis (Wilkinson 2008). The
 popup menu lists variables in a file; black histograms show the distri
 butions of continuous variables, and red bars show the distributions of

 categorical variables.

 of the Get Data phrase. Pressing Analyze offers a choice of sev
 eral analyses. The figure illustrates two of these "analysis sen
 tences," Predict and Classify.

 This interface is designed to output results in a browser or
 editor window. The end result is a publishable document con
 taining introduction, analysis, and discussion sections, along
 with tables, graphs, and a bibliography. An obvious question
 is whether this interface can support the type of sophisticated
 transformations and analyses that scientists expect to be able to
 perform. Clearly, a program designed like this requires a high
 degree of intelligence. For example, FASTAT examines the de
 pendent variable in a Predict sentence; if there is evidence in the
 data that this variable is categorical (e.g., a string or an integer
 with a few values), then the algorithm switches from ordinary
 least squares to logistic regression. The program also contains
 a strategy engine that examines distributions, performs trans
 formations, and investigates competitive models. This AI ap
 proach benefits from insights developed by Wayne Oldford and
 Catherine Hurley, summarized by Oldford (1999).

 We can expect to see more designs like this in the future,
 because analysts will not have the time to immerse themselves
 in statistical packages, particularly as the packages increase in
 complexity to serve microconstituencies. Moreover, there will
 be an increasing need to assist scientists with software that pro
 vides at least a modicum of protection from artifactual con
 clusions. Fluency in a statistical package is no guarantee of
 wisdom in using it. Ideally, of course, every study should be
 designed and analyzed with the assistance of a professional sta
 tistician. This has been a rare luxury, and given current educa
 tional trends, it is likely to become even rarer. Simple interfaces
 to guided analyses will proliferate in the future.

 3.2.2 Statistical Visualization. Until recently, informa
 tion visualization has applied the concrete representations of
 realistic computer graphics to the abstract world of information.
 This approach has been based on the assumption that assigning
 variables to the ordinary dimensions of our world (space, time)
 can reveal structures in data. The assumption that realism aids
 information visualization appears plausible on its face, but a
 deeper look reveals that the world of graphs is more complex
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 and that abstractions sometimes require abstraction (Becker and
 Cleveland 1991; Hanrahan 2005; Wilkinson 2005).

 At the other extreme, engineers have constructed hierarchi
 cal visualizations in which ordinary metrics do not apply: one
 or more of the axioms for symmetry, the triangle inequality,
 and identity are violated. These complex visualizations, such as
 treemaps (Johnson and Shneiderman 1991), constitute intricate
 and beautiful pictures, but it is not clear that they contribute to
 an understanding of the data that they represent.

 There is little reason to assume that realism per se is required
 for effective visualization. More important is matching the pre
 sentation of visual information to the appropriate perceptual

 mechanisms that are used in processing real visual scenes. As
 suming that experimental psychologists become more involved
 with visualization engineers, we should see more effective visu
 alizations in the future. Often, however, authoritative psycholo
 gists are ignored in favor of gimmicks (Tversky, Morrison, and
 Betrancourt 2002). If something can be done with a computer,
 then it will be done. And if a visualization is eye-catching, then
 it will become popular regardless of its usefulness. Decades of
 books by Tufte (Tufte 2002, 2003a,b) are reverentially cited in
 the introduction to visualization articles and then promptly ig
 nored. We expect this trend to continue.

 Another trend that we expect to see grow in the future is
 smart visualization. Large data sets present formidable prob
 lems to both the exploratory data analyst and the formal mod

 eler. How do we find outliers, miscodes, missing data patterns,
 and other anomalies in huge data sets? We need to examine
 our data, in other words, before applying any model or before
 examining data with conventional EDA methods (including vi
 sualizations). In the spirit of Minority Report, we need agents
 to display data to highlight interesting features.

 Figure 2 shows one approach presented by Wills (2007).
 This program analyzes files and text automatically and pro
 duces visualizations based on knowledge extracted from the file
 structure and the grammar of graphics. Figure 2(a) shows the
 blank window and five-word user manual for the Auto Vis util

 ity. A user simply drags objects into this window. Figure 2(b)
 shows the result of dragging text from Moby Dick into the win
 dow. The program computes n-grams on the text and performs
 a graph layout of the word similarities based on the n-grams.
 Each word is a node in the graph, and the edges represent
 co-occurence in the n-grams. Figure 2(c) shows the result of
 dragging a data set from Allison and Cicchetti (1976) into the
 window. The program examines distributions of the (presum
 ably) continuous variables, decides to log-transform several to
 achieve symmetry, displays them in kernel densities, and dis
 plays the categorical variables in bar charts. In addition, the
 program constructs an association diagram among the variables
 based on the strength of a correlation measure. The program
 also uses several algorithms to choose interesting bivariate plots
 to present to the user. These plots are hexagon-binned to reveal

 (a) (b)

 (c) (d)

 ^Hg*rJljPj^B ' '
 Figure 2. Automatic visualization with Auto Vis. (a) Auto Vis opening screen, (b) Text from Moby Dick, (c) Sleep data set. (d) Web site. This

 Java application, described by Wills (2007), processes data stored on a local machine or at URLs on the Web. The program recognizes data types
 by examining file formats and internal structures. It chooses transformations and statistical analyses based on various heuristics.
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 Figure 3. Forecasted inflow of ecological resources to support ex
 pected lifestyles in the U.K. This visualization was produced using
 technology developed by Phan et al. (2005). The rendering was com
 puted automatically from the edge list of a geometric planar-directed
 graph (New Economics Foundation 2007. Used with permission).

