Material Didático

Série

Probabilidade

Onivariada Parte II

Enfoque: Exatas

Prof. Lorí Viali, Dr.

SUMÁRIO

1. VARIÁVEIS ALEATÓRIAS CONTÍNUAS	2
1.1. CÁLCULO DE PROBABILIDADE COM UMA VAC	2
1.2. A FUNÇÃO DE DISTRIBUIÇÃO ACUMULADA	3
1.3. Variável aleatória contínua (caracterização)	4
1.3.1. Expectância, esperança, média ou valor esperado de X	4
1.3.2. A variância de X	4
1.3.3. O desvio padrão	4
1.3.4. A variância relativa e o coeficiente de variação	4
1.4. Distribuições especiais de probabilidade contínuas	5
1.5. A DISTRIBUIÇÃO UNIFORME	5
1.5.1. Propriedades da distribuição uniforme	5
1.5.2. A distribuição exponencial	7
1.5.3. Propriedades da distribuição Exponencial	8
1.6. A distribuição normal	9
1.6.1. Propriedades da distribuição normal	9
1.6.2. Outras propriedades	10
1.6.3. Tabelas	11
1.6.4. Relação entre as distribuições Binomial e Normal	13
1.7. A função Gama	14
1.8. A distribuição t (de Student)	15
1.8.1. Propriedades da distribuição t (de Student)	16
1.9. A distribuição QUI-QUADRADO	
1.9.1. Propriedades da distribuição χ^2 (qui-quadrado)	17
1.10. A distribuição F (de Snedecor)	19
1.10.1. Propriedades da distribuição F (de Snedecor)	19
2. PROPRIEDADES DA MÉDIA E DA VARIÂNCIA DE VARIÁVEIS ALEATÓRIAS	21
2.1. Média	21
2.2. Variância	21
2.3. A MEDIANA E A MODA	22
2.4. Desigualdades de Tchebycheff e Camp-Meidell	22
2.5. O TEOREMA CENTRAL DO LIMITE	23
3. EXERCÍCIOS	24
4. RESPOSTAS DOS EXERCÍCIOS	28
5. REFERÊNCIAS	29
Agradeco a revisão criteriosa feita nor Nilton Marcelo Silveira	

ELEMENTOS DE PROBABILIDADE

1. VARIÁVEIS ALEATÓRIAS CONTÍNUAS

Seja E um experimento e S um espaço amostra associado. Se X é uma variável aleatória definida em S tal que X(S) seja infinito não-enumerável, isto é, X(S) seja um intervalo de números reais, então X é dita uma variável aleatória contínua.

Definição

Seja X uma variável aleatória contínua (VAC). A função f(x) que associa a cada $x \in X(S)$ um número real que satisfaz as seguintes condições:

- (a) $f(x) \ge 0$, para todo $x \in X(S)$ e
- **(b)** $\int_{X(S)} f(x) dx = 1$

É denominada de **função densidade de probabilidade** (**fdp**) da variável aleatória X.

Neste caso f(x) representa apenas a densidade no ponto x, ao contrário da variável aleatória discreta, f(x) aqui $\mathbf{n}\mathbf{\tilde{a}o}$ é a probabilidade de a variável assumir o valor x.

1.1. CÁLCULO DE PROBABILIDADE COM UMA VAC

Seja X uma variável aleatória contínua com função densidade de probabilidade f(x). Sejam a < b, dois números reais. Define-se:

 $P(a < X < b) = \int_a^b f(x) dx, \text{ isto \'e, a probabilidade de que X assuma valores entre os números "a"}$ e "b" \'e a área sob o gráfico de f(x) entre os pontos x = a e x = b.

Neste caso, tem-se também:

- (a) P(X = a) = 0, isto é, a probabilidade de que uma variável aleatória contínua assuma um valor isolado é igual a zero. Para variáveis contínuas só faz sentido falar em probabilidade em um intervalo, uma vez, que a probabilidade é definida como sendo a área sob o gráfico. f(x) não representa nenhuma probabilidade. Somente quando ela for integrada entre dois limites produzirá uma probabilidade.
 - **(b)** Se a < b são dois números reais então:

$$P(a \leq X \leq b) = P(a \leq X \leq b) = P(a \leq X \leq b) = \smallint_a^b f(x) dx \,,$$

(c) Se uma função f* satisfizer às condições f*(x) \geq 0 para todo x e $\int_{-\infty}^{\infty} f^*(x) dx = k$, onde "k" é um número real positivo, mas não igual a 1, então f*(x) pode ser transformada numa fdp mediante a seguinte transformação:

$$f(x) = f^*(x) / k$$
, para todo x.

Neste caso a f(x) será uma função densidade de probabilidade.

(d) Se X assumir valores apenas num intervalo finito [a; b], pode-se simplesmente por f(x) = 0 para todo $x \notin [a; b]$. como consequência a fdp ficará definida para todos os valores reais de x e pode-se exigir que $\int_{-\infty}^{\infty} f(x) dx = 1$. Assim, sempre que a f(x) for especificada apenas num intervalo finito, deve-se supor que seja zero para todos os demais valores não pertencentes ao intervalo.

Exemplo 1.1

Seja X uma VAC com fdp dada por:

$$f(x) = 2x$$
 se $0 < x < 1$

= 0, para quaisquer outros valores.

Determinar a P(X < 1/2)

Solução:

$$P(X < 1/2) = \int_0^{1/2} (2x) dx = 1/4 = 25\%$$

1.2. A FUNÇÃO DE DISTRIBUIÇÃO ACUMULADA

Seja X uma VAC com função densidade de probabilidade f(x). Então a **função de distribuição** (FDA), ou simplesmente **função de distribuição** (FD) de X é a função F definida por:

$$F(x) = P(X \le x) = \int_{-\infty}^{x} f(u) du$$

Solução:

Suponha-se que X seja uma VAC com fdp dada por:

$$f(x) = 2x$$
 se $0 < x < 1$

= 0, para quaisquer outros valores.

Determinar a FD de X

Solução:

A função de distribuição de X é a função F tal que:

$$F(x) = P(X \leq x) = \int_{-\infty}^x f(u) du = \int_{-\infty}^x 2u du = \begin{cases} 0 & \text{se } x \leq 0 \\ x^2 & \text{se } 0 < x \leq 1 \\ 1 & \text{se } x > 1 \end{cases}$$

1.3. VARIÁVEL ALEATÓRIA CONTÍNUA (CARACTERIZAÇÃO)

Considere X uma variável aleatória contínua com função densidade de probabilidade f(x).

1.3.1. Expectância, esperança, média ou valor esperado de X

A média, expectância, **valor esperado** ou esperança matemática da variável aleatória contínua X, representada por μ ou E(X), é calculada por:

$$\mu = E(X) = \int_{-\infty}^{\infty} x.f(x)dx$$

Obs. Não é garantido que esta integral exista (convirja) sempre.

1.3.2. A variância de X

Seja X uma variável aleatória contínua com média μ = E(X). Então a variância de X, anotada por σ^2 ou V(X) é definida por:

$$\sigma^2 = V(X) = \int_{-\infty}^{\infty} (x - \mu)^2 . f(x) dx = \int_{-\infty}^{\infty} x^2 . f(x) dx - \mu^2 = E(X^2) - \mu^2$$

1.3.3. O desvio padrão

O desvio padrão da variável aleatória contínua X, anotado por σ , é a raiz quadrada da variância.

