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Abstract
We derive a expression for the probability generating function of the distribution-free Freund-
Ansari-Bradley scale statistic. From this generating function we show how to systematically
compute the exact null distribution and the moments of the statistic within the computer
algebra system Mathematica. Finally, we give a table with critical values which extends the
existing tables.
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1 Introduction

In this article we derive a expression for the probability generating function of the distribution-free
Freund-Ansari-Bradley statistic, which is abbreviated as the FAB statistic. Statistically equivalent
versions of this statistic were introduced by Freund and Ansari (1957) and Ansari and Bradley
(1960). We implemented this generating function in the computer algebra system Mathematica
for computing the distribution of the test statistic very quickly. We also show how to use the
generating function for computing (higher) moments of the test statistic. In the first appendix we
present the Mathematica code for expanding the generating function, in the second appendix we
give a table with critical values for the balanced cases which extends the existing tables from N <
20 to N < 80. For general details about the FAB statistic we refer to Gibbons and Chakraborti
(1992).

Several methods have been developed for computing the null distribution of the FAB statistic.
Ansari and Bradley (1960) and Kannemann (1983) derive recurrence relations based on a two-
dimensional generating function of Euler (1748, transl. 1988). Other methods are general methods
for computing null distributions of linear two-sample rank tests and hence do not use the specific
characteristics of the FAB statistic. Examples of these methods include the Pagano and Tritchler
(1983) approach based on characteristic functions and fast Fourier transforms and the network
algorithm developed by Mehta et al. (1987). For a short description of these methods we refer to
Good (1994). We give an alternative method based on the two-dimensional generating function
in Van de Wiel (1996). This last method is fast and, although not trivial, very intuitive. We use
exact expressions and do not deal with rounding errors as some recursive methods do.

2 The Freund-Ansari-Bradley test

Let (X1,...,Xpmn) and (¥Y7,...,Y,) be independent samples from continuous distribution func-
tions. Thus we may and will assume that ties do not occur. We consider the combined sample
(X1,..., X;m, Y1,...,Ys), N = m+n. The Freund-Ansari-Bradley test is a two-sample scale test.
The corresponding test statistic is defined by:
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where Z; = 1 if the fth order statistic in the combined sample is an X-observation and 7, = 0
otherwise. Thus, for this statistic the rank scores are

a(l) = ‘(e - %)‘ : (2)

=1 N.

Duran (1976) compares the FAB statistic with other scale statistics like the Mood scale statistic,
the Siegel-Tukey statistic and the Klotz statistic (for details about these test statistics: see Gib-
bons and Chakraborti (1992)). Tt turns out that the Siegel-Tukey statistic and FAB statistic are
asymptotically equivalent in terms of (Pitman) asymptotic relative efficiency. The Mood statistic
and Klotz statistic are more efficient when the alternative is normal (or light-tailed), while the
Siegel-Tukey statistic and FAB statistic are more efficient for heavy-tailed distributions. The FAB
statistic attains much less values than the Mood and Klotz statistic. This is both a computational
advantage and a potential disadvantage regarding the number of significance levels (for small
sample sizes).

3 The probability generating function

From (2) we see that for N even the rank scores are of the form ¢ — %,i =1,... % We will find
it to be convenient that the scores are integers and therefore we introduce adjusted FAB scores:

N+1
‘(E———i—)‘—l—— if N 1is even

a'(0) = (3)
‘(1&-%)‘ if N is odd,

£=1,...,N. We define the adjusted FAB test statistic A% as Ay with the FAB scores replaced
by the adjusted FAB scores. The statistic A’y is, of course, statistically equivalent to Ay. For N
even, we may split the set of adjusted scores {a’(1),...,a’(N)} into two sets of Wilcoxon scores
{1,..., %N}, which 1s the main idea behind our approach. With the aid of this observation we
found the following theorem for the case N even:

Theorem 3.1 Under Hy, N = m + n even and m < n the probability generating function of the
Freund-Ansari- Bradley statistic is
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Proof: Assume, without loss of generalisation, that m < n. We define R; as the rank score in the
pooled sample corresponding to X;,¢7 = 1,...,m. Similarly, S; is the rank score corresponding
to Y;,7 =1,...,n. We know that under H, every configuration r of Ry,... , Ry, 51,...,5, is
equiprobable. Let T'(a) be the first half of a configuration a. We can partition these configurations
into classes of configurations with ¢ R’s in T'(a), ¢ < m. The class of configurations with ¢ R’s
in T'(a) is called C;. We denote the elements of T'(a) by Ry,,... Ru,,Suys---,Suy,_;, Where
uy, ..., u; and vy, ..., vysa_; are subsequences of 1,... ,m and 1,...,n, respectively. We define
the following Wilcoxon statistics:

