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Second Thoughts on the Bootstrap 
Bradley Efron 

Abstract. This brief review article is appearing in the issue of Statistical 
Science that marks the 25th anniversary of the bootstrap. It concerns some 
of the theoretical and methodological aspects of the bootstrap and how they 
might influence future work in statistics. 
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My first thoughts on the bootstrap centered around 
variance and bias estimation. This was natural enough 
given the bootstrap's roots in the jackknife literature, 
with Quenouille (1949) on bias and Tukey (1958) on 
variance setting the agenda. The oldest note I can find 
says simply "What is the jackknife an approximation 
to?" Poor English, but a good question that resulted in 
the 1977 Rietz Lecture, "Bootstrap Methods: Another 
Look at the Jackknife" (Efron, 1979). Jaeckel's (1972) 
Bell Labs memorandum on the infinitesimal jackknife 
was particularly helpful in answering the approxima- 
tion question. 

Now it is 25 years later and the bootstrap baby is 
old enough to be in grad school. I have had some 
second thoughts about the bootstrap-its strengths and 
weaknesses, its foundations, what it can and cannot 
do, what it might do in the future-and these second 
thoughts are what I will talk about, briefly, here. This 
volume is full of excellent essays that discuss and 
sometimes answer many of these questions in the 
context of authentic applications. So with apologies to 
the authors and the readers for any redundancy, here 
are a few comments and concerns. 

THE PLUG-IN PRINCIPLE 

The diagram in Figure 1 describes a typical bootstrap 
application: An unknown probability model P, for ex- 
ample, a logistic regression that depends on an un- 
known vector of coefficients, has yielded an observed 
data vector x. From x we calculate a statistic 0 = s(x) 
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intended to estimate a parameter 0 = t (P) of particular 
importance, perhaps one of the unknown coefficients. 
We are interested in 0's accuracy for estimating 0, with 
accuracy defined in terms of bias, variance, confidence 
intervals, prediction error or some other such measure. 

The right half of the diagram describes the "boot- 
strap world" (in David Freedman's picturesque termi- 
nology): P is a point estimate of P, in the logistic 
regression example obtained perhaps by substituting 
maximum likelihood estimates for the unknown coeffi- 
cients. The estimate P yields bootstrap data vectors x* 
and then bootstrap replications 0* = s(x*). Since P is 
completely known, we can generate as many 0*'s as we 
want, or have time for, and use their observed variabil- 
ity to assess the accuracy of 0. During the past 25 years 
an enormous amount of statistical research has investi- 
gated the validity of the bootstrap approach. For most 
models P and most statistics 0, we know that the boot- 
strap standard deviation sd, {0*} is a good estimator for 
the true standard deviation sd{0 }, and likewise for other 
accuracy measures. 

The double arrow in Figure 1 indicates the estima- 
tion of P from x. The utility of the bootstrap depends 
on the double arrow process being easy to execute. It 
is particularly easy in the one-sample nonparametric 
case, where a completely unknown probability distrib- 
ution gives x = (xl, x2, ..., n) by random sampling, 
in which case we can take P to be the empirical dis- 
tribution that puts probability 1/n on each xi. Simply 
stated, the bootstrap is a device for upgrading a point 
estimate for P to an accuracy estimate for 0. Point es- 
timates P are so ubiquitous it comes as a shock when, 
as in some versions of the proportional hazards model, 
point estimates do not exist. 

Figure 1 exemplifies the plug-in principle: We travel 
from the real world to the bootstrap world simply by 
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Real World Bootstrap World 

P - x === P P x* 

I 1 

0 O* 

FIG. 1. Typical bootstrap diagram. Unknown probability model 
P gives observed data x and we wish to know the accuracy of 
statistic 0 = s(x)for estimating the parameter of interest 0 = t (P). 
Point estimate P for P yields bootstrap data sets x*. Accuracy 
is inferred from observed variability of bootstrap replications 
0* =s(x*). 

plugging in a point estimate P for P. This is the only 
inference step. All other arrows on the right are exact 
analogs of those on the left. Plug-in methods are famil- 
iar friends in classical statistics, when, for instance, we 
estimate the standard deviation [p(l - p)/n]1/2 of a 
binomial proportion p by [p((1 - ))/n]1/2. Fisher ex- 
tended the same tactic to information calculations for 
maximum likelihood estimators, substituting J(0)-1/2 
for 3(0)-1/2. Our advantage is that moder comput- 
ers allow us to carry out the plug-in principle with im- 

punity, calculating P - x* -- 0* by brute force. 
How far can the plug-in principle be trusted? "Pretty 

far" is a reasonable summary of current bootstrap 
research. Simple bootstrap ideas, like resampling from 
the empirical distribution, work surprisingly well in 
a surprisingly large catalog of cases, yet there are 
situations where plugging-in starts to get worrisome. 

