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Université Paris Dauphine and CREST, INSEE

George Casella‡

University of Florida

August 21, 2008

Abstract

In this note we attempt to trace the history and development of Markov chain

Monte Carlo (MCMC) from its early inception in the late 1940’s through its use today.

We see how the earlier stages of the Monte Carlo (MC, not MCMC) research have led

to the algorithms currently in use. More importantly, we see how the development of

this methodology has not only changed our solutions to problems, but has changed the

way we think about problems.

1 Introduction

Markov Chain Monte Carlo (MCMC) methods have been around for almost as long as Monte

Carlo techniques, even though their impact on Statistics has not been truly felt until the very

early 1990s, except in the specialized fields of spatial Statistics and image analysis where

those methods appeared earlier. (The emergence of Markov based techniques in Physics
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and, in particular, Particle Physics is another story that will remain mostly untold within

this survey. See Landau and Binder 2005 for a review.) Also, we will not launch into a

description of MCMC techniques, unless they have some historical link, as the remainder of

this volume covers the technical aspects. A comprehensive treatment with further references

can also be found in Robert and Casella (2004).

We will distinguish between the introduction of Metropolis-Hastings based algorithms

and those related to Gibbs sampling, since they each stem from radically different origins,

even though their mathematical justification via Markov chain theory is the same. Tracing

the development of Monte Carlo methods, we will also briefly mention what we might call

the “second-generation MCMC revolution”. Starting in the mid-to-late 1990s, this includes

the development of particle filters, reversible jump and perfect sampling, and concludes

with more current work on population or sequential Monte Carlo and regeneration and the

computing of “honest” standard errors. (But is it still history?!)

As mentioned above, the realization that Markov chains could be used in a wide variety

of situations only came (to mainstream statisticians) with Gelfand and Smith (1990), de-

spite earlier publications in the statistical literature like Hastings (1970), Geman and Geman

(1984) and Tanner and Wong (1987). Several reasons can be advanced: lack of computing

machinery (think of the computers of 1970!), lack of background on Markov chains, lack of

trust in the practicality of the method... It thus required visionary researchers like Alan

Gelfand and Adrian Smith to spread the good news, backed up with a collection of papers

that demonstrated, through a series of applications, that the method was easy to under-

stand, easy to implement and practical (Gelfand et al. 1990, 1992, Smith and Gelfand 1992,

Wakefield et al. 1994). The rapid emergence of the dedicated BUGS (Bayesian inference

Using Gibbs Sampling) software as early as 1991 (when a paper on BUGS was presented

at the Valencia meeting) was another compelling argument for adopting (at large) MCMC

algorithms.1

2 Before the Revolution

Monte Carlo methods were born in Los Alamos, New Mexico during World War II, eventually

resulting in the Metropolis algorithm in the early 1950s. While Monte Carlo methods were

in use by that time, MCMC was brought closer to statistical practicality by the work of

Hastings in the 1970s.

1Historically speaking, the development of BUGS initiated from Geman and Geman (1984) and

Pearl (1987), in tune with the developments in the artificial intelligence community, and it pre-dates

Gelfand and Smith (1990).

2



What can be reasonably seen as the first MCMC algorithm is what we now call the

Metropolis algorithm, published by Metropolis et al. (1953). It emanates from the same

group of scientists who produced the Monte Carlo method, namely the research scientists of

Los Alamos, mostly physicists working on mathematical physics and the atomic bomb.2

MCMC algorithms therefore date back to the same time as the development of regular

(MC only) Monte Carlo methods, which are usually traced to Ulam and von Neumann in

the late 1940s. Stanislaw Ulam associates the original idea with an intractable combinatorial

computation he attempted in 1946 (calculating the probability of winning at the card game

“solitaire”). This idea was enthusiastically adopted by John von Neumann for implementa-

tion with direct applications to neutron diffusion, the name “Monte Carlo“ being suggested

by Nicholas Metropolis. (Eckhardt 1987 describes these early Monte Carlo developments,

and Hitchcock 2003 gives a brief history of the Metropolis algorithm.)

These occurrences very closely coincide with the appearance of the very first computer,

the ENIAC, which came to life in February 1946, after three years of construction. The Monte

Carlo method was set up by von Neumann, who was using it on thermonuclear and fission

problems as early as 1947. At the same time, that is, 1947, Ulam and von Neumann invented

inversion and accept-reject techniques (also recounted in Eckhardt 1987) to simulate from

non-uniform distributions. Without computers, a rudimentary version invented by Fermi in

the 1930s did not get any recognition (Metropolis 1987). Note also that, as early as 1949,

a symposium on Monte Carlo was supported by Rand, NBS and the Oak Ridge laboratory

and that Metropolis and Ulam (1949) published the very first paper about the Monte Carlo

method.