1.3.4. A variância relativa e o coeficiente de variação

Seja X uma variável aleatória contínua com média $\mu = E(X)$ e variância $\sigma^2 = V(X)$. Então a variância relativa de X, anotada por: γ^2 , é definida por:

$$\gamma^2 = \sigma^2 / \mu^2$$

O coeficiente de variação de X é definido como a raiz quadrada da variância relativa:

$$\gamma = \sigma \, / \; \mu$$

Exemplo 1.2

Determinar a expectância e a variância da VAC cuja fdp é dada por:

$$f(x) = 3x^2$$
 se $-1 \le x \le 0$
= 0 caso contrário

Solução:

$$\mu = E(X) = \int_{-\infty}^{\infty} x \cdot f(x) dx = \int_{-1}^{0} x \cdot (3x^2) dx = \int_{-1}^{0} (3x^3) dx = 3 \cdot \left[\frac{x^4}{4} \right]_{-1}^{0} = -3/4 = -0,75$$

$$\sigma^2 = V(X) = \int_{-\infty}^{\infty} x^2 \cdot f(x) dx - \mu^2 = \int_{-\infty}^{\infty} x^2 \cdot (3x^2) dx - (3/4)^2 = \int_{-\infty}^{\infty} 3x^4 dx - (3/4)^2 = 3 \cdot \left[\frac{x^5}{5} \right]_{-1}^{0} - (3/4)^2$$

= 3/80.

1.4. DISTRIBUIÇÕES ESPECIAIS DE PROBABILIDADE CONTÍ-NUAS

Assim como ocorre com as variáveis discretas, existem algumas distribuições especiais de probabilidade contínuas que por sua freqüência de uso vale a pena estudar mais detalhadamente. Entre elas vale destacar as distribuições: uniforme, exponencial e normal.

1.5. A DISTRIBUIÇÃO UNIFORME

Definição:

Seja X uma VAC que pode tomar todos os valores num intervalo [a, b]. Se a probabilidade de a variável assumir valores num subintervalo for a mesma que para qualquer outro subintervalo de mesmo comprimento teremos então uma distribuição uniforme. A função densidade de probabilidade de uma VAC deste tipo será:

$$f(x) = 1 / (b - a)$$
 para $a \le x \le b$
= 0 para qualquer outro valor.

1.5.1. Propriedades da distribuição uniforme

As principais medidas para a distribuição uniforme podem ser determinadas de uma forma geral em termos dos extremos "a" e "b" do intervalo.

Média, expectância ou valor esperado

$$\mu = E(X) = \int_{-\infty}^{\infty} x \cdot f(x) dx = \int_{a}^{b} x \cdot \frac{1}{b-a} dx = (a+b) / 2$$

Variância

$$\sigma^{2} = V(X) = \int_{-\infty}^{\infty} x^{2} \cdot \frac{1}{b-a} dx - \left[\frac{(a+b)}{2} \right]^{2} = (b-a)^{2} / 12$$

Desvio padrão

$$\sigma = \sqrt{\frac{(b-a)^2}{12}}$$

A FDA da distribuição uniforme

A FDA da distribuição uniforme, pode ser facilmente avaliada e, vale:

$$F(x) = P(X \le x) = \int_{-\infty}^{x} \frac{1}{b-a} du = \begin{cases} 0, & \text{se } x < a \\ \frac{x-a}{b-a}, & \text{se } a \le x \le b \\ 1, & \text{se } x \ge b \end{cases}$$

Exemplo 1.3

Seja X uma VAC com distribuição uniforme no intervalo [5, 10]. Determinar as probabilidades:

(a)
$$P(X < 7)$$

(b)
$$P(X > 8.5)$$

(c)
$$P(8 < x < 9)$$

(d)
$$P(|x - 7,5| > 2)$$

Solução:

Utilizando a FDA da variável vem:

(a)
$$P(X < 7) = F(7) = (7 - 5) / (10 - 5) = 2 / 5 = 40\%$$

(b)
$$P(X > 8,5) = 1 - P(X < 8,5) = 1 - F(8,5) = 1 - (8,5 - 5) / (10 - 5) = 1 - 3,5 / 5 = 1 - 0,70 = 30%$$

(c)
$$P(8 < X < 9) = F(9) - F(8) = (9 - 5) / (10 - 5) - (8 - 5) / (10 - 5) = 4 / 5 - 3 / 5 = 1 / 5 = 20\%$$

(d)
$$P(|X - 7.5| > 2) = P(X - 7.5 > 2 \text{ ou } X - 7.5 < -2) = P(X > 9.5 \text{ ou } X < 5.5) = 1 - F(9.5) + F(5.5) = 20\%$$

1.5.2. A distribuição exponencial

Definição:

Uma variável aleatória contínua T tem uma distribuição exponencial de parâmetro λ se sua função densidade de probabilidade f(t) for do tipo:

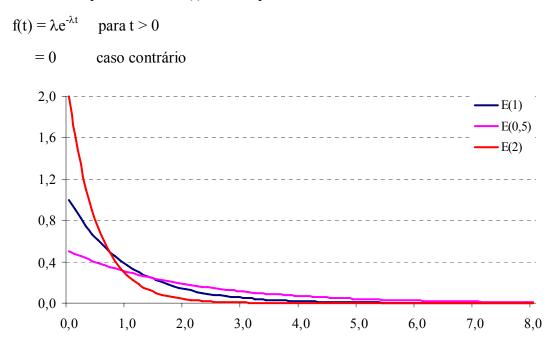


Figura 1.1 – Exemplos de distribuições exponenciais

Exemplo 1.4

Suponha que um componente eletrônico tenha um tempo de vida T (em unidades de 1000 horas) que segue uma distribuição exponencial de parâmetro $\lambda = 1$. Suponha que o custo de fabricação do item seja R\$ 2,00 e que o preço de venda seja R\$ 5,00. O fabricante garante total devolução se t < 0,90. Qual o lucro esperado por item?

Solução:

Neste caso, tem-se:

$$f(t) = e^{-t}$$
 para $t > 0$

A probabilidade de um componente durar menos de 900 horas é dada por:

$$P(T < 0.90) = \int_0^{0.9} e^{-t} dt = \left[-e^{-t} \right]_0^{0.9} = -e^{-0.9} + e^0 = 1 - 1/e^{0.9} = 59.34\%$$

Desta forma o lucro do fabricante será uma VAD T com a seguinte distribuição:

t	-2	3
f(t)	0,5934	0,4066

Então o lucro esperado será:

$$E(T) = -2.0,5934 + 3.0,4066 = R $0,03$$

1.5.3. Propriedades da distribuição Exponencial

Se T for uma VAC com distribuição Exponencial, então:

Média, expectância ou valor esperado

$$\mu = E(T) = \int_0^\infty t. f(t) dt = \int_0^\infty t. \lambda e^{-\lambda t} dt = 1/\lambda$$

Variância

$$\sigma^2 = E(T^2)$$
 - $\mu^2 = \int_0^\infty t^2 . \lambda \, e^{-\lambda t} \, dt$ - $\lambda^2 = 1/\lambda^2$

O desvio padrão

$$\sigma = \sqrt{\frac{1}{\lambda^2}} = \frac{1}{\lambda}$$

A FDA da distribuição Exponencial

A FDA da distribuição Exponencial é dada por:

$$F(t) = P(T \le t) = \int_0^t \lambda \, e^{-\lambda u} du \, = \begin{cases} 0, & \text{se } t < 0 \\ 1 - e^{-\lambda t}, & \text{se } t \ge 0 \end{cases}$$

