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Abstract

Resampling methods in statistics have been around
for a long time. Over forty years ago Tukey coined
the term jackknife to describe a technique, at-
tributed to Quenouille (1949), that could be used to
estimate bias and to obtain approximate confidence
intervals. About 20 years later, Efron (1979) intro-
duced the “bootstrap” as a general method for esti-
mating the sampling distribution of a statistic based
on the observed data. Today the jackknife and the
bootstrap, and other resampling methods, are com-
mon tools for the professional statistician. In spite of
their usefulness, these methods have not gained ac-
ceptance in standard statistics courses except at the
graduate level. Resampling methods can be made
accessible to students at virtually every level. This
paper will look at introducing resampling methods
into statistics courses for health care professionals.
We will present examples of course work that could
be included in such courses. These examples will
include motivation for resampling methods. Health
care data will be used to illustrate the methods. We
will discuss software options for those wishing to in-
clude resampling methods in statistics courses.

1 Background

Over forty years ago John Tukey coined the term
jackknife for a rough and ready tool that could be
used to come up with approximate confidence lim-
its. Tukey’s (1958) jackknife was based on an idea
of Quenouille (1949, 1956) of using parts of a sample
to estimate bias and thus come up with an estima-
tor with reduced bias. The jackknife is based on
the idea of computing estimates with the i** sam-
ple observation omitted. Twenty years later Efron

(1979) laid out the theoretical groundwork for the
bootstrap as a generalization to the jackknife. Since
that time, statisticians have embraced the jackknife,
bootstrap and other resampling methods. Statisti-
cians have used these methods extensively in their
research. A quick literature search turns up over 175
articles using these methods in 2002 alone.

Although statisticians have embraced resampling
methods for their own use they have not, in general,
included them in their teaching. The exception to
this rule are Julian Simon and Peter Bruce. Julian
Simon hit upon using resampling in teaching statis-
tics prior to Efron’s seminal paper on the bootstrap.
Since that time Simon and Bruce have crusaded for
the use of resampling in the teaching of statistics
at all levels. They have developed a computer pro-
gram (Resampling Stats) to simplify the computing
aspect of resampling.

Several articles in Teaching Statistics have dealt
with the use of resampling and the bootstrap in
teaching statistics courses. Ricketts and Berry
(1994) discuss using resampling to teach hypothesis
testing. They compare the means of two indepen-
dent samples using the Resampling Stats program
mentioned above. Taffe and Garnham (1996) dis-
cuss using resampling to accomplish estimation of
a population mean based on a single sample. They
also provide a Minitab macro for the comparison of
means of two independent samples. Johnson (2001)
presents bootstrap methods for estimating standard
errors and constructing confidence intervals. All of
these articles discuss topics that are core to intro-
ductory statistics courses. Hesterberg (1998) gives
a very nice review of simulation and bootstrapping
in teaching statistics. There is practical advice on
software for simulation and the bootstrap. There is
also an extensive set of references.

Resampling methods and the bootstrap have even
found their way into published textbooks for a be-
ginning course in statistical methods. Statistics:
Making Sense of Data, 2" Ed. by Stout, Travers
and Marden (1999) uses the bootstrap to estimate



the standard error of the sample median, test a hy-
pothesis for a population mean and to test for dif-
ferences among population means. The Practice of
Business Statistics by Moore, et. al. (2003) has an
optional companion chapter, primary author Tim
Hesterberg, entitled “Bootstrap Methods and Per-
mutation Tests”.

Given that much has already been said about re-
sampling and the bootstrap, what do we have to
offer? There is no doubt in our mind that simula-
tion and elements of resampling and the bootstrap
have a place in beginning statistics courses. What
then, as a first step, should be included in a first
statistics course for health care professionals?

2 Simulation

Simulation should be a part of every introductory
statistics course. Many of the core concepts in prob-
ability and inference rely on an understanding of
long run relative frequency arguments. Simulation
can be used to make students more comfortable
with these arguments. For example, everyone knows
that diagnostic tests are not 100% accurate. Health
care professionals should be aware of the sensitivity
and specificity of diagnostic tests. They should be
aware of the idea, and associated probabilities, of
a false positive and a false negative result. How
can one introduce the idea of the chance of 2 false
positives in a random sample of 20 diagnostic tests?
One could try to introduce the binomial probability
function or one could simulate. If the probability
of a false positive is 0.05, the simulated probability
of 2 false positives in a random sample of 20 is
approximately 0.20.
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In addition to the simulation of probabilities,
simulation of random sampling from a population is

helpful when discussing the sampling distribution of
a sample statistic or the interpretation of what 95%
confidence means. There are several interactive ap-
plets available on the web. Two we have found useful
look at the sampling distribution of the sample mean
http://www.ruf.rice.edu/~lane/stat _sim/
sampling_dist/index.html

and the interpretation of confidence
http://www.stat.sc.edu/~west /javahtml/
Confidencelnterval.html.