Figure 2 concerns a genomics example. A total 
of 1391 HIV viral genomes were collected from 
AIDS patients who were taking various protease in- 
hibitor (PI) drugs. The data for each genome com- 
prise 74 numbers representating the amino acid present 
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FIG. 2. Top panel: Histogram of z values for 444 main effects 
observed in genome data logistic regression. The beaded curve is 
a spline fitted to histogram counts. Bottom panel: First 10 of 50 

bootstrap replications of splinefit. The replications tend to be wider 
than the original beaded curve. 

at each of 74 positions on the viral protease gene, 
recorded as 0 or 1, respectively, if the amino acid was 
or was not the usual one present at that position in wild- 
type HIV: 1's indicate mutations caused by the drug 
treatment. The investigators wondered which of the six 
different PI drugs were associated with which muta- 
tions. Complicating matters, a majority of the 1391 pa- 
tients took more than one PI (the average being 2.05); 
a few even took all six. 

A logistic regression that had 444 = 6 x 74 main 
effects, one for each drug at each genome position, 
was fitted to the 1391 x 74 0-1 amino acid responses. 
This gave the 444 z values (coefficient estimate divided 
by standard error) that appear in the histogram in the 
top panel of Figure 2. The beaded curve is a smooth 
Poisson generalized linear model (GLM) fit to the 
histogram counts, performed using a natural spline 
with 7 degrees of freedom. The central peak is normal 
shaped with mean and standard deviation 

/2=-0.38 and a =1.20, 
where a is computed from the curvature of the spline 
fit at ". 

How accurately determined is the spline fit? The 
usual Poisson GLM standard errors are inappropriate 
since the 444 z values, and therefore the histogram 
counts, are mutually correlated. Instead I applied 
the nonparametric one-sample bootstrap with the 
1391 genomes (each with its 74 numbers intact) as the 
resampling units. Each bootstrap data set gave boot- 
strap z values, a histogram and a natural spline fit. The 
bottom panel shows the first 10 of 50 bootstrap spline 
fits. 

The 50 bootstrap estimates a*, each computed in 
the same way as the original - = 1.20, had empirical 
mean 1.37 and empirical standard deviation 0.12. The 
value 0.12 is a reasonable estimate for the standard 
error of r = 1.20, but in this case there is some cause 
for concern about the plug-in principle: 43 of the 50 
5*'s exceeded a. In the bottom panel we can see 
that the bootstrapped curves systematically exceed the 
width of the original curve. 

It is easy to understand what is happening here: If 
the ith bootstrap z value z* has bootstrap mean and 
variance (zi, vi) (nearly true, with the vi's roughly 1, 
except for zi near 0 where they are smaller), then the 
empirical variance of the bootstrap histogram will be 
inflated by about v. We could correct the a*2 values by 
subtracting v, but this takes us beyond the realm of the 
plug-in principle. 

The "dilation phenomenon" in the bottom panel of 
Figure 2 occurs in classical situations, as with Stein 
estimation or the Neyman-Scott example. It points to a 
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limitation of the plug-in principle and the bootstrap that 
I wish I understood better. In this case we get a warning 
from the bootstrap analysis, from the miscentering of 
the a* values, but I am not certain that other plug-in 
pathologies are not possible, especially in situations 
that involve a great many parameters. We seem to be 
living in a "great many parameters" era, which makes a 
critical examination of the plug-in principle especially 
timely. 

BOOTSTRAP CONFIDENCE INTERVALS 

A pleasant surprise in the early bootstrap literature 
was second-order accuracy, which was developed orig- 
inally in the articles by Singh (1981) and Bickel and 
Freedman (1981). Second-order accuracy suggested 
that the bootstrap could provide good approximate con- 
fidence intervals, better than the usual "standard inter- 
vals" 0 i za,. The actual construction of such intervals 
looked like a formidable task: similar attempts employ- 
ing the jackknife had failed. 

In fact two classes of second-order accurate boot- 
strap confidence intervals have been developed, under 
the names "bootstrap t" and "BCA" (bias corrected and 
accelerated). These classes look different from each 
other and can behave differently, but in fact they are 
closely related as mentioned below. Neither method 
seems to be widely applied. People, even experienced 
statisticians, seem all too happy with the standard in- 
tervals 0 ? z,a', although they may use the bootstrap 
to get a. 