Portanto
$$P(T \ge t) \ 1 - F(t) = 1 - [1 - e^{-\lambda t}] = e^{-\lambda t}$$

A distribuição Exponencial não tem memória

A distribuição Exponencial apresenta uma propriedade interessante que é denominada de falta de memória, ou seja:

$$P(T \ge s + t \ / \ T \ge s) = P(T \ge s + t \ \cap \ T \ge s) \ / \ P(T \ge s) = \ P(T \ge s + t) \ / \ P(T \ge s) = e^{-\lambda(s + t)} \ / \ e^{-\lambda s} = e^{-\lambda t}$$

Portanto
$$P(T \ge s + t / T \ge s) = P(T \ge t)$$

Relação com a distribuição de Poisson

Deve-se observar inicialmente que fixado um tempo, a probabilidade de não ocorrências de eventos neste intervalo é dado por:

$$f(0) = P(T = 0) = [(\lambda t)^0 e^{-\lambda t}] / 0! = e^{-\lambda t}$$

Se a variável aleatória contínua T representar o tempo passado entre a ocorrência de dois eventos de Poisson, então a probabilidade da não ocorrência no tempo "t" é igual a probabilidade de que o tempo T entre ocorrências seja maior que "t", isto é:

$$P(T > t) = e^{-\lambda t}$$

Tem-se ainda que:

$$P(T \le t) = 1 - e^{-\lambda t}$$

Que conforme já visto é a função acumulada da variável aleatória exponencial de parâmetro λ , isto é:

$$F(t) = P(T \le t) = 1 - e^{-\lambda t}$$

1.6. A DISTRIBUIÇÃO NORMAL

Um dos principais modelos de distribuição contínua é a curva normal ou de Gauss. Sua importância para a Estatística (prática) reside no fato que muitas variáveis encontradas na natureza se distribuem de acordo com o modelo normal. Este modelo também tem uma importância teórica devido ao fato de ser uma *distribuição limite*.

Uma variável aleatória contínua X tem uma distribuição normal (ou Gaussiana) se sua função densidade de probabilidade for do tipo:

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-(x-\mu)^2/2\sigma^2}, \text{ para } -\infty \le x \le \infty$$

1.6.1. Propriedades da distribuição normal

Se X for uma VAC com distribuição Normal, então:

Média, expectância ou valor esperado

 $E(X) = \mu$, isto é, o parâmetro μ é a média da distribuição normal.

Variância

 $V(X) = \sigma^2$, isto é, a variância da distribuição normal é o parâmetro σ ao quadrado.

O desvio padrão

O desvio padrão da distribuição normal é o parâmetro σ.

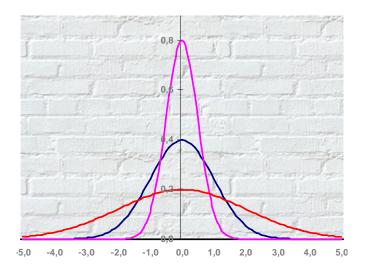
FDA da distribuição Normal

A função de distribuição (FDA) da normal reduzida é representada por:

$$\Phi(z) = P(Z \le z) = \int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} e^{-u^2/2} du$$

Esta integral, e aliás como de qualquer outra normal, não pode ser avaliada pelo método tradicional (teorema fundamental do cálculo). Ela só pode ser calculada por métodos numéricos. E por isso ela é encontrada tabelada em qualquer livro texto de Probabilidade ou Estatística.

Figura 1.2 – Distribuições normais: N(0; 1/2), N(0; 1) e N(0; 2)



1.6.2. Outras propriedades

(a) Transformação linear de uma variável aleatória normal

Se X tiver uma distribuição $N(\mu,\sigma)$ e se Y = aX + b, então Y terá a distribuição $N(a\mu + b, a\sigma)$

(b) Combinação linear de variáveis aleatórias normais independentes

A combinação linear de variáveis aleatórias normais independentes será uma variável aleatória normalmente distribuída.

(c)
$$f(x) \rightarrow 0$$
 quando $x \rightarrow \infty$ ou $-\infty$.

- (d) μ σ e μ + σ são os pontos de inflexão da função f(x), isto é, são os valores onde o gráfico da função muda o sinal da curvatura.
 - (e) $x = \mu$ é o ponto de máximo de f(x) e este máximo vale $\int_{-\sigma\sqrt{2\pi}}^{1/2} dx$.
 - (f) f(x) é simétrica ao redor de $x = \mu$, isto é: $f(\mu + x) = f(\mu x)$
 - (g) Se X tem uma distribuição normal de média μ e desvio padrão σ se escreverá:

 $X : N(\mu, \sigma)$

(h) Quando $\mu=0$ e $\sigma=1$, tem-se uma distribuição normal padrão ou normal reduzida. A variável normal +padrão será anotada por Z. Então Z : N(0, 1). A função densidade de probabilidade da variável aleatória Z será representada por:

$$\varphi(z) = \frac{1}{\sqrt{2\pi}} e^{-z^2/2}$$
, para $-\infty \le z \le \infty$

(i) Se X é uma $N(\mu, \sigma)$, então $Z = (X - \mu) / \sigma$ é a normal padrão ou reduzida. Isto significa que qualquer curva normal poderá ser padronizada, mediante esta transformação.

1.6.3. Tabelas

A forma de se calcular probabilidade com qualquer distribuição normal é através da tabela da normal padrão. Assim se $X: N(\mu, \sigma)$ então primeiro é necessário padronizar X, isto é, fazer:

$$Z = (X - \mu) / \sigma$$
.

Em seguida obter em uma tabela o valor da probabilidade, isto é, o valor:

$$P(Z \le z) = \Phi(z)$$

Este valor $\Phi(z)$ pode ser lido como "valor tabelado de z" e significa a probabilidade de a variável aleatória contínua $Z = (X - \mu) / \sigma$ assumir valores à esquerda (abaixo de) do valor particular "z".

Lembrar que qualquer tabela é construída fornecendo os valores da FDA de Z. A maioria delas fornece as probabilidades de $Z \le z$ para valores de z entre -3,09 e +3,09 e com aproximação centesimal. Algumas fornecem valores de z entre 0 e 3,09

Assim o primeiro valor tabelado é em geral $\Phi(-3,09) = P(Z \le -3,09)$ que vale 0,0000, isto é, é zero com uma aproximação de 4 decimais. O valor seguinte seria $\Phi(-3,08) = P(Z \le -3,08) = 0,0001$.

O último valor tabelado é, em geral, $\Phi(3,09) = P(Z \le 3,09) = 1,000$, pois é o valor acumulado, isto quer dizer, que até este valor tem-se a totalidade da área útil sob a curva avaliada com uma aproximação de 4 decimais.