rlo_q |7 I, -9 N i(i+1)
where [O] q =1, [5] q T for §>0 and (i) = ¢ :
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We need to prove the conditional independence of W; n/o_; and W5 ny2_mqs, given Cy. Let
K1 (a) be the class of r’s for which the first half equals the first half of a configuration a. Similarly,
let K3(a) be the class of r’s for which the second half equals the second half of a. We note that
the event r = a is equivalent to r € Ki(a) Nr € K3(a). There are (NZ./Z) (N/Z

m_i) configurations in
C;. They are equiprobable under Hy, so
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0 ifa¢ C;.
Under Hy we have,
#rreKq (a)nreCy) — (7];7/—21) _ _1 if C-
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0 ifa ¢ CZ', (6)
Pr(r € Ko(a)|r € Ci) = 2 (250)
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Combining (5) and (6) we conclude that

Pr(r € Ki(a)Nr € Ka(a)|r € C;) = Pr(r = alr € Cy) .
= Pr(r € K1(a)|r € C;) Pr(r € Ka(a)|r € Cy). @

Let r} be a configuration of i R’s and N/2 —i S’s and let r} be a configuration of m —i R’s
and N/2—m+1¢S’s. For j =1,2:

Pr(r € Kj(a)|r € C;) = Pr(v} = q;), (8)

where a; is the jth (j = 1,2) half of the configuration a. The symbol Pr denotes the probability

measure on the space with configurations of length N, whereas Pr denotes the probability mea-
sure on the space with configurations of length N/2. The statistics W; n/o—; and Wy, _; ny/2—m+i
are functions of r} and r?, respectively. Because of equality (8) we may regard Wi nj2—i and
Win—i,Nj2—m+i as functions of all r’s for which » € C;. Since equation (7) tells us that, given
r € C;, the events {r € Ky(a)} and {r € K3(a)} are independent, we conclude that W; y/»_; and
Win—i N/2—m+: are also independent, given Cj.

The set of adjusted FAB scores consists of two identical sets of Wilcoxon scores. When ¢ scores of
the first set are assigned to the X’s, we know that m — ¢ scores of the second set are assigned to
the X’s, 0 < ¢ < m. The sum of the scores assigned to X’s equals A/ and it also equals the sum of
Wi nj2—i and Wo,_; Nj2—mai. Therefore, #(Ay = k) = 3270 #(Wi nya—i+ Winei Njo—mti = k).
Let Hyz be a generating function for the number of ways a statistic Z can reach a certain value.
Then,
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where in the last step we used that VVi,%—z’ and Wm—i,%—m-l—i are independent. The generating

function Hyw, , can easily be derived from the generating function of the equivalent Mann-Whitney



statistic My 5. We know that W, , = M, + %a(a—l— 1) and from Andrews (1976, Ch. 3) and David
and Barton (1962, pp. 203-204) we know that
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Therefore,

a

Hyw, , = c(a) [a + b] - (10)

Substituting (10) into (9) with (a,b) = (4, % — i) and (a,b) = (m — 1, Jgf m + i) gives us Har,.
We complete our proof by remarking that for N even, Ay = Ay — % a

Theorem 3.2 Under Hy, N = m+ n odd and m < n the probability generating function of the
Freund-Ansari- Bradley statistic is

m—

o0 1 j
Z Pr(An =k)x :%Z e(i) e(m
k=0 m

j=0 =0

(11)

<
|
(.
|
-,
s
| —— |
Z
BN~
| I
[~
3
I |=
< M
—~
|
-~
| I |
[~

where [Z] and c(i) as in Theorem 3.1.
q

Proof: The proof is similar to that of Theorem 3.1, but now we deal with two identical sets of
Wilcoxon scores and one score that is equal to zero. This problem is solved by summing over a
variable j that equals 1 if zero is assigned to an X-observation and that equals 0 otherwise. So
for j = 0 we obtain all possible values of A with m scores in the two identical sets and for j = 1
we obtain all possible values of A%, with m — 1 scores in the two identical sets. a