2.1 The Metropolis et al. (1953) paper

The first MCMC algorithm is associated with a second computer, called MANIAC(!), built3

in Los Alamos under the direction of Metropolis in early 1952. Both a physicist and a

mathematician, Nicolas Metropolis, who died in Los Alamos in 1999, came to this place in

April 1943 . The other members of the team also came to Los Alamos during those years,

with Edward Teller being the most controversial character of the group. As early as 1942, he

was one of the first scientists to work on the Manhattan Project that led to the production

of the A bomb. Almost as early, he became obsessed with the hydrogen (H) bomb, which

he eventually managed to design with Stanislaw Ulam using the better computer facilities

2The atomic bomb construction did not involve simulation techniques, even though the subsequent de-

velopment of the hydrogen bomb did.
3MANIAC stands for Mathematical Analyzer, Numerical Integrator and Computer.
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in the early 1950s.4

Published in June 1953 in the Journal of Chemical Physics, the primary focus of Metropolis et al.

(1953) is the computation of integrals of the form

I =

∫

F (p, q) exp{−E(p, q)/kT}dpdq
∫

exp{−E(p, q)/kT}dpdq
,

with the energy E being defined as

E(p, q) =
1

2

N
∑

i=1

N
∑

j=1

j 6=i

V (dij),

where N is the number of particles, V a potential function and dij the distance between

particles i and j. The Boltzmann distribution exp{−E(p, q)/kT} is parameterized by the

temperature T , k being the Boltzmann constant, with a normalization factor

Z(T ) =

∫

exp{−E(p, q)/kT}dpdq

that is not available in closed form. Since p and q are 2N -dimensional vectors, numerical

integration is impossible. Given the large dimension of the problem, even standard Monte

Carlo techniques fail to correctly approximate I, since exp{−E(p, q)/kT} is very small for

most realizations of the random configurations of the particle system (uniformly in the 2N or

4N square). In order to improve the efficiency of the Monte Carlo method, Metropolis et al.

(1953) propose a random walk modification of the N particles. That is, for each particle i

(1 ≤ i ≤ N), values

x′
i = xi + αξ1i and y′

i = yi + αξ2i

are proposed, where both ξ1i and ξ2i are uniform U(−1, 1). The energy difference ∆E between

the new configuration and the previous one is then computed and the new configuration is

accepted with probability

min {1, exp(−∆E/kT )} , (1)

and otherwise the previous configuration is replicated (in the sense that it will count one more

time in the final average of the F (pt, pt)’s over the τ moves of the random walk, 1 ≤ t ≤ τ)).

Note that Metropolis et al. (1953) move one particle at a time, rather than moving all of

them together, which makes the initial algorithm appear as a primitive kind of Gibbs sampler

(!).

4On a somber note, Edward Teller later testified against Robert Oppenheimer in the McCarthy trials and,

much later, was a fervent proponent of the “Star Wars” defense system under the Reagan administration.
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The authors of Metropolis et al. (1953) demonstrate the validity of the algorithm by first

establishing irreducibility (that they call ergodicity) and second proving ergodicity, that is,

convergence to the stationary distribution. The second part is obtained via a discretiza-

tion of the space: They first note that the proposal move is reversible, then establish that

exp{−E/kT} is invariant. The result is therefore proven in its full generality (modulo the

discretization). The remainder of the paper is concerned with the specific problem of the

rigid-sphere collision model. The number of iterations of the Metropolis algorithm seems to

be limited: 16 steps for burn-in and 48 to 64 subsequent iterations (which still required four

to five hours on the Los Alamos MANIAC).

An interesting variation of (1) is the Simulated Annealing algorithm, developed by Kirkpatrick et al.

(1983), who connected optimization with annealing, the cooling of a metal. Their variation is

to allow T of (1) to change as the algorithm runs, according to a “cooling schedule”, and the

Simulated Annealing algorithm can be shown to find the global maximum with probability

1, although the analysis is quite complex due to the fact that, with varying T , the algorithm

is no longer a time-homogeneous Markov chain.

2.2 The Hastings (1970) paper

The Metropolis algorithm was later generalized by Hastings (1970) and Peskun (1973, 1981)

as a statistical simulation tool that could overcome the curse of dimensionality met by regular

Monte Carlo methods (already emphasized in Metropolis et al. 1953).5

In his Biometrika paper,6 Hastings (1970) also defines his methodology on finite and

reversible Markov chains, treating the continuous case by using a discretization analogy.

The generic probability of acceptance for a move from state i to state j is

αij =
sij

1 + πi

πj

qij

qji

,

where sij is a symmetric function. This generic form of probability encompasses the forms of

both Metropolis et al. (1953) and Barker (1965). At this stage, Peskun’s ordering is not yet

discovered and Hastings thus mentions that little is known about the relative merits of those

two choices (even though) Metropolis’s method may be preferable. He also warns against high

rejection rates as indicative of a poor choice of transition matrix, but does not mention the

opposite pitfall of low rejection rates, associated with a slow exploration of the target.

5In fact, Hastings starts by mentioning a decomposition of the target distribution into a product of

one-dimensional conditional distributions but this falls short of an early Gibbs sampler!
6Hastings (1970) is one of the ten papers reproduced in the Biometrika 100th anniversary volume by

Titterington and Cox (2001).
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The examples given in the paper are a Poisson target with a ±1 random walk proposal, a

normal target with a uniform random walk proposal mixed with its reflection (i.e. centered

at −X(t) rather than X(t)), and then a multivariate target where Hastings introduces a

Gibbs sampling strategy, updating one component at a time and defining the composed

transition as satisfying the stationary condition because each component does leave the

target invariant! Hastings (1970) actually refers to Erhman et al. (1960) as a preliminary

if specific instance of this sampler. More precisely, this is Metropolis-within-Gibbs except

for the name. It is quite amazing that this first introduction of the Gibbs sampler has been

completely overlooked, even though the proof of convergence is completely general, based on

a composition argument as in Tierney (1994)! The remainder of the paper deals with (a) an

importance sampling version of MCMC, (b) general remarks about assessment of the error,

and (c) an application to random orthogonal matrices (with yet again an example of Gibbs

sampling).