 density, and boxplots are chosen for mixed-scale displays. Fi
 nally, Figure 2(d) shows the result of dragging a Web site into
 the window. The files and other resources in the site are ana

 lyzed and arranged by a large-scale graph-layout routine.
 Smart visualization also means the ability of the computer to

 "fill in the blanks." For many graphs, there is a one-to-one cor
 respondence between the numbers and strings in the columns of
 a table and representative points in the graph. For many other
 graphs (e.g., layouts of {V, E) graphs), there are one or more
 levels of indirection between the data and the graph. These lev
 els may be a transformation chain or a series of nontrivial algo
 rithmic processing. Figure 3 shows a three-dimensional layout
 of a flowmap produced by software described by Phan, Yeh,
 Hanrahan, and Winograd (2005). The software receives only a
 set of lat-lon coordinates for the branches of the tree; it decides

 where to place the branches, how to curve them, and how to
 transform the result into spherical coordinates.
 We also expect to see real-time graphics that are attached to

 streaming data sources. Norton, Rubin, and Wilkinson (2001)
 discussed this type of system. The complexities of the archi
 tecture needed to support such systems exceed those of popu
 lar animated graphics, because data must be captured and dis
 played in real time. Snapshots and animations over static data
 sources will not work. We already see primitive systems of this
 sort in heart monitors and real-time graphics on trading desks
 on the major exchanges. Almost any kind of visualization can
 be adapted to this type of system to reveal changes in real time.
 Many of these applications will occur in security monitoring,
 medical environments, and other areas where rapid feedback
 is critical. Figure 4 shows a frame from a real-time system
 that uses inverse distance-weighted interpolation on scattered
 data to display local climate information (Park, Linsen, Krey
 los, Owens, and Hamann 2005). Programming real-time statis
 tical algorithms for streaming data sources is nontrivial.

 Finally, we expect to see more visualizations of geospatial
 and temporal data on the Web, especially involving mashups
 with Google Maps and Google Earth. Geographers such as Ja
 son Dykes and Alan MacEachren (Dykes, MacEachren, and

 Figure 4. Streaming visualization of climate model from Park et al.
 (2005). This figure is a single frame from the series. Unlike anima
 tions, which are constructed by rendering archival data sets, streaming
 visualizations process data in real time. To maintain smooth flow, the
 statistical models underlying these visualizations must be updated in
 under 50 milliseconds.

 Kraak 2005; Wood, Dykes, Slingsby, and Clarke 2007) have
 developed various visualizations that illustrate this trend. Fig
 ure 5 shows a Google Earth mashup involving geo-locator data
 on a migrating elephant seal. The power of this visualization is
 enhanced by the application's pan-and-zoom and layering tools.
 Because it is Web-based, millions of viewers can interact with
 the visualization to explore its aspects further. This graphic was
 inspired by a course developed by Deborah Nolan and Duncan
 Temple Lang at Berkeley and funded by the National Science
 Foundation.

 3.2.3 Collaboration Among Statisticians. We have seen
 signs of convergence in collaborative computing. The R Project,
 open-source, and social networks among professionals are pro
 liferating. Wikipedia is being cited increasingly in academic
 journals, and Wikis are now used frequently by research groups
 for coordinating projects.
 We can expect to see an increase in expertise within knowl

 edge collectives. The original Wikipedia credo restricted writ
 ers to a neutral point of view. Expertise was explicitly rejected.
 Assertions required citation, if only to a secondary source. In
 creasingly, we are seeing monitored sites and Wikis with ex
 pertise required for participation. These types of communities
 appear to be organizing themselves into an alternative small
 world graph. We should expect implementation of security and
 auditing standards on these sites so that researchers can collab
 orate without fear of spam.

 3.3 Machines

 If analysts interact with computers very differently in the fu
 ture, it will be because the computer will evolve to become
 an analytic assistant. About 25 years ago, John Tukey coined
 the term "cognostics" to describe automated methods to help
 analysts understand data sets. In a speculative keynote at the
 Interface meetings, Tukey described such things as distributed
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 Figure 5. Google Earth mashup of elephant seal migration. These
 data track the movement of an adult female elephant seal as she mi
 grates between rookeries in southern California and distant northern
 foraging areas. The data are courtesy of Brent Stewart, Hubbs-Sea

 World Research Institute. Brillinger and Stewart (1998) showed that
 the seal migrates in a great-circle path. Graphic courtesy of Deborah
 Nolan.

 computing engines that exploited free CPU cycles to attack con
 vex hull computations in hundreds of dimensions (Tukey 1982).
 Tukey also talked about parallel algorithms that could sift
 through thousands of scatterplots to find interesting patterns?
 an approach he later called "scagnostics" in work done with his
 cousin Paul (Tukey and Tukey 1985). Wilkinson, Anand, and
 Grossman (2006) recently implemented this idea, and code is
 now available in CRAN (Wickham and Hofmann 2007).

 3.3.1 Intelligence. The analytic assistant personifies
 Tukey's vision of the computer as a mental amplifier. The land
 mark book Artiflcial Intelligence & Statistics (Gale 1986b) con
 tained chapters on the REX regression expert system developed
 at Bell Labs (Pregibon and Gale 1984) and other approaches to
 implementing statistical assistants. There is insufficient space in
 this article to cover the history of AI in statistics, but it should
 be mentioned that much of the early AI research that influ
 enced the more recent field of data mining came out of the Bell
 Labs group. For various reasons, AI statistics research of this
 sort waned in the new century after a decade of International

 Workshops on Artificial Intelligence and Statistics. The term
 "waned" might be considered extreme by some, because what
 really occurred was a transition to a new form of AI?data min
 ing and, subsequently, machine learning?that a few might take
 to be new wine in old bottles but was really a change of focus
 from expert systems to classification and prediction algorithms.