Convém ressaltar que as tabelas sendo da FDA de Z fornecem a área à esquerda de um valor qualquer "z". No entanto, como a curva é simétrica, se quiséssemos, a área à direita de "z", basta observar que:

$$P(Z > z) = 1 - P(Z \le z) = 1 - \Phi(z) = \Phi(-z)$$

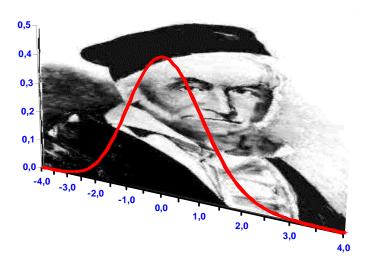


Figura 1.3 – Distribuição normal padrão - N(0; 1)

Exemplo 1.5

Seja Z uma N(0, 1). Determinar as seguintes probabilidades:

(a)
$$P(Z < 2,23)$$

(b)
$$P(Z > -1.45)$$

(c)
$$P(-2 \le Z \le 2)$$

(d)
$$P(-1 \le Z \le 1)$$

Solução:

(a)
$$P(Z < 2.23) = \Phi(2.23) = 98.71\%$$

(b)
$$P(Z > -1.45) = 1 - P(Z \le -1.45) = 1 - \Phi(-1.45) = 1 - 0.0735 = 92.65\%$$

(c)
$$P(-2 \le Z \le 2) = \Phi(2) - \Phi(-2) = 0.9772 - 0.0228 = 95.44\%$$

(d)
$$P(-1 \le Z \le 1) = \Phi(1) - \Phi(-1) = 0.8413 - 0.1587 = 68.26\%$$

Exemplo 1.6

Seja X uma VAC com distribuição N(10, 2). Determinar:

(a)
$$P(X < 10)$$

(b)
$$P(X > 11,50)$$

(c)
$$P(8 \le Z \le 12)$$

(d)
$$P(6,08 \le Z \le 13,92)$$

Solução:

Neste caso, antes de se poder procurar os valores na tabela é necessário padronizar cada valor de X, através da expressão:

$$Z = (X - \mu) / \sigma = (X - 10) / 2$$

(a)
$$P(X < 10) = P((X - 10) / 2 < (10 - 10) / 2) = P(Z < 0) = \Phi(0) = 50\%$$

(b)
$$P(X > 11,50) = P(Z > (11,50 - 10) / 2) = P(Z > 0,75) = 1 - \Phi(0,75) = 22,66\%$$

(c)
$$P(8 < X \le 12) = P(-1 < Z \le 1) = \Phi(1) - \Phi(-1) = 0.8413 - 0.1587 = 68.26\%$$

(d)
$$P(6.08 \le X \le 13.92) = P(-1.96 \le Z \le 1.96) = \Phi(1.96) - \Phi(-1.96) = 0.9750 - 0.0250 = 95\%$$

1.6.4. Relação entre as distribuições Binomial e Normal

Seja X uma variável aleatória distribuída binomialmente com parâmetros "n" e "p". Isto é:

$$P(X = x) = \binom{n}{x} p^{x} q^{n-x}$$

Quando o número de provas "n" cresce (tende ao infinito) a distribuição binomial tende a uma distribuição normal de média $\mu = np$ e desvio padrão $\sigma = \sqrt{npq}$

Em geral admite-se que para $np \ge 5$ e $nq \ge 5$, "n" já será suficientemente grande para se poder aproximar uma distribuição binomial pela normal.

No entanto, devido ao fato de se estar aproximando uma distribuição discreta, através de uma contínua, recomenda-se para se obter maior precisão, realizar uma *correção de continuidade* que consiste em transformar, por exemplo, P(X = x) no intervalo P(x - 0.5 < X < x + 0.5) e o mesmo em qualquer outra situação.

Exemplo 1.7

No lançamento de 30 moedas honestas, qual a probabilidade de saírem:

- (a) Exatamente 12 caras?
- **(b)** Mais de 20 caras?

Solução:

(a) A probabilidade de saírem 12 caras é dada pela distribuição binomial por:

$$P(X = 12) = {30 \choose 12}.0,5^{12}.0,5^{18} = 8,06\%$$

Aproximando pela normal tem-se:

$$\mu = np = 30.(1/2) = 15$$

$$\sigma = \sqrt{npq} = \sqrt{30.\frac{1}{2}.\frac{1}{2}} = 2,7386$$

Então P(X =12) calculado pela normal com utilização da correção de continuidade será:

 $P(X = 12) \cong P(11,5 < X < 12,5) = P(-1,28 < Z < -0,91) = 0,3997 - 0,3186 = 8,11\%$, que não é muito diferente do valor exato 8.06%.

(b)
$$P(X > 20) = \sum_{i=21}^{30} {30 \choose i} . (\frac{1}{2})^{i} . (\frac{1}{2})^{30-i} = 2,14\%$$

Aproximando pela normal, tem-se:

$$P(X > 20.5) = 0.5000 - 0.4778 = 2.22\%$$

1.7. A FUNÇÃO GAMA

A função gama é definida por uma integral imprópria e surge associada a vários problemas de Física, Engenharia e Estatística. Ela serve de base para a definição das distribuições contínuas: Student, χ^2 e F.

$$Gama(x) = \Gamma(x) = \int_0^\infty t^{x-1} e^{-t} dt$$

Ela apresenta algumas propriedades peculiares, como, por exemplo:

$$\Gamma(x+1) = x!$$

$$\Gamma(x+1) = x \Gamma(x)$$

$$\Gamma(1/2) = \sqrt{\pi}$$

A função gama pode ser considerada uma generalização do Fatorial.

Se n é um inteiro positivo, então:

$$\Gamma(n) = (n-1)!$$

E, então::

$$\Gamma(1) = \int_0^\infty e^{-x} dx = 1$$

Graficamente a função Gama tem um comportamento estranho, especialmente para os números negativos devido aos pontos de descontinuidade. A Figura 1 mostra o gráfico da função Gama apenas para os números positivos que são de maior interesse.

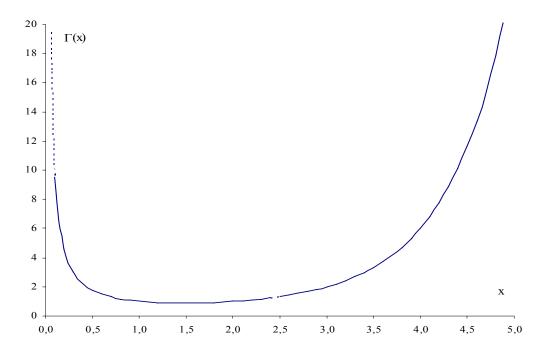


Figura 1.4 - Gráfico da função Gama no domínio dos números reais positivos

1.8. A DISTRIBUIÇÃO T (DE STUDENT)

Matematicamente a distribuição t de *Student* tem como único parâmetro o valor de k – graus de liberdade – utilizando a função Gama tanto no seu numerador como no denominador. Uma variável aleatória X tem uma distribuição "t" ou de **Student** se sua fdp for do tipo:

$$t_{v}(x) = \frac{\Gamma\left(\frac{v+1}{2}\right)}{\sqrt{\pi v} \Gamma\left(\frac{v}{2}\right) \left(1 + \frac{x^{2}}{v}\right)^{\frac{v+1}{2}}} \quad v = 1, 2, 3, \dots \qquad x \in \Re$$

Para qualquer valor inteiro e positivo de v a distribuição t assume uma forma muito parecida com a curva normal-padrão (Z) sendo que a aproximação será tanto melhor quanto maior for o valor de v. A Figura 1.5 apresenta a forma da distribuição de Student para alguns valores de v.