Three years later, again in Biometrika, Peskun (1973) published a comparison of Metropo-

lis’ and Barker’s forms of acceptance probabilities and shows (in a discrete setup) that the

optimal choice (in terms of the asymptotic variance of any empirical average) is that of

Metropolis. The proof is a direct consequence of a result by Kemeny and Snell (1960) on

the asymptotic variance. Peskun also establishes that this asymptotic variance can improve

upon the iid case if and only if the eigenvalues of P−A are all negative, when A is the tran-

sition matrix corresponding to the iid simulation and P the transition matrix corresponding

to the Metropolis algorithm, but he concludes that the trace of P− A is always positive.

3 Seeds of the Revolution

A number of earlier pioneers had brought forward the seeds of Gibbs sampling; in particular,

Hammersley and Clifford had produced a constructive argument in 1970 to recover a joint

distribution from its conditionals, a result later called the Hammersley–Clifford theorem by

Besag (1974, 1986). Besides Hastings (1970) and Geman and Geman (1984), already men-

tioned, other papers that contained the germs of Gibbs sampling are Besag and Clifford

(1989), Broniatowski et al. (1984), Qian and Titterington (1990), and Tanner and Wong

(1987).

3.1 Besag’s Early Work and the Fundamental (Missing) Theorem

In the early 1970’s, Hammersley, Clifford, and Besag were working on the specification of

joint distributions from conditional distributions and on necessary and sufficient conditions
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for the conditional distributions to be compatible with a joint distribution. What is now

known as the Hammersley-Clifford theorem states that a joint distribution for a vector asso-

ciated with a dependence graph (edge meaning dependence and absence of edge conditional

independence) must be represented as a product of functions over the cliques of the graphs,

that is, of functions depending only on the components indexed by the labels in the clique

(which is a subset of the nodes of the graphs such that every node is connected by an edge

to every other node in the subset). See Cressie (1993) or Lauritzen (1996) for detailed

treatments.

From an historical point of view, Hammersley (1974) explains why the Hammersley-

Clifford theorem was never published as such, but only through Besag (1974). The reason

is that Clifford and Hammersley were dissatisfied with the positivity constraint: The joint

density could be recovered from the full conditionals only when the support of the joint was

made of the product of the supports of the full conditionals (with obvious counter-examples,

as in Robert and Casella 2004). While they strived to make the theorem independent of any

positivity condition, their graduate student published Moussouris (1974), a counter-example

that put a full stop to their endeavors.

While Julian Besag can certainly be credited to some extent of the (re-)discovery of the

Gibbs sampler (as in Besag 1974), Besag (1975) has the curious and anticlimactic following

comment:

The simulation procedure is to consider the sites cyclically and, at each stage,

to amend or leave unaltered the particular site value in question, according to a

probability distribution whose elements depend upon the current value at neigh-

boring sites (...) However, the technique is unlikely to be particularly helpful in

many other than binary situations and the Markov chain itself has no practical

interpretation.

So, while stating the basic version of the Gibbs sampler on a graph with discrete variables,

Besag dismisses it as unpractical.

On the other hand, Hammersley, together with Handscomb, wrote a textbook on Monte

Carlo methods, (the first?) (Hammersley and Handscomb 1964). There they cover such

topics as “Crude Monte Carlo“ (which is (3)); importance sampling; control variates; and

“Conditional Monte Carlo”, which looks surprisingly like a missing-data completion ap-

proach. Of course, they do not cover the Hammersley-Clifford theorem but, in contrast to

Besag (1974), they state in the Preface

We are convinced nevertheless that Monte Carlo methods will one day reach an

impressive maturity.
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Well said!

3.2 EM and its Simulated Versions as Precursors

Besides a possible difficult computation in the E-step, problems with the EM algorithm

(Dempster et al. 1977) do occur in the case of multimodal likelihoods. The increase of the

likelihood function at each step of the algorithm ensures its convergence to the maximum

likelihood estimator in the case of unimodal likelihoods but it implies a dependence on initial

conditions for multimodal likelihoods. Several proposals can be found in the literature to

overcome this problem, one of which we now describe because of its connection with Gibbs

sampling.

Broniatowski et al. (1984) and Celeux and Diebolt (1985, 1992) have tried to overcome

the dependence of EM methods on the starting value by replacing the E step with a sim-

ulation step, the missing data z being generated conditionally on the observation x and on

the current value of the parameter θm. The maximization in the M step is then done on the

(simulated) complete-data log-likelihood, H̃(x, zm|θ). The appeal of this approach is that it

allows for a more systematic exploration of the likelihood surface by partially avoiding the

fatal attraction of the closest mode. Unfortunately, the theoretical convergence results for

these methods are limited. Celeux and Diebolt (1990) have, however, solved the convergence

problem of SEM by devising a hybrid version called SAEM (for Simulated Annealing EM),

where the amount of randomness in the simulations decreases with the iterations, ending up

with an EM algorithm. This version actually relates to simulated annealing methods.