The latter simulation looks at how many times
a confidence interval covers the true population
mean. From this we try to get students to see that
confidence refers to the method of constructing
confidence intervals. That is, when one repeatedly
constructs 95% confidence intervals based on ran-
dom samples, about 95% of the intervals will cover
the population mean.

95% Confidence Intervals
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3 The Bootstrap

Once students are familiar with simulation, espe-
cially simulated sampling from a known population,
it is fairly easy to introduce the idea of resampling.
It is important to differentiate between simulated
sampling from a population and resampling from
the sample. These are different operations. How-
ever, what one gets out is a distribution, either a
simulated sampling distribution or a resampling dis-
tribution, of possible values for a sample statistic.

3.1 Confidence Intervals

The usual treatment of confidence intervals in most
introductory courses begins with the sampling dis-
tribution of a statistic, like the sample mean. From
the sampling distribution, one argues that 95% of

the time the sample mean, X, will fall between



== 1.96%. Through some simple algebra, the ran-
dom interval X + 1.96% will cover the population

mean, p, 95% of the time. If the population stan-
dard deviation is not known, them the random inter-
val becomes X =+ t*\/iﬁ. The value of t* is obtained
from a table of the t-distribution with n — 1 degrees
of freedom and the appropriate confidence level. The
necessary condition for the latter interval is for the
original measurements to come from a normal, or at

least approximately, normal distribution.

To illustrate the usual construction of a confi-
dence interval we consider the length of stay in
hospital for normal newborns (Diagnostic Related
Group (DRG) 391). A normal newborn is actually a
baby that experiences some minor problems at birth
and is considered an admission separate from that
of the mother. A random sample of 20 newborns,
DRG 391, is selected and the length of stay noted.
The sample statistics are X = 5.6 and s = 2.16. A
95% confidence interval for the population mean
length of stay is 5.6 £ 2.09%/'—% or 5.6 £ 1.0. It turns
out the the distribution of length of stay for DRG
391 is symmetric and mounded in the middle as
seen in the histogram below.

Length of Stay in Hospital
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Continuing with another DRG, a random sample
of 20 patients, DRG 183 - Digestive system disorders
age 18-69, is taken and sample statistics calculated.
The sample mean is X = 3.1 and sample standard
deviation is s = 1.65. This presents a problem as
the relatively large sample standard deviation, and
the fact that the shortest length of stay is 1 day,
indicates that the distribution of length of stay for
this DRG is most likely skewed. The distribution
of length of stay for DRG 183 is highly skewed as
indicated by the histogram below.
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At this point we are confronted with a dilemma.
Should we proceed with the normal theory method
even though we have concerns that this is inappro-
priate? Should we stop and say we do not know
what to do or that methods for proceeding are
beyond the scope of the introductory course? The
bootstrap provides a way out of this dilemma. The
bootstrap can produce a resampling distribution
that can be used to set confidence limits. Re-
sampling, with replacement, 1000 times from the
original sample of 20 patients’ length of stays gives
a resampling distribution like the one shown in the
following figure.

Resampling Distribution for the Mean
DRG 183
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Counting in 2.5% of the values from either end of
the resampling distribution gives a 95% bootstrap
confidence interval for the population mean. In our
example, this turns out to be 2.4 days to 3.8 days.

The idea of resampling can be extended to other
statistics. For the length of stay for DRG 183, the
skewed nature of the population distribution might
lead us to consider the median as a more robust
measure of center. Again we can resample, with



replacement, from the original sample of 20 values
and create a resampling distribution like the one in
the following figure.

Resampling Distribution for the Median
DRG 183
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Again, counting in 2.5% of the values from either
end of the resampling distribution gives a 95% boot-
strap confidence interval for the population median.
This turns out to be from 2 days to 4 days.

3.2 Testing Hypotheses

Testing statistical hypotheses is an important, but
often difficult, topic in any introductory statistics
course. For health care professionals, determining
whether two treatment regimens are statistically dif-
ferent is very important. Here the use of the boot-
strap and resampling can be a great help.