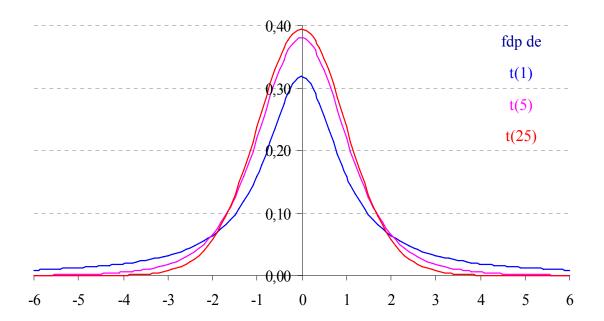


Figura 1.5 - Gráfico da distribuição t (de Student) para os gl de 1, 5 e 25

1.8.1. Propriedades da distribuição t (de Student)

Se X for uma VAC com distribuição t, então:

Média, expectância ou valor esperado

$$\mu = E(X) = 0$$

Variância

$$V(X) = \sigma^2 = \frac{\upsilon}{\upsilon - 2}$$
 o valor v é denominado de "graus de liberdade".

O desvio padrão

$$\sigma = \sqrt{\frac{\upsilon}{\upsilon - 2}}$$

Tabelas

O que é tabelado é a função inversa (percentis), em relação a área à direita (unilateral) de cada curva (uma para cada linha), ou a soma das caudas (bilateral), isto é, a tabela retorna um valor "t" tal que $P(T \ge t) = \alpha$ (unilateral) ou $P(|T| \ge t) = \alpha$ (bilateral).

As duas opções podem ser colocadas em uma mesma tabela. Pode-se ler uma área (a) de cima para baixo e se ter um valor unilateral $(P(T \ge t) = \alpha)$ ou ler a área (a) de baixo para cima e se ter um valor "t" tal que $P(T \ge t) = \alpha/2$.

	P(t de S	tudent ≥	valor ta	belado) =	= α ⇔	Valore	s unilate	erais	
	0.5000	0.2000	0.1000	0.0500	0.0400	0.0200	0.0100	0.0050	0.0010
1	1.000	3.078	6.314	12.706	15.894	31.821	63.656	127.321	636.578
2	0.816	1.886	2.920	4.303	4.849	6.965	9.925	14.089	31.600
3	0.765	1.638	2.353	3.182	3.482				12.924
4	0.741	1.533	2.132	2.776	2.9 I	$P(T_9 < -2,$	262) = 2	,5% ou	8.610
5	0.727	1.476	2.015	2.571	2.7	$P(T_9 > 2)$	(2,262) = 2	2,5%	6.869
6	0.718	1.440	1.943	2.447	2.61	7 /			5.959
7	0.711	1.415	1.895	2.365	2.517	.998	3.499	4.029	5.408
8	0.706	1.397	1.860	2.306	1/1	2.896	3.355	3.833	5.041
9	0.703	1.383	1.833	2.262	2.398	2.821	3.250	3.690	4.781
10	0.700	1.372	1.812	2.228	2.359	2.764	3.169	3.581	4.587
11	0.697	1.363	/	2 201	2 328	2.718	3.106	3.497	4.437
12	0.695	1.356	$P(T_9)$	≥ 2,262) :	= 5%	2.681	3.055	3.428	4.318
13	0.694	1.350	1.//1	2.100	2.282	2.650	3.012	3.372	4.221
14	0.692	1.345	1.761	2.145	2.264	2.624	2.977	3.326	4.140
15	0.691	1.341	1.753	2.131	2.249	2.602	2.947	3.286	4.073

1.9. A DISTRIBUIÇÃO QUI-QUADRADO

A distribuição Qui-quadrado está definida apenas para valores não-negativos de x e, assim como a t, depende dos graus de liberdade v. Uma variável aleatória X tem uma distribuição **Qui-Quadrado** se sua fdp for do tipo:

$$\chi_{\nu}^{2}(x) = \frac{x^{\frac{\nu}{2}-1} e^{-\frac{x}{2}}}{2^{\frac{\nu}{2}} \Gamma\left(\frac{\nu}{2}\right)} \quad \nu = 1, 2, 3, \dots \qquad x \in [0; \infty)$$

1.9.1. Propriedades da distribuição χ^2 (qui-quadrado)

Média, expectância ou valor esperado

$$\mu = E(X) = \nu$$

Variância

$$V(X) = \sigma^2 = 2\nu$$

O valor v é denominado de "graus de liberdade".

O desvio padrão

$$\sigma = \sqrt{2\upsilon}$$

Representação gráfica

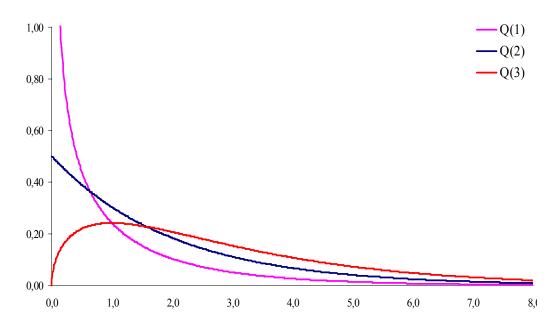


Figura 1.6 - Gráfico da distribuição χ^2 (Qui-Quadrado) para os gl de 1, 2 e 3

Tabelas

O que é tabelado é a função inversa, em relação a área à direita de cada curva (uma para cada linha), isto é, dado um valor de área na cauda direita (a), a tabela retorna um valor "x" tal que $P(\chi^2 \ge x) = \alpha$.

	0.995	0.990	0.975	0.950	0.900	0.100	0.050	0.025	0.100	0.005
1	0.000	0.000	0.001	0.004	0.016	2.706	3.841	5.024	2.706	7.879
2	0.010	0.020	0.051	0.103	0.211	4.605	5.991	7.378	4.605	10.597
3	0.072	0.115	0.216	0.352	0/ /	6.251	7.815	9.348	6.251	12.838
4	0.207	0.297	0.484	0.711	_/ \	7.779	9.488	11.143	7.779	14.860
5	0.412	0.554	0.831	1.14]	$P[\chi^2_{(2)} \ge 0]$),211] =	90%	12.832	9.236	16.750
6	0.676	0.872	1.237	1.635	2.204	10.043	12.392	14.449	10.645	18.548
7	0.989	1.239	1.690	2.167	2.833	12.017	14.067	16.013	12.017	20.278
8	1.344	1.647	2.180	2.733	3.490	13.362	15.507	17.535	13.362	21.955
9	1.735	2.088	2.700	3.325	4.168	14.684	16.919	19.023	14.684	23.589
10	2.156	2.558	3.247	3.940	4.865	15.987	18.307	20.483	15.987	25.188

1.10. A DISTRIBUIÇÃO F (DE SNEDECOR)

Já a distribuição *F* de *Snedecor* depende de dois parâmetros denominados também de graus de liberdade. O primeiro (m) é o grau de liberdade do numerador e o segundo (n) do denominador. Na estatística ela é caracterizada como o quociente de duas variâncias e, portanto de duas distribuições quiquadrado. Cada parâmetro da mesma forma que nos modelos anteriores é associado ao tamanho amostral menos um. Uma das possíveis representações da função densidade de probabilidade da F, em termos da função Gama, é dada por:

$$F_{m,n} = \frac{\Gamma\left(\frac{m+n}{2}\right) m^{\frac{m}{2}} n^{\frac{n}{2}} x^{\frac{m}{2}-1}}{\Gamma\left(\frac{m}{2}\right) \Gamma\left(\frac{n}{2}\right) (mx+n)^{\frac{m+n}{2}}} \quad m, n = 1, 2, 3, \qquad x \in [0; \infty)$$

1.10.1. Propriedades da distribuição F (de Snedecor)

Média, expectância ou valor esperado

$$\mu = E(X) = \frac{m}{m-2}$$
, onde m é o grau de liberdade do numerado.