3.3 Gibbs, and Beyond

Although somewhat removed from statistical inference in the classical sense and based on ear-

lier techniques used in Statistical Physics, the landmark paper by Geman and Geman (1984)

brought Gibbs sampling into the arena of statistical application. This paper is also responsi-

ble for the name Gibbs sampling, because it implemented this method for the Bayesian study

of Gibbs random fields which, in turn, derive their name from the physicist Josiah Willard

Gibbs (1839–1903). This original implementation of the Gibbs sampler was applied to a

discrete image processing problem and did not involve completion. But this was one more

spark that led to the explosion, as it had a clear influence on Green, Smith, Spiegelhalter

and others.

The extent to which Gibbs sampling and Metropolis algorithms were in use within the

image analysis and point process communities is actually quite large, as illustrated in Ripley

(1987) where Section §4.7 is entitled “Metropolis’ method and random fields” and describes
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the implementation and the validation of the Metropolis algorithm in a finite setting with an

application to Markov random fields and the corresponding issue of bypassing the normal-

izing constant. Besag et al. (1991) is another striking example of the activity in the spatial

statistics community at the end of the 1980’s (the paper was submitted in 1989).

4 The Revolution

The gap of more than 30 years between Metropolis et al. (1953) and Gelfand and Smith

(1990) can still be partially attributed to the lack of appropriate computing power, as most

of the examples now processed by MCMC algorithms could not have been treated previously,

even though the hundreds of dimensions processed in Metropolis et al. (1953) were quite

formidable. However, by the mid-1980s, the pieces were all in place.

After Peskun, MCMC in the statistical world was dormant for about 10 years, and

then several papers appeared that highlighted its usefulness in specific settings like pattern

recognition, image analysis or spatial statistics (see, for example, Geman and Geman 1984,

Tanner and Wong 1987, Besag 1989). In particular, Geman and Geman (1984) building on

Metropolis et al. (1953), Hastings (1970) , and Peskun (1973), influenced Gelfand and Smith

(1990) to write a paper that is the genuine starting point for an intensive use of MCMC

methods by the (mainstream) statistical community. It sparked new interest in Bayesian

methods, statistical computing, algorithms, and stochastic processes through the use of

computing algorithms such as the Gibbs sampler and the Metropolis–Hastings algorithm.

(See Casella and George 1992 for an elementary introduction to the Gibbs sampler7.)

Interestingly, the earlier paper by Tanner and Wong (1987) had essentially the same

ingredients as Gelfand and Smith (1990), namely the fact that simulating from the condi-

tional distributions is sufficient to simulate (in the limiting sense) from the joint. This paper

was considered important enough to be a discussion paper in the Journal of the Ameri-

can Statistical Association, but its impact was somehow limited, compared with the one of

Gelfand and Smith (1990). There are several reasons for this; one being that the method

seemed to only apply to missing data problems (hence the name data augmentation), and

another is that the authors were more focused on approximating the posterior distribution.

They suggested a (Markov chain) Monte Carlo approximation to the target π(θ|x) at each

7On a humorous note, the original Technical Report of this paper was called Gibbs for Kids, which was

changed because a referee did not appreciate the humor. However, our colleague Dan Gianola, an Animal

Breeder at Wisconsin, liked the title. In using Gibbs sampling in his work, he gave a presentation in 1993 at

the 44th Annual Meeting of the European Association for Animal Production, Arhus, Denmark. The title:

Gibbs for Pigs.
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iteration of the sampler, based on

1

m

m
∑

k=1

π(θ|x, zt,k) , zt,k ∼ π̂t−1(z|x) , k = 1, . . . , m,

that is, by replicating m times the simulations from the current approximation π̂t−1(z|x)

of the marginal posterior distribution of the missing data. This focus on estimation of

the posterior distribution connected the original Data Augmentation algorithm to EM, as

pointed out by Dempster in the discussion. Although the discussion by Morris gets very close

to the two-stage Gibbs sampler for hierarchical models, he is still concerned about doing m

iterations, and worries about how costly that would be. Tanner and Wong mention taking

m = 1 at the end of the paper, referring to this as an “extreme case”.

In a sense, Tanner and Wong (1987) was still too close to Rubin’s 1978 multiple impu-

tation to start a (new) revolution. Yet another reason for this may be that the theoretical

background was based on functional analysis rather than Markov chain theory, which needed,

in particular, for the Markov kernel to be uniformly bounded and equicontinuous. This may

have discouraged potential applicants as requiring too much math!

The authors of this review were fortunate enough to attend many focused conferences

during this time, where we were able to witness the explosion of Gibbs sampling. In the

summer of 1986 in Bowling Green, Ohio, Adrian Smith gave a series of ten lectures on

hierarchical models. Although there was a lot of computing mentioned, the Gibbs sampler

was not fully developed yet. In another lecture by Adrian Smith in June 1989 at a Bayesian

workshop in Sherbrooke, Québec, Adrian revealed for the first time (?) the generic features

of Gibbs sampler, and we still remember vividly the shock induced on ourselves and on the

whole audience by the sheer breadth of the method!