Consider the data presented in the article by Re-
gan, Hellmann and Stone (2001). There are two
treatment groups, one with 17 patients and the other
with 19 patients. Patients are being treated for We-
gener’s granulomatosis. The data consists of the
number of patients in remission, and not in remis-
sion, for each treatment. The data are reproduced
in the table below.

Trmt 1 | Trmt 2
Yes 6 14 20
No 11 5 16
17 19 36

The proportion in remission for Treatment 1 is
0.353 or 35.3% while the proportion in remission
for Treatment 2 is 0.737 or 73.7%. This looks like
a large difference in sample proportions, but is
this difference statistically significant? How likely
is it to get a difference in proportions as large,
or larger than, the observed difference of 0.384 if
there is actually no difference in the population

remission proportions? This question is asking for a
P-value. How might this P-value be approximated?
If the population remission proportions for each
treatment are not different, then we would expect
to see % = 0.556, or 55.6% of the patients in each
treatment group in remission. For the first group
simulate the number of patients in remission out of
17 in Treatment 1 using a probability of remission
of 0.556. Do the same for the number of patients
out of 19 in Treatment 2. Compute the difference
in simulated remission proportions and construct a
histogram like the one in the figure below.

Resampling Distribution
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The darker shaded bars represent those differences
that are as large as, or larger than, the observed dif-
ference of 0.384. There are 26 out of 1000 such cases.
This gives a bootstrap P-value of 0.026. It is not
likely that as extreme a difference in observed re-
mission proportions could have occurred if the two
treatments had been the same. There is evidence
that the two treatments have different remission pro-
portions.

Although we simulate the number of patients in
remission in each treatment group, we do this using
the observed sample remission proportion of 0.556.
Simulating with a value derived from a sample is
referred to as a parametric bootstrap.

In the same article by Regan, Hellmann, and
Stone (2001) there is another study involving many
more patients. The data on remission in each of two
treatment groups is given below.

Trmt 1 | Trmt 2
Yes 84 119 203
No 71 39 110
155 158 313

The proportion in remission for treatment 1 is
0.542 or 54.2% while the proportion in remission



for treatment 2 is 0.753 or 75.3%. The difference
in observed proportions is 0.211. Performing the
parametric bootstrap with observed overall remis-
sion proportion of 0.649 produces the resampling
distribution of the difference in proportions as
illustrated in the figure below.
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None of the 1000 resampled differences are more
extreme than the observed difference of 0.21. The
bootstrap P-value is 0.000. This is a good way to
show the influence of sample size on the test of hy-
pothesis. Even though the observed difference in
proportions is smaller than before (0.211 compared
to 0.384), the bootstrap P-values indicate that 0.211
is a more extreme difference.

4 Computing

In order to do simulation and/or bootstrapping ef-
fectively, one needs access to computing. There
are extremes to the range of computing possibili-
ties. At one end is a package specifically designed
for resampling like Resampling Stats by Simon and
Bruce. Ricketts and Berry (1994) use Resampling
Stats to perform resampling. For reviews of Re-
sampling Stats see Albert and Berliner (1994) and
Reeves (1995). Be aware that the reviews are ap-
proaching 10 years old and new versions of Resam-
pling Stats have been released. At the other end of
the spectrum are computing packages, or languages,
that have some of the capabilities needed for simula-
tion and resampling. Willemain (1994) suggests us-
ing a spreadsheet program like Excel to perform re-
sampling. Johnson (2001) as well as Taffe and Gar-
nham (1996) use the command language in Minitab.
Hesterberg (1998) favors the use of S-plus which has
a built in bootstrap function.

The choice one makes may depend on what com-

puting is already available to you. Some may not
want to purchase an additional package like Resam-
pling Stats or S-plus just to do resampling. On the
other hand, without programming skills in Minitab
macros or JMP scripting or Visual Basic for Excel,
it may be difficult to make your favorite statistical
computing package into a tool for resampling meth-
ods.

We have taken two approaches to computing in

putting this paper together. The first is to use the
built in functions available in R, a free statistical
programming language. The second is to develop
Minitab Macros. We are making these available
to anyone interested via a website. The URL is
http://www.public.iastate.edu/~wrstephe/
stateduc.html.
Available on the website will be the population and
sample data for length of stay for Diagnosis Related
Groups 183 and 391 and the two tables on remis-
sion counts. There will be instructions and a link to
download R and instructions on how to use the boot-
strap function for the examples in this talk. Also,
there will be a short introduction to simulation and
macros using Minitab as well as the Minitab Macros
for the examples. If there is interest additional il-
lustrations using R and associated Minitab Macros
will be posted.
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