 As with AI in general, which moved away from modeling hu
 man intelligence per se, we have seen a move away from efforts
 to encapsulate the judgments of expert statisticians. Neverthe
 less, we should expect a resurgence of automated analysts in
 this century. These analysts likely will incorporate strategies de
 rived from psychological, statistical, and algorithmic research.
 Although most of the recent efforts in machine learning have
 focused on algorithms, we can expect that the rapidly evolv
 ing field of human decision making (sparked initially by the
 research of Herbert Simon, Amos Tversky, and Daniel Kah
 neman) will become increasingly important to these develop
 ments.

 In fact, we have seen some recent examples. Analytic engines
 have gone underground. Commercial companies such as SAS,
 SPSS, Oracle, and Microsoft sell analytic components that are
 embedded in enterprise software systems. Web Services analyt
 ics are used to make credit decisions in real time, hedge invest

 ment portfolios, and place Web search ads. Two resources will
 fuel this development in the future. First, more computer scien
 tists have begun to learn statistics. We have seen a trend from
 a small group of statisticians and computer scientists working
 in the latter part of the last century to a mainstream movement
 in computer science. Evidence of this trend can be found in
 several influential articles and talks (Glymour, Madigan, Preg
 ibon, and Smyth 1997; Friedman 1997) and a recent statistics
 book (Hastie, Tibshirani, and Friedman 2001) that has been a
 huge seller among computer scientists (John Kimmel, personal
 communication). In addition, universities, such as University of
 California Irvine, Carnegie Mellon, and Stanford, have encour
 aged statisticians and computer scientists to work together on
 machine learning. Statisticians have helped move the focus of
 data mining from in-sample prediction to out-of-sample predic
 tion. Second, protocol analysis, developed by Simon, Ericsson,
 and others at Carnegie Mellon in the 1970s, is being rediscov
 ered by developers as a way to capture cognitive factors in deci
 sion making. This "knowledge engineering" methodology has
 been widely applied in expert systems, such as medical diagno
 sis. It was used in the Student project (Gale 1986a), a follow-up
 to REX, and we can expect it to be used in future diagnostic
 systems. Ironically, the difficult areas of AI remain in early
 process perception needed for robotics (vision, hearing, touch),
 whereas the more tractable areas seem to be in expert behav
 ior. The early arguments against AI in statistics (e.g., statisti
 cians' nuanced judgments are impossible to capture, the field
 is too complex) have been dispelled by the prevalence of ma
 chine learning algorithms and policy capturing. This trend will
 continue, and indeed will accelerate.

 3.3.2 Collaboration. We have discussed collaboration
 among analysts, but we must not ignore collaboration among
 machines. Many of the advances that we expect in the future
 will come from analytic engines working together to combine
 data fusion, inference, and model building. These machines will
 share data and use such technologies as voting schemes and
 neural nets to combine their decisions.

 The emergence of these technologies raises a troubling ques
 tion. As machines become more intelligent and capable of shar
 ing models and data, we run the risk of model monocultures;
 that is, consensus votes among machines can result in the kinds
 of judgment bias to which humans are susceptible (Erev, Wall
 sten, and Budescu 1994; Dawes and Mulford 1996). It may be
 that analysts and designers will have to give consideration to

 methods that allow minority points of view to persist beyond a
 single iteration of voting schemes.

 3.4 Providers

 This section covers vendors and providers of statistical soft
 ware. It is perhaps the most speculative of the sections in this
 article, because it is based primarily on my experience working
 for and collaborating with many of the companies and projects
 that currently provide analytical and statistical software. As
 such, it is a forecast based on personal opinion and may be con
 troversial. Nevertheless, I am in a perhaps unique position of
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 knowing personally the founders, principals, and many of the
 developers in these companies and foundations over a 30-year
 period.

 The commercial companies chosen for this list are pre
 sented in order, corresponding to their revenues from statis
 tical applications in recent years. The not-for-profit associa
 tions (R and Python) are presented last, because their revenues
 are essentially zero. Nevertheless, they have rapidly growing
 user communities that already exceed the size of some of the
 commercial companies' user bases. The statistical software
 providers discussed in this section were derived from the small
 Google Set (http://labs.google.com/sets) obtained from the pair
 {SAS, SPSS}.
 We begin with a summary of each company and a forecast

 for each.
 3.4.1 SAS. Of the total SAS revenues in recent years, ap

 proximately 20% was due to advanced analysis (statistics and
 data mining). The rest was due to reporting, data manage
 ment, performance monitoring, general business intelligence,
 and other applications. SAS continues to be a leader in statisti
 cal data analysis. It has not ignored the needs of its specialized
 user bases (e.g., pharmacology, manufacturing, natural and so
 cial sciences). Yet SAS has been able to expand into corporate
 data mining and analytic markets while serving this traditional
 base. Its predictable growth has been guided by the technocratic
 philosophy of its statistician CEO, Jim Goodnight.

 Nevertheless, SAS must confront the growth of companies
 like Oracle, which had almost $18 billion in sales in the 2006
 fiscal year. Oracle is determined to capture the new markets that
 interest SAS. The CEO of Oracle, Larry Ellison, is Goodnight's
 avowed nemesis?determined to confine SAS to its specialized
 vertical markets. Oracle is, to put it mildly, an extremely ag
 gressive competitor. Both Oracle and SAS share a strategy of
 "one-stop shopping." This signals continued battles in the fu
 ture.