There is more at stake here than the term "second 
order" suggests. Table 1 concerns a simple example: 
15 pairs of points xi = (Yi, Zi) were drawn from a bi- 
variate normal distribution, giving sample correlation 
coefficient 0 = 0.562. Four types of confidence inter- 
vals were computed: (1) exact 90% intervals (noncov- 
erage probability 0.05 in each tail) based on bivariate 
normal theory for correlation coefficients; (2) paramet- 
ric ABC intervals (DiCiccio and Efron, 1992), an an- 
alytic version of BCA; (3) nonparametric ABC, which 
assumes only that the points xi are i.i.d. from an un- 
known bivariate distribution; (4) standard intervals, us- 
ing the normal-theory delta-method estimate of a. 

The parametric ABC interval is almost exactly right 
in this case, while the nonparametric ABC interval is a 
little short in both directions. The standard interval is 
terrible, much too short to the left of 0 and too long to 
the right. We can fix the standard intervals with Fisher's 
tanh-1 transformation, but in situations less familiar 
than the normal correlation coefficient neither a fix nor 

TABLE 1 
Exact and approximate confidence intervals for the correlation 
coefficient of a bivariate normal sample, n = 15, with sample 

correlation coefficient 0.562. The tail area is the actual 
probability of exceeding 0.562 when the parameter value is the 

corresponding interval endpoint 

Limits Tail areas 

0.05 0.95 0.05 0.95 

Exact 0.155 0.790 0.050 0.950 
Parametric ABC 0.158 0.788 0.051 0.948 
Nonparametric ABC 0.188 0.775 0.063 0.935 
Standard 0.271 0.830 0.112 0.980 

an exact solution will be available. Bootstrap intervals 
are always available, offering second-order accuracy 
on a routine basis. 

Second-order accuracy is not perfection. Bootstrap 
intervals are not exact and can be far from perfect 
in small-sample situations. Nonparametric intervals 
seem particularly vulnerable: the shortness seen in 
Table 1 is a typical performance. These are third- 
order errors, akin to dividing by n instead of n - 1 
in variance estimation. Third-order improvements may 
be just what are needed to nudge bootstrap confidence 
intervals into the widely used category. 

That being said, current bootstrap intervals, even 
nonparametric ones, are usually more accurate than 
their standard counterparts. "Accuracy" is a word that 
needs careful definition when applied to confidence 
intervals. The worst definition (seen unfortunately 
often in simulation studies of competing confidence 
interval techniques) concentrates on overall coverage. 
Even the standard intervals might come reasonably 
close to 90% overall coverage in the situation in 
Table 1, but they do so in a lopsided fashion, often 
failing to cover much more than 5% on the left and 
much less than 5% on the right. The purpose of a two- 
sided confidence interval is accurate inference in both 
directions. 

Coverage, even appropriately defined, is not the end 
of the story. Stability of the intervals, in length and 
location, is also important. Here is an example. Sup- 
pose we are in a standard normal situation where the 
exact interval is Student's t with 10 degrees of free- 
dom. Method A produces the exact 90% interval except 
shortened by a factor of 0.90; method B produces the 
exact 90% interval either shortened by a factor of 2/3 
or lengthened by a factor of 3/2, with equal proba- 
bility. Both methods provide about 86% coverage, but 
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the intervals in method B will always be substantially 
misleading. 

The combination of maximum likelihood estimation 
and standard intervals made a profound contribution to 
scientific practice. Computation and theory are now in 
place for a substantially improved confidence interval 
methodology, but we seem to be one step short of 
making the sale to the scientific community. 

ANALYTICS 

Personally my biggest bootstrap surprise involved 
the ABC intervals developed with Tom DiCiccio in 
1992. The ABC is an analytic approximation to the 
BCA method that was intended to cut down on the 
2000 or so bootstrap simulations required for BCA. In 
fact, ABC involves no simulation at all, which was the 
surprise, especially since the method gives excellent 
results for smoothly differentiable statistics like the 
correlation coefficient. 

I find myself coming back to the ABC method 
frequently because its formulaic structure is a great aid 
to theoretical calculations. For instance, ABC leads to 
a nice connection between the BCA and bootstrap-t 
intervals, given in Section 5 of DiCiccio and Efron 
(1996). 

Here is a simple example of ABC formulas: We 
observe v - Poisson(ut) and wish to compute a-level 
endpoints, say a = 0.05 and 0.95, for the confidence 
interval of p. Defining 

a=1/(6,/y) and w=a + -l(a), 

the ABC endpoint is 

wr 
v+ 9f 

(1 -aw)2' 

For y = 7 this gives 90% interval ,u E [3.54, 12.67]. 
The corresponding tail areas (i.e., probabilities of ex- 
ceeding the observed value, including one-half the 
atom at 7, at the interval endpoints) are 0.0477 and 
0.9523, which are gratifyingly close to the ideal val- 
ues of 0.05 and 0.95. Of course we do not need 
approximate intervals for the one-parameter Poisson 
family, but the formulas, which are useful even here, 
keep working in the great hinterland of cases where 
there are no exact solutions. 