This development of Gibbs sampling, MCMC, and the resulting seminal paper of Gelfand

and Smith (1990) was an epiphany in the world of Statistics.

Definition: epiphany n. A spiritual event in which the essence of a given object of mani-

festation appears to the subject, as in a sudden flash of recognition.

The explosion had begun, and just two years later, at an MCMC conference at Ohio State

University organized by Alan Gelfand, Prem Goel, and Adrian Smith, there were three full

days of talks. The presenters at the conference read like a Who’s Who of MCMC, and the

level, intensity and impact of that conference, and the subsequent research, is immeasurable.

The program of the conference is reproduced in Appendix A. Approximately one year later,

in May of 1992, there was a meeting of the Royal Statistical Society on “The Gibbs sampler

and other Markov chain Monte Carlo methods”, where four papers were presented followed

by much discussion. The papers appear in the first volume of JRSSB in 1993, together
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with 49 (!) pages of discussion, again by the Who’s Who of MCMC, and the excitement is

clearly evident in the writings (even though the theory and implementation were not always

perfectly understood).

Looking at these meetings, we can see the paths that Gibbs sampling would lead us

down. In the next two sections we will summarize some of the advances from the early to

mid 1990s.

4.1 Advances in MCMC Theory

Perhaps the most influential MCMC theory paper of the 1990s is Tierney (1994), who care-

fully laid out all of the assumptions needed to analyze the Markov chains and then developed

their properties, in particular, convergence of ergodic averages and central limit theorems.

In one of the discussions of that paper, Chan and Geyer (1994) were able to relax a condi-

tion on Tierney’s Central Limit Theorem, and this new condition plays an important role

in research today (see Section 5.4). A pair of very influential, and innovative, papers is

the work of Liu et al. (1994, 1995), who very carefully analyzed the covariance structure of

Gibbs sampling, and were able to formally establish the validity of Rao-Blackwellization in

Gibbs sampling. Gelfand and Smith (1990) had used Rao-Blackwellization, but it was not

justified at that time, as the original theorem was only applicable to iid sampling, which is

not the case in MCMC. Other early theoretical developments include the Duality Theorem

of Diebolt and Robert (1994), who showed that in the two-stage Gibbs sampler (which is

equivalent to the Data Augmentation algorithm of Tanner and Wong 1987), convergence

properties of one chain can be transferred to other chains, a fact also found in Liu et al.

(1994, 1995). This turns out to be particularly important in mixture models, where it is

typical that one part of the Gibbs chain is discrete and finite, and the other is continuous.

The convergence properties of the finite chain carry over to the continuous chain.

Another paper must be singled out, namely Mengersen and Tweedie (1996), for setting

the tone for the study of the speed of convergence of MCMC algorithms to the target distribu-

tion. Subsequent works in this area by Richard Tweedie, Gareth Roberts, Jeff Rosenthal and

co-authors are too numerous to be mentioned here, even though the paper by Roberts et al.

(1997) must be cited for setting explicit targets on the acceptance rate of the random walk

Metropolis–Hastings algorithm, as well as Roberts and Rosenthal (1999) for getting an up-

per bound on the number of iterations (523) needed to approximate the target up to 1% by

a slice sampler. The untimely death of Richard Tweedie in 2001 alas had a major impact on

the book about MCMC convergence he was contemplating with Gareth Roberts.

One pitfall arising from the widespread use of Gibbs sampling was the tendency to spec-

11



ify models only through their conditional distributions, almost always without referring to

the positivity conditions in Section 3. Unfortunately, it is possible to specify a perfectly

legitimate-looking set of conditionals that do not correspond to any joint distribution, and

the resulting Gibbs chain cannot converge. Hobert and Casella (1996) were able to document

the conditions needed for a convergent Gibbs chain, and alerted the Gibbs community to this

problem (which only arises if improper priors are used, but this is a frequent occurrence).

Much other work followed, and continues to grow today. Geyer and Thompson (1995)

describe how to put a “ladder” of chains together to have both “hot” and “cold” exploration,

followed by Neal’s 1996 introduction of tempering; Athreya et al. (1996) gave more easily

verifiable conditions for convergence; Meng and van Dyk (1999) and Liu and Wu (1999) de-

veloped the theory of parameter expansion in the Data Augmentation algorithm, leading

to construction of chains with faster convergence, and to the work of Hobert and Marchev

(2008), who give precise constructions and theorems to show how parameter expansion can

uniformly improve over the original chain.

4.2 Advances in MCMC Applications

The real reason for the explosion of MCMC methods was the fact that an enormous number

of problems that were deemed to be computational nightmares now cracked open like eggs.

As an example, consider this very simple random effects model from Gelfand and Smith

(1990). Observe

Yij = θi + εij, i = 1, . . . , K, j = 1, . . . , J, (2)

where

θi ∼ N(µ, σ2

θ)

εij ∼ N(0, σ2

ε), independent of θi

Estimation of the variance components can be difficult for a frequentist (REML is typically

preferred) but it indeed was a nightmare for a Bayesian, as the integrals were intractable.