 3.4.2 SPSS. Under the leadership of its CEO Jack Noo
 nan, SPSS has reinvented itself. The company has begun to con
 centrate on what they call "predictive analytics"?components
 in service of business information systems. Unlike SAS, SPSS
 has focused primarily on embedded systems for its new offer
 ings. This yields a highly competitive pricing strategy that al
 lows SPSS to slip its new enterprise systems into heterogeneous
 corporate computing environments.

 SPSS has developed several new technologies for the enter
 prise environment. Its visualization platform (nViZn) is based
 on grammar-of-graphics architecture (Wilkinson 2005). SPSS
 intends to provide extensive visualization in its Web-based en
 terprise products. A new patented pass-stream-merge (PSM)
 technology is being used to extend analytics to gridded and dis
 tributed computing environments. Finally, SPSS has developed
 a model repository to organize and deploy predictive models
 for scoring environments (e.g., credit scores, insurance adjust
 ment).

 SPSS is likely to continue supporting its flagship statistical
 product. Like other companies, however, SPSS will probably
 leverage the technology used for its other products (e.g., ana
 lytic components, visualization) to drive future development of
 the statistical package. These components, many developed in
 a satellite office in China, will replace older FORTRAN analyt
 ics that date to the early era of statistical computing. The major
 share of SPSS growth will be in new products, however.

 3.4.3 MATLAB. For MathWorks, perhaps 15% of their
 gross revenues would account for what we would call statistical
 and data analysis in their MATLAB product. The MATLAB
 package is very popular among engineers doing statistical
 analysis, likely because of its flexible graphics and matrix mod
 eling. Whereas matrix languages like APL were based on for
 mal grammars and a high degree of mathematical extensibility,
 users tended to prefer more ad hoc systems, such as MATLAB
 and SAS IML. Applied users rarely appreciate the mathemati
 cal niceties of generalized inner products (A+.xBorAv.AB)
 when they simply need real matrix multiplication (A * B). In
 addition, MATLAB benefited from its close association with
 the certified Argonne matrix libraries through MathWorks CEO
 Cleve Moler.

 MathWorks is likely to remain a force in future analytics. It
 has shown a talent for adapting to new markets and for develop
 ing add-on modules for specialized applications. It will face in
 creased competition from open-source projects such as Python,
 however. These projects have been actively engaging in large
 and sparse matrix computations.

 3.4.4 Minitab. Minitab's revenues have been based large
 ly on engineering analytics and instructional software. Approx
 imately 10 years ago, CEO Barbara Ryan refashioned Minitab
 as a Six Sigma provider, and its revenues began to grow at a
 rapid rate. At this time, it is probably the leading provider of
 this type of software.

 Much of the Six Sigma sector depends on marketing. Minitab
 has done a masterful job at this through educational seminars
 and close engagement with Six Sigma companies (most no
 tably Ford). In the future, however, Minitab will be pursued
 resolutely by Statsoft, SAS, and JMP. Because of the hegemony
 of the companies in this sector and the specialized nature of the
 software, it is unlikely that others will be able to enter as serious
 competitors.

 3.4.5 Statistica. Statsoft is run by Paul Lewicki, a psy
 chologist at the University of Tulsa. Statsoft's advertising sug
 gests that it is targeting corporate enterprise systems for busi
 ness intelligence, but it will probably have rough going if it
 pursues this strategy exclusively. Microsoft, ORACLE, IBM,
 SAS, SPSS, and SAP have declared this a strategic market.
 Competing with this group will be difficult. Alternatively, JMP
 and Minitab will continue to compete directly with Statsoft for
 the desktop quality market. Nevertheless, Statsoft has enjoyed
 steady and substantial growth over almost 2 decades.

 Statsoft's strength has been its ability to develop new pro
 cedures soon after its competitors introduce them. It has done
 this to a large degree through contract programmers in Eastern
 Europe and through the use of third-party software. In its early
 days, the company imitated aggressively, but more recently it
 has focused on its own identity. Its user base is concentrated
 (and likely will continue) among engineers rather than among
 statisticians.

 3.4.6 S-PLUS. Insightful, more than any other statisti
 cal software company, has been affected by the growth of R.
 S-PLUS was originally based on a perpetual license to the Bell
 Labs version of S. When the R Project gained momentum, there
 emerged an alternative source for a major portion of the S lan
 guage.

 In response, Insightful has specialized in feature-rich imple
 mentations of specialized procedures for specific vertical mar
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 kets (finance, marketing, life sciences). The company hopes to
 deepen these markets and provide close technical support to
 stem the loss of clients to R. Insightful is not the only company
 to feel the impact of R, but it likely is the most vulnerable.

 3.4.7 JMP. JMP began as "John's Macintosh Project,"
 a desktop interactive program designed by John Sail, who was
 an admirer of Paul Velleman's Data Desk. John was an early
 advocate of GUI interactive computing inside SAS. He put
 together a talented team of developers dedicated to marrying
 graphic and statistical output.

 In recent years, JMP has become a major competitor in the
 design of experiments. Much of this has to do with Brad Jones
 (a student of Stuart Hunter) joining the team after working on

 MATLAB at Math Works. JMP also has drawn on the formi

 dable design resources elsewhere in the SAS Institute. Most
 recently, Sail has steered JMP toward the genomics market as
 well; JMP can handle interactive analyses on data sets with tens
 of millions of rows and thousands of columns.

 JMP likely will expand its market in quality and experimental
 design. Further, the JMP graphics are beginning to achieve a
 distinction on their own that will help JMP expand into other
 fields.

 3.4.8 Stata. Stata was originally the product of Bill Gould
 and a small group of economists from UCLA. It has grown to be
 a full-featured analytic company. The distinctive appeal of the
 package is its expressive and concise programming language,
 based on C. Stata's unusual strengths are in discrete variable
 modeling, longitudinal/panel designs, survival analysis, time
 series analysis, and survey statistics.