The standard intervals depend on estimates of two 
parameters, /u and a. In addition ABC requires esti- 
mating three more parameters, the "acceleration" a, 
the "bias correction" z, and the "nonlinearity coeffi- 
cient" ca. [In the Poisson example, Zo = a = (6,/y)-l 

and Cq = 0.] Each of the three parameters corrects a 
first-order deficiency of the standard intervals, finally 
resulting in second-order accuracy. It is of some the- 
oretical interest that second-order accurate intervals 
require exactly five parameters. An important ques- 
tion, unanswered I believe, is how many parameters 
are required for third-order accuracy. Answering this 
question might also connect bootstrap theory more 
closely with the likelihood-based intervals developed 
by Bamdorff-Neilsen, Cox, Reid and others; see Reid 
(1995). 

The last few decades of statistical research can be 
broadly summarized as an immense amplification of 
classical theory via the power of electronic calculation. 
I have gone on a bit about the ABC method because it 
represents the reverse process: a return from computer 
algorithms to the classical world of formulas. Some- 
thing has been gained in the round trip 

classical confidence intervals - BCA algorithm 

- ABC formulas, 

namely a better theoretical understanding of the vast 
middle ground that lies between exact intervals and the 
standard method. 

This kind of reverse engineering could be impor- 
tant if we hope to expand the base of statistical theory 
beyond its classical limits. Computers enable us to ex- 
plore a high-dimensional statistical universe far out- 
side classical boundaries, but how do we report back 
what we have found? Numerical summaries are 
end-products, perfectly appropriate in statistical ap- 
plications, but clumsy for theoretical investigations. 
Analysis and formulization, the traditional approach 
but now applied to computer-based methods like the 
bootstrap, Markov chain Monte Carlo, empirical like- 
lihood or generalized additive models, could lead to a 
new round of progress in the fundamentals of statistics. 

PREDICTION PROBLEMS 

Cross-validation, like the standard intervals, is a 
method of such obvious virtue that criticism seems 
almost churlish. Moreover, its workhorse status in 
machine learning, as seen in the recent book by Hastie, 
Tibshirani, and Friedman (2001), makes it a statistical 
success story in the outside world. Like standard 
intervals, however, cross-validation is such a handy 
tool that it is easy to overuse. Can it be improved upon 
as an estimator of prediction error, perhaps in the way 
that the bootstrap intervals improve upon the standard 
method? There is some hope here: Cross-validation 
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connects directly to the jackknife and bootstrap, as in 
Efron (1983), and in fact Efron and Tibshirani (1997) 
showed that the bootstrap-based ".632+ rule" bettered 
cross-validation over a range of prediction problems. 

What we do not have is a convincing theoretical 
bound that says how well a given estimate of predic- 
tion error is performing. Second-order accuracy pro- 
vides such a bound for confidence intervals, but the 
asymptotics are more delicate for prediction problems. 
It is easy to achieve the equivalent of first-order ac- 
curacy, as cross-validation does; what is not available 
is theoretical reassurance that the numerical gains of 
methods like .632+ will hold up in general practice. 

BAYESIAN CONNECTIONS 

The bootstrap looks like a poor candidate for 
Bayesian duty. It was developed as an extension of a 
pure frequentist device, the jackknife, and itself vio- 
lates the likelihood principle (since it depends on eval- 
uating the statistic of interest for data sets other than 
the one observed). Nevertheless, Bayesian connec- 
tions have persistently emerged, as in Rubin's (1981) 
"Bayesian Bootstrap." The connection is closer to 
Jeffreys' objective Bayesian tradition than the subjec- 
tivist school, but it is an encouraging sign that there is 
any relationship at all. Two examples follow. 

Figure 3 shows a phylogenetic tree that charts the 
evolutionary history of 11 species of malaria parasite: 
Pme2 attacks lizards, Pfa4 is the most deadly form of 
human malaria and so forth. The tree was constructed 
by applying a standard clustering algorithm to the 
11 x 221 data matrix x composed of the aligned RNA 
base sequences at 221 sites along the malaria genome; 

Pme2 

99% 

see Efron, Halloran and Holmes (1996). Some inter- 
esting relationships emerged, in particular, the Pcy9- 
PvilO clade, which indicates a recent connection be- 
tween primate and human malaria. However, the tree 
is a statistic, admittedly a complicated one, and it is 
reasonable to ask how much trust we can place in the 
observed features. 