However, with the usual priors on µ, σ2

θ , and σ2

ε , the full conditionals are trivial to sample

from and the problem is easily solved via Gibbs sampling. Moreover, we can increase the

number of variance components and the Gibbs solution remains easy to implement.

During the early 1990s, researchers found that Gibbs, or Metropolis-Hastings, algorithms

would crack almost any problem that they looked at, and there was a veritable flood of pa-

pers applying MCMC to previously intractable models, and getting good solutions. For

example, building on (2), it was quickly realized that Gibbs sampling was an easy route to
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getting estimates in the linear mixed models (Wang et al. 1993, 1994), and even general-

ized linear mixed models (Zeger and Karim 1991). Demarginalization (the introduction of

latent variables) arguments made it possible to analyze probit models using a latent vari-

able approach in a linear mixed model (Albert and Chib 1993), and demarginalization was

also a route to estimation in mixture models with Gibbs sampling (see, for example, Robert

1996). It progressively dawned on the community that latent variables could be artificially

introduced to run the Gibbs sampler in about every situation, as eventually published in

Damien et al. (1999), the main example being the slice sampler (Neal 2003). A (very in-

complete) list of some other applications include changepoint analysis (Carlin et al. 1992,

Stephens 1994); Genomics (Lawrence et al. 1993, Stephens and Smith 1993, Churchill 1995);

capture-recapture (George and Robert 1992, Dupuis 1995); variable selection in regression

(George and McCulloch 1993); spatial statistics (Raftery and Banfield 1991), and longitudi-

nal studies (Lange et al. 1992).

Many of these applications were advanced though other developments such as the Adap-

tive Rejection Sampling of Gilks (1992), Gilks et al. (1995), and the simulated tempering

approaches of Geyer and Thompson (1995) or Neal (1996).

5 After the Revolution

After the revolution comes the “second” revolution, but now we have a more mature field.

The revolution has slowed, and the problems are being solved in, perhaps, deeper and more

sophisticated ways (even though Gibbs sampling also offers to the amateur the possibility

to handle Bayesian analysis in complex models at little cost, as exhibited by the widespread

use of BUGS). But, as before, the methodology continues to expand the set of problems that

statisticians can provide meaningful solutions, and thus continues to further the impact of

Statistics.

5.1 A Brief Glimpse at Particle Systems

The realization of the possibilities of iterating importance sampling is not new: in fact, it is

about as old as Monte Carlo methods themselves! It can be found in the molecular simulation

literature of the 50’s, as in Hammersley and Morton (1954), Rosenbluth and Rosenbluth

(1955) and Marshall (1965). Hammersley and colleagues proposed such a method to simulate

a self-avoiding random walk (Madras and Slade 1993) on a grid, due to huge inefficiency in

regular importance sampling and rejection techniques. Although this early implementation

occurred in particle physics, the use of the term “particle” only dates back to Kitagawa
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(1996), while Carpenter et al. (1997) coined the term “particle filter”. In signal processing,

early occurrences of a “particle filter” can be traced back to Handschin and Mayne (1969).

More in connection with our theme, the landmark paper of Gordon et al. (1993) in-

troduced the bootstrap filter which, while formally connected with importance sampling,

involves past simulations and possible MCMC steps (Gilks and Berzuini 2001). As de-

scribed in the volume edited by Doucet et al. (2001), particle filters are simulation methods

adapted to sequential settings where data are collected progressively in time as in radar de-

tection, telecommunication correction or financial volatility estimation. Taking advantage of

state-space representations of those dynamic models, particle filter methods produce Monte

Carlo approximations to the posterior distributions by propagating simulated samples whose

weights are actualized against the in-coming observations. Since the importance weights have

a tendency to degenerate (that is, all weights but one are close to zero), additional MCMC

steps can be introduced at times to recover the variety and representativeness of the sample.

Modern connections with MCMC in the construction of the proposal kernel are to be found,

for instance, in Doucet et al. (2000) and in Del Moral et al. (2006). In parallel, sequential

imputation was developed in Kong et al. (1994), while Liu and Chen (1995) first formally

pointed out the importance of resampling in sequential Monte Carlo, a term coined by them.

The recent literature on the topic more closely bridges the gap between sequential Monte

Carlo and MCMC methods by making adaptive MCMC a possibility (see, for example,

Andrieu et al. 2004 or Roberts and Rosenthal 2005).

5.2 Perfect sampling

Introduced in the seminal paper of Propp and Wilson (1996), perfect sampling, namely

the ability to use MCMC methods to produce an exact (or perfect) simulation from the

target, maintains a unique place in the history of MCMC methods. Although this exciting

discovery led to an outburst of papers, in particular in the large body of work of Møller

and coauthors, including the book by Møller and Waagepetersen (2003), as well as many

reviews and introductory materials, like Casella et al. (2001), Fismen (1998), and Dimakos

(2001), the excitement quickly dried out. The major reason for this ephemeral lifespan is

that the construction of perfect samplers is most often close to impossible or impractical

(Foss and Tweedie 1998), despite some advances in the implementation (Fill 1998a,b).