 Like S-PLUS, Stata will have to deal with the growth of R in
 its own field?programmable statistics and data analysis. Un
 like S-PLUS, however, Stata's peculiar strengths and language
 are different enough from R to make it a viable alternative, par
 ticularly for economists. Moreover, the Stata user community is
 intensely loyal, so we should expect Stata to continue to grow
 at a respectable rate.

 3.4.9 SYSTAT. SYSTAT has been acquired twice, first by
 SPSS and more recently by Cranes Software International, lo
 cated in Bangalore, India. SYSTAT's traditional market has
 been users looking for a simpler alternative to SAS and for
 high-quality graphics. Because it was the first full-featured
 statistics package available on microcomputers, SYSTAT ac
 quired a following among ecologists, biologists, and others who
 needed to do analyses in the field using portable (luggable)
 computers.

 Leland Wilkinson wrote SYSTAT in FORTRAN and the
 manuals in English in the early 1980s. Several years ago,
 Cranes assigned a team of almost 100 engineers and statisti
 cians to rewrite SYSTAT in C++. The company hopes to de
 velop new scientific applications from this platform. SYSTAT's
 future depends on its serving its base of scientific researchers;
 it cannot compete in the enterprise market without losing focus.

 3.4.10 Google. We do not ordinarily associate Google
 with analytics. In 1 week a few years ago, however, Google
 wiped out an entire Web analytic market segment with the intro
 duction of Google Analytics. Companies like Net Genesis and

 WebSideStory had to reorganize after Google offered a power
 ful analytic environment for free.

 Google is a leader in distributed analytics, but these are re
 served for internal use. The company has computed logistic re

 gressions on data sets with billions of cases and millions of vari
 ables across thousands of processors. The Google News facility
 is one of the largest and most complex text analysis systems in
 production.
 We can expect more thin-client analytics from Google as the

 company senses commercial applications that can expand its
 revenue base. Google is uniquely suited to develop distributed
 technology because it has heavily recruited statisticians, com
 puter scientists, and mathematicians who specialize in these ar
 eas.

 3.4.11 Microsoft. It has been frequently observed that the
 most widely used statistical package is probably Microsoft Ex
 cel. For many, Excel is essentially free, because the organiza
 tion has a license for Office. Consequently, and despite the se
 rious shortcomings documented by Knusel (1998) and McCul
 lough and Wilson (2002), Excel is widely used for teaching and
 analysis.

 In 2000, Microsoft introduced various data mining methods
 (e.g., /c-means clustering, decision trees) in its Analysis Ser
 vices suite. The GUI for this software made it especially easy
 for novices to analyze data stored in the Microsoft server. As in
 other areas, Microsoft has pursued a strategy of dominating the
 vast horizontal market for analytics, leaving SAS, SPSS, and
 other competitors to serve the high-end market. We expect this
 trend to continue.

 3.4.12 R Project. The R Project began with an effort by
 Ross Ihaka and Robert Gentleman to develop a new environ
 ment for statistical computing. They soon adopted the S syntax
 because of its familiarity among statisticians. The rapid growth
 of R came after the base engine was completed and statisticians
 joined the open-source project to develop sophisticated statisti
 cal routines.

 R is a functional programming language whose result set is
 a collection of objects. Its object-based architecture, originally
 devised by John Chambers, makes it simple to gather the types
 of information (e.g., coefficients, residuals, diagnostics) that
 statisticians typically want to examine and manipulate when
 modeling.

 R might have been equally successful if it had introduced
 a different statistical computing model, but much of its suc
 cess appears to stem from the familiar S syntax. Statisticians
 adapted to this syntax readily and many have joined as devel
 opers. The size of the R development community probably ex
 ceeds the size of any commercial analytic company's develop
 ment group. Consequently, we should expect the growth of R to
 continue to be almost exponential.

 Only a new architecture for statistical computing is likely
 to affect this growth. In fact, the R and Python communi
 ties have already held discussions on symbiotic development
 of new statistical computing systems. A promising path ap
 pears to be melding the parallelism of the iPython project
 (http://ipython.scipy.org/moin/) with the statistical algorithms
 of R. This would enable users to compute advanced analytics
 on massive data sets and would offer more sophisticated data
 management algorithms than are available in R today.

 3.4.13 Python. Python was developed by Guido van
 Rossum, a mathematician who now works at Google. Like
 other languages developed by mathematicians (e.g., APL),
 Python has a clean, spare, and expressive syntax. Since its early
 years, Python has been supported by an open-source founda
 tion, which has resulted in explosive development.
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 Python's coverage of statistics is sparse (see the SciPy li
 brary at http://www.python.org/). As a remedy, Duncan Tem
 ple Lang developed an R/Python bridge linking both environ
 ments (http://www. omegahat. org/RSPython/index, html). The
 joint growth of Python and R is likely to influence statistical
 computing in the future, perhaps more than any other single
 factor.