Felsenstein (1985) proposed a bootstrap answer 
to this question: the columns of x are resampled, 
bootstrap trees are constructed and the proportion of 
bootstrap trees that have the feature of interest simply 
are counted. For instance 193 of 200 bootstrap trees 
showed the Pcy9-PvilO clade, giving 193/200 or 
96.5% bootstrap confidence in its validity, as indicated 
in Figure 3. 

What is the statistical interpretation of Felsenstein's 
confidence values? Efron, Halloran and Holmes (1996) 
discussed an objectivist Bayesian interpretation as well 
as standard confidence statements. Broadly speaking, 
vague prior opinions should lead to 96.5% posterior 
belief in the validity of the Pcy9-PvilO clade. The 
problem is too complicated to actually construct an 
appropriate uninformative prior, but the bootstrap cal- 
culations do so automatically. More sophisticated boot- 
strap resampling schemes can improve both the 
Bayesian and frequentist properties of the confidence 
values. 

The "Problem of Regions" (Efron and Tibshirani, 
1998) is a generalized statement of Felsenstein's prob- 
lem. As a simple example, suppose the plane is di- 
vided into checkerboard squares four units on a side, 
the squares being the regions, and that a single bivari- 
ate point x - N2(it, I) is observed, falling say into 
region R1. How confident should we be that tL itself 
lies in R ? Felsenstein's tactic of resampling points 
x* - N2(x, I) and counting the proportion in R1 gives 
an answer something like an objective Bayesian pos- 
terior probability, which again can be improved upon 
with more sophisticated bootstrapping schemes. 

Figure 4 illustrates another situation where the boot- 
strap can be used to carry through a Jeffreys-type 
Bayesian analysis of a complicated problem. The data 
in this case consist of five test measurements on each 

Pgall 

Pcy9 PvilO 

I 
1I 

4.91 

FIG. 3. Phylogenetic tree for the evolutionary history of malaria. 
Percentages indicate Felsenstein's bootstrap confidence estimates. 
For example, there is 96.5% confidence that the Pcy9-PvilO clade 
is valid. 

10 15 5 

FIG. 4. Relative likelihood of eigenvalue ratio parameter 0 
(student score data). The likelihood is longer tailed to right 
of 0= 4.91. 
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of 22 students [one-quarter of the data on page 4 of 

Mardia, Kent and Bibby (1979)]. The sample covari- 
ance matrix has a ratio 0 = 4.91 of the first to sec- 
ond largest eigenvalue, and we wish to make inferences 
about the corresponding population parameter 0. 

The curve in Figure 4 is an adjusted likelihood for 0 

computed from the output of the nonparametric ABC 

program; see formula (6.12) of Efron (1993), a simple 
function of (0, a, a, Zo, Cq). We see that the likelihood 
function is much longer tailed to the right of 0. The 

theory behind Figure 4 equates this function with what 
we would obtain using a truly uninformative prior 
distribution (one that has a posteriori distributions with 
accurate coverage probabilities in the usual confidence 
interval sense). 

In fact it would be difficult to construct an uninfor- 
mative prior for the eigenratio in a five-dimensional 

nonparametric situation. To this end, the ABC like- 
lihood is very convenient and can be helpful even 
in subjective Bayesian contexts: expert prior opinion 
about 0 can be combined directly with the likelihood in 

Figure 4 using the Bayes theorem, relieving the expert 
of the need to put a prior on the whole five-dimensional 

space. Alternatively, if we had a parallel collection of 

independent eigenratio problems, we could calculate 
the ABC likelihood for each and combine them using 
empirical Bayes methods. See Efron (1996). 

FINAL REMARKS 

These days statisticians are being asked to analyze 
much more complicated problems, microarrays being 
the archetypal example. I believe, or maybe just hope, 
that a powerful combination of Bayesian and frequen- 
tist methodology will emerge to deal with this del- 

uge of data and that computer-intensive methods like 
the bootstrap will facilitate the combination. Intriguing 
theoretical questions are also hanging in the air. Why 
do the likelihood principle and the plug-in principle, 
which look antithetical, seem to coexist peacefully in 

examples like that in Figure 4? 
These remarks were based on my own frustrations 

and successes with the bootstrap during the past quarter 
century. A much broader point of view is represented 
in the essays that follow. It is striking how different 
the essays are from each other and how different 

application areas have produced distinctive advances 
in bootstrap methodology. I am grateful to the authors, 
and especially to the Editor, George Casella, for 

throwing such a lively birthday party for the bootstrap. 
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