Variância

$$V(X) = \sigma^2 = \frac{2 m^2 (m+n-2)}{m(m-2)(n-4)}$$

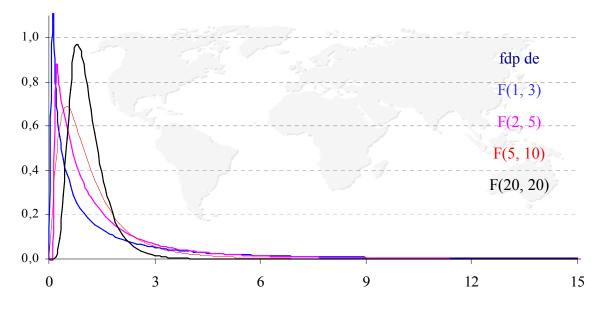


Figura 1.7 - Gráfico da distribuição F (de Snedecor)

Tabelas

O que é tabelado é a percentil 95% ou 99% - área à direita de cada curva (uma para cada par de valores — numerador, denominador) igual a 5% e 1%, isto é, "x" tal que $P[F(m, n) \ge x] = 5\%$ ou $P[F(m, n) \ge x] = 1\%$.

Tabela F – Probabilidades unilaterais à direita a 5%

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
1	161,45	199,50	215,71	224,58	230,16	233,99	236,77	238,88	240,54	241,88	242,98	243,90	244,69	245,36	245,95	246,47
2	18,51	19,00	19,16	19,25	19,30	19,33	19,35	19,37	19,38	19,40	19,40	19,41	19,42	19,42	19,43	19,43
3	10,13	9,55	9,28	9,12	9,01	8,94	8,89	8,85	8,81	8,79/	8,76	8,74	8,73	8,71	8,70	8,69
4	7,71	6,94	6,59	6,39	6,26	6,16	6,09	6,04	6,00	5,9	5,94	5,91	5,89	5,87	5,86	5,84
5	6,61	5,79	5,41	5,19	5,05	4,95	4,88	4,82	4,77	_4	70	4,68	4,66	4,64	4,62	4,60
6	5,99	5,14	4,76	4,53	4,39	4,28	4,21	4,15	4,	P[F(5.	$(7) \ge 3$	3,97] =	5%	3,96	3,94	3,92
7	5,59	4,74	4,35	4,12	3,97	3,87	3,79	3,73	3,00	-,-		, ,		3,53	3,51	3,49
8	5,32	4,46	4,07	3,84	3,69	3,58	3,50	3,44	3,39	3,35	3,31	3,28	3,26	3,24	3,22	3,20
9	5,12	4,26	3,86	3,63	3,48	3,37	3,29	3,23	3,18	3,14	3,10	3,07	3,05	3,03	3,01	2,99
10	4,96	4,10	3,71	3,48	3,33	3,22	3,14	3,07	3,02	2,98	2,94	2,91	2,89	2,86	2,85	2,83

Tabela F – Probabilidades unilaterais à direita a 1%

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
1	4052,18	4999,34	5403,53	5624,26	5763,96	5858,95	5928,33	5980,95	6022,40	6055,93	6083,40	6106,68	6125,77	6143,00	6156,97	6170,01
2	98,50	99,00	99,16	99,25	99,30	99,33	99,36	99,38	99,39	99,40	99,41	99,42	99,42	99,43	99,43	99,44
3	34,12	30,82	29,46	28,71	28,24	27,91	27,67	27,49	27,34	27,23	27,13	27,05	26,98	26,92	26,87	26,83
4	21,20	18,00	16,69	15,98	15,52	15,21	14,98	14,80	14,66	14,55	14,45	14,37	14,31	14,25	14,20	14,15
5	16,26	13,27	12,06	11,39	10,97	P	[F(5, 7)]	≥ 7,40	6] = 19	% }	9,96	9,89	9,82	9,77	9,72	9,68
6	13,75	10,92	9,78	9,15	8,75	81	8,26	8,10	7,98	7,87	7,79	7,72	7,66	7,60	7,56	7,52
7	12,25	9,55	8,45	7,85	7,46	7,19	6,99	6,84	6,72	6,62	6,54	6,47	6,41	6,36	6,31	6,28
8	11,26	8,65	7,59	7,01	6,63	6,37	6,18	6,03	5,91	5,81	5,73	5,67	5,61	5,56	5,52	5,48
9	10,56	8,02	6,99	6,42	6,06	5,80	5,61	5,47	5,35	5,26	5,18	5,11	5,05	5,01	4,96	4,92
10	10,04	7,56	6,55	5,99	5,64	5,39	5,20	5,06	4,94	4,85	4,77	4,71	4,65	4,60	4,56	4,52

2. PROPRIEDADES DA MÉDIA E DA VARIÂNCIA DE VARIÁVEIS ALEATÓRIAS

2.1. MÉDIA

(1) A média de uma constante é igual a própria constante.

$$E(k) = k$$
, onde $k = constante$

(2) Se multiplicarmos os valores de uma variável aleatória por uma constante, a média fica multiplicada por esta constante.

$$E(kX) = k.E(X)$$

(3) Se os valores de uma variável aleatória forem somados a uma constante a média ficará igualmente somada dessa constante.

$$E(X \pm k) = E(X) \pm k$$

(4) A média de uma soma ou diferença de duas variáveis aleatórias é igual a soma ou diferença das médias dessas variáveis.

$$E(X \pm Y) = E(X) \pm E(Y)$$

(5) A média do produto de duas variáveis aleatórias **independentes** é igual ao produto das médias dessas variáveis.

$$E(X.Y) = E(X).E(Y)$$

2.2. VARIÂNCIA

(1) A variância de uma constante é nula

$$V(k) = 0$$

(2) Se multiplicarmos os valores de uma variável aleatória por uma constante, a variância fica multiplicada pelo quadrado da constante.

$$V(kX) = k^2.V(X)$$

(3) Se os valores de uma variável aleatória forem somados a uma constante a variância não se altera.

$$V(X \pm k) = V(X)$$

(4) A variância de uma soma ou diferença de duas variáveis aleatórias **independentes** é igual a soma das variâncias dessas variáveis.

$$V(X \pm Y) = V(X) + V(Y)$$

2.3. A MEDIANA E A MODA

A **mediana** de uma variável aleatória é o valor que divide a distribuição em duas partes eqüiprováveis. Será representada por **md.** Então:

$$P(X < md) = P(X > md) = 0.50.$$

Este ponto sempre existe se a variável é contínua, onde a mediana pode ser definida como sendo o ponto tal que F(md) = 0,50. No caso discreto pode haver todo um intervalo que satisfaz a relação acima, convenciona-se em geral adotar o ponto médio deste intervalo. Pode-se ainda, neste caso, definir a mediana como sendo o menor valor para o qual F(md) > 0,5.

A **moda** é o(s) ponto(s) de maior probabilidade, no caso discreto, ou maior densidade de probabilidade no caso contínuo. É representada por **mo**.