 3.4.14 The Future of Statistical Software. Figure 6
 shows a biplot of the companies discussed in the last section.
 The data for the plot consist of measurements on three vari
 ables: Size, Memory, and GUI. The Size variable is represented
 by the number of megabytes of free disk space required for the
 installation of the full package, according to the software ven
 dor. It is a very rough proxy for the comprehensiveness of the
 package. The Memory variable is binary. It records whether the
 data management of a package is primarily memory-based or
 disk-based. Memory-based packages tend to be especially effi
 cient for small problems, because they do not need to allocate
 and write scratch files on the disk. Disk-based packages tend to
 be more scalable (at least in terms of number of rows in a data
 set), because they can swap large arrays to disk to free mem
 ory. This distinction is becoming increasingly moot because
 of virtual memory improvements in operating systems. Never
 theless, operating systems (especially Windows) have shown a
 tendency to grab the majority of addressable memory for them
 selves, so that increases in address space (e.g., 16 bit, 32 bit,
 64 bit) do not yield proportionate benefits for memory-based
 data management. Finally, the GUI variable has three ordered
 levels to represent whether a package was originally GUI-based

 SAS
 SIZE

 Stata MATLAB /
 Python R / . S-PLUS / SPSS MEMORY / ;-/ SYSTAT
 Minitab \

 StatistiGaX

 JMP \ Google \ Microsoft

 (aUI

 Figure 6. Biplot of statistical software packages based on predomi
 nance of memory over disk location of data, installation footprint (size
 in megabytes), and predominance of GUI over commands in user in
 terface. Several clusters are evident. The memory-based programming
 languages (Stata, MATLAB, Python, R, and S-PLUS) constitute a
 tight cluster. The quality-oriented packages (Minitab, JMP, and Sta
 tistica) form a relatively tight cluster as well. SPSS and SYSTAT share
 somewhat similar architectures and user interfaces. SAS is sui generis
 in this layout. The size of the plotted names is proportional to the log
 of 2006 analytic revenues; the log transform was needed to prevent
 the smaller companies from vanishing in the plot. Revenues for the
 open-source groups (Python and R) were equivalenced based on rough
 estimates of user bases.

 (with scripting commands added as an afterthought), command
 based (with GUI features added later to support commands), or
 a combination of both (the middle value).

 The size of the names plotted in the graph is proportional to
 the log of 2006 statistical revenues (with equivalences for the
 not-for-profit groups guesstimated from user bases). The log
 scale was required to prevent the smaller companies from dis
 appearing in the plot. It is important to note that revenues are
 apportioned for statistical applications. Otherwise, two compa
 nies (Microsoft and Google) would cover the whole plot.

 The biplot is based on a singular-value decomposition (SVD)
 of the standardized data. A similar plot results from an SVD of
 the ranked data. The two-dimensional projection in the plot ac
 counts for about 85% of the variance in the companies on these
 variables. These three variables yield a layout that corresponds
 closely to the market sectors of these packages. A cluster
 of memory-based programming languages (Stata, MATLAB,
 Python, S-PLUS, and R) is readily apparent. The engineering
 based quality packages (Minitab, Statistica, JMP) cluster to
 gether. SPSS and SYSTAT cluster together as well. Google
 and Microsoft?not primarily analytic companies?cluster to
 gether. And, finally, SAS is a singleton.

 We should expect the layout in this plot to continue in the
 future. Of course, companies spread from their bases to at
 tract related groups of users, so the boundaries between clusters
 will increasingly blur. Nevertheless, the original architecture
 of a product significantly influences its performance, footprint,
 and other behavior. Packages are occasionally rearchitected (the
 most conspicuous example being the SAS rewrite from PL/I
 to C during the 1980s). But they invariably follow the wishes of
 their core groups of users.

 As should be evident from the discussions in the previous
 section, several of these companies will develop new products
 to enable their migration into new markets. SAS and SPSS, es
 pecially, will maneuver to avoid and combat simultaneously the
 encroachments of companies like Oracle, Google, Microsoft,
 IBM, and SAP. The greatest economic opportunities for an
 alytic software will be in large-scale corporate and govern
 ment data analysis. The traditional statistical software compa
 nies have already taken note of these opportunities and will pur
 sue them avidly. Although they will devote some resources to
 their traditional statistician user bases, this focus will be sec
 ondary to their future goals. This strategy is not simply based
 on opportunism; it is a matter of survival in a consolidating cor
 porate world.
 What could change this pattern? Acquisitions. Most of the

 larger companies selling business intelligence analytic software
 (Hyperion, Business Objects, Cognos) have recently been ac
 quired by database and service companies. As the statistical
 software companies continue to grow, they will be targets of
 larger corporations intending to capture majority shares of the
 expanding analytic market.

 In 1995 the average single-copy price of the statistical soft
 ware featured in this article was about a third of the price in
 2006. That increase is more than twice the level of inflation

 during that period. Part of this increase could be attributed to
 increasing consolidation of the market (duopoly), but more of
 it is due to the shifting focus of the market. SAS and SPSS
 have reorganized their sales and marketing divisions to focus
 on large corporate and government clients. During this time,
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 these clients have demanded Web Service and thin-client appli
 cations to control installation, technical support, security, and
 licensing. Sales have thus consolidated into thousands or mil
 lions of dollars in annual license fees for onsite network instal

 lations. For these larger companies, single-copy sales are be
 coming economically unattractive.

 This trend may give the open-source projects increased op
 portunities to acquire the clients that the traditional packages
 served in the past. The open-source movement is clearly driven
 on the user side by an aversion to rising software prices and
 punitive licensing practices. The security demands of larger
 corporations will fuel this drive. For the Technometrics read
 ers who use desktop statistical software, the future may lie with
 the small cluster of companies in the northwest sector of Fig
 ure 6 and with the few others in the plot committed to single
 copy sales.

 Finally, it should be evident that future analysts who insist on
 limiting themselves to a single system will necessarily sacrifice
 their ability to handle difficult problems. For at least a decade,
 end-users will have to familiarize themselves with a range of
 software tools to handle massive data sets and nontabular data

 structures. Although the popular press has promoted the Inter
 net as a solution to all our computing problems, scientific com
 puting (in the broadest sense) has its own special challenges.
 The complexities of data structures and analytic algorithms re
 quire peculiar solutions. It does not seem likely that a single an
 alytic system for handling all these problems will appear in the
 next decade. We are still computing with analytic architectures
 that originated in the 1970s. A new comprehensive system will
 doubtless emerge, but not until the economics (commercial and
 social) and the technology (computational and social) converge
 to provide a foundation. Interestingly, many of the observations
 in this paragraph were already made in the relatively early days
 of statistical computing (Thisted 1986).