4 Moments of the FAB statistic

Formulas (4) and (11) tell us that for computing moments of the FAB statistic it suffices to
compute derivatives of the expression

where d(q) is a finite sum of terms of the form ¢ ¢”, where ¢ and z are rational. If we denote the

kth derivative of f(g) by f*)(¢) then we see that
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Since d(g) is a finite sum of terms of the form ¢ ¢*, where ¢ and z are rational, it is straightforward
to compute d(®)(1) for ¢ arbitrary large. The two other terms in the right hand side of (12) are
polynomials, so we may take the limit ¢ — 1 and we find the following expression for the kth
derivative of V(q) at ¢ = 1:

“a kE k (k=i=j) PO @
: ( )d ~TP() lim H lim H (13)
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Di Bucchianico (1996) provides a method for computing expressions of the form

(i)
lim H
g—1 |8

q

with the aid of the computer algebra package Mathematica. We used his method for computing
moments of the FAB statistic.



4.1 Ezample

As an illustration we compute the mean for the case N even. In this case & = 1, so after expanding
(13) we get

v =aa sy [1] i H vy i [] i ] +

g—1 g—1 g—1 |S| g—1
q q (14)
’ . r . r
ot [t [}

In this case d(q) = (Z)_1q%i(i+1)+%(m—i)(m—i+1)—%’ SO d(l) — (Z)_l and d/(l) _ (N)_l(%i(i +

m

1+ %(m —i)(m—i4+1)-F)= %(Z)_l(ﬂz + m? — 2im). From the example in Di Bucchianico

(1996,p. 9) we extract that

!
lim [r] = (r) and lim [r] = 1(7“) (r—s)s.
g—1 |[s ¢ s g—1 |[s ¢ 2\s

The same equations hold for s replaced by t. In equation (4) we see that r = = s = ¢ and
t = m — {. Substituting in (14) leaves us after some labour

mN(H)(E)
i "

The last thing we have to do is summing over ¢ and we get the mean p4, for N even:
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where we use the fact that 57" (]:) ( 5 ) = (Z) which is a special case of the Chu-VanderMonde

m—t

formula.? For a complete proof: see (Chu 1303, transl. 1959) or Riordan (1979). .

4.2 Ezample of a higher moment

We give E A%, the fifth moment of the FAB statistic for N even. It took 80 seconds to compute
this moment on a SunSparc 10.

m P(m,n)

ith
3072(m+n—3)(mtn—1)

EA?V:

P(m,n) =
3m11 +m!? (=12 +21n) +m? (=111 — 62n + 63 n?) +
m® (480 — 705n — 120 n? + 1057%) + m” (1320 + 2118 n — 1855 n? — 90 n3 + 105n*) +
(—6720 + 7804 n + 3420 n? — 2585 n® + 20n* + 63n°) +
(—4560 — 24216 n + 17804 n? + 2098 n® — 2005 n* + 78 n® + 21 n°) +
(38400 — 31296 n — 30416 n” + 1975203 — 248 n* — 811 n° +48n° + 3n7) +
(—10368 4+ 105120 n — 62896 n* — 13264 n3 + 10672 n* — 822n° — 125n° 4+ 10n7) +
(—73728 4 27968 n + 90752 n? — 50512 n® + 1472 n* + 2204 n° — 260 n° + 5n7) +
m (55296 — 133888 n + 64192 n? + 20768 n® — 14384 n* + 1832n° — 36 n® — 2n7) +
16896 n — 60160 n? + 28544 n® — 3264 n* — 32 n° + 16 n°

m6
m5
m4
m3
m2

2Sketch of the proof: define a generating function with coefficients equal to the left-hand side of the equality
and with summing variable m. Then use the convolution theorem to split the sum into a product of two sums.
Finally, use the binomial theorem to obtain the desired result.
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5 Computer algebra

This section contains the text of the Mathematica package we used for computing the distribution
of the FAB statistic by using Theorems 3.1 and 3.2. We also give a small example.

FABevengf[N_,m_]:= Expand[Simplify[1/Binomial [N,m]*q~ (-(m/2))*
(Sum[c[il*c[m-i]*Product[1-q~1,{1,8/2}]1/(Product[1-q~1,{1,i}]*
Product[1-q~1,{1,N/2-i}])#*Product[1-q~1,{1,N/2}]/
(Product[1-q~1,{1,m-i}]*Product[1-q~1,{1,8/2-(m-1)}]),{i,m-1}] +
(2*c[m] )*Product[1-q~1,{1,N/2}]1/
(Product[1-q~1,{1,m}]*#Product[1-q~1,{1,N/2-m}]1))1]