2.4. DESIGUALDADES DE TCHEBYCHEFF E CAMP-MEIDELL

Pode-se demonstrar que, para qualquer distribuição de probabilidade que possua média μ e desvio padrão σ , tem-se, para qualquer número "k > 1":

 $P(|X - \mu| \ge k\sigma) \le 1/k^2$ (Desigualdade de **Tchebycheff**, Tchebichev ou Chebyshev, 1821 - 1894), ou de forma equivalente

$$P(|X - \mu| < k\sigma) \ge 1 - 1/k^2$$

Se a distribuição for unimodal e simétrica, então:

$$P(|X - \mu| \ge k\sigma) \le \frac{4}{9k^2}$$
 (Designaldade de **Camp-Meidell**)

Estas desigualdades fornecem as probabilidades de que os valores de uma variável aleatória (qualquer) esteja num intervalo simétrico em torno da média de amplitude igual a 2k desvios padrões. Assim se k = 2, por exemplo, a desigualdade de Tchebycheff estabelece que o percentual de valores da variável aleatória que está compreendida no intervalo $\mu \pm 2\sigma$ é de pelo menos 1 - 1/4 = 75%. Conforme visto pela normal este percentual vale exatamente 95,44%. Mas como a normal é simétrica e unimodal, neste caso, um resultado mais próximo é dado pela desigualdade de Camp-Meidell, isto é, $1 - 4/9k^2 = 1 - 1/9 = 88,89\%$.

Exemplo 2.1

Compare o limite superior da probabilidade $P[(X - \mu | \ge 2\sigma)]$, obtida pela desigualdade de T-chebycheff, com a probabilidade exata se X for uniformemente distribuída sobre (-1, 3).

Solução:

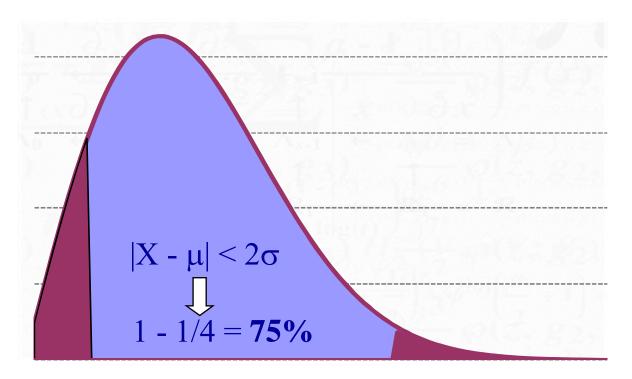
Para uma distribuição uniforme tem-se $\mu = (a + b) / 2 = (-1 + 3) / 2 = 1$ e

$$V(X) = (b - a)^2 / 12 = 4/3$$

Então: $P(|X - \mu| \ge k\sigma) = P(|X - 1| \ge 4\frac{\sqrt{3}}{3}) = 0$ é a probabilidade exata.

Por Tchebycheff, teríamos:

$$P(|X - \mu| \ge k\sigma) = P(|X - 1| \ge 4\frac{\sqrt{3}}{3}) \le 1/4.$$



2.5. O TEOREMA CENTRAL DO LIMITE

Sejam $X_1, X_2, ...$ Uma sequência de variáveis aleatórias iid (independentes e identicamente distribuídas) com $E(\chi_i^2) < \infty$

Sejam
$$\mu = E(X_i) e \sigma^2 = Var(X_i)$$
.

Então para todos os valores \mathbf{a} e \mathbf{b} tais que $\mathbf{a} \le \mathbf{b}$, tem-se:

$$P\left[a \le \frac{\sum\limits_{i=1}^{n} X_i - n\mu}{\sigma\sqrt{n}} \le b\right] \to \int_a^b \frac{1}{\sqrt{2\pi}} e^{-x^2/2} dx = \Phi(b) - \Phi(a)$$

3. EXERCÍCIOS

(78) Uma variável aleatória contínua tem a seguinte função densidade de probabilidade:

$$f(x) = 3x^2$$
 se $0 < x < 1$

= 0 caso contrário.

Calcular a probabilidade dessa variável assumir um valor maior ou igual a 1/3.

- (79) Sendo $f(x) = kx^3$ a densidade de uma variável aleatória contínua no intervalo 0 < x < 1, determine o valor de "k".
- (80) Uma variável aleatória contínua X é definida pela seguinte função densidade:

$$f(x) = \frac{3}{2}(x-1)^2$$
 para $0 \le x < 2$. Determinar:

(80.1) A média

(80.2) A variância

(81) Uma variável aleatória contínua tem a seguinte fdp:
$$f(x) = \begin{cases} 2kx & \text{se } 0 \le x < 3; \\ kx & \text{se } 3 \le x < 5; \\ 0 & \text{caso contrario} \end{cases}$$

Determinar o valor de k, a média, a mediana e a variância da variável aleatória.

- (82) Uma variável X é uniformemente distribuída no intervalo [10, 20]. Determine a expectância e a variância de X e calcule ainda a $P(12,31 \le X \le 16,50)$.
- (83) Suponha que X seja uniformemente distribuída entre $[-\alpha, \alpha]$, onde $\alpha > 0$. Determinar o valor de α de modo que as seguintes relações estejam satisfeitas:

(83.1)
$$P(X > 1) = 1/3$$
 (83.2) $P(X < 1/2) = 0.7$

(84) Suponha que um mecanismo eletrônico tenha um tempo de vida X (em unidades de 1000 horas) que é considerado uma variável aleatória com fdp dada por:

$$f(x) = e^{-x}, x > 0$$

= 0, caso contrário.

Suponha ainda que o custo de fabricação de um item seja 2,00 um e o preço de venda seja 5,00 um. O fabricante garante total devolução se $x \le 0.8$. Qual o lucro esperado por item?

(85) Uma lâmpada tem duração de acordo com a seguinte densidade de probabilidade:

$$f(t) = 0.001e^{-0.001t}$$
 para $t > 0$

= 0 caso contrário

Determinar

- (85.1) A probabilidade de que uma lâmpada dure mais do que 1200 horas.
- (85.2) A probabilidade de que uma lâmpada dure menos do que sua duração média.
- (85.3) A duração mediana.
- (86) Se as interrupções no suprimento de energia elétrica ocorrem segundo uma distribuição de Poisson com a média de uma por mês (quatro semanas), qual a probabilidade de que entre duas interrupções consecutivas haja um intervalo de:
 - (86.1) Menos de uma semana.
- (86.2) Mais de três semanas.
- (87) Se X : N(10, 2) Calcular:

(87.1)
$$P(8 \le X \le 10)$$
 (87.2) $P(9 \le X \le 12)$

$$(87.2) P(9 \le X \le 12)$$

(87.4)
$$P(X < 8 \text{ ou } X > 11)$$

(88) Se X tem uma distribuição normal com média 100 e desvio padrão 10, determine:

(88.1)
$$P(X < 115)$$

(88.2)
$$P(X \ge 80)$$

(88.3)
$$P(X > 100)$$

(88.4) O valor de "a" tal que
$$P(100 - a \le X \le 100 + a) = 0.9544$$

(89) Na distribuição $N(\mu; \sigma)$, encontre:

(89.1)
$$P(X < \mu + 2\sigma)$$

(89.2)
$$P(|X - \mu| \le \sigma)$$

(89.3) O número "a", tal que
$$P(\mu - a\sigma < X < \mu + a\sigma) = 0.90$$

(89.4) O número "a", tal que
$$P(X > a) = 0.95$$

- (90) A alturas de 10000 alunos de um colégio têm distribuição aproximadamente normal com média de 170 cm e desvio padrão de 5 cm.
 - (90.1) Qual o número esperado de alunos com altura superior a 1,65 m?
 - (90.2) Qual o intervalo simétrico em torno da média, que conterá 75% das alturas dos alunos?
- (91) As vendas de determinado produto têm distribuição aproximadamente normal, com média de 500 e desvio padrão de 50. Se a empresa decide fabricar 600 unidades no mês em estudo, qual é a probabilidade de que não possa atender a todos os pedidos desse mês, por estar com a produção esgotada?
- (92) O número de pedidos de compra de certo produto que uma cia recebe por semana distribui-se normalmente, com média 125 e desvio padrão de 25. Se em uma dada semana o estoque disponível é de 150 unidades, qual é a probabilidade de que todos os pedidos sejam atendidos? Qual deveria ser o estoque para se tivesse 99% de probabilidade de que todos os pedidos fossem atendidos?