 4. CONCLUSION

 We have seen how technology and economics have forced
 changes on the statistical software market. This dynamic trend
 will continue for at least a decade. In this coming decade, we
 can expect three parallel developments. First, large corporate
 and government clients throughout the world will increasingly
 shape the design of analytic software. Second, open-source
 projects and small companies will come to serve the desktop
 and interactive user as the larger companies abandon this sec
 tor. Third, technical breakthroughs will introduce new forms of
 user interaction with software systems, particularly in the area
 of distributed and wearable computing.

 If there is a single technical theme characterizing the future
 of statistical computing, it would be smart analytics. Smart an
 alytics will act as assistants to statisticians and data explorers,
 automatically generate and fit models, automatically generate
 visualizations, and search networks for data and summarize re
 sults for further analysis. Statisticians justifiably are inclined to
 distrust such systems, just as medical doctors distrusted early
 diagnostic systems. But as these systems improve, their effec
 tiveness will overwhelm opposition.
 We have already seen the influence of predictive algorithms

 in insurance, credit, and other industries. Insurance reimburse

 ments are assigned by automated agents interacting with cus
 tomer support representatives. Loans are authorized by predic
 tive modeling systems. Automated trading agents have earned
 hedge funds huge incomes. Automated process monitoring in
 corporating embedded analytics has improved product quality.
 One can argue about the net worth of such systems, but there
 is little basis for expecting the prevalence of smart analytics in
 corporating statistical models to decline.

 Clearly, statisticians need to do a better job of evangeliz
 ing statistical computing, especially among computer scientists.
 Statisticians have traditionally offered a powerful argument to
 justify their existence. Statistical reasoning, it is said, protects
 us from being unduly fooled by chance. This is a valid and
 timeless argument. There is a second justification, however, that
 statisticians have largely abandoned. In short, statistical meth
 ods help us to predict. The computer modeling, data mining,
 and machine learning communities now make that argument
 for their own algorithms, often claiming that their determin
 istic prediction algorithms outperform statistical models in new
 "samples." In some cases, there is evidence that this is true. But
 statisticians need to devise new models, write software, and en
 ter contests to make clear that for data approximated by appro
 priate distributions, there is no substitute for prior knowledge.
 The future of statistical computing will be bright as long as sta
 tisticians reach out to their peers in computer science and show
 what they can do.

 5. GLOSSARY

 AJAX. Asynchronous Javascript and XML. This technology al
 lows animation and user interaction in a browser environment

 that approaches the richness and responsiveness of Java. Unlike
 Java, AJAX cannot be easily undermined by Microsoft. In fact,

 Microsoft invented the backbone of the AJAX technology and
 fully supports it in its browser.
 Agent-based model. An algorithm for simulating the interac
 tions of autonomous agents in a network to analyze states of the
 system over time. ABMs sometimes can be represented mathe
 matically by dynamical systems.
 Bus. A subsystem that transfers data between computer com
 ponents (processor, memory, peripherals). In early computers,
 a bus was equivalent to wires on a motherboard or connector ca
 bles between boards. In modern microprocessors, a bus is part
 of the chip design itself, connecting subcomponents on the chip.
 The width of a bus (number of communication lines) is a major
 determinant of computer performance.
 Column-oriented. Processing tabular data columnwise (as op
 posed to rowwise). This improves the efficiency of some nu
 merical algorithms, especially for in-memory calculations, but
 it makes scalability more difficult to achieve.
 Embedded. A component is embedded in another system if it
 allows the other system to control its behavior and if it is located
 in the same computing environment as the host system.
 Enterprise. An adjective characterizing software that is scal
 able, thin-client, and embedded. It is also a term used by mar
 keting people to describe their company's software, regardless
 of its characteristics.

 Flash. A technology developed by Macromedia, now owned by
 Adobe, for producing animations in browsers.
 Grid computing. The power grid is a metaphor for distributed
 (or "cloud") computing. A process (with or without associated
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 data) is cut into snippets so that multiple processors can simul
 taneously contribute to the ultimate solution.

 GUI. Graphical user interface. In the 1990s, this term referred
 to dialogs, wizards, and other aids for controlling computer pro
 grams visually. More recently, it includes haptic (touch) and
 gestural interfaces for directly manipulating visual objects, as
 on the Apple iPhone and Microsoft Surface products.
 IEEE. The Institute of Electrical and Electronics Engineers,
 a professional organization that, among other activities, sets
 software and hardware standards for industry.
 IT. Information Technology, the department that controls com
 puting in an organization. The department that says "no" to soft
 ware salespeople introducing new products.
 Java. A language developed at Sun for client-side computing
 on networks. Opposition by Microsoft and corporate IT depart
 ments drove Java off the Web. IBM rescued Java by adopting it
 as its standard language for server-side computing.