There is, however, ongoing activity in the area of point processes and stochastic geometry,

much from the work of Møller and Kendall. In particular, Kendall and Møller (2000) devel-

oped an alternative to the Coupling From The Past (CFPT) algorithm of Propp and Wilson

(1996), called horizontal CFTP, which mainly applies to point processes and is based on
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continuous time birth-and-death processes. See also Fernández et al. (1999) for another hor-

izontal CFTP algorithm for point processes. Berthelsen and Møller (2003) exhibited a use

of these algorithms for nonparametric Bayesian inference on point processes.

5.3 Reversible jump and variable dimensions

From many viewpoints, the invention of the reversible jump algorithm in Green (1995) can

be seen as the second MCMC revolution: the formalization of a Markov chain that moves

across models and parameters spaces allowed for the Bayesian processing of a wide variety

of new models and contributed to the success of Bayesian model choice and subsequently

to its adoption in other fields. There exist earlier alternative Monte Carlo solutions like

Gelfand and Dey (1994) and Carlin and Chib (1995), the later being very close in spirit to

reversible jump MCMC (as shown by the completion scheme of Brooks et al. 2003), but

the definition of a proper balance condition on cross-model Markov kernels in Green (1995)

gives a generic setup for exploring variable dimension spaces, even when the number of

models under comparison is infinite. The impact of this new idea was clearly perceived when

looking at the First European Conference on Highly Structured Stochastic Systems that

took place in Rebild, Denmark, the next year, organized by Stephen Lauritzen and Jesper

Møller: a large majority of the talks were aimed at direct implementations of RJMCMC to

various inference problems. The application of RJMCMC to mixture order estimation in

the discussion paper of Richardson and Green (1997) ensured further dissemination of the

technique. More recently, Stephens (2000) proposed a continuous time version of RJMCMC,

based on earlier ideas of Geyer and Møller (1994), but with similar properties (Cappé et al.

2003), while Brooks et al. (2003) made proposals for increasing the efficiency of the moves.

In retrospect, while reversible jump is somehow unavoidable in the processing of very large

numbers of models under comparison, as for instance in variable selection (Marin and Robert

2007), the implementation of a complex algorithm like RJMCMC for the comparison of a

few models is somewhat of an overkill since there exist alternative solutions based on model

specific MCMC chains, for example (Chen et al. 2000).

5.4 Regeneration and the CLT

The Ergodic Theorem (see, for example, Robert and Casella 2004, Theorem 6.63) is essen-

tially the Strong Law of Large Numbers rewritten for Markov chains. If X1, X2, · · ·Xn is a

Markov chain with stationary distribution π, and h(·) is a function with finite variance, then
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under fairly mild conditions,

lim
n→∞

h̄n =

∫

h(x)π(x) dx = Eπh(X), (3)

almost everywhere, where h̄n = (1/n)
∑n

i=1
h(Xi) . To monitor this convergence, we would

like to appeal to a Central Limit Theorem (CLT) and use the fact that

√
n(h̄n − Eπh(X))

√

Varh(X)
→ N(0, 1), (4)

but there are two roadblocks to this. First, convergence to normality is strongly affected

by the lack of independence. To get CLTs for Markov chains, we can use a result of

Kipnis and Varadhan (1986), which requires the chain to be reversible (a fact that holds for

Metropolis-Hastings chains), or we must delve into “mixing conditions” (Billingsley 1995,

Section 27), which are typically not easy to verify. However, Chan and Geyer (1994) showed

how the condition of geometric ergodicity could be used to establish CLTs for Markov chains.

But getting the convergence is only half of the problem. In order to use (4), we must be

able to consistently estimate the variance, which turns out to be another difficult endeavor.

The “näıve” estimate of the usual standard error is not consistent in the dependent case (try

the simple calculation where the Xi are equicorrelated), and the most promising paths for

consistent variance estimates seems to be through regeneration and batch means.

The theory of regeneration uses the concept of a split chain (Athreya and Ney 1978,

Robert and Casella 2004, Chapter 6), and allows us to independently restart the chain while

preserving the stationary distribution. These independent “tours” then allow the calculation

of consistent variance estimates and honest monitoring of convergence through (4). Early

work on applying regeneration to MCMC chains was done by Mykland et al. (1995) and

Robert (1995), who showed how to construct the chains and use them for variance calcula-

tions and diagnostics (see also Guihenneuc-Jouyaux and Robert 1998), as well as deriving

adaptive MCMC algorithms (Gilks et al. 1998). Rosenthal (1995) also showed how to con-

struct and use regenerative chains, and much of this work is reviewed in Jones and Hobert

(2001). The most interesting and practical developments, however, are in Hobert et al.

(2002) and Jones et al. (2006), where consistent estimators are constructed for Varh(X), al-

lowing valid monitoring of convergence in chains that satisfy the CLT. Interestingly, although

Hobert et al. (2002) uses regeneration, Jones et al. (2006) get their consistent estimators

thorough another technique, that of cumulative batch means.