- (93) Uma enchedora automática de garrafas de refrigerantes está regulada para que o volume médio de líquido em cada garrafa seja de 1000 cm³, com desvio padrão de 10 cm³. Pode-se admitir que a distribuição da variável seja normal.
 - (93.1) Qual a percentagem de garrafas em que o volume de líquido é menor que 990 cm³?
 - (93.2) Qual a percentagem de garrafas em que o volume do líquido não se desvia da média em mais do que dois desvios padrões?
 - (93.3) O que acontecerá com a percentagem do item (b) se a máquina for regulada de forma que a média seja 1200 cm³ e o desvio padrão 20 cm³?
- (94) O diâmetro de certo tipo de anel industrial é uma variável aleatória com distribuição normal de média 0,10 cm e desvio padrão 0,02 cm. Se o diâmetro do anel diferir da média de mais do que 0,03 cm, ele é vendido por R\$ 5,00, caso contrário, é vendido por R\$ 10,00. Qual o preço médio de venda de cada anel?
- (95) Suponha que as amplitudes de vida de dois aparelhos elétricos D_1 e D_2 , tenham distribuições N(42; 6) e N(45; 3), respectivamente. Se o aparelho é para ser utilizado por um período de 45 horas, qual aparelho deve ser preferido? E se for por um período de 51 horas?
- (96) A distribuição dos pesos de coelhos criados em uma granja pode muito bem ser representada por uma distribuição normal, com média de 5 kg e desvio padrão de 0,8 kg. Um abatedouro comprará 5000 coelhos e pretende classificá-los de acordo com o peso, do seguinte modo: 20% dos leves como pequenos, os 55% seguintes como médios, os 15% seguintes como grandes e os 10% mais pesados como extras. Quais os limites de pesos para cada classificação?
- (97) Uma distribuição normal tem desvio padrão igual a 5 e é tal que 1,5% dos valores estão abaixo de 35. Determine sua média.
- (98) Numa prova de vestibular com 50 questões objetivas de 5 alternativas cada, qual a probabilidade de que um candidato, que responde ao acaso (chuta) todas as questões, acerte mais do 15 questões?
- (99) Um dado equilibrado é lançado 120 vezes. Determinar a probabilidade que a face 4 (quatro) apareça:

(99.1) 18 vezes ou menos

(**99.2**) Mais de 14 vezes

(100) No lançamento de 30 moedas equilibradas, qual a probabilidade de saírem:

(100.1) Exatamente 12 caras?

(100.2) Mais de 20 caras?

(101) Uma variável aleatória tem média igual a 5 e desvio padrão igual a 3. Determine:

(101.1) $P(|X - 5| \le 3)$

(101.2) h tal que P(|X - 5| > h) = 0.01

(101.3)
$$P(-1 \le X \le 11)$$

(101.4)
$$P(|X - 5| \le 7,5)$$

(102) Supondo que a média de uma variável aleatória X seja igual a 4 e o desvio padrão igual a 2, determine:

(102.1) A probabilidade de X estar no intervalo de $\mathbf{0}$ a $\mathbf{8}$. (102.2) Qual o valor mínimo de $P(-2 \le X \le 10)$.

4. RESPOSTAS DOS EXERCÍCIOS

(78)
$$P(X > 1/3) = 26/27$$

$$(79) k = 4$$

(80) (80.1)
$$E(X) = 1$$

$$(80.2) \sigma^2 = 0.60$$

(82)
$$E(X) = 15$$

$$V(X) = 8.33$$

$$P(12,31 < X < 16,50) = 41,90\%$$

(84)
$$5e^{-0.8} - 2 = 0.25$$
 um

(87) (87.1) 34,13%

(87.2) 53,28%

$$(88.4) a = 20$$

(89.4)
$$a = \mu - 1.645\sigma$$

$$(91) 0.0228 = 2.28\%$$

(**94**) 9,33 u.m.

(95)
$$P(D_1 > 45) = 30.85\%$$
 $P(D_1 > 51) = 6.68\%$

$$P(D_1 > 51) = 6.68\%$$

$$P(D_2 > 45) = 50\%$$

$$P(D_2 > 51) = 2.28\%$$

(97) 45,85

(98) 2,62%

$$(101.2) h = 30$$

$$(102) (102.1) 3/4 = 75\%$$

$$(102.2) 8/9 = 88.89\%$$

5. REFERÊNCIAS

- BUSSAB, Wilton O, MORETTIN, Pedro A. Estatística Básica. 3ª ed. São Paulo: Atual, 1986.
- COSTA NETO, Pedro Luís de Oliveira, CYMBALISTA, Melvin. *Probabilidades: resumos teóricos, exercícios resolvidos, exercícios propostos.* São Paulo: Editora Edgard Blücher, 1977.
- FELLER, William. *An Introduction to Probability Theory and Its Applications (vol. 1)*. John New York: Wiley & Sons, 1968. 509 p.
- HAZZAN, Samuel. Matemática Elementar: Combinatória e Probabilidades. São Paulo: Atual, 1977.
- HILLIER, Frederick S., LIEBERMAN, Gerald J. *Introdução à Pesquisa Operacional*. São Paulo: Campus e Editora da Universidade de São Paulo, 1988.
- LIPSCHUTZ, Seymour. *Teoria e Problemas de Probabilidade*. São Paulo: McGraw-Hill, 1974. 225 p.
- MARKLAND, Robert E., SWEIGART, James R. *Quantitative Methods: Applications to Managerial Decision Making*. New York: John Wiley & Sons, 1987. 827p.
- MASON, Robert D., DOUGLAS, Lind A. *Statistical Techniques in Business And Economics*. IRWIN, Boston, 1990.
- MEYER, Paul L. *Probabilidade: aplicações à Estatística*. Rio de Janeiro: Livros Técnicos e Científicos, 1978.
- MILLER, Charles D., HEEREN, Vern E., HORNSBY Jr., E. John. *Mathematical Ideas*. USA: Harper Collins Publishers, 1990.
- The Statistics Problem Solver. Research and Education Association, Piscataway, New Jersey, 1993.
- ROTHENBERG, Ronald I. *Probability and Statistics*. Orlando (FL), Hartcourt Brace Jovanovich Publishers, 1991.
- ROSS, Sheldon M. Introduction to Probability Models. Orlando (FL): Academic Press, 1985, 502 p.