 Mashup. A Web application that combines data from more than
 one source into a single integrated application. One instance is
 the display of prices among gasoline stations superimposed on
 a Google map in a Web Service that provides daily updating of
 those prices.
 .NET. Microsoft's answer to Java. It uses a common language
 runtime (CLR) virtual machine as an alternative to the Java Vir
 tual Machine. Unlike Java, .NET. applications can blend various
 programming languages without extra effort.
 PARC. Palo Alto Research Center, a former subsidiary of Xe
 rox that invented but failed to patent the GUI user interface most
 widely used on computers today.
 PGP. Pretty Good Privacy, a computer program that provides
 cryptographic privacy and authentication based on public-key
 cryptography.
 Rich client. A characterization of software that requires a
 browser plug-in (e.g., Java, SVG) on a user machine. Rich client
 is a marketing term devised to replace the older, pejorative term
 Fat client. As browsers become fatter (by including plug-ins
 such as Flash), rich clients paradoxically become thin clients.
 Row-oriented. Processing tabular data rowwise (as opposed to
 columnwise). This architecture facilitates processing of large
 files with many rows.
 RSA. The Rivest, Shamir, Adleman public-key encryption al
 gorithm, which has been used widely for electronic commerce.
 SaaS. Software as a Service, a delivery model in which a ven
 dor hosts a software application for customers on the Internet.
 Customers pay for each use of the software instead of owning it.
 Scalable. Row-oriented, single-pass, and minimal-memory
 footprint software. The term has been hijacked by database
 companies to characterize analytic software embedded in their
 database, as if computation external to a database were neces
 sarily less efficient.

 Single pass. Software that passes through rows of data only
 once to compute a model.
 Socket. An interface between a client program and a proto
 col for communicating among a group of clients. A socket im
 plements the protocol (usually TCP/IP), the IP address of the
 client, and other information needed to communicate with other

 programs running on the net.
 SSL. Secure Sockets Layer, a cryptographic protocol that pro
 vides secure communications on the Internet for browsing,
 email, and other activities.

 SVG. Scalable Vector Graphics, a World Wide Web Con
 sortium XML specification for implementing two- and three
 dimensional vector graphics and animation in a Web environ
 ment.

 Thin client. Software that requires only a browser on a user
 machine.
 TCP/IP. The Transmission Control Protocol/Internet Protocol,

 a suite of standards for handling streams of bytes in Internet
 transmissions. The protocol specifies how these streams are to
 be segmented, identified, and reassembled to ensure reliable
 transmission of email, files, and other information across the
 Internet.

 Virtual machine. A software duplicate of a real machine.
 A virtual machine executes instructions on a computer and op
 erating system by simulating a different processor's instruction
 set.

 Visual programming interface. A GUI-based on a planar di
 rected graph, similar to a flow chart. Unlike flow charts, how
 ever, visual programming nodes represent higher-level objects
 and edges represent data flows.

 Web Service. A software system designed to support interoper
 able machine-to-machine interaction over a network. This tech

 nology enables Software as a Service.
 W3C. The World Wide Web Consortium, which develops inter
 operable specifications, guidelines, software, and tools for the

 World Wide Web. It is a not-for-profit organization.
 XML. Extensible Markup Language, a W3C standard defining
 tags for the nodes of a tree structure containing objects such as
 data and specifications. The tree structure is defined by nesting
 tags. XML has been widely adopted as a standard for storing
 and transporting data on the Web because tree structures are a
 flexible method for storing data.
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 Comment
 John M. Chambers

 Summit, NJ 07901

 (Jmc @ r-project, org)

 Leland Wilkinson's overview and predictions for future
 trends are delightful and stimulating. It is a pleasure to con
 tribute to the discussion. The article ranges widely over the
 question it considers, "the effects that future computing tech
 nology is likely to have on statistical computing." It would be
 great fun to endorse, elaborate on, or quibble with many of the
 points raised (although a challenge to keep to the editor's lim
 itation on discussion length); however, my main concern is to
 examine the question itself. To borrow another phrase associ
 ated with John Tukey: "Better an approximate answer to the
 right question than an exact answer to the wrong question."
 There is nothing wrong with Lee's question, but I believe that
 those of us concerned for statistical computing ought to widen
 our focus, to ask what the future should be.

 WHICH FUTURE FOR STATISTICAL COMPUTING?

 Viewing the future of statistical computing in terms of com
 puting technology per se may suggest a view based largely
 on the serving up of better technology to support our current
 lifestyle, specifically our current interests in statistical method
 ology and theory, but with faster computations and on a larger
 scale. Indeed, as the article points out, there are many such
 changes in computer technology, some already in process.

 But is this the most relevant way to pose the question of the
 future? Neither statistical computing nor statistical data analy
 sis itself exists for its own sake. Statistical data analysis aims
 to help people learn from data, through the concepts and tech
 niques that it provides to support scientific studies, in a broad
 sense. Statistical computing in turn designs and implements
 computational techniques to support data analysis and other sta
 tistical needs.

 This suggests that we might ask what the future of statistical
 computing should be, to best serve those who use it. Again,
 what are the right questions: Where should we put our efforts in
 research and teaching, to obtain the greatest benefit for science
 and society?

 To ensure our own future and that of our planet, we must face
 some very tough issues in the coming years. Science potentially
 has much to offer in response. For most of the scientific studies,

 investigators must cope with large, complex sources of data that
 resist simple summaries. Statistical computing should have an
 important future role, provided that we focus on the key needs
 of the applications and exploit technological advances that re
 spond to those needs. I would hope that we (both in statisti
 cal computing and in statistics generally) intend to be involved
 with such issues. To do our best, we need a more selective view

 of new technology, seeking and adopting new features that en
 hance our ability to support important studies. Both push and
 pull are involved; scientific tasks can push us to modify sta
 tistical computing to satisfy their needs, and new technologies
 can suggest better ways to organize and carry out the scientific
 studies.

 Many current developments are potentially relevant, a num
 ber of them mentioned in sections 2 and 3 of Wilkinson's ar

 ticle. In this discussion, I can fit in only a few characteristic
 examples. It may help to keep in mind that serious collabora
 tive data analysis projects nearly always involve three major
 aspects:

 ? 2008 American Statistical Association and
 the American Society for Quality
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