16



6 Conclusion

The impact of Gibbs sampling and MCMC was to, almost instantaneously, change our entire

method of thinking and attacking problems, representing a paradigm shift in the words of

the historian of science Thomas Kuhn (Kuhn 1996). Now, the collection of real problems

that we could solve grew almost without bound. Markov chain Monte Carlo changed our

emphasis from “closed form” solutions to algorithms, expanded our impact to solving “real”

applied problems, expanded our impact to improving numerical algorithms using statistical

ideas, and led us into a world where “exact” now means “simulated”!

This has truly been a quantum leap in the evolution of the field of statistics, and the

evidence is that there are no signs of slowing down. Although the ”explosion” is over, the

current work is going deeper into theory and applications, and continues to expand our

horizons and influence by increasing our ability to solve even bigger and more important

problems. The size of the data sets, and of the models (for example in genomics or clima-

tology) is something that could not have been conceived 60 years ago, when Ulam and von

Neumann invented the Monte Carlo method. Now we continue to plod on, and hope that

the advances that we make here will, in some way, help our colleagues 60 years in the future

solve the problems that we cannot yet conceive!

A Appendix: Workshop on Bayesian Computation

This section contains the program of the Workshop on Bayesian Computation via Stochastic

Simulation, held at Ohio State University, February 15-17, 1991. The organizers were Alan

Gelfand, University of Connecticut, Prem Goel, Ohio State University, and Adrian Smith,

Imperial College, London.

• Friday, Feb. 15, 1991

(a) Theoretical Aspect of Iterative Sampling, Chair: Adrian Smith

1) Martin Tanner, University of Rochester: EM, MCEM, DA and PMDA

2) Nick Polson, Carnegie Mellon University: On the Convergence of the Gibbs

Sampler and its Rate

3) Wing-Hung Wong, Augustin Kong, and Jun Liu, University of Chicago: Cor-

relation Structure and Convergence of the Gibbs Sampler and Related Algo-

rithms

(b) Applications - I, Chair: Prem Goel

17



1) Nick Lange, Brown University, Brad Carlin, Carnegie Mellon University and

Alan Gelfand, University of Connecticut : Hierarchical Bayes Models for

Progression of HIV Infection

2) Cliff Litton, Nottingham University, England: Archaeological Applications of

Gibbs Sampling

3) Jonas Mockus, Lithuanian Academy of Sciences, Vilnius: Bayesian Approach

to Global and Stochastic Optimization

• Saturday, Feb. 16, 1991

(a) Posterior Simulation and Markov Sampling, Chair: Alan Gelfand

1) Luke Tierney, University of Minnesota: Exploring Posterior Distributions

Using Markov Chains

2) Peter Mueller, Purdue University: A Generic Approach to Posterior Integra-

tion and Bayesian Sampling

3) Andrew Gelman, University of California, Berkeley and Donald P. Rubin,

Harvard University: On the Routine Use of Markov Chains for Simulations

4) Jon Wakefield, Imperial College, London: Parameterization Issues in Gibbs

Sampling

5) Panickos Palettas, Virginia Polytechnic Institute: Acceptance-Rejection Method

in Posterior Computations

(b) Applications - II, Chair: Mark Berliner

1) David Stephens, Imperial College, London: Gene Mapping Via Gibbs Sam-

pling

2) Constantine Gatsonis, Harvard University: Random Effects Model for Ordinal

Categorical Data with an application to ROC Analysis

3) Arnold Zellner, University of Chicago, Luc Bauwens, Université de Louvain-

la-Neuve, and Herman Van Dijk, Rotterdam University: Bayesian Specifica-

tion Analysis and Estimation of Simultaneous Equation Models using Monte

Carlo Methods

(c) Adaptive Sampling, Chair: Carl Morris

1) Mike Evans, University of Toronto and Carnegie Mellon University: Some

Uses of Adaptive Importance Sampling and Chaining

2) Wally Gilks, Medical Research Council, Cambridge, England: Adaptive Re-

jection Sampling
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3) Mike West, Duke University: Mixture Model Approximations, Sequential Up-

dating and Dynamic Models

• Sunday, Feb. 17, 1991

(a) Generalized Linear and Nonlinear Models, Chair: Rob Kass

1) Ruey Tsay, and Robert McCulloch, University of Chicago: Bayesian Analysis

of Autoregressive Time Series

2) Christian Ritter, University of Wisconsin: Sampling Based Inference in Non

Linear Regression

3) William DuMouchel, BBN Software, Boston: Application of the Gibbs Sam-

pler to Variance Component Modeling

4) James Albert, Bowling Green University and Sidhartha Chib, Washington

University, St. Louis: Bayesian Regression Analysis of Binary Data

5) Edwin Green and William Strawderman, Rutgers University: Bayes Esti-

mates for the Linear Model with Unequal Variances

(b) Maximum Likelihood and Weighted Bootstrapping, Chair: George Casella

1) Adrian Raftery, and Michael Newton, University of Washington: Approximate

Bayesian Inference by the Weighted Bootstrap

2) Charles Geyer, Universlty of Chicago: Monte Carlo Maximum Likelihood via

Gibbs Sampling

3) Elizabeth Thompson, University of Washington: Stochastic Simulation for

Complex Genetic Analysis

(c) Panel Discussion - Future of Bayesian Inference using Stochastic Simulation,

Chair: Prem Gael

◦ Panel - Jim Berger, Alan Gelfand, and Adrian Smith
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