FABoddgf[N_,m_]:= Expand[Simplify[1/Binomial [N, m]*
Sum[Sum[c[i]*c[m-j-i]*Product[1-q~1,{1, (N-1)/2}]1/
(Product[1-q~1,{1,i}]*Product[1-q~1,{1, (N-1)/2-i}])*
Product[1-q~1,{1,(N-1)/2}]1/(Product[1-q~1,{1,m-j-i}]*
Product[1-q~1,{1,(N-1)/2-(m-j-1)}]1),{i,m-j-1}] +
(2*c[m-jl)*Product[1-q~1,{1, (N-1)/2}]1/(Product[1-q~1,{1,m-j}]1*
Product[1-971,{1,(N-1)/2-(m-j)}1),{j,0,1}11]

cli_l:= g~ ((1/2)*i*(i+1))

Note that the cases ¢ = 0 and ¢ = m—j are split off, because we have to tell Mathematica explicitly

that [6] q =1

The contribution of these cases to the sum is equal. The Mathematica functions Expand and
Simplify are used to compute the full polynomial which represents the distribution of the FAB
statistic. The following example gives the distribution of the FAB statistic for m = n = 4.

FABevengf [8,4]

4 5 6 7 8 9 10 11 12
q 249 94q 6 q 94q 6 q 94q 249 q
L R i T LT T T i it L T + ————— + ——-
70 35 70 35 35 35 70 35 70

6 Table of critical values

With the aid of Theorems 3.1 and 3.2 we were able to extend the existing tables of critical values.
Ansari and Bradley (1960) give critical values for N < 20. We give tables for n = m, N < 80. For
practical reasons we did not print the unbalanced cases. Anyone interested in critical values for
an unbalanced case may contact the author.
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0.006 0.01 0.025 0.06 0.1 0.1 0.056 0.025 0.01 0.005
* * 4 4 5 11 12 12 * *

* 65 75 75 85 165 175 175 185 *

9 10 11 12 13 23 24 25 26 27
13.5 145 1565 175 185 305 315 335 345 355
19 20 22 23 25 39 41 42 44 45
255 265 285 305 325 485 505 525 5456 555
10 33 34 36 38 40 60 62 64 66 67
11| 405 425 445 465 495 715 745 765 785 805
12 49 51 54 57 60 84 87 90 93 95
13] 59.5 615 645 67.5 70.5 985 101.5 104.5 107.5 109.5
14 70 72 76 79 83 113 117 120 124 126
15 81.5 835 8385 91.5 955 1295 1335 136.5 141.5 1435
16 93 97 101 105 110 146 151 155 159 163
17]1106.5 110.5 115.5 119.5 124.5 164.5 169.5 173.5 178.5 1825
18] 121 125 130 135 141 183 189 194 199 203
191136.5 140.5 146.5 151.5 157.5 203.5 209.5 214.5 220.5 224.5
20 152 1566 163 169 175 225 231 237 244 248
21(169.5 173.5 180.5 186.5 193.5 247.5 254.5 260.5 267.5 271.5
22| 187 192 199 206 214 270 278 285 292 297
2312055 2115 219.5 226.5 2345 294.5 302.5 309.5 317.5 323.5
24 225 231 240 247 2566 320 329 336 345 351
2512455 2525 261.5 269.5 278.5 346.5 355.5 363.5 372.5 379.5
26| 267 274 284 292 302 374 384 392 402 409
271289.5 296.5 307.5 315.5 326.5 402.5 413.5 421.5 4325 439.5
28 313 321 331 341 352 432 443 453 463 471
29 [ 337.5 345.5 356.5 366.5 378.5 462.5 474.5 484.5 4955 503.5
301 363 371 383 393 406 494 507 517 529  H3T
31(388.5 397.5 410.5 421.5 433.5 527.5 539.5 550.5 563.5 572.5
32| 416 425 438 450 463 561 574 586 599 608
33 (443.5 453.5 467.5 479.5 493.5 5955 609.5 621.5 6355 645.5
34| 473 483 497 510 525 631 646 659 673 683
35(502.5 513.5 528.5 541.5 556.5 668.5 683.5 696.5 711.6 722.5
36| 534 544 560 574 590 706 722 736 7H2  T62
37(565.5 576.5 593.5 607.5 624.5 T44.5 761.5 T75.5 792.5 803.5
38 598 610 627 642 659 785 802 817 834 846
39 [631.5 643.5 661.5 677.5 695.5 825.5 843.5 859.5 877.5 889.5
40| 666 679 697 T14 732 868 886 903 921 934

WO o =1 O Ot |3

Table 1: Left and right critical values for the Freund-Ansari-Bradley test, n = m.
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